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ABSTRACT

On the Thermodynamics of Chemically Reacting Fluid

Mixtures

by

Morton E. Gurtin

This paper develops a thermodynamical theory of

chemically reacting, but inviscid, fluid mixtures. Restrictions

placed on the constitutive equations by the second law are

found. in particular, it is shown that the stress-diffusion

matrix is symmetric.



ON THE THERMODYNAMICS OF CHEMICALLY REACTING FLUID

MIXTURES

by

Morton E. Gurtin

Introduction.

After a long history of special theories of diffusion

and chemical reactions, Truesdell [1957] established the

basic thermomechanical balance laws for mixtures, and
2

Bowen, Miiller [1968] , and Truesdell [1968] proposed workable

forms for the second law. Using this framework together

with the Coleman-Noll [1963] interpretation of the second

law, Mliller [1968] developed a theory of non-reacting
4

fluid mixtures, and Bowen [1969] established a general

theory for mixtures of chemically reacting elastic materials.

In this paper, I discuss chemically reacting, but

inviscid, fluid mixtures. Among the new results I establish

See also Nachbar, Williams, and Penner [1959], Kelly [1964],
and Green and Naghdi [1969].

2See Truesdell [1969] (Footnote on p. 88) .

Thermodynamic theories were put forth before 1968 by Eringen
and Ingram [1965], Green and Naghdi [1965,1967], Crochet and
Naghdi [1966,1967], Green and Steel [1966], Mills [1966,1967],
Bowen [1967], Ingram and Eringen [1967], and Atkin [1967]. As
Mliller [1968] and Truesdell [1969] have pointed out, all of the
above theories suffer serious defects.
4
See also Dunwoody and Muller [1968], Green and Naghdi [1968],

Doria [1969], Graine, Green, and Naghdi [1970], and Dunwoody
[1970].

See also Bowen and Wiese [1969], Green and Naghdi [1969],
Bowen and Garcia [1970].



are the following:

(i) The stress-diffusion matrix is symmetric. The

stress diffusion matrix is that matrix whose (a*)8) entry

is the derivative of the stress vector of constituent a

with respect to the velocity of constituent |3.

(ii) When the diffusion velocity u of constituent a

is small, the diffusive energy flux is approximated by its

classical counterpart SJJ, p u , where p, is the chemical

potential and p the density of a.

(iii) The elasticity matrix corresponding to a strong

equilibrium state is symmetric. This matrix plays a crucial

role in the linearized theory and in wave propagation studies.

(iv) When the diffusion velocities and the gradients of

density and temperature are small, and when the underlying

state is one of strong equilibrium, to within second order

terms the heat flux depends only on the temperature gradient

and the diffusion velocities, and the mass supply (due to

chemical reactions) depends only on the chemical potentials.

For convenience, I omit smoothness hypotheses; it will

be clear from the context what these ought to be.



1. Preliminary Definitions. Terminology.

Throughout this paper ]R, IR , and V denote, respectively,

the reals, the strictly positive reals, and the vector space

associated with three-dimensional euclidean space. Given

Ta (second-order) tensor S, S designates its transpose

1 Tand symS = -̂ (S + S ) its symmetric part. We denote the

tensor product of two vectors u and v by u®v«

The mixtures we study will have N constituents; for

convenience, we identify the set of constituents with the

set {1,...,N}. Further, the letters a and 0 will always
N

denote constituents, and we write Ef and Ef for E f .
a n a «-1 tt

a a—i

We use the following notation:

p is the mass density of constituent a,

v is the velocity of a.
MX _ — —

In addition, we write

(1.1)

v = Z c v , u = v - v;

p is the total mass density, c the concentration of a,

v the velocity of the mixture, and u the diffusion

velocity of a. Clearly,



Since we are dealing with a fluid mixture, it is more con-

venient to work with the spatial description of any given

motion. T*hus a motion is specified by prescribing v (x,t)

and o (x,t) as functions of spatial position xeft and

time t; here ft denotes a fixed region of space occuppied

by the mixture during some time interval.

