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ABSTRACT

A "posynomial" is a (generalized) polynomial with

arbitrary real exponents, but positive coefficients and

positive independent variables. Each posynomial program

in which a posynomial is to be minimized subject to only

inequality posynomial constraints is termed a "reversed

geometric program".

The study of each reversed geometric program is

reduced to the study of a corresponding family of approxi-

mating (prototype) "geometric programs" (namely, posynomial

programs in which a posynomial is to be minimized subject

to only upper-bound inequality posynomial constraints).

This reduction comes from using the classical arithmetic-

harmonic mean inequality to "invert" each lower-bound

inequality constraint into an equivalent "robust" family

of "conservatively approximating" upper-bound inequality

constraints. The resulting families of approximating

geometric programs are then studied with the aid of the
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techniques of (prototype) geometric programming.

This approach has important computational features

not possessed by other approaches, and it can easily be

applied to the even larger class of we11-posed "algebraic

programs" (namely, programs involving real-valued functions

that are generated solely by addition, subtraction, multi-

plication, division, and the extraction of roots).
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REVERSED GEOMETRIC PROGRAMS

TREATED BY HARMONIC MEANS

1. Introduction.

Originally developed by Duffin, Peterson and Zener

[13], prototype geometric programming provides a powerful

method for studying many problems in optimal engineering

design [28-30, 2, 5, 14, 18, 27]. However, many other im-

portant optimization problems can be modelled accurately

only by using more general types of algebraic functions.

Hence the question of extending the applicability of

geometric programming to those larger classes of programs

has received considerable attention.

In particular, Section III.4 of [13] presents

various techniques for transforming a limited class of

algebraic programs into equivalent prototype geometric

programs, but many of the most important optimization

problems are not within that limited class.

Initial attempts at rectifying this situation were

made by Passy and Wilde [21], and Blau and Wilde [6].

They generalized some of the prototype concepts and

theorems in order to treat "signomial programs" (namely,

programs in which a "signomial"—i.e., the difference

of two posynomials--is to be minimized subject to signomial



constraints) . Subsequently,, Duffin and Peterson [11, 12J

advanced that work in the still more general setting of

algebraic programming. In particular, Appendix A of [11J

shows how to transform each well-posed algebraic program

into a corresponding equivalent finite family of signomial

programs; and Section 2 of [11] shows how to further

transform each signomial program into a corresponding

equivalent reversed geometric program. Those transforma-

tions justify the restriction of our attention to the

seemingly irreducible class of reversed geometric programs;

and in [11, 12] most of the important prototype concepts

and theorems are generalized to that class. However, the

important prototype inequality between the primal and

geometric dual objective functions is simply not valid in

that more general setting.

In an independent and completely different approach,

Charnes and Cooper [8] have proposed methods for approxi-

mating signomial programs with prototype geometric programs,

However, the errors involved in their approximations have

never been investigated.

More recently, the preceding difficulties have been

at least partially overcome by Avriel and Williams [3],

who have shown how to reduce the study of each signomial

program to the study of a corresponding infinite family
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of approximating prototype geometric programs. By intro-

ducing an additional independent variable and an additional

signomial constraint, they transform each signomial program

into a corresponding equivalent signomial program in which

only a posynomial is to be minimized subject to signomial

constraints. Then, they "condense" certain posynomials

in the signomial constraints into approximating single-

term posynomials so that the signomial constraints are

approximated by upper-bound inequality posynomial constraints.

The result of their approximation is that the transformed

signomial program is approximated by a prototype geometric

program--actually, by an infinite family of prototype

geometric programs because the condensation is not unique.

Their approximation is conservative in that Cauchy1s

"arithmetic-geometric mean inequality" shows that each

feasible solution to an arbitrary geometric program in

the approximating family is also a feasible solution to

the transformed signomial program. Thus, the infimum

for each of those geometric programs is not less than

the infimum for the original signomial program.

Their approximating family is robust in that each

feasible solution to the transformed signomial program

turns out to be a feasible solution to at least one of

the approximating geometric programs. Hence, the infima
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for those geometric programs come arbitrarily close to

the infimum for the original signomial program.

Under suitable conditions, Avriel and Williams have

shown how to choose a sequence of their approximating

geometric programs so that the corresponding infima

sequence converges monotonely to the infimum for the

original signomial program. Thus, a signomial program

can frequently be solved by solving a sequence of approxi-

mating geometric programs, each of which can be solved by

the techniques of prototype geometric programming.

It seems that similar algorithms have been proposed

independently by Broverman, Federowicz and McWhirter [7J,

Pascual and Ben-Israel [17], and Passy [19], but for some-

what smaller classes of programs and without convergence

proofs. Each group uses the arithmetic-geometric mean

inequality to condense certain posynomials into single-

term posynomials so that their programs can be. conserva-

tively approximated by corresponding infinite robust

families of prototype geometric programs, from which con-

verging sequences can be chosen. Actually, that condensa-

tion process can be further exploited to reduce the study

of each signomial program to the study of a corresponding

infinite robust family of conservatively approximating

linear programs. In fact, that process combined with
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the duality theory of linear programming provides an

alternative proof [9] of the "refined duality theory"

for prototype geometric programming ([10] and Chapter

VI of [13]).

