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ABSTRACT

In this paper the concept of vector valued, absolutely continuous
functions on an idempotent semigroup is studied. For F a function
of bounded variation on the semigroup S of semicharacters with
values of F in the Banach space X, let A = AC(S,X,F) be all those
functions of bounded variation which are absolutely continuous with
respect to F. A representation theorem is obtained for linear
transformations from the space A to a Banach space which are continuous
in the BV-norm. A characterization is also obtained for the collection
of functions of A which are Lipschitz with respect to F. With
regards to the new integral being utilized it is shown that all
absolutely continuous functions are integrable.
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VECTOR VALUED ABSOLUTELY CONTINUOUS FUNCTIONS
ON IDEMPOTENT SEMIGROUPS

by

Richard A. AlB, Andre de Korvin, and Richard J. Easton

Introduction. Absolutely continuous functions have been

extensively studied in the literature. For example in [5] the

dual space of the space of absolutely continuous functions is
characterized. 1In [7], T. Hildebrandt gives a representation theorem
for the linear functionals on BV[0,l1l] which are continuous in the
weak topology. In [6] a representation theorem for linear functionals
continuous in the variation norm on BV[0,1] is given. This repre-
sentation is in terms of a so called v-integral. The techniques

of that paper, however, make strong use of the order on [0,1]. 1In ([8]
absolutely continuous functions and functions of bounded variation

on idempotent semigroups are defined and these functions are identified
with a certain class of finitely additive set functions.

In [1], the identification in [8] is used to obtain a representation
thedrem. A characterization of the so called Lipschitz functions in
the setting of [8] is also obtained by the authors. The techniques
of [1] depend on a result of Darst [2] which states that if u and v
are two finitely additive real valued set functions with v < < u,
then ¥ is the limit in the variation norm of finitely additve set

functions u defined by wu_(A) = I s_du, where s is a simple
n n A D n




function. This result does not in generalhold true when u and v
are vector valued.

In this paper we study the concept of vector valued, absolutely
continuous functions on an idempotent semigroup. We obtain a repre-
sentation theorem for linear transformations from the space AC(S,X,F)
to Y which are continuous in the BV-norm. A characterization
is also obtained for the collection of functions of AC(S,X,F) which
are Lipschitz with respect to F. It is also shown that this new
integral being utilized has a "wide enough" class of integrable
functions. In fact all polygonal functions are integrable (see
Lemma 6) and even more so all absolutely continuous functions

(Theorem 2) are integrable.

l. Notations and Definitions

Let A be an abelian idempotent semigroup, and let S be a
semigroup of semicharacters on A containing the identity. Recall
that a semi-character on A is a non-zero bounded, complex valued
function on A which is a semigroup homomorphism. Since A is
idempotent it is clear that every f in S can be viewed as a
characteristic function on A. The notations used here will be
consistent with the ones used in [1l] and [8]. We recall some of
these notations.

For £ in S, Ap = {acA:f(a) = 1} and Je = {aca:f(a) = 0}.
Let Tn be the set of all n-tuples consisting of O and 1. Let
be a finite subset of S, that is Q= {fl,fz,...,fn}, and let o€T, -

If o(i) denotes the ii}—1 component of o, for Q = Qn let
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B(Q,0) = ( -N AN 0 Jf).
o(i)=1 "i o(i)=0 i

Any set of this form will be called a set of B-type. Let F

be any function from S to the reals. Define

n .
L(Q,0)F = £ m(g,7)F( T fiT(l)
TeT i=1
n
where m denotes the Mobius function for Tn (see [9]). The

function F 1is said to be of bounded variation if

sup ¢ |L(Q,0)F| < @, where the supremum is taken over all par-
g€eT
n

titions of A into sets B(Q,0) as O ranges over Tn' The
collection of all real valued functions of bounded variation on S
will be denoted by BV(S). Consider FeBV(S). Then by AC(S,F),

we mean all functions GeBV(S) such that for each § > 0, there

exists a & > O such that for every finite set Q = Qn of S and any

subset H of Tn’

T |L(Q,0)G| <& if T |L(Q,0)F| < 8.
ceH ' Oe€H

From now on F will be assumed to be positive definite, i,e.

L(Q,0)F > O for all such Q and o.

Let X be a Bénach space. Then by the space BV(S,X) we
mean all functions from S to X which are of bounded variation
in the above sense where absolufe value is replaced by the norm in

For GeBV(S,X), |G|, will denote sup % “L(Q,o)GHX.
ceT
n



Definition., Let T be any field of subsets of some set and let u

and v be finitely additive set functions defined on ¢ where u

is scalar valued and v is X valued. We say that v is

absolutely continuous with respect to u and write v << u

if v is the limit in the variation norm,of X valued set functions
n

of the form ¥ V.« X.,, where x.¢X, and each v, 1is a scalar valued,
jop 171 i i

finitely additive, set function on ¥, which is g- & absolutely

continuous with respect to u.