We write grad and div for the spatial gradient and

spatial divergence, i.e., the gradient and divergence with

respect to x holding t fixed. Given a scalar field

f(x,t) and a vector field f(x,t), we define the material
• «

time derivatives f(x,t) and f(x.t) through

•** - hf

f = ff + (gradf)-v, f = ^ + (gradf)v; (1.3)

we then have the identity

gradf = gradf + (gradv) gradf. (1.4)



2. Basic Laws.

For the basic laws of our theory we postulate the

following:

balance of mass for each constituent

p + o d i w + u •gradp = pc , (2.1)

balance of momentum for each constituent

P v + p (gradv )u = divT + p b + p l+, (2.2)

balance of energy for the mixture

pe = -div(g+j) + L (T -p u ®u )• gradv + Sp b «u + pr, (2.3)

growth of entropy for the mixture

ps ± -div(|) + &£ . (2.4)

In Mliller1 s [1968] theory the term ^ is not present in the

energy equation and the term q/e in the entropy inequality is

replaced by an arbitrary entropy flux $. To see that there

is no contradiction between Mliller1 s theory and the one presented
here, let %f denote the heat flux in the former. If we define

a new "heat flux" cj by cj = Q$ and a diffusive energy flux

j by j = q'-q* then Mliller's equations (2.16), (3.4) reduce to

my (2.3), (2.4). The difference is simply a matter of taste.
Indeed, within the context of the classical theory of mixtures
I would view the quantity Eu p u , where u is the chemical

potential of a, as a flux energy (as does Eckart [1940]), while
Muller would view - (Z/i p u )/9 as a flux of entropy (as do

Meixner and Reik [1959] and de Groot and Mazur [1962]). I take
the point of view that the "heat flux" is that vector field
which when divided by the temperature gives the entropy flux.

The theory presented here falls within Bowen's [1969]
framework provided we take j to be a certain specified linear

function of the diffusion velocities.



Here

T is the stress tensor for a,

b is the body force for a,

I, is the momentum supply for a,

e is the internal energy,

q is the heat flux,

j is the diffusive energy flux,

r is the heat supply,

s is the entropy,

6 is the temperature.

We also postulate that

= 0; (2.5)

then (1.1), (2.1), and (2.2) imply the laws of mass and

momentum balance for the mixture:

p + pdiw = 0,

(2.6)

pv = div(T - Sp u ®u ) + Sp b ,

where

T = ZTa (2.7)

is (the inner part of) the total stress.



If we use (2.2) to eliminate b in (2.3), we find,
MX

with the aid of (1.1), (1.2), (2.1), and (2.6) ̂

peT = -div(q+k) + ET • gradv - En • u + or, (2.8)v I V2> ,-/ ^a MX MX ~a K 7

where

e T = e - k c u2 (2.9)
i <c CXMX

is the inner part of the internal energy and

k = j + S(TT - \p u2l)u , n = p l+ + 4pc+u . (2.10)

If we define (the inner part of) the free energy by

4> = ez - es, (2.11)

then (2.4) and (2.8) yield the reduced dissipation inequality;

p(J+s9) - ET • gradv + divk + En *u + ^q-grade < 0. (2.12)

^ r ~a MX ~ MX MX Q*
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3. Constitutive Assumptions.

We consider a mixture defined by constitutive equations

in which:

jlj.T , s ,q , j ,4 , + , c + are functions of (£, e,gradp,grade,v) ,

(3.1)

where, for convenience, we have used the notation

p = (p1,- . . ,pN) , grad£ = (gradP;L,. . . ,gradpN) , "v = (v^,.. . ,

(3.2)

We assume that the response functions are isotropic and that

c and I are consistent with (2.5). Further, in order
(X 'MX

to make our theory consistent with material frame indifference,

we require that

f (ft, 6,grad"p,grade,1/) = f (£, e,gradp*,grade,-v+a) (3.3)

whenever f is one of the response functions in (3.1)

and a = (a,...,a). Clearly, (3.3) implies that

and that

f Cf>, 6,grad^p,grade,v) = f (~p, e,grad^p,grade,"u) , (3.5)

where

"u = (u1,...,uN) (3.6)



with u the diffusion velocity (1.1)-.

