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ABSTRACT

An N-conpact space is one which can be enbedded as a cl osed.
subspace in a product of countable discrete spaces. Associ ated
with each space X 1is a unique N conpact spaée vX (called the
N-conpactification of X) which plays the sane role that px
does for conpact Hausdorff spaces: vX is the reflection of X in
the category of N-conpact spaces. In particular, if ind X = 0.
the map from X into vX is an enbedding. A conjecture of |ong
standing is that every N-conpact space X satisfi es dim px = 0.
Prabir Roy has described a conplete netric space A such that
ind A=0, dmA=dimpA= 1 The author showed in Report 70-40
that A is not N-conpact, thus elimnating A as a counterexanple
to the conjecture. But VA renained a prom sing candidate for the
honor. We now give an explicit construction of VA and prove

that dimVA =ind vA =0, so that dimp(vA) = 0Og




THE N- COVPACTI FI CATI ON OF PRABI R ROY'S SPACE A

by
Pet er Nyi kos

| nt r oducti on. Prabir Roy's space A is of great inportance

in dinmension theory, being the first exanple of a netrizable space
for which the small inductive dinension is zero and the Lebesgue
covering dinmension is positive. (These terns are defined below,)
Indeed it is the first exanple for which the two dinensions are
unequal , whatever they are.

A has shed light on the relationship of N-conpact spaces
(Spaces whi ch can be enbedded as cl osed subspaces of N for
sone cardinal M where N denotes the space of positive integers

with the discrete topology, are called N-conmpact; see [N].) to

ot her wel | -known categories of topol ogical spaces. If we let §
be the category of strongly zero-dinensional (see definition below)
real conpact spaces, h the category of N-conpact spaces, and &
the category of real conpact spaces of snmall inductive dinension zero,
t hen
§cn<é&

The inclusion on the right was inmedi ately apparent once the
concept of N-conpact spaces was formulated, and the one on the left
has been generally known since 1965 [Fb]. A naturally attracted

attention as the key to resolving one of these inequalities:




bei ng netrizable of cardinal 2 ° , A is realconpact [@&, ch.,15]
and it is in & but not in S Had A turned out to be N conpact,
the first contai nment woul d have been shown to be proper; but, as

t he aut hor has shown [Nj] A is not N-conpact and we have n c &

#
But the relevance of A to this problemdid not end with this
proof, for there remained the chance that the N-conpactification
(defined below) of A mght turn out not to be in S. However,
as we shall showin this report, it is in §8, and the question

remai ns whether S = n.

Basi c_Definitions. All spaces are assuned to be Hausdorff. A

space X of small inductive dinension zero (ind X = 0) is one having

a base of clopen sets. X is of (Lebesgue) covering dinension

zero (dimX = 0) if every finite open cover of X can be refined
to a partition of X into clopen sets. Equivalently, given a
pair of disjoint closed sets Fi*>Fo_}_ thiere oxists a clopen set C
such t hat Fl' cc and CH F2: 0. (To show equival ence, imtate

the proof of 16.17 in [@G)].) A space is strongly zero-dinensional

if it is conpletely regular and for every pair of disjoint zero-sets

Z,l,é, there exists a clopen set C such that Zl c ¢ and
CO0 z = 0. It is easy to show that a space X is of dimO iff

it is strongly zero-dinensional and normal (use Urysohn's lemma to
get disjoint closed sets contained in disjoint zero-sets). One
of the main results of this report is that dimVA = 0.

(Sone authors use dimX =0 to nean that X 1is strongly

zero-dinensional. See [@&J], chapter 16 and Notes, for a discussion




of the rival definitions of covering dinmension. [A], fD], and (E]

give a nunber of different definitions of dinmension and discuss their

mai n properties and relation to each other. In all cases, a defi-
nition of an n-dinensional space is given for all n) .
G ven a space X, there is associated with it an N conpact

space VvX, called the N-conpactification of X, having the sane

sort of universal property that pX has with respect to conpact

Hausdorff spaces: VvX is

=7 vX
N-conpact, and we have a ' I
ex {

map ey : X3>X such that, I
I

for any continuous function X ]
f from X into an “x“x f !
~ \

N- conmpact space Y, there E\“\\\\. &
DY

iS a unique continuous
f'Y . vX—=Y, naking the
di agram at right commute.

(vX is the reflection of X in the epireflective category
of N-conpact spaces. W can show the N conpact spaces to be
epireflective by noting that every product of N-conpact spaces and
every closed subspace of an N-conpact space is N-conpact.  See [HL]J

The image of X under e, is dense in vX and e, is an

embedding iff ind X=0. [H, 5 1, (a), (b, (i)].

The Structure of an N-conpactification. We indicate how to

construct the N-conpactification of any space X for which ind X = 0.