In this paper, we do not use the condensation pro-

cess just described. Instead, we assume that the trans-

formations given in Section 2 of [11] have been used

to transform each signomial program into its corresponding

equivalent reversed geometric program. Then, we "invert"

each of the posynomials appearing in a lower-bound inequa-

lity constraint into an approximating reciprocal posynomial

so that each of those constraints is approximated by an

upper-bound inequality posynomial constraint. As a conse-

quence, the reversed geometric program is approximated

by a' prototype geometric program--actually, by an infinite

family of prototype geometric programs because this inver-

sion is not unique.

Our approximation is conservative, and the corres-

ponding infinite family is robust, by virtue of the classical

"arithmetic-harmonic mean inequality". Thus, this paper

presents another approach to solving signomial programs

(and hence algebraic programs) by solving a sequence of

approximating geometric programs, each of which can be
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solved by the techniques of prototype geometric program-

ming.

This inversion approach has an important feature not

possessed by the condensation approach in that its approxi-

mating "exponent matrices" depend only on the program being

approximated and not on the given approximation. Only the

posynomial coefficients change with the approximation, so

many matrix computations need not be repeated during the

solution of a sequence of approximating programs. This

feature also leads to a variety of strategies for determi-

ning such program sequences. For example, one can employ

the coefficient sensitivity analyses developed in Appendix

B of [13] and further elaborated on in [22, 23]. Those

sensitivity analyses cannot be used with the condensation

approach because of its lack of invariance for the exponent

matrix.

However, the condensation approach has potentially

useful features not possessed by the present inversion

approach. In particular, its approximations are generally

not as conservative as those in the inversion approach, so

it may require fewer iterations. Furthermore, it tends to

reduce the "degree of difficulty" (page 11 of [13]), an

invariant in the inversion approach; so its approximating

geometric programs may be easier to solve.



[7]

Consequently, the relative computational merits

of the two approaches may not become apparent until

considerable computational experience is obtained.

Other applications of the harmonic mean to opti-

mization have been given by Avriel [1] a nd Passy [20]

In fact, a few of the results in this paper have been

obtained independently by Passy, and included in a

recently revised version of [19].

2. Reversed Geometric Programs and their Equilibrium
Solutions.

The study of well-posed algebraic programs is

reduced in Appendix A and Section 2 of [11] to the

study of equivalent posynomial programs having a special

form. Posynomial programs having that special form have

been termed "reversed geometric programs" [9], because

some of their inequality posynomial constraints have a

direction g(t) j> 1 that is the reverse of the direc-

tion g(t) <; 1 required for the prototype geometric

programs treated in [10, 13].
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The most general reversed qeometric program is now

stated for future reference as the following program.

PRIMAL PROGRAM A. Find the infimum M, £f .a posy-

nomial 9o(t) subject to the posynomial constraints

k — i.,2, . . .,p, (1)

and

gk(t) k = p+1,...,p+r = q (2)

Here,

gk(t) - 2, V**'
ie[k]

k = 0,1, . . .,q, (3)

and

u±(t) ^

1:L i lcitl , k=0,l, (4)

•••t
-a.

im
m

, k=p+l, (5)



[9]

where

[k] £ [n^ , rn^+1,...,nk} k=0,l,...,q, (6)

and

nQ

n . +1 £ in ^ n £ n. (7)
q-1 q •* q

The exponents a.. and -a.. are arbitrary real numbers,
-L-j -L-J

but the coefficients c. and the independent variables t.

are assumed to be positive.

We have placed minus signs in the exponents for the

reversed constraint terms (5) in order to obtain a

notational simplification in the ensuing developments.

To provide other notational simplifications, we

introduce the index sets

P £ {1,2,...,p} , (8)

R £ {p+1,...,q} , (9)
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and

[K] = U [k] for each K c {o} U P U R . (10)
keK

For purposes requiring pronunciation, [K] is called

"block K".

In terms of the preceding symbols, primal program A

consists of minimizing the "primal objective function"

g_(t) subject to the prototype "primal constraints"

^ 1, k e P , and subject to the reversed primal

constraints ST-uft) 2. 1 > k e R , where: the posynomial

gk(t) ^ Y ui(t) for each k 6 {0} U P I) R; the

ietk]

posynomial term u. (t) ̂  c.t.. l l t 9
 l2. . . t i m for each

-L 1. JL £a JILL

i e [0] U [P]; and the posynomial term u.(t) =

~ a. ^ a •• 3
. ilj_ i2 . im _ , . r ,ci 1 2 * * m each i£ [R] .

As in prototype geometric programming [10, 13]

each posynomial term u.(t) in primal program A gives

rise to an independent "dual variable" 6. , ie [O]U[P]U[R],

and each posynomial 9k(t) gives rise to a dependent

dual variable \(6) - £ 6j_ > k e {0} U P U R . To

ie[k]
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define the "geometric dual" of prima.l program A, it is

convenient to extend the notation of the preceding para-

graph by introducing the symbols

K(6) £ {keK | \(6) ? 0} for each K c {o}l)PUR , (11)

and

[K](6) £ {ie[K] | 6± ^ 0} for each K c {0}UPUR . (12)

Then, corresponding to primal program A is the following

geometric dual program.