We also assume that:

(A) Given a point x eft, a neighborhood P of x ,

an initial density distribution p : P —^ (IR ) , a time

interval [0,t ) , a temperature field 6 : P x[O,t ) - * 3R ,

and a velocity d i s t r ibu t ion v : P x[O,t )—^lr ; there
^ O O

exists a P c P with x eP, a Te(9,t ) , and a solution

: Px [0,T) -* ( 3R+)N of (2.1), i.e. of

X) * g r a dP a
 = P̂ P) c a ^ e^rad^,grade,"v)

(3.7)

on PX(O,T) , such that

*p(x,O) = ~p for xeP. (3.8)

Of course, in (3.7) u (p,v) and p(p) are given by (1.1).

An array (p,6,v,^,T,s,q,2j^ ,c ) of fields on PX[O,T)

(with values in appropriate spaces) will be called a con-

stitutive process if it is consistent with the constitutive

assumption (3.1) and balance of mass (2.1). Here

Z= (£l'-'"V' i = ^ l " " " ^ ' C = ( c l " " >CN)#

Assumption (A) insures that given x
o/p*o0C'

 an<^ e there

exists an associated constitutive process in some neighborhood

of x .
o

Bowen [1969] was the first to notice than an assumption of
this type is necessary when chemical reactions are present.
See also Coleman and Gurtin [1967] who utilize an assumption
of this type in a slightly different context.
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Note that by (1.1), (2.10)^ and (3.1),

k = k("p, 6,grad/o,grade,"v) .

For convenience, we introduce the following notation:

dk Bk
div k = S ^—gradp + <^. grade,

P(X a (3.9)

!S = 2 & (gradpa) ̂
r a d Pa

 + S (grade) * g r a d 9;

thus

divk = div k + divnk + 2(^-1 »gradv . (3.10)
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4. Consequences of the Second Law.

Given a constitutive process (2.2) and (2.3) can be

used to determine the body forces b

and the heat supply r necessary to sustain the process.

On the other hand, the inequality (2.4) -- or equivalently

(2.12) -- will be satisfied in every process if and only if

certain restrictions are placed on the response functions.

2
The next theorem lists these restrictions.

Note that, by definition, the mass balance relations (2.1)
are satisfied by every constitutive process.
2 Cf . M i i l l e r [ 1 9 6 8 , § 5 ] , D o r i a [ 1 9 6 9 , § 5 ] , Bowen a n d W i e s e
[ 1 9 6 9 , § 5 ] , Bowen [ 1 9 6 9 , § 6 ] .



12

Theorem 4. !L. A necessary and sufficient condition that

every constitutive process obey the reduced dissipation in-

equality (2.12) _is_ that the following four statements be true;

(i) The total stress is a_ pressure:

T = - pi. (4.1)

(ii) i\), p, and s are independent of gradp, grade,

and v:

«!> = 4>(£,e), p = p f p " , e ) , s = sCp,e); (4.2)

moreover,

(iii) The constituent stress T^ jL§_ given by

~u uv i- (4'4)

(iv) Jri every constitutive process

div k + pL -. [pc -u • grade ] + 2n «u + —q-grad8 < 0,
o~ r dp ^ a ~a a ~a -̂ a 6;*

a (4.5)

div,k = 0.