W | et Nu be the uniformty which has as a base the set of al




equi val ence relations partiti oni ng X into countably many clopen

sets. (Anal ogously, for any ordinal a we define NOL to be the

uni formty whose base is the set of all equival ence relations

partitioning X into <7, clopen sets.) The uniformty is
obviously conpatible with the topology on X and plays the sanme role
for vX that C and C* play for uX and px respectively

[G), ch.15] and that I\cl) plays for £X: the conpletion of X in

the uniformty N, is the N-conpactification of X  This follows

fromthe fact that any continuous function from X into any space
of inductive dinension zero is Nl-uniforrﬂy conti nuous (easy proof)

and the follow ng theorem

Theorem Let ind X=0. The followng are equivalent:

1. X is N-conpact, i.e. can be enbedded as a cl osed subspace
of a product of countable discrete spaces.

|*. X can be enbedded as a closed subspace of a product of
di screte spaces of nonneasurabl e cardinal. |

2. X is N,L- conpl et e.

2. X is N-conplete for some X >"' where H is either
nonmeasurable or % s the first measur&ble cardinal (if any exist).

3. Every clopen ultrafilter with the countable intersection

property is fixed on X

Proof . W can get 2. froml. and 2'. froml?!, by noting that

a discrete space of cardinality <N, is clearly NU_-corrpI ete and

usi ng general results concerning products and cl osed subspaces of
conpl ete uni form spaces. The proof that 1. and 3. are equival ent

isin [By,, Beispiel 6]. Since 1. inplies 1'. and 2. inplies 2'.




we are done as soon as we show that 2'. inplies 3.

Afilter Mf is N -Cauchy iff for every partition of X into <N
ri open sets, one (and, of course, only one) nenber of the partition
is in3 Nowlet Ube a clopen ultrafilter with the countable
intersection property; it is enough to show that U contains a nenber
of every partition P of X into <N. clopen sets. For each Dcp |et
2* = UfU. EV) ; then S is clopen. Define |j,(D)d if Seli, M(2*)=0
otherwise. UeU for sonme UeP, as otherwise (@ would induce a neasure

on the discrete space whose points are elenents of P, contradiction.

In constructing the NN conpactification of a space X of induc-
tive dinension zero, one adds ideal points to X in 1-1 correspondence
with the free clopen ultrafilters with the countable intersection
property and uses as a base for the topology the closures of the
clopen sets in X, with an ideal point in the closure of Aif, and
only if, Ais a nmenber of the clopen ultrafilter associated with
that point. There are nunmerous ways of justifying this procedure
and I will nention two. -

One can show that countable intersections of clopen sets
forma strong delta normal base H [see [AS for a definition],
show that clopen ultrafilters wwth the countable intersection property
(wite c.i.p.) are in 1-1 correspondence with S-ultrafilters with
the c.i.p., so that & real conpactness is equivalent to N conpactness.
The rest follows fromthe discussion in [AS .

O one can define a proximty relation on X thus: for any two

subsets A, B of Xwe say AS5B if every clopen set containing A




nmeets B. Then one can show that clopen ultrafilters with the
C.i.p. are in 1-1 correspondence with round N,l-cauchy filters and

foll ow the standard construction of a conpletion [cf. T, p.206].

The N-conpactification of A In [Ns] we constructed 7k

free clopen ultrafilters with the c.i.p. on A These were

associated with the basic clopen subsets of A given in [R* and

[I%)], regions of the form Rx and R Intuitively, what

i panj -
happens is that the clopen subsets of A which "take a big bite

out of" RX [resp. R,(p ﬁ).] forma free clopen ultrafilter with the

Mintersection property for every cardinal M< 2 ° | |abeled
Ux [resp. U(p n\)] * We will now showthat there are no other free
clopen ultrafilters on A with the c.i.p. In doing this we make use

of the equivalence of 3. and 2'. above: a clopen ultrafilter with

the c.i.p. nust contain a clopen set fromany partition of A

To understand what follows, we need to recall some of the
definitions and results of [R_?]. (Al notation is taken fromthere
unl ess otherwi se noted). In Section |I,we were given the space A
interns of its points and basic open sets called "regions",

divided into famlies T-J: and r,. For purposes of this present

paper we also include A itself in T. identifying it as R

where x 1is the finite sequence consisting of the single term 0,




(This notation is fully conpatible with that used in [R;]; and al
the lemmas that are proven renmain true when r, is taken to

i nclude this extra nenber).

In Section 2, we were given a sequence G 3 G 3G, 3. .. of covers

I ~ 2.~ 67
L Z
of A by nenbers of r, and r~. To sinplify the notation of this
o] i -

present paper, we also add the cover G =r, UF,.