Remark. In the case that X is the reals the above definition

reduces to the usual one.

Definition. Consider GeBV(S,X) and F as above. The function G

is called absolutely continuous with respect to F if G is the

n
limit in “'“BV of X wvalued functions of the form ZlGi-xi
1=

where x.¢X and each Gi is a scalar valued function defined on S
i

which is absolutely continuous with respect to F as in [8]. We

denote this space by AC(S,F,X).

2. Results. Let u denote a scalar valued finitely additive set

function defined on ¥ and let m be an X-valued finitely additive

set function defined on g.

Lemma 1. m< < u if and only if m Jis the limit in the variation

norm of finitely additive X-valued set functions defined on %

whose «range is finite dimensional, and which are ¢- & absolutely




continuous with respect to wu.

Proof: Suppose that m is the limit in the variation norm of
finitely additive set functions mi(where the ranges are finite
dimensional) which are ¢€- & absolutely continuous with respect
to u. It follows that each m, can be written as

i

j=1 ij “ij

where each mij is a finitely additive, real valued, set function
defined on ¥ each of which are ¢ - 8 absolutely continuous with
respect to u, and where the xij are linearly independent.

Hence m < < u. The converse is clear.

ILemma 2, m< < u if and only if m is the limit in the variation

practhy

norm of X-valued set functions which are represented by integrals
of X-valued simple functions with respect to wu.

Proof: From lemma 1, m< < u if and only if m is the limit in the
variation norm of set functions of the form

m.o X,
z i 1

where each m, is real valued and € - & absolutely continuous with
respect to u. From a result due to Darst [l], each m, is the
limit in the variation norm of set functions of the form

)81,k

where each S x is a real valued simple function.
3’



It is clear then that m will be approximated in the variation

norm by
j ZSi’k- xidu.
From now on ¥ will denote the field generated by all J

8ls ¢

as f ranges over S.

Let m be a finitely additve X-valued set function defined on %.
To m we associate an X-valued function defined on S, denoted by A,

which is defined by

A

n(E) = j.fdm = m(ay).

Let BV(Z,X) denote the collection of all finitely additive X-valued
set functions of bounded variation. Then BV(Z,X) is a Banach space

under the variation norm [5].

Theorem 1., The map m——eﬁ is a linear isometry from BV(E,X) onto

BV(S,X). Moreover m< < u if and only if M < < i and_ for each

. N\ A
X i1n X, UsX = UrX.

Proof: Clearly the map is linear, we now show that it is onto.
Consider GeBV(S,X), then G can be extended to the linear span of S

by the equation
G(za,f,) = £a,G(f;),

since S is a linearly independent set (see lemma 1.4 [7]). Since S

is a semigroup, for each EeG, it follows that Xg is an element

of the linear span of S. Thus we define a set function ug by

equation



ug () = Glxg) -

It follows that u,. is a finitely additive X-valued set function

G
defined on ¥. Furthermore for each feS,

A

uG(f) = uG(Af) G(f).
We now show that the map is norm preserving. We have

Im) = sup = lIm(z,) |

where the Bi's are sets of B-type and form a partition of A,

Now

ljml]

il

sup © |m(s,) |

sup I “L(Bi)ﬁ“

“?n“ BV’

il

Note that we can now obtain the norm of G directly from the

equation

lollgy = sup = lletxy) |-

Now suppose that G < < F. Then G is the limit in the variation

norm of
Gn = ;hn,i°xn,i
i
where each h_ . 1is real valued and h < < F. Also each
n,i n,i
A .
hn,i = un,i where un,i < < uF. Hence if we let
Un T T8, 5 %n,d

i

it follows that u, converges to ug in the variation norm once




we have shown that for each real valued finitely additive set
function u and each xeX

/N A

UeX = UeX

since then we have that

A —
un - Gno
This follows since
6>i(f) = u-x(Af)
= u(Af)-x
= u(f). x.

Lemma 3. The space AC(S,X,F) is a Banach space.

Proof: Since BV(S,X) is a Banach space, from theorem 1 it is
sufficient to show that AC(S,X,F) 1is closed in BV(S,X). Consider

GeBV(S,X) and GneAC(S,X,F) where {Gn} converges to G in the

BV-norm. Since each Gn is the limit in the BV-norm of functions

of the form

where each Gn i < < F it follows that GeAC(S,F,X).
3

Definition. Let {Al,Az,...;An} be a partition of A by sets

in ¥ and let

Define




VS(E) fEsduF

for each E in 3, then clearly Vg < <L Up. The function

PseAC(S,F,X) which corresponds to Vs from theorem 1 will be

called a polygonal function.