DUAL PROGRAM B. Find the supremum M _of the "dual

objective function"

[0] (6)\ x I [P] (6P 1 ' [R] (6) \ i/

(13)

P(6) R(6)

subject to the "dual constraints" that consist of the

"positivity conditions"
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6± 2 O , i e [1,2,...,n) £ [O] U [P] U [R] , (14)

the "normality condition"

AQ(6) = 1 , (15)

and the "orthogonality conditions"

n
) a. . 6. = 0 , j = l,2,...,m. (16)
Z_i IT 1

Here

\ ( 6 ) " I 6i ' ke (O,l,...,q]i=(O]UPURJ. (17)
ie[k]

and the numbers a.. and c. are as given in primal

program A .

The dual constraints are identical to their analogues

in prototype geometric programming; and they are linear,

so the dual feasible solution set is either empty or

polyhedral and convex. The dual objective function differs

from its analogue only by the presence of minus signs in
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the exponents of the factors corresponding to the reversed

primal constraints; but those minus signs result in very-

large theoretical and computational differences between

reversed and prototype geometric programming. In particu-

lar, Theorem 3A of [11] shows that, unlike prototype

geometric programming, reversed geometric programming is

not essentially a branch of convex programming.

The convex nature of prototype geometric programming

is reflected in its "main lemma" (Lemma 1 on page 114

of [13]), which asserts that the primal objective function

evaluated at each primal feasible solution is greater

than or equal to the dual objective function evaluated

at each dual feasible solution; with equality holding

if, and only if, the primal and dual feasible solutions

satisfy certain "extremality conditions" (a term that

is used in [22-26] although not in [10, 13]).

With suitable but very weak hypotheses, one of the

main duality theorems of prototype geometric programming

asserts the existence of primal and dual feasible solu-

tions that satisfy the extremality conditions; in which

event the primal infimum equals the dual supremum, and

the primal and dual optimal solutions (namely, "minimizing

points" for the primal program and "maximizing points" for

HUNT LIBRARY
CAJWE6IE-KELL9K UNIVERSITY
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the dual program) are characterized as those primal and

dual feasible solutions that satisfy the extremality

conditions.

The preceding facts and the linearity of the dual

constraints lead to algorithms for finding primal and

dual optimal solutions to prototype geometric programs;

and it is our ultimate goal to devise such algorithms

for reversed geometric programming. However, the lack

of total convexity in reversed geometric programming

will force us to be content with devising algorithms

for finding "equilibrium solutions" that need not always

be optimal.

Thus, the preceding remarks and the extremality

conditions for prototype geometric programming help to

motivate the following definition.

DEFINITION 1. A feasible solution t* to primal

program A ±s_ termed a. primal equilibrium solution if

there is .a feasible solution 6* _to dual program B

such that

6*i 9o(t*} = u±(t*) , ie [0] , (18a)
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and

*. = A,(6*) u. (t*) , i e fk] , k e P U R ; (18b)
X K 1

in which case 6* _is_ termed ja dual equilibrium solution.

Given c orre s pond ing primal and dual equilibrium solutions

t* and 6* , the numbers E A =- gQ(t*) and E £ v(6*)

are said to be corresponding primal and dual equilibrium

values.

The practical significance and many important mathe-

matical properties of equilibrium solutions are studied

in fll]. In this paper we concentrate on other important

mathematical properties that lead to the use of the har-

monic mean and prototype geometric programming for obtain-

ing equilibrium solutions.

3. Harmonized Geometric Programs and their Optimal Solutions.

The study of each reversed geometric program will now

be reduced to the study of either of two different corre-

sponding families of approximating prototype geometric pro-

grams. This reduction is based on the classical inequalities

relating the arithmetic, geometric, and harmonic means [4,15,16]
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For our purposes, it is convenient to state those inequa-

lities in somewhat disguised form as the following lemma.

Lemma 3a. _I_f u.., . . . ,VL- are positive quantities,

and if a,, ... ,CL are positive numbers such that

N

ai =

then

N V1

Moreover, these inequalities are strict unless

V \

in which case they are equalities.

Proof. Given positive quantities T,,...,T and

the positive "weights" ct^ ...,a , Cauchy1 s arithmetic-

geometric mean inequality [4, 13, 15, 16] asserts that

N . N

)

N . N

(I Qi Ti) ̂  ff ̂ i ) ^ '
\i=l ' i=l



with equality holding if, and only if,

N
Ti = I ai Ti > i = 1,...,N . (2)

Replacing the positive quantities T. with their positive
_ ĵ

reciprocals T. gives the classical geometric-harmonic

mean inequality

N Q / N V 1

X\ (T±)
 X 2 I a± T.-

1) , (3)
i=l \i=l /

with equality holding if, and only if,

N

Ti"
1 = £ a.. Tj'1 , i = 1, ...,N. (4)

j=l

N

Moreover, it is easily seen that the normalization ) a. =1

i=l

implies the equivalence of the equality conditions (2)

and (4). Now, choose T. = u./cx. for i = 1, ...,N,

and invert each of the inequalities resulting from (1)

and (3) to complete our proof of Lemma 3a .
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Given a posynomial

N

g(t) = £ u±(t)

and positive weights a,,...,^, the corresponding

geometric inverse g' ( • ;a) of g, and the corres-

ponding harmonic inverse g"(«;a) of g , are posy-

nomials defined by the following formulas:

N, a. a.

