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ABSTRACT

The present paper is motivated by the observation that Weyl's

equidistribution theorem for real sequences on a bounded interval

can be formulated in a way which is also meaningful for sequences

of self-adjoint operators on a hilbert space.

We shall provide general results on weak convergence of operator

measures which yield this version of Weyl's theorem as a corollary.

Further, by combining the above results with the von Neumann ergodic

theorem, we will obtain a Cesaro convergence property, equivalently,

an "ergodic theorem", which is valid for all (projection-valued)

spectral measures whose support is in a bounded interval, as well as

for the more general class of positive operator valued measures.

Within the same circle of ideas we deduce a convergence property

which completely characterizes those spectral measures associated

with "strongly mixing" unitary transformations. The final sections

are devoted to applications of the preceding results in the study of

complex-valued borel measures as well as to an extension of our results

to summability methods other than Cesaro convergence. In particular,

we obtain a complete characterization, in purely measure theoretic terms,

of those complex measures on a bounded interval whose Fourier-Stieltjes

coefficients converge to zero.
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1. Introduction. The present paper is motivated by the observation

that Weyl's equidistribution theorem for real sequences on a bounded

interval can be formulated in a way which is also meaningful for

sequences of self-adjointoperators on a hilbert space. Namely,

if {x.} is a sequence on [O,2TT] then the (equivalent) assertions

, n-1 imx.
lim ~ S e D = 0 m = ± 1,± 2,... (El)

j =o

and

lim - S1 = (b-a)/2ir for a l l [a,b] c [0,2ir] (E2)
n—>GD j

can be regarded as assertions about the (self-adjoint) multiplication

operators {x.} on the space of complex numbers. In fact, by

writing (E2) in the equivalent form

, n-1
lim i S x f a -KI ̂ x-) = (b-a)/2ir for a l l [a,b] c [0,2ir] (E2>)

n->oo n j=o [ a j t > J 3

Research supported in part by NSF Grant No.GP8290.

2
Research supported in part by NSF Grant NO.GP11697.



is is clear that the usual functional calculus makes equations

(El) and (E21) meaningful even when {x.} denotes a sequence of

self-adjoint operators on a hilbert space. The question then

arises as to whether, with an appropriate notion of convergence,

the equations remain equivalent in this new context.

We shall provide general results on weak, convergence of operator

measures which yield this version of Weyl's theorem

as a corollary. Further, by combining the above results with the

von Neumann ergodic theorem, we will obtain a Cesaro convergence

property, equivalently, an "ergodic theorem", which is valid for

all (projection-valued) spectral measures whose support is in a

bounded interval, as well as for the more general class of positive

operator valued measures. Within the same circle of ideas we deduce

a convergence property which completely characterizes those spectral

measures associated with "strongly mixing" unitary transformations.

The final sections are devoted to applications of the preceding

results in the study of complex-valued borel measures as well as

to an extension of our results to summability methods other than

Cesaro convergence. In particular, we obtain a complete characteri-

zation, in purely measure theoretic terms, of those complex measures

on a bounded interval whose Fourier-Stieltjes coefficients converge to

zero.

2. Weak Convergence for Operator Measures. Hereafter H will denote

a separable hilbert space and [H] will denote the space of bounded

linear transformations on H. The symbol v —°-^v will denote
-* n



the statement

convergence being taken in the relevant linear topological space

containing the v and v. For simplicity of presentation all

our considerations will be taken relative to the interval [0,2ir]

whenever possible. The scaling needed to apply our results to

other bounded real intervals will be obvious. For any real interval J,

fl(J) denotes the class of borel subsets of J. Finally, Q denotes

the subset of [O,2TT) consisting of rational multiples of v.

Let us recall that a sequence {v } of real or complex-valued

(hence totally finite) borel measures on an interval J c (-OD,OD)

is said to converge weakly to a measure v provided

(wO) fdv-—^ fdv . V bounded continuous real f.J n j o

Moreover when the [v } are given as equi-bounded it suffices

for the existence of a weak limit v that ([9])

•j27rmQ

(wO») fe | J | v (d6)—> a l i m i t m = 0 , + 1,+ 2 , . . . ,
j n — —

where |j| denotes the length of J.

Our first result is, in effect, the assertion in the case of

the weak operator topology that certain alternate formulations of



weak convergence of measures which are equivalent to (wO) for

positive real borel measures, remain equivalent for positive operator

borel measures.

