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1. introduction. Let A and B be self-adjoint, positive

definite operators from a real reflexive Banach space X to its

dual X . Assume that A has a continuous inverse and that B

is compact. Then the eigenvalue problem

(1.1) Ax =

has an unbounded sequence of positive eigenvalues M^ <; |i2 ̂  H3 <1 »•

with

(1.2) lim \in = oo,

m-oo

and corresponding normalized eigenvectors x.,X2,..., which together

with the vectors 77, , T)2' • • - > where 77 = Bxn> form a biorthogonal

system; the system {x } is a basis for X. Finally, Poincare's

principle is valid,

(1.3) u = inf{ sup ; ^ x , Melh }
n xeM\{0} tx>Ax> n

where to denotes the class of all subspaces of X of dimension > n.

Except for the completeness assertion concerning the eigen-

vectors, this result has a natural nonlinear generalization. The

establishment of this generalization is the purpose of this paper.

We consider a problem of the form (1.1), in which A and B are

assumed to be oddo The generalization of the self-adjointness

requirement is the requirement that A and B be gradients of real

functionals a(x) and b(x) on X. B is assumed to be compact

and continuous. The generalization of positive definiteness is

convexity of a(x) and b(x). The continuous invertibility of the
2

linear operator A, which is equivalent to (x,Ax) J> y||x|| ,Y y > 0,

is generalized in the condition of strong monotonicity (see [19]):



there exists a function d Q(r), defined and continuous on [0,co)

and positive on (0,co) with

(1.4) lim dQ(r) = oo ,

and

(1.5) (x-y,Ax-Ay) 2 l|x-y||do(||x-y||) x,yeX.

The continuity of the linear operator A is replaced by the

assumption that A is bounded, i.e. there exists a continuous

strictly monotone function d, (r) on [O,oo) such that

(1.6) ||Ax|| £ d1(||x||), xeX,

and that A is hemi-continuous, i.e. continuous from L to

(X ,X) , (X with the weak topology) for each line L in X.

(Notice that (1.6) and (1.5) imply d (r) _£ d, (r) and hence

(1.7) lira d^r) = oo.

r-»-oo

Finally, in the non-linear case the eigenvalue problem is re-

formulated, for obvious reasons, to include a side condition.

Thus we consider the problem

(1.8) Ax = |iBx, a(x) = c,

where c > a(0) .

The basic topological ideas used here date back to Lyusternik

[13], see also [14], and have been used by a number of other authors

in proving existence theorems for eigenfunctions of nonlinear

operators. See for example [5],[12],[20]. Recently these techniques

have been extended and exploited by Browder in the study of eigen-

value problems for nonlinear elliptic partial differential equations.

Thus the Lyusternik-Schnirelman theory, the topological technique



to which we refer, is, in its standard form, fairly well known.

Here are used two variations from the standard theory. First,

in place of the Lyusternik-Schnirelman category we use the "genus".

The later is obviously better suited to the study of critical

points of even functionals in a Banach space, and by its use the

need to consider deformations or homotopies, which arises in the

standard treatment, is eliminated. Second, exploiting convexity

of the functionals and the inequalities arising therefrom we

define the "normalized iteration", a mapping which leaves the side

condition in (1.8) invariant and increases the functional b(x).

To obtain mappings with similar properties, in the standard treat-

ment, what one must do, roughly speaking, is solve

— = T(x)dt iyx}

where T is the component tangential to the set (xeX:a(x) = c}

of the operator B. This involves a fairly sophisticated theory

and necessitates rather strong regularity conditions on a(x)

and b(x)o See the remarks on pp.41 and 42 of [4], Thus when

convexity is present the use of this normalized iteration seems

to have distinct advantage over the standard method. In another

approach, described in [3] and [4], Browder has shown that the

regularity conditions can be weakened by using Galerkin approxima-

tions to obtain the existence theorem. With the additional

assumption of convexity, the methods here give an existence theorem

in which the other regularity requirements are essentially the

same as in [3], In addition, however, we get the multiplicity

result (inequality (2.5)) which, so far as I can tell, is not



easily obtained, if it can be obtained at all, by the techniques

of [3] .