' I u. (1
i=l

and

N a.2

5"^°) A I TTTt)

Then, Lemma 3a shows that

£ g' (t;a) < g"(t,-a)

for each t > 0 , so we have the following implications:

g« (t;a) < l=^g(t) ^ 1 , (5)



[19]

and

g«(t;a) < 1 ==> g1 (t;a) £ 1 ==>g(t) ̂  1 . (6)

Given a reversed geometric program A, the implica-

tion (5) suggests the introduction of a condensed

program A1(a) in which the reversed inequality constraints

g(t) ̂  1 are replaced by the corresponding prototype

inequality constraints g1 (t;a) <̂  1 . Then, the resulting

condensed program Af (a) is a prototype geometric program,

and the implication (5) shows that the infima M- and

#L, . . for programs A and A1(a) respectively satisfy

the inequality

(a)

A detailed analysis of the family of all condensed programs

A1(a) has essentially been given by Avriel and Williams [3]

In this paper we introduce a harmonized program A"(a)

in which the reversed inequality constraints g(t) ̂ > 1 are

replaced by the corresponding prototype inequality con-

straints g"(t;a) _< 1 . Then, the resulting harmonized



[20]

program A"(a) is a prototype geometric program, and

the implication (6) shows that

where JVL,, . > is the infimum for program A" (a) .

We now proceed more formally to investigate the

properties of harmonized programs. Thus, corresponding

to the reversed primal program A is the following

family of harmonized geometric programs A"(a).

PRIMAL PROGRAM A" (a) . Find the infimum M̂ ,, . . of_

the posynomial g (t) subject to the posynomial con-

straints

gv(t) < 1 , k = 1,2,...,p, (7)

and

k = p + 1, . . .,p + r ̂ q . (8)

Here

a . a . o a .
(t) £ ) r- t- 1 t- +- 1Itl v = n l n (Q)
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and

.. ,u x A V / 2 -1,. ail^ ai2 . aim
gk"(tya) ^ 2 , (ai Ci }tl *2 •••tta '

ie[k]

k = p+ 1, . . .,q, (10)

where a satisfies the weight conditions

a. > 0 for ie [k] and V a. = 1 , k = p + l,...,q. (11)
1 — — — — /_, X

ie [k]

The index sets [k] = (m, , . . ., xu, } , the exponents a. . ,

and the coefficients c. and c. are as given in

primal program A.

From a computational point of view it may be worth

noting that the linear equations ) a. = 1 can be

ie[k]

relaxed by replacing them with the linear inequalities

) 0 ^ ) 1 , because the defining formula for the

ie[k]

harmonic inverse g^" (t;cc) implies that the resulting

enlargement of the family of all harmonized geometric

programs does not lower the infimum of all its program

infima. Moreover, it is easy to show that the infimum
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for this larger family is identical to the infimum for

the single program obtained by letting a vary simul-

taneously with t . This single program is clearly a

reversed geometric program of a very special type with

reversed constraints / a. J> 1 . However, there

ie[k]

seems to be no theoretical advantage in pursuing these

observations, so we shall not discuss them any further.

Instead, we shall investigate the family of harmo-

nized geometric programs A"(a). This family of approxi-

mations is conservative and robust in the following sense.

Theorem 3A. X£ t i§. a. feasible solution to _a harmonized

primal program A" (a) , then t is_ <a feasible solution to

primal program A , and hence M „ , > J> jyL . Ojn the other

hand, if t xs_ _a feasible solution to primal program A ,

then t _is_ a. feasible solution to the harmonized primal

program A'1 (a) with weights

a± - u±(t)/gk(t) jfor ie [k] and

and hence the non-negative infima difference JVL „ - ]VL

can be made arbitrarily small.
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Proof. By virtue of Lemma 3a, each solution t to

the constraint inequality g"(t;a) <C 1 is also a solu-

tion to the corresponding reversed constraint inequality

9v(t) ̂  1 • This observation and the fact that programs

A and A"(a) have the same objective function 9o(t)

clearly imply the validity of the first part of Theorem 3A,

Now., given t > 0 and the corresponding weights

a. - u. (t)/g, (t) , we infer from Lemma 3a that

gk"(t;a) = [g]c(t)]"
1 for each k e R.

From this, we see that each feasible solution t to

program A produces a harmonized program A"(a) to

which t is also a feasible solution. Hence, the fact

that programs A and A"(a) have the same objective

function clearly implies that their infima difference

can be made arbitrarily small. This completes our

proof of Theorem 3A.

Each harmonized primal program A"(a) is a proto-

type geometric program, so its geometric dual program

is also a prototype geometric dual program and is stated

here for future reference as the following program.
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DUAL PROGRAM E"(a). Find the supremum M_ H, , of

the product function

v " (6;<

6± 6, . . 6..

[ 0 ] ( 6 ) \ u i / " " - [P] (6) \ u i / J U [ R ] ( 6 ) \ u i /

(12)

subject to the constraints

{ 1 , 2 , . . . , n } = [0] U [P] U [R], (13)

V 6 ) = 1 , (14)

and

n

1 a i j 6 i = °> j = 1 . 2 . . - - , m . (15)

Here,

~ X 6± , k e ( 0 , 1 , . . .,q) = {0}U PU R , (16)
i e [k ]
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and the weights a. along with the numbers a.. and c.

are as given in primal program A"(a).

Notice that the constraints for the harmonized dual

program B"(a) are identical to those for dual program B .

This observation establishes the following useful analogue

of Theorem 3A.

Theorem 3B. A vector 6 is a feasible solution to dual

program B _ij:, and only if, 6 _i_s _a feasible solution

to at least one harmonized dual program B" (a) ; jLn which

case 6 JLs_ ja feasible solution to each harmonized dual

program B"(a).