Proof. The proof of sufficiency follows upon direct

substitution. To establish the necessity of (i)-(iv) we

assume that every constitutive process obeys (2.12), or

equivalently, in view of the constitutive assumption (3.1),

balance of mass (2.1), and (3.10),
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a

7—^—r-gradp + ^ , Jf tX -grade + S §^— v ] + (4.6)(gradp ) * Ma d (grade) * dv ~aJ

^—[oc+-u -gradp ] + div k + div.k + En • u + -rq-grade < 0.
a

It follows from Lemma 6.1 that 6, gradp , grade, v , and
(X ~(X

gradv can be specified arbitrarily in (4.6), and this
ĉx

observation yields (4.2). 3, (4.3) 2, and (4.4). Next, it

follows from (2.10) and (3.1) that (3.3) (and hence (3.4))

holds with f = k; thus, if we sum (4.4) from 1 to a, we

are led to (4.1) and (4.3),. Next, div,k is the only term
X X'—'

in (4.6) involving second gradients; thus it follows from

(3.9) „ and Lemma 6.1 that
/ dk \ / dk \
\d (gradpa) ) =

 s v n ^ d (grade)/ = S i <4-7>

which implies (4.5)2> Finally, (4.1)-(4.4), (4.5) 2, and

(4.6) yield (4.5) r D

We assume for the remainder of the paper that (i)-(iv)

of Theorem 4.1 hold.

Let n be a unit vector. The quantity

t (n) = T n (4.8)

is the stress vector for constituent a (corresponding to the unit

HUNT M n r
CARNEGIE-MEUON UNIVERSITY
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normal n) . By (3.1) t (n) is a function of ("p", 9,gradj£,grade/v;)

t (n)
We call the matrix

diffusion matrix.

<with tensor entries) the stress-

Theorem 4.2. The stress-diffusion matrix is symmetric;

i.e.

dt (n)
(4.9)

for every unit vector n and all constituents a,Q.

Proof. Let K = k*n. Then (4.4) implies

fc^ ̂n) = % 7 ~ ~ PPry ̂ T " n ;

r^Qj ̂  d V CC d 0 ^

since the second term (4.10) is independent of v, if we

differentiate t (n) with respect to v«j we are led at

once to (4.9). D

We call the quantity

(4.10)

(4.11)

the chemical potential of a; note that

= 0. (4.12)

In view of (2.5), and (4.11), we can rewrite (4.5) as follows:
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Sa'^ 3p~ 9radpa) .^ + ̂ -grade + pS^c^O. (4.13)

Further, by (1.1), (1.2)2, (2.1), (2.5)1, (2.9), (2.11), (4.1)-

(4.3), and (4.11), the energy equation (2.3) takes the form

p(9s + |scau2) = ^ ^ ^ ^ ^

(4.14)

In the classical theory of fluid mixtures the diffusive

energy flux has the form j = Su p u , so that the divergence

term in (4.14) reduces to -divg. The next theorem shows

that in the general theory the diffusive energy flux is

approximated by its classical counterpart.

Theorem 4.3. The diffusive energy flux j=j(p,8,gradp,grad6,v)

vanishes when the diffusion velocities vanish. Moreover,

j = Su p u + 0(|"u|2) as "u->'o. (4.15)

Proof. Let n = ("p", e,grad"p*,grade) . Since the material

is isotropic, it follows from (2.10), that k = k(fi/\?) is

an isotropic function. Thus, by (4.7) and Lemma 6.2,

k(Q,"o) = 0, (4.16)1

For binary mixtures Doria [1969, Eq. (6.35)] establishes the
stronger result that k = cpu (u = u, = -u_) with

tp = cp(p1,p2,9, |u| ) , which implies, by (4.4) and (4.2), that

T is independent of gradp and grad8; unfortunately,

these results are restricted to binary mixtures.
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and we conclude from (2.10), that

j/n/o) = 0. (4.17)

Next, by (1.1) 3 4 ,

thus if we differentiate (2.10)-, with respect to v and

use (2.7), (4.1), and (4.4), we arrive at

C>j "NlK w ^

£ ( f t C P ) i ^ § 1 1 v = ^ . (4.19)

Therefore

= E (ppa I * - - cap)va+ Od^l2) as - g ^ . (4.20)

B u t b y ( 3 . 5 ) , j , ( f i / v ) = j , (a , "u) ; t h u s , b y ( 1 . 2 ) 2 ,

i ( n , u ) = £ p p n § 5 ~ u + 0 ( u ) a s u - ^ 0 ; ( 4 . 2 1 )

and this result, in conjunction with (1.2)2 and (4.11),

implies the desired result (4.15). Q
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5. Results near Equilibrium.