The use of "iterations" in the variational study of nonlinear

problems appears in the investigation by Moore and Nehari, [16],

of the boundary value problem

y" + p(x)y2n+1 = 0 , 0 £ x £ 1, y(0) = y(l) = 0.

The idea was subsequently exploited further by Nehari, [17],[18],

and later by the author, [6],[7], and finally, also by the author,

used in connection with the Lyusternik-Schnirelman techniques in

[8],[9].

The notion of genus (pod in Russian) was introduced in [11],

see also [12]„ The distinct advantages of using the genus in the

study of critical points of even functionals seems generally to

have been overlooked in spite of the treatment in the well-known

monograph [12]. The invariant here referred to as the genus

appears also in [10], where it is called the co-index.

2. Statement of results. We first introduce some additional

terminology and notation. Let S denote the class of symmetric

subsets of X\{0} which are closed in X. For a set SeS, the

genus of S, denoted p(S), is zero if S is empty and otherwise

p(S) is the supremum of the set of integers n such that every

odd continuous map f : S -*- Rn~ has a zero on S. Equivalently

one can define the genus of a non-empty set Seg to be 1 if no

connected component of S contains a pair of antipodal points

and to be n if S can be covered by n but not by less than n

sets in g of genus l0



Let a(x) and b(x) be as indicated in section 1, we shall

assume henceforth that

(2.1) a(0) = b(0) = 0.

Let the positive number c be fixed. We shall say that xeX is

admissible if a(x) = c, and that a set S c x is admissible if

Seg, S consists of admissible elements, and S is compact. The

class of all admissible subsets of X will be denoted by G , and,

for n = 1,2,...,

G n = {SeG : p(S) ̂  n}.

The characteristic values of (1.8) are defined to be the numbers

given by

(2.2) A = sup min b(x).
n Sedsn xeS

Theorem 1. For each n the class G J^ non-empty. The

numbers A_ defined by (2.2) form a non-increasing sequence of

positive numbers with

(2.3) lim A = 0.
n co

It follows from Theorem 1 that given the natural number n, there

will exist natural numbers k,m such that k_£n_£k + m - 1,

An = A. , , > A. , and either k = 1 or A, , > A, ; the naturalK K+m—x K+m K—i K

number m will be called the multiplicity of A .

Theorem 2. Let a(x) and b(x) be real-valued, even, convex,

continuous functionals on the real reflexive Banach space X, and

with a(0) = b(0) = 0. Let a(x) have .a bounded, strongly monotone
•X-

hemi-continuous Gateaux derivative A : X-*-X , and let b(x) be



positive for x j4 0, and have a, compact continuous Frechet derivative

B : X -*-X . Then for each n = 1,2,.. „, there exist solutions x

of (1.8) satisfying

(2.4) b(x) = An ,

moreover, if E denotes the set of solutions of (1.8) satisfying

(2.4), then E is admissible and
, ^ H _ n • • ' ' " ' '

(2.5) P(Er? ^ multiplicity of An .

Remark. In describing the linear result corresponding to

Theorem 2 in the introduction, we did not assert that X was

separable. To do so would have in fact been redundant since a

compact positive definite self-adjoint operator can not exist on

a reflexive space X unless X is separable. The reflexivity

assumption is also redundant in the linear case, when taken

together with the hypotheses on Ao Indeed X becomes a Hilbert

space when provided with the equivalent norm (x,Ax)„ The situation

remains the same in the non-linear case. Suppose X is reflexive.

By a result in [19], B can be uniformly approximated on bounded

sets xn X by operators with finite dimensional range in X .

Thus the range of B lies in a separable subspace of X , and

hence, since (x,Bx) > 0 for x > 0, X must be separable. If

the functional a(x) has the properties indicated in the hypothesis

of Theorem 2 then X can be given an equivalent norm for which

the unit ball is {x : a(x) _£ c}, moreover this norm will be uniformly

convex so that X must be reflexive.