For the tinme being, we need only know the definitions of
Section 1, the definitions of the covers, and the follow ng facts.
1. The regions forma base for a topology. This is the

content of Lemma 2.7; the proof of Lemma 2.7 requires nothing

beyond Lemma 2. 1.

2. Gven peP, , the regions R wth x<p (wuse x<p to
stand for: x(i) =p(i) for all 1 =1,..., |x|]) forma I|ocal base
at p. Gven peP;, the regions R,lp n? where n runs over infinitely

many positive integers forma local base at p. This is the content
of Lemma 2.8, whose proof requires nothing beyond Lemma 2.1

3. Gven ReT\ U T~, there exists an N such that R G

This follows inmmediately fromthe definitions.
4. The regions are clopen. This is the content of Lemma 5. 1.

| f the reader has not read all of [R] he may either assune this

w t hout proof or follow the proof in the Appendix to this present

paper .




5 If H.Lr> HZ Z). .. is aninfinite sequence of regions with
(55

Hneq] for all n, then ann F 0* This follows fromthe above '
n=
results and 4.1,whose proof can be followed right after 2.2.4.
In addition, we need a result whose proof is put into the
Appendi x because it requires an exhaustive (and exhausting]) case-by-
case analysis which woul d break the continuity of this report; it is

about as long as all the rest of this entire report]

Lemma. Let R be a region in Fu or 'T2, and let C be

a clopen subset of R

a. If R=Re~, and CU, then there exists a a-locally

finite cover of C consisting of clopen sets each contained in

proper subregions of R.

b. If R=R . eF, and ci u, «, then there exists a
(p,n) 2 " (p.n)

a-locally finite cover of C consisting of clopen sets' each contai ned
i n proper subregions of R .. .

(p,xi)

W also need the follow ng | enmg; its proof also

has been deferred to the Appendi x.

Lemm. Let ReCu« A"Y proper subregion R' of R (i.e. R

is a region which is properly contained in R is in QN+I




We now sketch a proof of a rather basic result in general topology.

00
lemma. Let y = _\%&. be a a-locally finite clopen cover
1=

of a space Y. Then if <can be refined to a partition.of Y into
cl open sets.

Reoof-. For each locally finite y; let V; be the set of all
poi nts which are nmenbers of sets in y, then V,; 1is clopen and
ya can be refined to a partition of V, into clopen sets in two

X
steps. For each xeV.. let V.3 = OV.1 : xeV, el:;n}; the W~
a a
forma locally finite clopen refinenment of Yo such t hat

if Vi¥n V"™ théen V.V *ccV) aaddbor V.Vc V.Y Fromthis

it follows that if we |et

w, = v\ wivyY s vY g

X
1 1 1 ]

i )
t hen ic.l:(V\:{X: xe\/l.} is a partition of Vi into cl open sets

refining V.l.

Now [V. }f 1 is a clopen cover of Y which can be refined

n-1
to the partition (V' 3}, = [V\ UV.1%,. Then (V.' nW¥X*. xeV."' ]
n n=l nNi=L i n=| I i i
is a partition of each V.’ into clopen sets and the union of all

these is a partition of Y refining 1.

This lemma will be used both to characterize VA and to
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show that dim vA = 0.

Property VII. The clopen ultrafilters on A wth the countable

i ntersection property are precisely the fixed clopen ultrafilters

and the free clopen ultrafilters of the form U and U

X (p,n)°
Pr oof . Let U be a free clopen ultrafilter and suppose U
bel ongs to none of these cl asses. If for each N there exists ReG

N
such that Relt, then by 3,5, and the first Lemma we can select a

descendi ng sequence of regions Rneli whose intersection is nonenpty.
Careful scrutiny of the proof of 4.1 in [R] shows that t he
intersection is a single point of A and the Rn forma | ocal

base at that point. Hence it converges to p and is therefore

fixed. Now suppose there exists G, such that U contains a

region Rr"Gy, but no regions in GN+-i¢- i f.

R=R and UM U then there nust exist a clopen set Cc R
X X X

such that CEU, CU e« Then ¢ may be partitioned into clopen sets

each of which is contained in a region in B thanks to the
three | etmas above. None of these clopen sets can be in U
Therefore U does not have the countable intersection property.

A simlar argunent works for R =R > .

So now VA can be identified as the space whose underlying-
set is AUXUF, where

T=([p,n : pePx* n;> 1 where [p,n] = [g,n iff m=n and qeR’\?p n)}
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and where the base of (clopen) sets is the set of all T where

C isclopenin A and C=CUx : CU} U{[pn : CU v}
X (pi nj

(To show E is clopen sinply consider the uni que extension
of f : A»fQ 1) to vA where f(Q =0 and f(AQ = 1)

To shorten the proof of the other main result we wite A6B
in place of "every clopen set containing A neets B". (The
notation is quite apt,, for & defines a proximty relation.) So
"dimvA = 0" is equivalent to "If A and B are closed and

AOB=0 then »$§B".