Lemma 4. The collection of polygonal functions is dense in

AC(S’F’X) .

Proof: Consider GeAC(S,F,X) and ¢£ > O. There exists an

n
H= % h,x.,, where h.ecAC(S,F) and
jop 174 i

“G - H“BV < €.

A
Furthermore each hi = U, where u, < <L uF. From the result of

Darst [l], there exist simple functions S; such that

o, - [ s;auglly < €.

Let
t=3 S Xy
and
v (B) = | tau,,
' E
then if P, is the polygonal function which corresponds to Vt’
we have

& - lzhee x; - Pl

P llgy
= “Zui'xi - Vt“
= llzug x; - [ sy xjaug]

< vy - S zs dulh) %,
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which establishes the lemma.

Now to each G in AC(S,X,F) we associate a special polygonal
function which, in the case that S is the set of characteristic
functions on half open intervals, coincides with the usual idea of
polygonal function, see [3]. Let GeAC(S,X,F), and let Y De a
finite subset of S.  Let

uG(B(Y:U)) 1
u (B(Y,0)) * *B(Y,0)°

W. = I
Y,G
geT

Since uF(B(Y,c)) = 0 implies uG(B(Y,c)) = 0, we define the ratio
to be zero in this case. Let
Vy,e = X "y,c%F>
then since VY,G < < ug, we denote the corresponding polygonal function
by pGY.
Lemma 5. The collection of all pGY is dense ig_-AC(S,X,F) in

the BV-norm. In fact for ¢ > O, there exists a finite subset Y

0]

I

S such that if Y o Y., then

O’
le - pe,ll < £.

Proof: Let ¢ > O, then there exists an X-valued simple function s

such that
- £
“ uG VS “ < 2 4

since uG < < uF. If

s = gXB(Z,o)
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then for each B(Z,0)

y sdu

V_(B(2Z,0))
s B(Z,0)

F

uF(B(Z,o))oxU.

Thus

_ 1
a - uF(B(Z’U))

x .VS(B(Z,O)).

Similarily, if 2' o Z, we have

1
w (B(Z',0) * *B(2',0)"

s =3
o

which we shall write as

v, (B(2',0))
E U, (B(z',0)) " XB(2',0)"

Now

“VS - quZ'“ gj “S - Wzl’G“ duF

| v, (B(2',0)) - ug(B(z',0))
£z } — 1
i NP u_(B(z',0)) F

= £ |v_(B(2',0) - uy(B(z',0))]|
o]

< lvg - gl

<§—.

Hence the result follows from the triangular inequality and theorem 1.

We will denote the space of all bounded linear maps from a

Banach space X to a Banach space Y by L(X,Y).

Definition. Let K be a function defined on all sets of B-type with
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values in L(X,Y). We say that K 1is convex relative to F, if

whenever (B(Z',7)}, 7eT is a partition of B(Z,0), then

K(B(z,0)) = ERTK(B(Z' 5T))
T

where

T~ u,(8(z,0)) °

The set function K will be called bounded if K is bounded in the
L(X,Y) norm over all sets of B-type. By | K|, we will mean the

least upper bound of the bounds for K.

Definition. For G:S—X and K convex, by the yv-integral of G

with respect to X, we mean the limit, if it exists, of

tK(B(Z,0))L(Z,0)G,
(e}

where the limit is taken over the net of all finite subsets of S.

We denote the integral when it exists by

v j GdK.

Lemma 6. All polygonal functions are v-integral with respect to

every convex and bounded K. In fact

v [ poax = K (B(2,0)) L(2,0) B

for all 2z o ZO’ ZO some finite subset of 8.

Proof: Suppose

s = ZB(ZO,c)-x

p o




13

then

VS(B(Z,G)) = uF(B(Z,c) )e X

for all 2 o ZO. So

L(Z,c)pS = uF(B(Z,o)% X5

Consider Zo c Zcz', then

L(Z',T)ps = uF(B(Z',T)% XT
where X = X if B(2',v) < B(Z2,0). By convexity
K(B(Zo,c)) = EXOB(Z',O)

where
uF(B(Z'JO))
(o] = uF(B(ZO’G)) :

A
Thus

§K(B(Zo,c))L(Zo,o)pS = EK(B(Z',T))L(Z',T)pS-

Theorem 2. Let T be a linear operator from the space AC(S,X,F)

into Y which is continuous in the BV-norm. Then there exists a

unique convex and bounded set function K, with values in L(X,Y),

such that every G in AC(S,X,F) is K-integrable, and moreover

T(G) = v I GdK.

Furthermore ||T|| = ||k||.

Conversely if K is any convex and bounded, L(X,Y) valued,

set function, then each GeAC(S,X,F) is K-integrable and v X GdK

defines a continuous linear operator from AC(S,X,F) into VY.