We can now obtain important information about the

reversed primal program A and its geometric dual pro-

gram B by applying prototype geometric programming

theory to the prototype primal programs A"(a) and

their geometric dual programs B" (a).

Theorem 3C. J.f primal program A is consistent and

has a positive infimum JVL , then its dual program B

is consistent.
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JProof. From Theorem 3A we infer the existence

of weights a such that the harmonized program A"(a)

is consistent and has an infimum ]yL tl , « ̂> ML . It

follows that M̂ ,, , , > 0 , and hence the duality theory

for prototype geometric programming (Theorem 1 on page

166 of [13]) asserts that dual program B"(a) is con-

sistent. Thus, by virtue of Theorem 3B , our proof of

Theorem 3C is now seen to be complete.

The conclusion to Theorem 3C remains valid under

the weaker hypothesis that primal program A is "sub-

consistent" and has a positive "subinfimum" (as defined

in [10] and Chapter VI of [13]), but we shall not

need that fact in this paper.

Theorem 3C shows that dual program B (and hence

each harmonized dual program B" (a)) is usually consis-

tent when primal program A is consistent. In the next

section we shall investigate the possibility of solving

such reversed programs A by solving appropriate har-

monized programs.

Due to the following fundamental theorem, the algo-

rithm to be studied in the next section is inherently limited

in its ability to obtain (globally) optimal solutions to

programs A and B.
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Theorem 3D. Given ji vector t* > 0 and the associated

weights

a*. ^ u.(t*)/g (t*) for ie [k] and k = p+l,...,q,

consider the harmonized primal program A"(a*) and its

harmonized dual program B"(a*). Then, the vector t*

and another vector 6* are optimal solutions to programs

A"(a*) and B"(a*) respectively if, and only if, t*

and 6* are corresponding primal and dual equilibrium

solutions to programs A and B respectively; in which

case

EA ~ MA" (a*) = MB" (a*) = EB

Proof. According to the "main lemma" of prototype

geometric programming (given on page 114 of [13]), vectors

t* and 6* are optimal solutions to programs A" (a*)

and B"(a*) respectively if, and only if, t* and 6*

are feasible solutions to A"(a*) and B" (a*) respec-

tively, and satisfy the conditions

ie[O] ,

ie[k] , keP , (17)

ie[k] , keR .
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If t* and 6* are feasible solutions to

programs A"(a*) and B"(a*) respectively, then

Theorems 3A and 3B assert that t* and 6* are

also feasible solutions to programs A and B res-

pectively. If, in addition, t* and 6* satisfy the

conditions (17), then the defining equations for a*.

show that

= ut(t*), ie[O] ,

6*i = \(5#)ui(t*) , ie[k], keP, (18)

keR .

Given an arbitrary index keR , either A, (6*) = 0

or A, (6*) > 0 . If A,(6*) = 0, the corresponding

conditions (18) show that 6*. = 0 for each ie[k],

so 6*± = Ak(6*)ui(t*) for each ie [k] . If Ak(6*) > 0

a summation of the corresponding conditions (18) shows

that Ak(6*) [gk(t*)]
2 = Ak(6*)gk(t*) ; so gk(t*) = 1,

and hence 6*^ = ^k(6*)ui(t*) for each ie [kj . Thus,

we have shown that arbitrary optimal solutions t* and 6*

to programs A"(a*) and B"(a*) respectively are always
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feasible solutions to programs A and B respectively,

and also satisfy the conditions

6*i g0 ( t* } = u i ( t * ) i

(19)

6*. = V (6*)u. (t*), ie[k] kePUR;
1 JC 1

that is, t* and 6* are corresponding primal and dual

equilibrium solutions to programs A and B respectively

Conversely, if t* and 6* are corresponding primal

and dual equilibrium solutions to programs A and B res-

pectively, then t* and 6* are feasible solutions to

programs A and B respectively, and also satisfy the

conditions (19). If keR and Ak(6*) = 0, the corres-

ponding conditions (19) show that 6*. = 0 for each

ie[k]; so 6*. = A, (6*) [a*. ] 2u.~ -1 (t*) for each ie [k] .
1 KL 1 1

If keR and A, (6*) > 0, a summation of the correspond-

ing conditions (19) shows that A, (6*) = \ (6*)g, (t*) ;

so g, (t*) = 1, and hence a*. = u. (t*) for each ie fkj,
K 1 1

which implies that 6*. = A, (6*) [a* • ] 2u.~ 1 (t*) for each
X K 1 1

ie[k]. Thus, we have shown that corresponding primal and

dual equilibrium solutions t* and 6* to programs A

and B respectively always satisfy the conditions (17).
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Furthermore, such solutions t* and 6* are feasible

solutions to programs A"(a*) and B"(a*) respectively

by virtue of the definition of a* and Theorems 3A and

3B. Hence, it follows from the first paragraph of this

proof that corresponding primal and dual equilibrium solu-

tions t* and 6* to programs A and B respectively

are always optimal solutions to programs A" (a*) and B"(a*)

respectively.

Now, the relation E A = JVL „ , #« results from the

fact that programs A and A"(a*) have the same objec-

tive function gQ (t) . The relation J^M ( Q # ) = Mg,, (Q*}

is one of the fundamental relations in prototype geometric

programming (given on page 80 of [13]). Finally, the

relation E, = E D is a consequence of Corollary 1 to

Theorem 4A in [11]. This completes our proof of

Theorem 3D.