Let (p ,6 ) be given, and, for convenience, let

a , 1 = gradfi, g = grade,
(5.1)

= (p, e,f ,g,v), 4,o = (pQ, eo,0,0,0).

We call *& an equilibrium state provided

ca(*4/o) = ° (5'2)

for every constituent a. Let h denote the left-hand side

of (4.5), or equivalently, of (4.13), it then follows from

(3.9) 1# (3.1), (2.10), and (4.11) that

dk dk ^
h = h {*&) = £ ^ — • f + T7- g + S (n - o *^—f ) • u +

"0 MX do & ^ a dp <~>a M I
a a (5 .3 )

. 1

and it is clear from Theorem 4.1 and Lemma 6.1 that

1 0 (5.4)

for every -4/ in the domain of the response functions.

If -4/ is an equilibrium state, then (5.2) and (5.3) imply

that h(«d/ ) = 0, so that

In the absence of chemical reactions (c = 0) every AJ
a o

of the form (5.1)5 is a strong equilibrium state; thus all
of the results of this section apply also to diffusion without
chemical reactions.
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is a maximum at £j= -4/ . (5.5)
—~ o

Thus

= 0, (5.6)

where the subscript "o" indicates that the corresponding

function is to be evaluated at ^tJ = «A/OJ and we have the

following result:

= 0. (5.7)1

/o

Here jj, = \x (p , 6 ) . In addition, since c is an isotropic

function,

J
It follows from (5.2), (5.7), and (5.8) that

£c^(^J/)Ja = O(|^--4/Q|
2) as <4>-*^/o, (5.9)

where

I-A/- -a/ol = IP"-£>I + |e-e o

We say that an equilibrium state *6J is strong provided

^ a = °0-A/-^o|
3) as ^ y ^ ^ . (5.11)

XCf. Bowen [1969, Eq. (7.19)].
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Remark. To see that this is a natural generalization

of the usual notion of strong equilibrium, we assume, for

the time being, that there are R independent chemical

reactions:

where v is the stoichiometric coefficient of constituent

a in the reaction r divided by the molecular mass of a,

and J = J (Jtt) is the reaction rate of reaction r. The

chemical affinity of reaction r is defined by

Ar = A r
( ^ e ) = S ^ r ^ a ^ 8 * ' (5*13)

In this instance it is customary to call «Â  a "strong

equilibrium state" provided

JrU/o) = Ar(po'
e
o
) = °- (5.14)

In view of (5.12), the first of (5.14) implies (5.2). Further,

by (5. 12)-(5.14) ,

U0S = 0. (5.15)

Thus our notion of a strong equilibrium state is somewhat

weaker than the standard definition. For all of our results

it suffices to use the definition containing (5.11).

1Truesdell [1969, p. 107]. See also Bowen [1969, p. 121].
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With a view toward determining the behavior of the

response functions near equilibrium, we first determine

some of the more obvious consequences of isotropy. First

of all there exist scalar functions p (p,6) such that

(5.16)

Next, if *6J is an equilibrium state, then, clearly,

\
1 =
/

+
= 0 for z = q or 1+ (5.17)

Further, there exist scalars K,K ,y fl,y , and A » such

that

(5.18)

and, in view of (2.5), (3.4), (4.18), and (5.2),

We call K the conductivity and \\y ft|| the momentum supply

matrix. The matrix \\~\ ~\\ is of importance in applications.

Indeed, if we consider the linearized system of momentum

equations appropriate for small departures from the equilibrium
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state ^ , then (after dividing by p ) the term involving

gradp in the a-th equation has the form £ A ftgradpft.

For th is reason we cal l llA O\\ the e las t i c i ty matrix.
u ajijii 1.

Theorem 5.1. Let A/ be a strong equilibrium state.

Then

(5.21)

0
(5.22)

£ v o w w a > 0 for all a,w,,... ,w,,e E ;

so that, in particular, the conductivity K ̂_ 0 and the

momentum supply matrix ||y oil JL§. positive semi-definite.