Theorem 1. Let H b§_ a. separable hilbert space and let {F, )

be a. sequence of weakly countably additive borel measures on [O,2TT)

whose values are positive operators on H. Suppose that for each

x,yeH the sequence of complex measures defined by

vx,y(B) = (F
k<

B)x>Y) Bee[O,2TrI, k ̂  1,

has equibounded variation

Var vx < Kx k ̂ _ 1 (*)

Then the following conditions are equivalent, convergence being taken

in weak operator topology:

(wl) JelmeFk(d6)—>Cm m = 0,+ 1,+ 2,...,

(w2) there exists a unique weakly countably additive positive-

operator- valued borel measure F such that
o

Fk(B)—>FQ(B)

whenever B€fl[0,2ir) is an F -continuity set , i . e .

F (B - B) = 0.o

Moreover FQ and the sequence [C ) are related as follows

Cm = Jeim0Fo(de) m = 0,+ 1,± 2,... .



Remarks: 1. It will be seen in the course of the proof that,

for every positive-operator-valued measure, the collection of

continuity sets includes every interval whose boundary is disjoint

from the countable collection of one-point atoms in [0,2ir]. The

same arguments also yield this result for other ("signed") operator-

valued measures, but for sequences of such measures the implication

(wl)—>(w2) is generally false, even in one dimension.

2. The equiboundedness of variation prescribed in (*)

is, by the uniform boundedness principle, equivalent to the

condition

||Fk(B)||^.K for B€»[O,2ir), k ^ 1.

3. The arguments given below can be extended to the case

in which [O,2TT) is replaced by a second countable locally compact

abelian group A and {e )m>>i ^-s replaced by X , the character

group of A. Equation (wl) is then replaced by the assertion

that

uniformly on compact subsets of X. (See [9], for example).

Proof; From (*) we obtain as in remark 2 the appraisal

Varvx,y ^ 4K H llvll k ̂ 1. (1)

We show now that (wl) implies (w2). Given x,yeH we have

Jeimev^y(de)->(Cmx,y) m = 0,+ 1,+ 2,...,

which, in view of (1) and (w_) ensures the existence of a unique



complex borel measure v° to which the {v _JVNl converges

weakly. It follows that

feim6v° (d9) = (Cx,y) m = 0,+ 1,+ 2,. . . (2)
j x f y in

and

Varv° £4K \\x\\ ||y||, (3)
x ) y

while the positiveness of the measures {v } ensures that
X y X

each v° is a positive measure. Obviously v is alsox,x x}y

biadditive as a function of x,y. Thus for each B€^[0,2TT) we

may write

vx,y(B) = (Fo<
B)x'y) (4)

where F^(B)e[H], by (3), and F (B) is positive since vv V(B) ̂_ 0o o x^x

for all xeH. The weak countable additivity of this set function F

is clear.

Now let S c H be a denumerable dense subset of H which

we can take to be closed under addition and under scalar multiplication

by i. Given xeS the weak convergence of the positive measures

v to vv implies by Alexandroff's theorem [2] that
X f X X f X

v^ v(B)-~>v° (B) for each v° -continuity set B: v° (B-B) = 0.
A ^ A J\. j J\. X^X X^X

Since for each positive measure y, on [0,2TT) there exists a

denumerable subset D such that all intervals whose boundary is

in the complement of D are y,-continuity sets, it follows from



the denumerability of S that the collection of borel sets which

are simultaneous v° -continuity sets for all xeS includes all

intervals whose boundary is in the complement of a fixed countable set.

We denote the collection of simultaneous v -continuity sets by 8.
X f X X

so that

v* Y(B)~> vj V(B) for all xeS, Be*,. (5)
X f X X f X J-

Observe next that our hypotheses on S ensure that each of the

complex borel measures {v° ,1 „__ cam be obtained by polarization
x,y x,yeb

from the positive borel measures {v ) _:
XjX X€o

Vx,y ~ 4^vx+y,x+y ~ Vx-y,x-y XVx+iy,x+iy ~ lVx-iy,x-iyJ * ^

This follows from the analogous decomposition for the measures

{v ) _. Clearly (6) implies that the sets Beft. are
x^y x,y£o x

continuity sets for the complex measures [v } as well as for
x y x,yeb

t h e ^ x x ^ x e S ^
 a n d t h a t

^ V ( B ) for all x,y€S, BeR. (7)

We proceed to show that (7) also holds for arbitrary x,y€H.

Utilizing (1) and (3) we can write

lvx,y(B) " vx',y'(B)l = I (Fk(B) (x-x'),y) + (Fk(B)x« ,y-y») |

£ K(||x-x'| | \\y\\ + lly-y'll |lx|D k ^ O,BeB[O,2ir]

I t follows from this that for x,yeH and {x^jfy.jeS satisfying

Xj-*>x,y~-*>y one has, uniformly in k,
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Var(v* „ - v* „ )->0 k = 1,2,.., (8)

and similarly

This ensures the validity of (7) for arbitrary x,y€H and hence

the validity of (w2) .