HUNT LIBRARY
CARNEGIE-MELLON UNIVERSITY
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Proof: Let Z be any finite subset of S and let

uF[B(Z,c) N E]
v (E)

Z,0 = uF B(Z,U))

then V is finitely additive and V

Z,0 <<u

Let $Z ber

Z,0 F’ 50

be the corresponding function in AC(S,F). Define the function K
by the equation

K(B(Z:U))' X = T(J)Z,O“x) ’

then

(B (2,00« xlly = [T 0hy, o+ ly

< “T“ “!bZ,O" X“BV'

Since

bz, ot xlgy = V5, o =
vy, ol 1l
< =l

i

we have that
& < Nl
Now,

ug (B(2,0))
Vg, (B = L § u,(B(2,0)) " Xg (Z,0) duy,

I

B (B(2,0) U, (B).

Thus by theorem 1,

PG, = §L(Z,G)G¢Z,c.

From Lemma 5,we have
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T (G)

lim T(pGZ)
Z

lim T(zL(z,c)Gwz o)
pA o] ?

lim $K(B(Z,0))L(Z,0)G
Z o

v j GdK.

Also

“T“ 2 “}Stﬁgl “T(l,bz’o' x) “Y

o, (a2, =y

“K(B(Z,o))“L(X,Y).

Hence
Nl = Nxl.
Conversely suppose that K is a bounded, convex, L(X,Y)

valued set function. Then

Iv | Py K - v | poy aK| < lIpe, - pSy || K]

Since Y is complete this shows that G is K-integrable and moreover that

v j GdK = lim v j pGZdK.
z

We now define the concept of a Lipschitz function and characterize
the space of all such functions in terms of convex and bounded set

functions.

Definition. Let g be a real valued function defined on S. Then g

is called Lipschitz with respect to F if there exists a constant P

such that
|1.(z,0)g| < PL(z,0)F

for all sets B(x,0). We denote this space of functions by Lip(F).
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Definition. By the space Lip(X,F) we mean all functions
GeBV(S,X,F) which are approximable in the BV-norm by functions
n

of the form DY

g0 Xy where xiex and g;€ LIP(F) for i=1,2,...,n.
1=

1
We now want to give a characterization of the space Lip(X,F)

in terms of convex and bounded set functions. For this purpose we

introduce a special class of convex and bounded set functions which

we denote by MC(X,F).

Definition. Let K  be a convex and bounded X-valued set function.

We say that KeMC(X,F) if and only if for each ¢ > 0O, there are finite

collections {Kl,Kz,...,Kn] and (xl,xz,...,xn}, where each K; is

scalar, convex,and bounded and each xiex, and such that

n
EuF(Bj) “K(Bj) - iElKi(Bj)- xi“X< &

for all partitions {Bj} of A into sets of B-type. Clearly

MC(X,F) is a linear space.

Theorem 3. The spaces MC(X,F) and Lip(X,F) are linearly isomorphic.

Proof: Consider He Lip(X,F) and £ > 0O, then there exists a finite

set {hl,hz,...,hn} where each hie]Lip(F) and a finite set

[xl,xz,...,xn}, x;eX such that
n
“H - _2 hi’ xl“BV < £ .
i=1

Let u. correspond to H and define Ky by the equation

Ka® =3
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and if m. corresponds to hi define ki by the equation

u. (B)

_ Wt
k; (B) = a (B

for each i, for all sets B of B-type. It follows that the set
functions KH,Kl,...,Kn are all convex and bounded. We now show
that KHeMC(X,F). Let {Bj] be a partition of A into sets of the
B-type, then

n
g 0y) (o) - F x5, =

n
=% ||u,(B.) T m. (B.)e x.|| <¢.
3 H'J j=1 * 3 i
Conversely, consider KeMC(X,F). Then for ¢ > O there exists

{Kl,Kz,...,Kn} and {xl,xz,...,xn] such that

o]

guF(Bj) HK(Bj) - -ilKi(Bj)'xiH < €

for all partitions {Bj] of A into sets of B-type. If we define

uK(B) = uF(B)K(B)
and

mi(B) = uF(B)Ki(B)
then it is easy to check that Uy, and the mi's are finitely additive
and absolutely continuous with respect to F. Let HK correspond to

Uy where HKeAC(S,X,F) and hi correspond to m, where

h;cAC(S,F), then

n
g 'iilhi % gy <€ -
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Now the maps R—>H and H-———)KH are inverses of one another,

Consequently the theorem is shown since linearity is immediate.

Remark. It should be pointed out that the above characterization is

rather different from the scalar caseas in [1]. While the map I—I—~—->KH

was straight forward in the scalar case, we have seen that in our

vector setting a weighted-type of variation is needed. to define the

map.
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