According to Corollary 1 to Theorem 3D in [11],

equilibrium solutions t* to primal program A are

"tangentially optimal in a certain weakly global sense".

That nature of primal equilibrium solutions t* is also

indicated by the preceding Theorem 3D and the easily
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verified fact that each posynomial Q u.) has the

ie[k]

same value and the same partial derivatives as its har-

V1 2 -1 -1monic approximant ( ) [a*.] u. ) when u. = u*.

ie[k]

and a*. - u*./( ) u* .) for ie[k]. The preceding
1 X LJ J

je[k]

Theorem 3D also shows that equilibrium solutions 6*

to dual program B are tangentially optimal in a strongly

global sense, because programs B and B"(a*) have

identical feasible solution sets by virtue of Theorem 3B.

4. A Direct Method for Obtaining Equilibrium Solutions.

Before proceeding we need to classify reversed

geometric programs in essentially the same way that

prototype geometric programs are classified in [10]

and Section VI.2 of [13].

DEFINITION 2. Primal program A and its geometric

dual program B are said to be canonical if there is a

feasible solution 6 _to program B with strictly posi-

tive components. Programs A and B that are not



[32]

canonical are said to be degenerate.

It seems that properly formulated primal programs A

arising from physical and economic considerations are

canonical programs. In any event, in [12] the study of

degenerate programs is reduced by linear algebra to the

study of equivalent canonical programs. Hence, there is

no loss of generality in restricting our attention to

canonical programs. This restriction implies that each

harmonized primal program A"(a) and its geometric

dual program B"(a) are also canonical, because the

feasible solution 6 to dual program B is also a

feasible solution to each harmonized dual program B"(a),

by virtue of Theorem 3B. It is then a consequence of one

of the main duality theorems of prototype geometric pro-

gramming (Theorem 1 on page 169 of [13]) that each con-

sistent harmonized primal program A"(a) has at least

one optimal solution.

The following algorithm depends on Theorem 3A and

the existence of such optimal solutions.

ALGORITHM. Given ja feasible solution t° _to primal

program A, use prototype geometric programming _to find

an optimal solution t jto the harmonized primal program

A"(a1) where
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a1
i k ui(t°)/gk(t°) .for ie [k] and k=p+l,...,q.

Then, use prototype geometric programming again to find an

2
optimal solution t _to the harmonized primal program

A"(a2) where

a2. £ u. (t1)/gv(t
1) .for ie [k] .and k = p+l, ...,q.

Continuing in this fashion, generate _a sequence {A"(av)},

of harmonized primal programs and corresponding sequences

{M }, and ft1').. of harmonized minima and optimal
A"(a") 1 X

solutions respectively.

It is a consequence of Theorem 3A that, for each

positive integer v, the optimal solution ty to the

harmonized primal program A"(av) is also a feasible

solution to the succeeding harmonized primal program

A" (a.11 ) , and hence tv can serve as a starting point

for finding the optimal solution tv to program A11 (a.1* )

This fact also implies that

A" (CT) A" (a ) A»(aJ)

because each harmonized primal program has the same objec-

tive function g . Now, either at least one of these

HUNT LIBRARY
CARNE61E-MELL8N UNIVERStT)
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inequalities is an equality, or each of these inequalities

is strict.

In the former case the harmonized optimal solutions

tv are clearly identical for sufficiently large v ,

say v ,> v* ' so Theorem 3D shows that this common

harmonized optimal solution t* and any harmonized optimal

solution 6* to the geometric dual program B"(a ) are

corresponding primal and dual equilibrium solutions to

programs A and B respectively. Such harmonized op-

timal solutions 6* almost always exist, because Theorem 1

on page 80 of fl3] guarantees their existence when the

v*harmonized primal program A" (cc ) is "superconsistent"

(i.e. satisfies Slater's condition that all inequality

constraints be strict inequalities for at least one fea-

sible solution). Of course, it is an immediate consequence

of Theorem 3D that all the harmonized optimal solutions

tv are, in fact, identical to the initial feasible solu-

tion t when t happens to be a primal equilibrium

solution. Hence, our algorithm can not always be expected

to produce a globally optimal solution to primal program A.

It may produce only a (tangentially optimal) primal equili-

brium solution, and it might not do even that.

In the (more likely) latter case, in which each of

the inequalities (1) is strict, the harmonized optimal

solutions tv are clearly distinct, so we need to further
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investigate the convergence properties of {t }.. There

are canonical primal programs A that give rise to sequences

{tv}. that have no limit points in the domain of the

posynomials ^(t) > namely, the "positive orthant"

{teE^ | t. > 0 , j = l,2,...,m} of E . However,
m

t

it seems that properly formulated primal programs A

arising from physical and economic considerations are

canonical programs with the additional property that

for each positive number b the set of all those

primal feasible solutions t for which the primal ob-

jective function

go(t) < b

is a compact subset of the positive orthant of E

Actually, each canonical prototype primal program

(with an exponent matrix (a..) of rank m) possesses

this compactness property, as can be seen by examining

the proof given on page 12o of [13]. For an arbitrary

primal program A with this compactness property it is

clear from Theorem 3A that each sequence ft1*}?0 gene-

rated by our algorithm is in the nonempty compact subset

obtained by choosing b = g_(t ); and hence each such
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sequence {t^}?5 has at least one limit point in the

positive orthant of E m . Limit points produced in this

fashion are termed sequential solutions to primal program A.