To prove the converse we note that the arguments of the

preceding paragraph imply that for any operator measure F the

F-continuity sets consist of precisely those sets which are

simultaneous continuity sets for some countable family of measures

of the form {(F )] _, and that this collection contains all intervals
X ̂  X X€ o

whose endpoints are disjoint from a fixed countable subset of [O,2TT).

From this it follows, in particular, that each function e , being

a bounded continuous function on [0,2ir] is a uniform limit of simple

functions based on the class ft, of F -continuity sets, thus,

given x,yeH we have

|Jeim9(Fk(d9)x,y) - [e
ime(Fo(d9)x,y)|

(d9)| + |J(eime-s(9)v° (d9)
o x,y

where s may be taken as a simple function based on ft . Here

the terms on the right side can be made arbitrarily small by choosing s

sufficiently near e in the uniform norm and by choosing k

sufficiently large. This completes the proof.

Our second result shows that a similar extension is available in

the strong operator topology--provided that the (F>] have values which



are mutually commuting.

Theorem 2. Let H and the (F, ) be_ <as_ jui theorem 1 and suppose

in addition that the i^y.) commute:

Fk(B)Fk,(B') = Pk, (B')Pk(B) k;k' ^ 1 , B,ft» 6B [0, 2TT) . (**)

Then the conditions (wi) and (w2) are equivalent for convergence

in strong operator topology.

Proof. By a theorem of von Neumann on commuting families of operators

on a separable space [11], all operators in the family

{F, (B) }.. , o - rr. o N are functions of some fixed bounded hermetian

operator A. Thus if E denotes the spectral measure for A and J

denotes the smallest closed interval supporting E, then there exists

k 2for each pair k,B, k ^ 1, BeB [0,2ir) , an element f (B,*)e$. (E,J)

such that

Fk(B) = Jfk(B,a)E(da) , k ^ 1, BGQ,[0,2TT). (9)

J

By (1), f (B,*) is actually in £°° (E, J) , and

||fk(B,-)||Q0 1 K k ^ 1, B€ft[O,27T). (10)
L

Moreover the positivity of the operator ^(B) implies that

f (B,») .̂ 0 E - a.e.

We now observe that there exists a version {f (B,«)} of the family

[f (B, •) ] possessing the following properties:
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(i) 0 £ fk(B,o) £ K for all aeJ, k %_ 1,

/\k
(ii) f (-,o) is a measure on «[0,2ir) for all oeJ, k _̂ 1,

(iii) fk(B,.) is <* (J) -measurable for all Be«j [0,2-w) , k ;> 1.

This follows from the existence of a lifting for the banach space

L00 (E,J) ([6], [3], [5]), that is a mapping from each class feL00 (E,J)

to a function tefi00 (E,J) such that f ̂ _ 0 implies f ;>_ 0

* ' CD ^ ^
everywhere, and f—>f in L if and only if f—>f•* no -'no

uniformly on J. If we replace each J: (B,« ) by the equivalent

function f (B,«) then (i) and (iii) are obvious, while the

countable additivity of r (-,a) required in (ii) follows

from the fact that the positive operator measures F, are

actually countably additive and hence the classes f (B) in L (E,J)

are countably additive in the norm topology.

Since f is, roughly speaking, a transition probability

we can write (wl) in the following form [8]

Jeim9Fk(de) = J[Je
imefk(d8,a)]E(da)->Cm m = 0,+ 1,..,

where C , as a limit of functions of A, is itself a function of A:

From the strong convergence

J [Jeim0fk (da, a) ] E (do) —> Jcm (o) E (da)

it follows that the integrands converge in L (E,J) :

in L2(E,j), m = O,± 1,+ 2,... . (10)
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Equation (10) implies that every subsequence of {k} possesses

a subsequence , {k^} say, such that

k.
f im0A i ( d e ^ a ) _ > c ( o ) E - a . e . , m = 0,+ 1,+ 2 , . . . . (11)
0 in

Now the equiboundedness of the positive measures f (., a)

together with (11) ensures that for each aeJ, excluding an

E-null set N, there exists a positive measure f (•, a) to which
ki

the f (• , a) converge weakly:
k.

f X(*,a)—>f°(» ,a) weakly, for c^N. (12)

In particular, f°(» ,a) £_ K for a^N, and

cm(o) = Jeim9f°(de,a)

while by Alexandroff's theorem [2] we have for each a^N

k.
f 1(B,o)—>f°(B,0) (13)

whenever B is an f (» ,o) -continuity set: f°(B-B,a) = 0. We wish

next to define a set function F on 6 [0,2TT) as follows:

FQ(B) = jf°(B,a)E(da) BeG[O,27r).