The proof of Theorems 1 and 2 is based on the following result

concerning the existence of a continuous "normalized iteration"



operator associated with (1.8).

Theorem 3. Assume the hypothesis of Theorem 2. Then the

problem Ax = otBy, a(x) = c, a > 0 has ja unique solution (x,a)

for each non-zero yeX. The resulting solution map a : y ->• x:

X\{0} -»- X has the following properties:

i) a .is. odd and continuous and maps X\{0} into the set of

admissible elements in X; the fixed points of a are precisely

the solutions of (1.8),

ii) the g-image of {xeX : a(x) = c,b(x) J> A} _is precompact

for any A > 0,

iii) .if x is admissible then b(cr(x)) J> b(x) and equality holds

only if x is an eigenfunction of (1.8).

3. Basic inequalities.. We shall collect here the inequalities

resulting from the convexity of a(x) and b(x) and from the

boundedness and strong monotonicity of A.

Lemma 3.1. a) For arbitrary x,yeX, there hold the inequalities

(3.1) (x-y,Ax)

(3.2) (x-y,Bx)

and equality can hold in (3.1) only if x = yo

b) There exists £ non-decreasing function d«(r), continuous

on [ 0,oo ) and positive on (0, oo ) with

(3o3) lim

such that

r-voo

(3 .4) a(x) ^ I |x | |d2( | |x | | ) , X6X.
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c) B jLs_ bounded and

(3.5) (x,Bx) > 0 .for x ^ 0.

Proof. Let x and y be given, then the convexity and

differentiability of a(x) and b(x) and the definition of the

Gateaux derivative [19],[21], imply that, as functions of t,

a(y+t(x-y)) and b(y+t(x-y)) are convex and differentiable on

[0,1] with derivatives (x-y,A(y + t(x-y)) and (x-y,B(y+t(x-y))

respectively. For a convex function tp(t) on [0,1], dif ferentiable

at 0 and 1, there holds

cp'(l) ̂  <P(D " 9(0) 2 «p'(0)

and either equality holds only if both do and cp is linear on [0,1].

Applied to the two convex functions mentioned just above, this

inequality yields (3.1) and (3.2). We also conclude that if either

equality holds in (3.1) then (x-y,Ax-Ay) = 0, and, because of the

strong monotonicity of A, this implies that x = y. This concludes

the proof of part a.

From the differentiability of a(x) and the hemi-continuity

of A, since a(0) = 0 ,

r 1

a(x) = (x,A(tx))dt.
J0

^ ||x||J do(t||x||)dt,

where the latter inequality follows from (1.5). The function
,1

d2(r) = J dQ(tr)dt clearly satisfies the conditions of part b,

thus the proof of that assertion is completed.

The boundedness of B when B is compact is a standard

result, and since b(x) is assumed to be positive for x ^ 0,

(3.5) follows immediately from (2.1) and (3.2) with y = 0.



Lemma 3 <, 2. The operator A has a. continuous inverse

1
A : X X and there exists r > 0 and a_ monotone non-decreasing

continuous function d_(r) on [O,ao) which is positive on (r.,oo)

with

(3.6) lim d3(r) = oo
r+oo

such that

(3.7) HA-^II 2 cl3(||i7||), rjeX.

Proof. The invertibility of A follows from a result in

Browder, [1], Minty [15], or see Theorem 3«3 p. 101, [19]. Since

d, was assumed to be strictly increasing and continuous we can

take rQ = d][(O),d3(r) = 0 for 0 £ r < rQ and d3(r) = d~
1(r)

for r J> r , and (3.7) will then follow immediately from (1.6)

with x = A~ 77 0

Lemma 3.3. a) The set N = N defined by

(3.8) N = {xeX : a(x) = c}

is closed, bounded, and bounded away from zero and intersects

every ray through 0 jLn _a single point. The mapping

TT : x-»-{tx : t > 0} [1 N

is continuous on X\{0}o

b) The functional b(x) JLS positive and bounded on N, and

||Bx|| _is bounded away from zero on N(A) = {xeN : b(x) ̂  A} for

any A > 0.