We have already observed from Theorem 3D that all

equilibrium solutions t* to primal program A are se-

quential solutions to primal program A (obtained by

choosing t = t* in our algorithm). We now show that

almost all sequential solutions t* to primal program A

are, in fact, equilibrium solutions to primal program A.

Theorem 4A. Suppose that primal program A _is canonical

and that our algorithm generates _a sequence ft1'}, of

harmonized primal optimal solutions tv, and let {cc^},

be the resulting sequence of weights a1' with components

av £ u . (t^h/g,(tv 1 ) f o r i e [ k ] and k = p + l , . . . , q
J_ J_ J^ ——•—•™ •

If the sequence [tv). produces a. sequential solution

t* _to primal program A, and if the resulting weights

a*i ~ ui(t*)/gk(t*) for ie[k] and

ive rise to _a harmonized primal program A" (a*) that
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is superconsistent, then

(i) there is an optimal solution 6V _to the harmo-

nized dual program B"(cxv) for sufficiently large v ,

(ii) each such sequence {6^} .pj: harmonized

dual optimal solutions 6^ is. bounded and hence has

at least one limit point 6* ,

(iii) each such limit point 6* _is_ an optimal

solution to the harmonized dual program B"(a*),

(iv) the vector t* jjs jm optimal solution to

the harmonized primal program A"(a*),

(v) the vector t* and each optimal solution 6*

to the harmonized dual program B"(a*) are corresponding

primal and dual equilibrium solutions to programs A

and B respectively.

Proof. Consider the prototype primal program

A"(cc;e) that is obtained from the harmonized primal

program A"(a) by multiplying its coefficients with

[1+e]. The assumed superconsistency of program A"(a*)

clearly implies the existence of a vector t' and a

sufficiently small e > 0 such that t' satisfies the

constraints of program A"(a*;e) as strict inequalities.
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Now, without loss of generality, we suppose that tv con-

verges to t*, which in turn implies that a1* converges

to a* by virtue of the definitions of av and a* along

with the continuity of the posynomials u.(t) and g, (t).
1 K

Thus, each coefficient ([l + e][av.] c. ) in program

A"(ai;;e) converges to the corresponding coefficient

2 -1
([l + e][a*.] c. ) in program A"(a*;€). Hence, the

vector t1 satisfies the constraints of program AM(aIl/;€)

as strict inequalities for sufficiently large y , say

v 2. VQ • It is then clear that program A" (a.v;0) ,

namely program A" (a1') , is superconsistent for v 2. Vr) •

Consequently, Theorem 1 on page 80 of [13] asserts,

for p J> j^o , the existence of an optimal solution §v

to program B" (cxv) such that <3Q(t
v) = v" (6̂ ,-a1 )̂ ,

because of our assumption that tv is an optimal solu-

tion to program A" (a11) for v > 1 •

Now, our choice of vQ and the fact that 9n(t)

is the objective function for each harmonized program

A" (a1 )̂ imply that the infimum for program A'^a^e)

is uniformly bounded from above for y >. vn by the

positive constant [l + e]g (t1 ) . It is then a conse-

quence of the main lemma of prototype geometric program-

ming (on page 114 of [13]) that feasible values for the
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objective function corresponding to the geometric dual

BMo^/'e) of program A"(a^;e) are also uniformly bounded

from above for v > vQ by [1 + e]g0 (f ) • The formula for

the objective function of a prototype geometric dual program

and Theorem 3B show that these feasible functional values
n

have the form (1 + e) v" (5',a.v) where 6 is an arbi-

trary feasible solution to dual program B. Hence, we

have actually shown that
n

(1 + e) go(t") <, [l + c]go(t')

for v >. vn ) by virtue of the previously established

equation g (ty) =v" (6^; a1') . Since g (t^) converges

to g (t*) > 0 by virtue of the continuity of g_ ,

and since each bv. ^_ 0 by virtue of the dual feasi-

bility of 6^ , we infer from the condition e > 0 and

the preceding displayed inequality that the sequence [bv^

is bounded and hence has at least one limit point 6*.

Without loss of generality, we suppose that 6^ con-

verges to such a limit point F>*. Using the previously

established equation gn(t^) = v" {b
v:cxv) for v >_ v >

we infer from the continuity of g and v" that

V0
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go(t*) = v»(6*;a*) . Moreover, we deduce from both the

feasibility of tv and tv and the continuity of the

constraint functions in programs A"(a") and B" (au)

that t* and 6* are feasible solutions to programs

A"(a*) and B"(a*) respectively. It is then a conse-

quence of the main lemma of prototype geometric program-

ming that t* and 6* are optimal solutions to programs

A" (a*) and B" (a*) respectively.

The optimal solution t* to program A"(a*) and

each optimal solution 6* to program B" (a*) are corre-

sponding primal and dual equilibrium solutions to programs

A and B respectively, by virtue of Theorem 3D. This

completes our proof of Theorem 4A.

The most restrictive hypothesis in Theorem 4A is

the superconsistency of the harmonized primal program

A"(a*). The following theorem gives a simple method

for testing the superconsistency of an arbitrary harmo-

nized primal program A"(a ) in terms of the constraint

functions in primal program A.