Property VIIl. dim (vA = 0.

Proofo Let A and B be two closed sets such that ASB,

Let R be a set of the form R.. or R .., satisfying
X | P> **y

(ADR 6(Bn R . Suppose —R:—R and suppose (A O 65(8 n E)

for all CeU (i”e. all C containing x). Then x isin AO0OB

X
because the C containing x forma local base at "x.  If this
is not true for all @&l , then (A0 (RCY))6(B n (R\c") ) for sone
CeU . Partition R\C into A-clopen sets [K}. 7 each contained
X X _ _ _ a@ ocre o
in a proper subregion of R . (K} is a clopen partition

X & oea

of R\C (take the discrete space with underlying set G add an

extra isolated point *, map ch to the point a and A\C to *,

use the uni que extension property) and if (AO0"K) 6(Bfl "K) for
T
a (o)
any a, then for each K there is a clopen set "D c¢~K such that
a ¢ a a
(Afll) ¢cT5, BfITD =0. Then U™ is a clopen set containing
a a a aea a
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AD (QXXCY and missing B (1 (ﬁg © , contradiction. So for sone a

we nust have (AHK)5(B (I K). Nowpick  RR with K ¢c R ¢cR
cC cC A af

whence (A n R)5(BOR ). Asinmlar argunent works for R of

the form RWF“FF' Beginning with 55 = A where it certainly holds,

pi ck a sequence of regions R g #R_lz;. .. such that (A0 R) 5(B O'ﬁn)
for all n. If the sequence termnates after a finite nunber of steps,

we get a point in VvVAA in the intersection of A and B, as shown.

O herwi se the R% close down on a single point p in A [R>4.1]
and since the ﬁn forma local base at p in VA peA HB. So

for two disjoint closed sets A B we nust have AS>B
The reader may enjoy rearrangi ng and rewordi ng the proof of

property MI to make it follow the lines of this proof. The two can

be made to bear an uncanny resenbl ance.

Concludi ng Remarks. Wth VA elininated as a possible counter-

exanple, we can ask with increased bol dness, "Is every N conpact
space strongly zero-dinensional?" If the answer is yes, it would
follow that the category of N-conpact spaces is precisely the

category of strongly zero-di nensional real conpact spaces [cf. HZ’

Beispiele 5,6]. This would be a very significant result, because
the category of N-conpact spaces is closed under the taking of
arbitrary products and cl osed subspaces, and it is not even known
whet her the product of two strongly zero-dinensional real conpact
spaces is strongly zero-dinensional. Indeed the only really

prom sing candidate for an N-conpact space that is not strongly

zero-di nensional is the Sorgenfrey pl ane. It is the product of two
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copies of the real linewth intervals of the form [a,b) as a
base for the topology (called the Sorgenfrey line). The Sorgenfrey
line has a base of clopen sets and is Lindel 6f. Hence [cf. G&J, p. 115,
pp. 245-7] it is both of (Lebesgue) covering di nension zero and
real conpact. Hence it is N-conpact, and so the Sorgenfrey plane is
also. But the Sorgenfrey plane is not normal and is thus of
positive covering dinmension. But it may be strongly zero-dinensional
we do not know.

For a further discussion of strongly zero-di nensional spaces

see [@, ch. 16] [E <ch.6, 82], [H, Beispiele 56] and [N,, 82].

The first two references al so give an anal ogue of strongly zero-

di mensi onal spaces in higher dinensions and go into sone detail

on results in this area; they use "dimX' to refer to the dinension
of a space under this system It turns out to be equal to dim pX
where this second dim refers to Lebesgue covering dinension. It

is also equal to the analytic dinension of C*(X) as defined by

Kat €tov [A],[G), ch. 16].

The following two problens generalize certain aspects of the
unanswer ed question above. First: given conpletely regular
spaces X, Y, is it true that

dim$ (XXY) <1 dimpx + di mpY
or, if one adopts the notation of [GJ], sinply: is it true that
dimXXy < dimX+ dimyY.

The result isknown to be true for netric spaces [h&,pp.20-28] and

for conpact Hausdorff spaces [, 16j] and as far as this author knows,

there is no known counterexanple in the general case. (Nasl p 1is

not distributive over products!) Second: given a real conpact space X

HURT LINMY
CARNEGIE-MELLON  UNIVEWITY
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and a closed subspace Y of X is it true that dim&£Y £ dimBX?

Here we nust say " real conpact” rather than "conpletely regular”

since there are counterexanples to the latter, for instance one

di scovered by Smrnov and included as an exercise in [E p.307].