Proofo That N is closed follows from the continuity of a(x),

and from the closedness, since c > a(0) = 0 , it follows that N

is bounded away from zero. The boundedness of N follows from (3.3)
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and (3.4). Similarly, one sees easily that a(tx) varies continuously

from 0 to co as t varies from 0 to oo3 and from (3.1),

a(tx) - a(x) > (t-l)(x,Ax), t > 0,

from which it follows that {tx : t > 0} ("IN consists of precisely

one point., This latter fact, together with the closedness of N,

readily yields the continuity of ir. Since 0/N, the functional

b(x) is clearly positive on N. The boundedness of b(x) on N

follows from the boundedness of N, the boundedness of B, and (3.2)

with y = 0. Finally, for xeN(A),

A £ b(x) <- (x,Bx) £ ||x||||Bx||,

and since N is bounded, it follows that ||Bx|| has a positive

lower bound on N(A), A > 0.

4» Proof of Theorems 1 and 2. In this section we shall assume

Theorem 3 and derive from it Theorems 1 and 2. We require to begin

with the following basic properties of the genus; the verification

of these is straightforward and is indicated in [8]„ Below the

letter S, with or without subscript, will denote a set in the

class S.

G.I. If there exists an odd continuous map f : S, -*- S2,

in particular if S 1 £ S2, then p(S,) £ p(S2).

G.2. p(S1 U S2) £ p(S1) + p(S2).

G.3. If S is compact then p(S) < oo and S has a

neighborhood U with Ueg and p(U) = p(S)„

G.4. If {s } is a decreasing sequence of compact sets
oo

from s, then S = C\ S eg and
n=l n

p(S) = lim p(S_).
n-»-cD n
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Go5. If there exists an odd homeomorphism of the n-sphere

onto S then p(S) = n + 1.

Proof of Theorem 1, Let £ = {xeX : |jx|| = 1), the unit

sphere in X, then 7r|L, being a radial projection, is one-to-one

and, by part a of Lemma 3.3, TT|E is continuous and onto N. The

inverse of TT|SJ X-»-X/||X|| : N -v £ is continuous so 7r|£ is a

homeomorphism. If M is an n-dimensional subspace of X, then

clearly 7r(D n M) is admissible, and since ir| £ is a homeomorph ism,

it follows from G.5 that p(?(j fl M)) = n, and therefore 6 is

non-empty.

From part b of Lemma 3.3, and the fact that each Ct is

non-empty, it follows that (2.2) defines a sequence of positive

numbers, and this sequence is clearly non-increasing.

For the completion of the proof of Theorem 1 and for the proof

of Theorem 2 we require the following.

Lemma 4.1. Let S be am admissible set,then

(4.1) min b(x) J> ̂
xeS

if and only if S c N(A)„ Thus (4.1) implies

(4.2) p(s) <: p(N(A)).

Lemma 4 . 2 . Let a be the mapping in Theorem 3<, Then CT(N(A))

is admissible and

(4.3) p(tf(N((A))) = p(N(A)) < oo, A > 0,

and

(4.4) p(N(A)) = n, An ^ * > * n + 1 .

Proof of Lemma 4.1. The first assertion follows directly from
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the definition of an admissible set and the definition of N(A);

(4.2) then follows from (4O1) by G.I.

Proof of Lemma 4.2. From properties i) and iii) of a it follows

that cr(N(A)) £ N(A) and then from the continuity of a(x) and b(x) ,

(4.5) CT(N(A)) c N(A) ;

it is clear that <j(N(A))eS.

The inclusion (4.4) implies directly, by G.I, that p(cr(N(A)) £ p(N(A));

the opposite inequality follows from applying G.I with f = a.

Property ii) of cr implies that cr(N(A)) is compact, hence

admissible, for A > 0 and by G.3 this completes the proof of (4.3).