Pr_ool. By (4.11) and (5.11),

In fact, Gurtin [1971] has shown that in the purely mechanical
theory the linearized equations for the densities have the form

'p - p £ A oApo + terms involving po and divbo.•a roa o ocp *p "p ^p

Thus the elasticity matrix plays an essential role when
studying the propagation of small-amplitude disturbances.
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/
= 0 whenever a = ffijg> or

 v g and

(5.23)
d = fy,g, or v y.

Next, it follows from (4.16), (5.3), and (5.23) that

= 0. (5.24)
I ~a <-'pv / °

Thus, in view of (5.5),

/ ^ \ / ^2 \

-§tr- = o. (5,2

The first of (5.25), in conjunction (5.3), (4.16), and (5.23),

yields (5.21). On the other hand, the second of (5.25), (5.3),

and (5.23) imply

to

(5.26)

By (2.5) 2, (2.1O) 2, and (5.2) ,

and S I ̂ ^i = 0 whenever
o \ aS /o ~

a = fQ,g, or vo, (5.27)

and (4.4), (4.18), (5.16), (5.18) 5, (5.26), and (5.27) yield,

after some manipulation, the result (5.20).
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Next, by (5.5),

a + 2a-

(5.28)

for all vectors a3w/-i > • • • >
W-Kt' *f w e take a = ae and

w = w e in (5.28), where e is a unit vector, and use

(4.3), (4.4), (4.16), (4.18), (5,3), (5.16), (5.18), (5.23),

and (5.27), we are led to (5.22).

As a direct consequence of (5.20) we have the following

important result.

Corollary 5.1. Let ju be a strong equilibrium state.

Then the elasticity matrix is symmetric:

(5-29)

The next corollary follows from (1.1)4, (5.17)-(5.19),

and (5.21); it asserts that near a strong equilibrium state
2

to within terms of 0(|-^- «*!/ | ) q depends linearly on

grade and u.

Corollary 5.2. Let jbfn be a strong equilibrium state.

Then

1g = -Kg - SKaUa + 0(\*-^/o\
2) as ^ - * ^ Q , (5.3O)

1Cf. Muller [1968, Eq. (7.28)1], Doria [1969, Eq. (7.31)],

Bowen and Garcia [1970, Eq. (6.14)]. All of the above treat
diffusion without chemical reactions.
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where q; = g ( ^ ) .

In view of (1.1), we can take p,c.,. . . ,c., as

independent variables in place of p,,..,,p , i.e., e.g.,

(5.31)

By (1.2) 1 and (4.12), the vectors c = (c.,...,c ) and

JLX = (|i-, ,. . . ,|uN) both lie on planes in 3R of dimension N-l.

We assume that the mapping

" ' 1 J e , " c ) (5.32)

is invertible in some neighborhood of -^_• Then in this

neighborhood we can express the mass supply as follows?

c* = c"|"(p,e,"Jl, f,g,"v) . (5.33)

Let

v = -!

we call \\T Q\\ the mass supply matrix. The next theorem shows

i 2 +
that to within terms of 0(\j/ -*4f\ ) c depends only on

he 5c
The derivative s a,...,s a lies in the "tangent space"

e 3R | Zcp^ = 0} .
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Theorem 5.2. Let ^ be a strong equilibrium state

and assume that the mapping (5.32) xs_ invertible in some

neighborhood of & . Then
o

< = -= w V +°(i^-^oi2>> (5-35)

where c = c ( ^ ) . Moreover, t he mass supply m a t r i x IIT oil
a ct — — ap

is positive semi-definite and

Proof. First, since c is isotropic,

(5'36)

\ / S c \ (bca I _ I a I I a

if

f = 0, g = 0, v = 0 (5.38)

then, letting

*a = ^a ' ^a^ p'= P "
(5.39)

P'

we conclude from (5.2), (5.3), (5.11), (5.33), and (5.34) that

o i. S = X - zcX + o< e
3) =

o(e 3) (5'4O>
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as £-*• 0. Thus

and \\T Q|1 must be positive semi-definite. Finally, the

Taylor expansion of (5.33) about & reduces

account is taken of (5.2), (5.37), and (5.41).
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6. Two Lemmas.