The result is true for all normal spaces [&, 161] , real conpact or

ot herwi se, and even for sone non-normal, non-real conpact spaces like

t he Tychonoff plank, which is hereditarily strongly zero-dinensional.
It should be nentioned that the strict equality

dimXxY = dimX + dimY does not even hold for conpact Hausdorff

spaces. Pontryagi n constructed a counterexanpl e by pasting together

Mdbi us strips of ever-decreasing size in a kind of higher-dinensional

anal ogue of the snowflake curve. By nodifying the Mbius strips

slightly he got another space whose product with this other one

was of covering dinmension 3, while both surfaces were of covering

di mensi on 2. [Al nmentions this result along with an exanpl e of

. 2
a compact netric space X such that dimX < 2 (dimX).
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APPENDI X

In this Appendi x we prove the two Lenmas whose proof was
deferred, and supply a proof that the regions are clopen. W also
gi ve properties of NA which, while not needed, follow fromresults
which will be proven along the way and which it would be awkward to

i ntroduce in a separate paper.

To facilitate conparison with [RZ]’ we continue the practice

begun in '[Nj] of giving results nunbers whi ch show where they m ght

logically occur were they incorporated into [R,]. Thus the first

result we prove would best come right after 2.24 in [R<2] and has
been nunbered 2.2.5. After the proof that the regi ons are cl open
we begin a new set of results on A, they will all beginwith a 6
and they pick up where [NDJ left off.

At first, we will assune nothing beyond 2.2.4 in [R] and

everything up to and including that.

2.2.5. Lemma. Let R be a region in G’f;- Let R be a

proper subregion of R(i.e. a region such that R' ¢ R . Then

RT 6GN+| _

OD)

N+1 d=Nt1 X N+K
Proof. Since G , = ]{TG we need only show ReG

for sonme k N 1.
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Case |. R and R are both in r,. Then R =R for sone
X X

X with |x|] = N (2.2.3) and by 2.1.1 R! = R* for some x' with
x| £ |x"|. Since R' ~ R we must have |x'| ® N + 1, whence

R'GGB'Hk for some k = 1.

Case |I. ReTq* ReL,. Then R=R, RT = R‘p, n? and since

Re N R?p,n) # 0, R, r’?F\; , whence 1px] > N, R (D, N) | py| 0"
. X
Case IIl. R and R are both in T,. Then R= R. *
. z vp; N)
where |p}4 +n=N and R = R‘,q’m)«. If  |px| = |ax| then
. . O
by 2.1.4. m > n and we are done. Since R(p,n) cont ai ns R(q’m)
we nust have |pxl < iqx| (1.3.4-7). If |px] < |ax then
+

(2.1.5) Rip,n) 2 faja) 200 1.3.7 ]qx| S|P PNt Ly %

that R(q m EGNr

Case IV. ReT,, ReT-,. Let R=R, ., and R =R, then
\P, X) XX
by 2.1.3. RxHRy(p,n,i)j#ﬁ for sone . If |x| < |px|] + n,
R:”I contains sone Pfé-poi nts g with |qgx = px + n which cannot
be in Rlp n) (1.3.5-7) . Consequently [x| > [px] + n+ 1 and we
are done.

2.2.6. Corollary. Let R be a region in GN, R' a proper

subregion of R then R eG, -

Proof. W need only go back to the definitions, 2.2.3 and 2.2.4,
and use 2.2.5.
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Next we prove that every region of A is closed, adopting the

following notation-. if o and a' are finite or infinite sequences,

we wite a' > a to nean that o

extends c, i.e. a is
defined for all positive integers for which o is defined, and

a (i) =a(i) for all i for which a(i) is defined.

Lenrma. Each region of A is closed.

_Proof. Let ReV-, andlet peP, . GChoose x'! <p with
! X X X
| xt | . o
= | x|. If pAR then R HR,=0 by 21.1 and so p
is not in the closure of R . If peP~ and p~ R, then if

X we ave R ; H

| <L | RMl A iR 50 by 211 whileif |x1>|p]_,{|
and RXOR-ij,f) A0 then x(| pX] +1) = ipX(j) for a unique |
(and the sign is determ ned also) so that R ,OR/ \iD's-\U c R YipyL,H) I

> HR

R'{p,n) YipsL,4)3 = 0 because

Now let n =j + 1.
py(n +k - 1) ~ pY(j) for any k (1.1.3). Hence R(pjny N R~ 0

and p is not in the closure of R

=
Let R.( pg>n ?TZ and | et qu,i . Choose x' < q with
I x| =Rl +n+1. If qiR > then R,0R, >, =0 for
ic A~ (pon) X y(piti)]
all | by 2.1.1, and RX,, 0 R’(.p, n)> =0 by 1.3.3.. Hence F)z(
is a nbhd of g mssing R .. .1 f qgeP, and |ql, = |p.|
(Pj 1) 4 X X
t hen R,(p, n) 0 R, (q, n) A0 inplies the regions are identical by
2.1.4 and so (geR, .. Hence if Qg”R, >, R, x MmMsses R,

(pi -n) AT (psn) (aun) (pn)
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| f [q}d <| px! and R r R(q,l) £ ¢ then

{p,n}
p (lg | +1) =+ quk) for sonme (unique) k by 1.3.5 - 9, so

the intersection of the two regions is contained in R*{’tq N +) k*
Let m=Kk + 1, then reasoning as above, R’tp,ri) H R.(q’m) = 0 R/\q,m)
is a neighborhood of g which msses R TR

Finally, suppose | px| < | g« and Rip,m) " R(q1) # 0.