Suppose now that A > A , (otherwise the assertion (4.4) is

vacuous) and let A > A > A ,. Then by (2.2), (we are also

implicitly using that portion of Theorem 1 which is already proved)

there exists an admissible set S with min b(x) J> A and
xeS

p(S) J> n. It then follows by Lemma 4O1 that

(4.6) p(N(A)) 2 *> A > An '

From (4.5),

min{b(x) : xecr(N(A))} ̂  A,

so by (2.2), since a(N(A)) is admissible and A > A n + 1 , this implies

p(cr(N(A)) < n + 1. Together with (4.3) and (4.6) this gives the

equality in (4.4) except for A = A . To obtain this inequality

when A = A we observe thatn

fl cr(N(A) ) c N(A )
0 < A < An

and use Go4 and G.I. This completes the proof of Lemma 4,2.
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Completion of the proof of Theorem 1. Let A = lim A . so
n-*-oo

that A >̂ 0. By G.I and the definition of N(A),p(N(A)) is

monotone nonincreasing, so it follows from (4.4) that p(N(AQ)) = oo,

and hence, by (4.3), A = 0. This proves (2.3).

Proof of Theorem 2O Let n J> 1 with A n > A R + 1 . Let E n

denote the set of solutions x of (1.8) satisfying

(4.7) b(x) = An;

equivalently E can be characterized as the set of fixed points

of a satisfying (4.7)„ From the properties of cr, and the latter

characterization it is clear that E is an admissible set.
n

By G.3 we choose a neighborhood U of E with Ueg,

p(U) = p(E )(U is empty if E is). Consider the compact set
S = cr(N(An))\U c N(A n), the cr-image, S]_ = cr(S), of this set satisfies

(4.8) min b(x) > A
n

To see this assume the contrary, then

min b(x) = A

1

and there is an x in the compact set S, with b(x ) = A „
However X Q = crfx^), x ^ S , and thus by property iii) of a, since

S c N(A n),

A n = b(xQ) = b(a(x1))

and x, must be a fixed point of a. But by the construction of S

this is impossible, hence S, c N(A) for some A > A

It follows that

p(S) £ piS^ £ p(N(A)) £ n - ( m u l t i p l i c i t y of An) .

HURT LFBBMT
CARNEGIE-MELLON UNIVERSITY
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Since cr(N(A )) c S U U, it follows from G.2 and G.I that

n £ p(S) + p(U)

and hence p(E ) = p(U)J> multiplicity of A . This completes the

proof of Theorem 2.

Remark. It is interesting to note that if P(En) = H, then

one can choose elements x, ,x2,... ,,x eE so that the finite

sequences [x,,...,x } and {Bx.,...,Bx } are biorthogonal. This
X \J. X p*

is easily established by induction. If 1 £ k < |u and {x,,...,x, }

and {Bx.,...^Bx, } are biorthogonal, then an argument similar to

that above shows that

p({xeEn : (XjBx.) = 0, j=l,...,k}) } |i - k.

5« Proof of Theorem 3O Let rjeX , 77 r 0. By Lemma 3.2,

A~ is continuous and from (3.7), for a > 0,

2

so that by (3.6),

lim ||A'*1(ar7)|| = 00

Since a(0) = 0, from the continuity of a(x) and A~ and

from (3o3) and (3.4) of Lemma 3 it follows that a(A~1(ar/))

varies continuously from 0 to 00 as a varies from 0 to 00.

The strong monotonicity of A (or merely the strict convexity of a(x))

implies, for a > j3 > 0,

(5.1) (a-j8) (A"1(aT7) - A"
1(i3r7),Tj) > o,
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and from (3.1)

a(A"1(a77)) - aCA"1^^)) > (A^CCTTJ - A"1(/3?j) ,77) .