Hence we must verify that f°(B,«) is E-summable for a l l Be^[0,2ir)

I t wi l l suffice by (i) to show that

f ([0,t) ,») is E-summable for a l l te(0,2ir].

Now by (12) i t follows that ([12])
k± k±

f°([O,t),a) ̂ . lim f" ([O,t),o) £ lim £ (to,t],a)

£ f°([O,t],a) te(0€2Tr)., a^N (14)
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Hence for

k.
f ° ( [ O , t ) p ) = lim f x ( [ O , t ) / y ) (15)

whenever (a,t) i s not a p o i n t of one of the s e t s

k . k.
A = { (o , t ) :lim_ f ± ( [ 0 , t ) ,o) + Tim f i ( [ O , t ] , o ) ,

k k
A' = ( ( a , t ) : l im lxin f i ( [ 0 , t - ^ ) ,a) < _lim f x ( [ 0 , t )

Now A and A' are d*[O,27r) xft (J) -measurable since the pos i t ive functions

Ak

f ([O,t),a) are measurable in o and monotone and left continuous

in t, hence jointly measurable. Moreover (12) implies that for

each CJ^N the subset A U A' meets [0,2TT)XC in a subset which

is denumerable, hence of lebesgue measure zero.

It now follows by Eubini's theorem and (14) that f°([O,t),«)

is E-summable for lebesgue almost all t. Using the monotonicity

and right continuity in t we see that f°[(O,t),») is in fact

summable for all te[0,2ir), and after modification on the null

set [0,2ir)xN is in fact jointly measurable. We will henceforth

suppose the latter modification to have been made.

By the definition of F and the monotone convergence theorem

it follows that F is strongly countably additive and that the

collection of F -continuity sets is given by

®o = {B : f°(B-B,o) = 0 E - a.e. } C B[0,2T) .

Moreover by (12) and the dominated convergence theorem we deduce

that every subsequence of {k} possesses a subsequence (k.) such

F, (B) = ff 1(B,a)E(da>—>ff°(B,o)E(da) = F (B) , for Befl ,
1 'J v O O
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convergence being in the strong operator topology. From this we

conclude that in fact

F (B)—->F (B) for BeB . (16)

which completes the proof that (wl) implies (w2).

For the converse we observe that for each m the

function g (9) = e1In" is bounded and uniformly continuous on
m

[0,2ir). Denote by v = f°(» ,o)cg" the positive borel measure

on the unit circumference in the complex plane associated to

f°(«,o) by g . The image under g~ of each vm -continuity

set is an f°(» ,c)-continuity set:

•P

9 w

Moreover the v -continuity sets include all arcs on the unit

circumference whose endpoints lie in the complement of countable

subset P = g (A ) , A being the set of atoms of f°(»,a)
itij o m o o

on [0,2ir) , It will now suffice to show that the collection

Hm = (B : B = gm (C) , vm (C-C) = 0 E - a.e.ina)

has the property that g is in the uniform closure of the class

of simple functions based on B . For by (17),(13) and the

dominated convergence theorem one has

(de) = J[Js(8)r i(d9,o)]E(do)—>f[Js(9)f°(d9,a)]E(da)

= Js(6)Fo(d8) (18)

HUKT \mm
GARNEGIE-MELLON UNIVERSITY
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whenever s is a simple function based on ft , while by (1)

i|J(gm(e) - s(e))Fk(d9)|l <! ||gm - s||OD||Fk([O,27r))|KK ||gm - s ^

•K ~ O ̂  JL ̂  • • * •

Combining these appraisals one obtains

Since every subsequence of {k} possesses a subsequence (k.) for

which (19) holds, (w2) is then proved. Finally, we shall show

that IB has the requisite property by noting that the

a[O,27r)xR(J) measurability of f°([O,t),a) implies that the

set

is ® ([0, 2y) xH (J) measurable and hence an ,(,xE-null set, t being

normalized lebesgue measure on [O,27r). It follows by Fubini's

theorem that there exists a subset T of total ^-measure on
m

the unit circumference such that

zeT=>ziP E - a.e.ino.
m m, a

This clearly implies that 8 has the required property, even if

one restricts attention to simple functions based on arcs, and thus

completes the proof.

We are now able to deduce the desired results on equidistribution

of operators as corollaries.