Si nce Ro(p,nf 0 R(q,l) =0 (1.3.5-7). It follows that the intersection

+
pohy I P

of the two regions is contained in R is apoint in

theintersection,lthen p' (lag! +1) and p*(lgl +2) areof

opposite sign; on the other hand, p" (jp | +1i) are of the sane sign
X

for i =2,...,n+ 1(1.3.9-11). Since Ipx| +2N | g +1 it

follows that fay > [pyl + n. 1f lgl > |g| +n+ 1 then

Rlx Cc RY(p,n,i)D for some | by 2.1.1 and so qeR(p’n). So

i f q"R/kp’ﬁ\} we nmust have [g/ | = [px] + n. If n =1,

p' dCfC|) :qX(|%’\ =+Py(3) fora (unique) j, so that

p'(qui +1) = +F~1 (pv) = + qu(k) for a unique k--in other words,
PY(J) Y Y

the intersection of R’(p n; and R(q,l) is contained in Ry(q,l,i)k

for a Kk which is determined by p,n, and q alone. If n> 1,

p’ (J'AQVI +1) =+p (n- 1) ==+4q,k) for aunique k. So in both

cases, we can let m=k + 1 and, reasoning as above, R ,  OR, . =0

(p.m) (q.m

Since the regions are open, this shows A has a base of clopen

sets.

— L p'e€pP~, read as is; if p<e.p”, imagine a subscript X for p'
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Now we cone to the last and greatest hurdle, the probl em of
covering a clopen set that does not "take up a big chunk" of a region R
with a a-locally finite collection of clopen subsets, each contained
in a proper subregion of R

In what follows we will assune every nunbered itemin this report
and in [Rj up to 2.2.6, as well as 2.7, 2.8, and 4.1 (which,
as pointed out earlier, can be proved right after 2.1), and al so

some definitions and results from ["3"

1. The fact that U and U,‘p A are free clopen ultrafilters,

and we have precisely one associated with each R eT, (including
the case where R = A and each R >er,oU has R for a

menber but no proper subregion of R is in U, and simlarly
X X

for \X(’p,n)s' This is all included in 5.15.1 and 5. 15. 2.

2. Let A be aclopen set and let x be fixed. [If, for
uncountably many x' with, x' > x, [x' | = |x | + 1,
we have AeU ,, then AeU + This follows imediately from 5.4.1

and the definition of U_ (strangely enough, we do not need to know
the definition of U or U, .., at any point in this appendi x,

once we accept the results listed herel) and in referring to this result

we will use the nunmber 5.4.1.




20

3. Let A be a clopen set and peP,, n fixed. [If, for un-
countably many reR” there exists qreR?tp’r\U with q;(n) =
such that AeU , then AeU v e« The nunber for this result

(g, n+l) (Prn)
is 5.4.2.

4. Let A be a clopen set such that AeU/lp n\)- Then
>
AeU / » . for all but finitely many j, and both + and -.

The nunber for this result is 5.7".
5. Let R be aregion and let A be a clopen set contained

in R | AeUX for sone x, then RXcR, and if AelU. for

vp,H’

sonme psn, R(p,n)“ c R This follows from 5.3,5 and 5.3.6 1in

[Ng] and the definitions of the U, and t he \X’\p,l¥)'

W wi Il nmake use of the follow ng sinple topological |enmma

w t hout comment: a collection of disjoint clopen sets in a space X
‘is locally finite if, and only if, the union has no boundary points
(equivalently, the union is clopen). This follows imediately from
the definition of "locally finite". An even nore elenentary fact

is that if \s is a a-locally finite cover of clopen set A by

sets clopen in X, then V = (VO AW\r} is likewse a-locally
finite, a cover of A and conposed of sets clopen in X So all

we need aimfor is a a-locally finite cover of A (if Ac R and A
is not inthe ultrafilter associated with R) by clopen subsets of A;
each a subset of a proper subregion of the region R wunder consideration.

To keep notation down to a mnimnum we will refer to the regions
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in G as "the regions of level n". Note that every region is

on sone level (nanely, if the regionis R_ the level is |[x]|, if

L L N .
it is Rlp,n¥ it is |pX| n) and no region can belong to nore

t han one | evel.