It follows therefore, because of (5.1), that a (A (0,77)) is a

strictly increasing function of a., for any 77 ̂ 0, and hence, for

each 77 7̂  0, there is a unique a > 0 such that

(5.2) a(A~1(ar7)) = c

If Q, denotes the set {rjeX : a(A~ 77) = 0}, then by what we

have just shown, 0 intersects every ray through the origin in

precisely one point. From the continuity of a(x) and A it

follows that Q is closed, and since c > a(0), O^Cl . From (3.4)

and (3.7)

afA"1^) ^ d3(N|)d2(d3(N|)), rjeX*,

so that from (3.3) and (3.6) it follows that Q is bounded. From

these facts it follows, as for the mapping w in section 3, that

the "fi-normalization" 00 : 77—*-a?7, where a is determined by (5.2),

is continuous from X \{0} to Q.,

From part c) of Lemma 3.1, Bx ̂  0 for x ^ 0, and thus the com-

posite mapping

(5.3) cr = A - 1o w o B

is defined and continuous on X\{0}. Since A~ ,co»B are odd and

continuous, and from the way co was defined, the first part of

assertion i) of Theorem 3 follows immediately. It is also clear

that xeX is a fixed point of <y if and only if it satisfies (1.8).

To prove part ii) of Theorem 3, let A > 0 be given, and

consider BN(A). By part a of Lemma 3.3, N(A) is bounded and hence



16

since B is compact, BN(A) is precompact. By part b) of Lemma 3.3,

o|BN(A) S O from the continuity of A~ and co it follows that

-1cr(N(A)) = A X(w(BN(A))),

and the assertion is proved.

Now we prove part iii) of Theorem 3. Let xeN, then or(x)

satisfies

(5o4) ACT(X) = aBx

for some a > 0= From (5.4) and (3O2) and (3.1),

b(or(x)) - b(x) ̂  (CT(X) - x,Bx)

2 a"1(a(x)- x,Acr(x))

2 a"1(a(a(x)) - a(x))

2 o,

and by Lemma 3.1, part a),

(CT(X) - x,Aa(x)) > a(0(x)) - a(x)

unless ar(x) = x. This proves part iii) of Theorem 3.

6. Variants of Theorem 3. The proof of Theorem 2 depends

only on Theorem 3, hence the former remains valid in the presence

of any variation of the hypothesis under which the latter remains

valid. In particular, Theorem 3 will remain valid, the other

assumptions being the same, if the conditions on A are replaced

by the following: A : X-»-X is the Gateaux derivative of the

continuous strictly convex even functional a(x) on X, and A

is coercive (ioe. satisfies (1.5) with y = 0 for all xeX and
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where (1.4) holds), bounded, and has a continuous inverse

-1 *A : X X.

Indeed in section 3, except in proving Lemma 3.2, we use only

the coercivity of A and the strict convexity of a(x); Lemma 3.2

clearly is valid under the assumption above. Once the results of

section 3 are seen to remain valid under the above assumption,

then the proof of Theorem 3 is based, as before, on the results

of that section.

A particular condition under which A is invertible, and which is

useful for applications to partial differential equations, is the

following.

Lemma 6.1. Let a(x) be a strictly convex functional on a

separable reflexive Banach space X and let a(x) have _a bounded

continuous coercive Frechet derivative A : X—*-X which satisfies

the condition: (S) if {x_} is a sequence in X weakly convergent

to x and if

lim (x -x,Ax -A ) = 0
n n x

then iKn) converges strongly to x. Then A has a. continuous

-1 *inverse A : X —•- X.

Proofo It follows immediately from a result of Browder

[4,Theorem 5], that A is surjective. The strict convexity of a(x)

implies, as in the proof of Lemma 3.1, that for xfyeX

(x-y,Ax-Ay) > 0

unless x = y, thus A is injective. To see that A~ is con-

tinuous let CX*J b e a sequence in X such that {Ax } isr Cauchy.

By the coercive property of A, (xn) is bounded. Let {x } be
JC

a subsequence of Cx
n} weakly convergent to an element x in X.
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We have then

lim (x - x ,Ax - Ax) = 0
k-KX> K K

so {x } converges strongly to x . If x is any other weak
k ^

limit point of {x } we see by the same argument that Ax is a

limit point of Ax , hence Ax = Ax , since (Axn) i-s Cauchy,

and x = x o It follows that A~ is continuous,o o
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