15

Corollary 1. Let tsv^ JkjL .§- sequence of positive self-adjoint

operators on the separable hilbert space H with spectra contained

in [0, 2TT) . Let the associated unitary operators and spectral

measures be denoted by

is
U, = e and [By.) > respectively.

Then the following conditions are equivalent, converqence being

taken in the weak operator topology;

(wl) U™—>C m = 0,+ 1,± 2,...

(w2) there exists a. positive-operator-valued measure

FQ on [O,2TT) such that E,(B)—>F (B) for

each F -continuity set B.

U the S are mutually permutable £hje_n (wl) and (w2) are
Jc

also equivalent for convergence in the strong operator topology.

Proof; The corollary follows from Theorems 1 and 2 provided

1 k

we take F^ = ^ S E^, k = 1,2,... .

Corollary 2. Let H and {S, ] be a§ in corollary 1. Then

the following conditions are equivalent, convergence being taken

in the weak operator topology or strong operator topology according

to whether the {S, ) commute:

(wl)

(w2) ^(J) ?>-t(J)l for each interval J c [O,2TT).
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This last result suggests that the desired extension of Weyl's notion

of equidistribution to operators (si,} with spectrum in [0,2ir)

consists in the requirement

i 3o v t a- b ) ) - £ 3oxr^b) ̂ -^j> (2o)

whenever [a,b) c [O,2TT). In this context Weyl's criterion becomes

the formula

1

i X Uv—>0 m = + 1,+ 2,... . (21)
n k=0 k

It should be noted that there is an analogous notion of equi-

distribution for positive operators (S, } which are not uniformly
(3D

bounded. Here we must replace E.([a,b)) by E Ek([a,b) + r2ir)
r=o

= K([a,b)), where [a,b) is the periodic extension of [a,b)

by 2TT. This corresponds to the application of the usual Weyl equi-

distribution theorem to the fractional parts of a sequence of

real numbers.

3. An Ergodic Theorem for Operator Measures. Our next result is

a direct outgrowth of the above ideas together with the von Neumann

ergodic theorem. Let us denote by ffv̂ vN,,] t*ie ^°^ o w^ n9 s e t o f

transformations of the borel sets in [O,2TT) :

k— 1
Tk(A) = .U & + ^ ) ^ w h e r e £A + ^ = (t|t=t'A + ̂ p,

It is then clear that for any borel measure F on [O,2TT) the set

function F°T, defined by
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(FoTk) (A) = F(T]C(A))

is also a borel measure on [O,2TT).

Theorem 3. Let E be ji spectral measure on [O,2TT) having as

its values projections in a not necessarily separable hilbertspace H.

Then the following relation holds for every borel set B whose

boundary contains only points incommensurable with ir, convergence beinc

taken in the strong operator toplogy:

EOT, (B)—l^^(B) (I-E(Q)) + £ I (B)E(B ) , (22)
K s=l S S

where

B. = {0}, Bc = U {^J1}, s > 1,
1 S 0<j<S S

and where I denotes normalized Lebesgue measure, with l , s ̂ > 1,

denoting the discrete measure of total mass 1 equally distributed

among the points {—^

Proof; By the von Neumann ergodic theorem applied to the unitary

P ifloperator U = e wdE we have

= jeik9dE-%E({0}) = fX{o}(9)dE,

where convergence is in the strong operator topology. Moreover

the functional calculus for U supplies an entire family of analogous

relations. Namely,

= Je
ikm0dE—^(AJ = JxA (9)dE m = 0,+ 1,+ 2,... (23)
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where

|m|-l
A = [0,2TT) , A^ = U I

j=0

convergence again being in the strong operator topology. This

follows from the formula

T n— 1 • ̂

n k=0
(9) 9€[O,2TT), m = 0,+ 1,+ 2,..., (24)

since the convergence in (24) is obviously bounded. We may

write (24) as

fexmcpu (dcp)_̂ >x_. (9) 9e[O,2ir), m = 0,± 1,+ 2,..., (25)
o n , o ' i »

where y,. . denotes the discrete measure assigning mass — to
n, 9 n

each of the points {kQ (mod27r) }<v-wn_i«
 I t follows from (25)

by (wO1) that for each 9 the positive measures {y, o} converge
n, y

weakly to a positive measure g,.o which satisfies

f (dcp) = x (9) 9€[O,27r), m = 0,+ 1,+ 2,. .. , (26)

and
n,9 n S XB((

;k0))-»U9(B) for all u q- contunuity sets B, (27)
k =0

where (t)e[O,27r) and (k9) =k9m©d2ir.