Theorem 4B. Given a. feasible solution t° jto primal

program A and the associated weights
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oc°. - u. (t°)/g, (t°) for ie [k] and k = p+1, . . . ,q ,

the resulting harmonized primal program A" (ct°) is

superconsistent if, and only if, there is a vector d

in E such that

(I) < v g, (t°), d > < O for each keP for which g (t°) =1 ,

and

(II) < vgk(t°), d>> O for each keR for which gk(t°) =1

Proof. We shall begin by showing that a vector d

in E satisfies conditions (I) and (II) if, and

only if, it satisfies the conditions

(I") <vg k(t°), d > < 0 for each keP for which gk(t°) = 1 ,

and

(II") < vgk"(t°;a°), d > < 0 for each keR for which gk" (t°;a°)= 1

Since conditions (I) and (I") are identical, it is

sufficient to show the equivalence of conditions (II)
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and (II"). From Lemma 3a and our defining equation

for cc° , we know that tgk(t°)]"
1 = gk" (t°;a°) for

each keR ; so for each keR we see that gk(t ) = 1

if, and only if, g," (t°;a°) = 1. The equivalence of

conditions (II) and (II") is then a consequence of

the easily established equation vgk"(t°;a°) = - [1/g, (t°,a°) ]

Vg, (t ). Thus, we need only prove that program A"(a ) is

superconsistent if, and only if, there is a vector d in

E such that conditions (I") and (II") are satisfied.

From Theorem 3A and our defining equation for a ,

we infer that t is a feasible solution to program A"(a ),

by virtue of our hypothesis that t is a feasible solu-

tion to program A. It is then an immediate consequence

of the differential calculus and the continuity of posy-

nomials that t + € d satisfies the constraints of

program A"(a ) as strict inequalities for sufficiently

small e > 0 , when d satisfies conditions (I") and

(II"). Hence, program A"(a ) is superconsistent if

there is a vector d in E such that conditions (I")

and (II") are satisfied.

To prove the converse, we need to make the change

of independent variables

z .
- e J , j = 1,2,...,m ,
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so that program A" (cc°) is transformed into an equivalent

convex program to which we can apply an elementary theorem

from convex analysis. This equivalent convex program clearly

consists of minimizing the convex function G (z) subject

to both the convex constraints

GL (z) < 1 , keP ,

and the convex constraints

G"(z;a°) £ 1 , keR,

where

-̂, a.-z.+a. _z_+. . .+a. z
Gk(z) ^ 2 , ci e i m m > ke{0}UP,

ie[k]

and

(Of course, the convexity of these functions G, (•) and

Gk"(';a) follows easily from the positivity of the coeffi-

cients c± and ai
2ci"

1.) If program A" (o°) is super-

consistent, then so is the preceding equivalent program;



[44]

and hence there is a vector z1 in E such that

Gk(z') < 1 , keP,

and

keR .

It follows that the vector z1 satisfies the conditions

Gk(z') - Gk(z°) < 0 for each keP for which Gk(z°) =1 ,

and

Gk"(z';a°) -Gk"(z°;a
o) < 0 for each keR for

which Gk"(z°;a°) = 1

From the convexity of G, (•) and G, " ( • ;cc°) we know
K K

that <VGk(z°), z'-z°> < Gk(z') - Gk(z°) and that

<vGk»(z°;a°)J z'-z°> £ Gk»(z';a°) - Gk» (z°;a°) , so

the preceding displayed inequalities imply that

<VG,(z°), z1 - z°>< 0 for each keP for which G, (z°) = 1 ,
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and

<VGk"(z°;a°) , z
! - z°> < 0 for each keR for which Gk" (z°;a°)= 1.

Using the easily established relation between vG, (z )

and vgk(t°) , and using the easily established relation

between v G, " (z ;a ) and V g-. "(t ;a ) , we see that

the preceding displayed inequalities are identical to

the conditions (I") and (II") when d is chosen so

that d. = e 3(z' . - z°.) , j = \,2, . . . ,m. This com-

pletes the proof of Theorem 4B.

5. Concluding Remarks.

It is worth mentioning that the results in this

paper can be extended by using "means" other than the

harmonic mean to invert the reversed constraints in

primal program A. The basic tool used in such exten-

sions is the classical r - s mean inequality

N

which is known to be valid when the a. are weights,
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the T. are non-negative numbers, and r _> s ; with

equality holding if, and only if, there is a number T

such that T. = T for i = 1,2,...,N. (For a proof

of this inequality see [15].) The r- s mean inequality

reduces to Cauchy's arithmetic-geometric mean inequality

when r = 1 and s = 0; and it reduces to the classical

arithmetic-harmonic mean inequality when r = 1 and s=-l.

The results in this paper can be extended without any diffi-

culty to all cases in which s < 0 (with r = 1), but the

details are left to the interested reader. As mentioned

previously, the case in which s = 0 has already been

treated by Avriel and Williams [3]. Other applications

of this spectrum of means to optimization have recently

been given by Avriel [1] and Passy [20].

Finally, it is worth noting that the choice of weights

a determines only the coefficients in the harmonized primal

program A"(a). The resulting invariance of the exponent

matrix ^a±-i^ means that the sensitivity analyses (i.e.

"perturbation" analyses) developed in [13, 22, 23] can

be used to choose sequences {a^}?° of weights such that

M i £ M o > M
A" (a ) A" (a ) A" (a )
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Each such method for choosing (a1'}?0 provides an

alternative algorithm to the algorithm studied here.
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