.* -=• Hr -*•
Lemma 6.1. Let sQ* = (p* , 9* , f* ,g* ,v*) be an arbitrary

element of the domain of the response functions. Let x eft;

OJ€nR; a ,d ,beV; and suppose that F ,G, and L are symmetric

tensors. Then there exists a. constitutive process whose

domain contains (x .0) such that when x = x^ and t = 0:

(?, e,gradj?igrade,v) =

*e = cc, v = a , gradp = d , grade = b , (6.1)
~(X 'MX CX M X '̂

2 2
grad p = F , grad 6 = G, gradv = L .

Proof. Let v denote the mixture velocity corresponding

to ? = (Z*V"ZP and "?* = (Pj,...,pj), let

£

and let

8(x,t) = 6 + t[o»-g «v ] + [g + t(b-Gv

(6.3)

where e^ is, as yet, unspecified. Then, in view of (1.3) ,

6 and v satisfy (6.1) . Further, since 9 and
—' X,^:,J,D,/,O

p^ are strictly positive, there exists a neighborhood p of

x and a t > O such that 6 > 0 on P x[O,t ) and p > 0
~° o o o ooc
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on P . Thus we conclude from assumption (A) and the ensuing

discussion that there exists a neighborhood P c p of x ,
O (Co

a time re(O,t ) , and a constitutive process on PX[O,T)

corresponding to 6>v, and p . Moreover, (3.8) and (6.3)3

imply that the corresponding density field p obeys (6.1). g.

Thus to complete the proof we only need to establish (6.1) ..

By (2.1) , (1.1) , and (3.1) , it is clear that gradp + p grad divv
2 •». 2 -•

can be considered a function of (-̂ ,grad p,grad 9,gradv) ; let
?\ denote the value of t^is function at ^/= 4/ , grad p = F ,

2
grad 9 = G, gradv = L (i.e. the value when x = x , t = 0).

Then, letting L = gradv (x^,o), we conclude from (1.4) and

(6.1)1 that

gradp (x ,0) = -p grad divv (x ,0) + A - L f . (6.4)
oc <~o a ^cx <~o r*> ~ ~cc

But by (6.3)2 >

grad d i w (x ,0) = e ; (6.5)
~0C <~^O M X

thus (6.1). will be satisfied provided we take

Pa

Let & denote the orthogonal group \;. A function

f : If —*r V is isotropic provided

f(Qw) = Qf(w) (6.7)
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for every w. = (w, ,. . . ,w ) eVM and every Qe&, where

Qw = (QW.1,...,Q;VM). (6.8)

Lemma 6.2. Let f : V —̂ r\s be an isotropic function

of class C , and assume that for every weV and every
o-f(w)

me{l,...,M] the tensor -«r-— is skew. Then f s 0.

Proof. Choose an orthonormal basis for \s and let

f<i> and w<i> (i = 1,2,3) denote the corresponding

components of f and w . By hypothesis,

^f<i> _ df<i> (6 9)

so that

Equations (6.9) and (6.10) imply that

hence

a3

since two of i,j,k, and I must coincide. Therefore f

must have the form

f(w) = f(0) + F(w) + G(w,w), (6.13)

For M = 3 this theorem is a corollary of a result obtained
by Doria [1969,§6] using different methods. See also Muller
[1968,§6]. When I first established this result I was unaware
of Doria's result.
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where F : V —^r V is linear and G : \s^<\s — ^ 1; is

symmetric and bilinear. It follows from (6.13) and (6.7)

with Q = -1 that f(Q) = 0 and G = 0; therefore

M
f(w) = F(w) = 2 FL«L., (6.14)
" ~ in=l

where each F is a tensor. Further,

df (w)

so that F is skew. Finally, by (6.7) and (6.14),

SEm = EmS (6.16)

for every Qe&, and the only skew tensor with this property

is F_ = 0. O
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