By the use of (26) it is easily verified that the measures

\i> nf 9e[O,27r), are as follows:

9/TT irrational
(28)

6 = 2^
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In particular, all borel sets Whose boundary is in the complement

of the set Q of rational multiples of w are simultaneous

g,.Q-continuity sets for all 0. Moreover, by writing (27) in

the form

we deduce,that, in the strong operator topology,

B ((ke)) E (de)—>{»ie (B) E

for all B which are simultaneous uQ-continuity sets. This last

equation can be simplified by noting that ^((kG)) = * ,„» (0).
•a TT^ \O;

Thus we obtain by (27)

P c P °°
) (B) = J*T (B)(9)E{ae)—> J-t(B)dE + Z I

k [O,2TT)-Q S = 1

as claimed.

Remark 4. If H is taken to be separable then Theorem 3 is

essentially a direct corollary of Theorem 2. We simply observe that

equation (23) above can be rewritten as

g (231)

after which the existence of a weakly countably additive measure F

such that EOT, (B)-̂ ->F (B) for F -continuity sets B is assured.
Jv O O

The actual calculation of F is as above.
o

The above theorem can be extended to positive operator measures
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as well. As shown by Neumark [7] each positive operator measure

has a dilation to a spectral measure on a larger hilbert space.

Thus if F is a positive operator measure on [0,2TT) with

F([0,2TT)) = I, then there exists a spectral family E on a

larger hilbert space H1 such that F = PEP where P is the

orthogonal projection of H1 on H. This implies that bounded

pointwise convergence of a sequence of borel functions f to f

ensures convergence in the strong operator topology of the

corresponding operators

T = If (ei9)dF to T = ff(ei8)dF.
n J n t)

With this observation the proof of Theorem 3 also yields the

following result.

Theorem 3A., Let F be. a. positive operator measure on [0,2-jr) such

that F([0,2TT)) = I. Then the following relation holds for every

borel set B whose boundary contains only points outside Q,

convergence being taken in the strong operator topology;

c ^
FoT (B)—>*,(B) (I-F(Q)) + S <, (B)F(B).

K s=l S S

As our final theorem of this section we obtain a form of

Theorem 3 which characterizes "strongly mixing"spectral measures.

Theorem 4. Let E be a spectral measure on [0,2TT) having as its

values projections in a separable hilbert space H. In. order that E

be the spectral measure of a unitary operator U which is strongly

mixing in the sense

U^-^0 weakly as k—}OD , (29)
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it is. necessary and sufficient that E satisfy the following modified

form of. (22) , with convergence in the weak topology:

EoT (j)—>t(J)I for all intervals J c [O,2TT) . (30)

Proof: We recall that the formula

can be rewritten as

iltl0= Jeil dEcTir->O. m ^ 0.

Then by Theorem 2 we may deduce that there exists an F Q such

that

and

T, (B)—->F (B) for F -continuity sets B,
K O O

feim9dF = 0 m ^ 0, F ([0,2ir)) = I.
Jo o

This shows that F = LI and hence that all subintervals of
o

[0,2ir) are F -continuity sets, so that (30) holds. The

converse is along the lines of Theorem 2 and will be omitted.

4. Applications to Complex Measures. In this section we apply

the theorems of the preceding sections to obtain several results

concerning complex measures on a bounded interval and their Fourier-

Stieltjes coefficients. As before we normalize to the consideration

of complex measures on [O,27r). The various results are based on

the simple observation that each such measure v can be realized

as a spectral type for some spectral resolution E on [0,2ir) ,
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i.e. dv = d(Ex,y) for a suitable pair of elements x and y.

It should also be noted that in most instances the results obtained

here via Section 3 may be verified in a direct analytic way.

Throughout, if |j,,v, etc. are complex measures on [0,2ir)

then we shall denote their Fourier-Stieltjes coefficients by

y, (m) , 0 (m) , etc., m = 0,+. 1,+. 2,... . We recall the definition of

the sets B : Bn = {0) , Bo = {-̂ p- : 0 < j < s, (j,s) = 1 } , s > 1.
S JL S o

Proposition 1. Given a. complex measure ^ let fuOTv^]fNi —

defined as before. Then

c ^ , . x
JJ,OTV(B) 5>u([O*27r) - Q)-t(B) + 2 u, (B ) K (B)

K s=l s S

for every borel set B c [0,2TT) whose boundary .is. in [0,2TT) - Q.

This result follows at once from Theorem 3 by applying our

observation regarding spectral types. By restating matters in

terms of Fourier-Stieltjes coefficients we obtain a different formu-

lation. This utilizes the easily verified fact that
lit T, (m) = (li (Ian) m = 0,+_ l*+.2,..., k = l,2,... .

(An alternate proof would follow directly from the von Neumann ergodic

theorem) .