Basically, our plan of attack will be to use these levels to
obtain a cover of A as follows: for each point R in A we take
the "largest subregion R of R "(or: "the subregion R' of R
on the earliest level") containing p, such that A is in the clopen
ultrafilter associated with R' (there may be nore than one) . W
break up each level N into sublevels: the sublevel of El-regions
and the N sublevels of r,-regions R. . wth a fixed |pJ«

A vP>n) X
W try to show that the regions R, on each subl evel which we have

t hus associated wth each paeA forma locally finité col l ection by
show ng that their union has no boundary points, use 2.1.1 and 2.1.4
to show they are disjoint, and use the observation above. The tricky
part is show ng their union contains no boundary points, and a
maj or part of the effort in the follow ng pages is expended in this
direction. The basic idea is to try to obtain a contradiction by
showi ng that a boundary point will have a region R' associated with
it sothat Aisin the clopen ultrafilter associated with R --here is
where those results 1,2,3,4 above will cone in handy--and so that
R' contains the regions F% whose unions we are formng as

proper subregions, thereby contradicting the way the R were defined.,

Then we put all these locally finite collections together (there are
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countably many of them).

As it turns out, we have to be a bit nore subtle than this to
get a a-locally finite clopen cover. What we have just outlined
is a good "first approximtion", though. W will nodify it as
we go al ong.

The reader may find it helpful to prepare a rough sketch for
hi nsel f of the way the various regions of A intersect, using as
a guide the description of A given in [R.l . (Note: The
reference there to Hil bert space is sonmewhat m sl eading; the reader
can prepare a crude but quite serviceable series of illustrations on
a two-di nensional manifold, such as the surface of a sheet of paper

or a bl ackboar d.

6.1.1 Lema. Let [RX)uea be a famly of disjoint regions
in T1>, wth |é | =N for all n. Then, U § is not closed <=+>
aea " a
there exists PAP?' PARx  forana ax a psy th fe jpieger k such
a .

that, for infinitely many a. there is a jOL for which

qu - R'Y (P:k:i) j(I‘

Remarks prior to proof. If such a p exists, the k described
must satisfy IRl +k +17"N i.e. k"N- [P ~ 1o (2.1.1)
Furthernmore, let k' >k, then R, , ,>. 3R .

VEPANY]  Y(pk' 3 (k' k)

Proof, “~rr : If there is such a p and k, then | =] .&a =
NN O( p

so that there are infinitely many distinct ja' Then for each k'~ k

B>
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there exists a such that jm>(k'-k), so that ja-(k'-k) IS

a positive integer. Therefore, for each R __, ,. there exists |
\p,yK’) o

so that R, 3 R and hence R OR,  , ~0
a Xa (p! k»’j

AYNID

Y(p, k', +) Dt (k- k)
SO p is an accumulation point of IJ Rx
a

=N If 1J 52{ is not closed then any point on the boundary
a

isin Py, for if peP,, pEl) R , then R where x <p, |Xx] =N,

a
is disjoint fromall the R and hence p is outside the closure
X
a
of URy.
a
So let peP, be on the boundary of U R, we wi || show that

a
it is of this form Suppose on the contrary that there exists M
such that no R contains R,, . ,x. for j >M and any K.

X Virj V -41"i
(x

Then Rxan Rypyk,+X3- =0 for all a and all j > M

when k *> N- |p.|, whichneans that, if p is inthe closure

of U Rx > it nust be in the closure of the union of finitely many
a

of them which inplies that it is already in one of them contradiction.
Note that there are essentially two distinct cases: one where

‘IOXI = N - 1, in w7ich case I%{a contains RY('P, L _”j.a properly,

or |p)i < N- 1, in which case we can take k = N - |p>[( - 1 and

then R, = Rv-(p,'k, ¥ - for infinitpty magy distinct a. Note that
a ' —a
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|px| A N is not allowed because then §G'()R’(DJK’ N0 for
any k, a would inply R r>R by 2.1.1
Xa PX
6.1.2. Lenmma. Let {R } be a set of disjoint regions
(pa’ n) aea
in T,> with |p* =M for all a and wth n fixed. Then

UR is not closed <€=> there exists geP, such that ¢
aea (p?% n) z
is an accunul ati on point of the union of the R and Ig | £ M+ n,
(P n) X
lgd *M.
Proof. ~ . Riqﬂn) Is dense in R(y2n) for any Rpjn)er,,
because it contains all the P,-points of R, ., and every nbbd of
1 \p,1)
0 +

every point in Rtp,n. contains R -points. Putting the Rﬁbu n)

t oget her gives us a collection of disjoint regions R

all on |evel

y(p n,H)j

M+ n + 1 By the previous |emma any extra accumul ation

poi nt of these regions is a q_£|2;, and if |Q¥| A.M+ n+ 1 then

already R

then either

for sonme a
L q
Now | et

of regions of

gty c RmPP ?n.r_%r' for some (unique) a, | . If[ qA| = M

R H R = f [ I =
(q, M) (pa,nf 0 or a a oresel?