Proposition IA. Given <a complex measure (j,,

(j, (km)-0-^ (m) m = 0,+̂  1,+̂  2,...,

where v is_ the limiting measure in Proposition 1.

Now suppose U is a unitary operator which is strongly mixing.

Then for any complex measure v which is a spectral type for U,
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i.e. dv = d(Ex,y), one has by (29) the property

v(m) = (U^Xjy)—>0 as |m|->CD .

That is,this property holds for every measure v absolutely continuous

with respect to a maximal spectral type for U [1]. We shall write

v < < u to denote absolute continuity.

The remark above suggests that whenever y, satisfies y, (m)—>0 and

v < < y,, then v(m)~->0. This result is actually valid having first

been proved, in a slightly weaker form, by Rajchmann [10]. It can

be regarded as a generalization of the Riemann-Lebesgue lemma.

Proposition 2. (Generalized Riemann-Lebesque Lemma) . .If. the

complex measure p, satisfies

y, (m)—>0, | m |-^»OD

then v < < y, implies

v (m)—>0, | m |—><x> .

Proof: By the Radon-Nikodym theorem [D-S]

Je i m e v(d6) = Jeim9f(9)u(de)

where feL (|y>. | ) , |u| being the total variation measure for y,.

Hence using the fact that the finite trigonometric polynomials

are dense in L (| \i \) we may write

|Jeiltl9(f(9) -

+ II f - P

where Pr denotes a finite trigonometric polynomial. Since the
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second term on the right can be made arbitrarily small, and the first

term on the right approaches zero with large m, the result follows.

Using the above proposition we obtain at once,

Proposition 3. A. unitary operator U is_ strongly mixing if and only

if

$ (m)—>0, | m |—*>OD ,

where y, _is_ any maximal spectral type for U.

We observe next that the following result, which is a consequence

of Proposition 3 and Theorem 4, fully characterizes measures for

which g, (m)—>O.

Proposition 4. A complex measure n satisfies

y, (m)—>0, | m |—->oo

if and only if y, satisfies

n)—>n([Q,2ir)H(J) >

for every interval J c [O,2TT) .

If |j, is a probability measure, then we may restate Proposition 4

in an illuminating probabilistic way. Namely, let Y be the random

variable associated with y, and let (nY) be as before the fractional

part of the random variable nY modulo 2v. Then we have

Proposition 4A. Let Y be a random variable on [O,2TT) and y, be

its probability measure. Then lim fy (m) = 0 jLf_ and only if the
| m|—*><E>

distribution of (nY) converges to normalized Lebesgue measure.

Proposition 4A permits us to exhibit simple examples of singular

measures on [0,2TT) whose Fourier-Stieltjes coefficients do not tend
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to zero. For let (x.:j=l,2,...,j be a stationary stochastic

process with x. assuming values 0,1,...,r - 1, where r ;> 2.

(3D .

Let Y = S x./rJ and let p, be the probability measure associated

with Y. Then it is known that p, is either Lebesgue measure on

a singular measure. But from the stationarity of the process it

follows that the distribution of (nY) is the same as the distribution

of Y whenever n is a power of r. Thus we have

Proposition 5. Let p, be_ _as_ above. Then p, itself is either

Lebesgue measure or else a, singular measure. In the latter case

u (m)—s>0, I nv -

Another simple consequence of Proposition 4A is that if Y is

a random variable on [0,2TT) , and we expand Y = S x./r to
3

various bases r = 2,3,..., then either Y is uniformly distributed

or else some such expansion (indeed some such expansion with r a

prime) does not yield a stationary process {x. : j = 1,2,..). We

exclude here the trivial case Y = 0 with probability one.

5. General Summability Methods. In this section we examine the
r<

effect of employing modes of convergence generalizing convergence—^

There will be no difficulty in formulating our results for two-sided

sequences as easily as for one-sided sequences, and for definiteness

we shall state matters only in the former context. We denote by Z

the set of all integers, positive, negative and zero.



26

Definition. A-Convergence. Let A = (a. ) . z -^ denote an

infinite matrix of complex mumbers whose rows are uniformly bounded in

We shall say that A is a convergence method provided that the limit

lim E a* n )e i j a = cp(a) (32)
n-$xx> jeZ •*

exists for each ae[O,2Tr). If, in addition,

cp(a) = 0 a ^ 0, cp(O) = 1, (33)

then we shall say that A is a generalized Cesaro method.

Given any convergence method A, the symbol v.—?v will denote

the statement

convergence being taken in the linear topological space containing v

and the two-sided sequence {v.}.

It is easily seen that, in the case of a generalized Cesaro

method, all the results obtained earlier which employ convergence

also remain valid when convergence >is employed. In fact the same

proofs used before apply, mutatis mutandis. The only new features

are that Corollaries 1 and 2 now refer to two-sided sequences

and that Theorems 3 and 3A utilize T, also for k < 0. Here

the definition of T^ is as follows:
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k

J— O

where A' = -A + 2TT.

In the case of a convergence method A which is not a generalized

Cesaro method Theorems 3 and 3A are modified. We have instead the

following.

Theorem 3*. Let A be ja convergence method with cp as. the associated

limit function, and let E be ja spectral measure on [0,2ir) whose

values are projections on a_ separable hilbert space H. Then there

exists a weakly countably additive positive operator measure FQ such
thai

l 'e l i nedP = [q> ((mfl) ) dE m = 0,+ 1,+ 2
o o J ̂  — —

nd for each F -continuity set B

convergence being in the strong operator topology.

Moreover, if cp is continuous then F is_ given by the formula

° k€Z * k

where c, = Je cp(0)d6 are the. Fourier coefficients of cp.

Proof; By the definition of cp we have for all 9e[O,27r), the

relations

eimke_A_>cp((lne)) m = 0,+ 1,+ 2,..., (34)
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the convergence being bounded convergence from the condition (31).

P iQUtilizing the spectral calculus for U = e dE we thus obtain

U3™ = Je
ilan9dE-^->Cm = Jcp((m9))dE, (35)

convergence being in the strong operator topology by the reasoning

in Theorem 3.

By Theorem 2, equation (35) ensures the existence of a

strongly countably additive measure F satisfying the first

conclusion of the theorem.

To obtain the second conclusion, notice that (34) implies

(in the presence of (31)) that for each 9 there exists a measure y,

w
on [O,2TT) such that both

JQ(m) =cp((m6)) m = 0,± 1,+ 2,.. . (36)

and

y.B( Cku)))-^*y1Q(B) for all ^Q-continuity sets B. (37)

Moreover we can identify \^a in the following manner. Define cp
B n

to be the function

cp (9) = S a . j n ) e i j e n ;> 1,
n jez 3

which is clearly continuous by virtue of (37).

Then by definition cp satisfies

9e[O,2Tr). (38)
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Now for each fixed 0 it is easily verified that

cp ((m9)) = (L _(m) m = O,+ 1,+ 2,..., (39)
n UjD

where y,. is the discrete measure on [0,2-w) given by
o) n

" e . n H (-J«- (40)

Clearly the t o t a l var ia t ion of the {uiO _) i s bounded uniformly

o * n

in 9 and n by the constant K occuring in equation (31). It

follows from (38) and (39) that the measures {uQ}> being weak
limits of the {uo „}, are also of uniformly bounded variation.

") n

Finally, we note that (38) ensures that the Fourier coefficients

c. of the function cp form an absolutely convergent series. In

fact by the dominated convergence theorem

c = Je"ljecp(9)d9 = lixn Je~lj9cp (9)d9 = lim af n ), jez,
n—$>a>

so that for any M

M M (^
E|c,| = lim s |afn)| ̂  K.

-M J n-5>ao -M J

Therefore if cp is continuous then it coincides everywhere with the

sum of its Fourier series:

cp(9) = S c.e l j 9 9e[O,27r) .
jeZ J

In this case we have the following formula for the measure {|ji0} :

HQ = E c j6 (_ j 9 ) , 9e[O,27r). (41)
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In order to complete our proof we proceed as follows

i m 9d (Sa<
n) EoTfcp (<m8))dE = f£a(n)eim^9d= E f e i

|>cp((m9))dE = fsc.eimj9dE = feim9d(Ec .EoT,) .

Since (39) assures the strong convergence

f cp ((mfi) ) dE—->[cp ((m6) ) dE,

we deduce that F and the operator measure

have the same Fourier-Stieltjes coefficients, which completes the

proof.

Remark. The hypothesis that cp is continuous is essential, for

when A is a generalized Cesaro method, then

cp(0) = 0 9 ^ 0 , cp(O) = 1,

and therefore all Fourier coefficients of cp are zero while F

is not the zero measure.

An analogous modified form for Theorem 3,A is available, but we

will omit the statement here.

The arguments above imply in particular the following result.

Corollary 3; Every function cp which is ct_ pointwise limit everywhere

on [0,2ir) p_f a sequence of continuous functions {cp } whose fourier

coefficients are, uniformly bounded in £, (Z) , has. the_ following

property :
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(P) {cp((mQ))} is the Fourier-Stieltjes series of a measure,

for each Be [0 , 2v).
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