by

q~n)’ p & m
2.1.4.

cannot be in any of the R under these conditions,

us

t

) n'
‘P&, !

| ook at what happens when we take accumul ation points

he second ki nd.
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Let (R _ } be such that [Ip® =N for all a, m fixed.
(Parr)aea X
Any point on the boundary of ij R is on the boundary of
aea (p% m
U R~ , the union of a collection of (disjoint) regions Rx
aea (p% m
with |x] =N+ m+ 1. Hence it nust be a point qeP,, with

lgyl] < N+ m Wthout loss of generality we may assune q is a
A

n
o))
boundary point of UR where x = y(P J™7)] f°e" some infinite
X T n
n
n=l n n
collection of p . W have the following profile for x
(O,o.o,pn(N)s+g',o-o,-)
Since |q <LN+m R PR_..,. =R n R§”,_f for all k,n.
n 14
Case |. |qd <N Let kA N+ 2 and let x = v(q,k, +)j.

Then in the (N + 1)th place we have a negative nunber, so

Rk n Rk =0 for all n. If x =vy(q,k,-)j, then in the (N+ 2)th
n

place we have a positive nunber, and again R P Rx,=0 for all n.
So q is not in the closure by 6.1.1.

Case Il. |1 =N Then, if g is an accunulation point, we

have in particular R, ., OR 7~ 0 for sone n and so by 2.1.4,
: n

R = R .
(g, m (", m)
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Case Ill. ]ax > N Then, if | gx] < N+m the (g + 1) th
termof any y(q,'k,%)j is of opposite sign fromthe (|8 * 2)th

term while the corresponding terns of Xp have the sanme sign. So

gl =N+m and qv>|5’V for all X, so that p% is the sane
X A A A

for infinitely many n.

Ilia. m> 1. Then we can choose the p]rl so that each R
n

is contained in R (otherwise, since Ix | > |qy, we have
dx n X

R OR =0) and contains a ball of the form R * . (note

the m nus sign) properly (see the coment following 6.1.1.). So

we have X, = (0,...,qX(N+n),-qY(j)) for some j; the j's wll
of course be different for different n because the x are all
n
different and can only vary in the (Ntnmth term In particular,
R =R for all n.
X Y(p ,ml,+)j,
The pn are all distinct: -q (j) = - pn(ml) and the terns
: Y S
are different for different n. But R is the sane for all n.
(p,ml)
I1Ib. m=1. Then q = (0,. .. ,p"N , pE(L )). There are two
A A X n
possibilities: either p? is the sane for all pn (in which case
n n
n Y
the | are all different) or p is not the sanme for all p ,
n Y
when | could be the sane integer for different n(in fact if the p"

are all different it could even be the sane integer for all n).
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There is not much else to be said here except that we can choose pn
so that R contains R n properly while R n cont ai ns
X Y(P 1, +)jn Py
R and also R 0 for all n--and that the p's thensel ves

X (e 1)

are all distinct.
W are now in a position to establish our result for regions of

t he second ki nd.

6.2. Lenmnm. Let A be a clopen subset of R,(p’ i) such t hat
Airli/(p’n)\. Then there exists a a-locally finite cover of A by
proper subregions of R, .. ».

VP)"J

Pr oof . For each quSZP>n)“ HA there exists nq such t hat
R’(q*ng)> c A and therefore AeU'(q,nq))(' For each . Ilet nq be
the | east such integer. (In what follows, always assume qeR? » 0 A)

Consider the collection (R, ,n> h = n+1]. By 5.4.2. .this

(g, n+l) q

is a collection of at most countably many regions.

Next consider the collection (R, ", -,f" = n+2}. Any boundary

poi nt of the union comes under the headi ng Ilia and so must be
t he boundary point of the union of subregions of the same R'lq ﬁi '

¥ sy
Each such R’lq,n-i-l,/\ can contain only countably many such subregions
(ot herwise nq£_ n+1l, contradicting the assunption on the subregions) .
Furthermore if we take a collection of regions R, ,ox With

(g, n+2)

n =n+ 2, such that the regions R are all disjoint, then

q V’q)) n+'i',
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their union nmust be clopen. Hence by the axi omof choice we can split

(R{,q nelj :QI = n+2} into countably many locally finite famlies.
L

Using essentially the same argument we obtain for each N;>n + 1

a splitting up of [R, x:n =N into countably many |ocally
ve''g,d g

CD .
finite fanmilies; now |et V={R(g"))n:IUfRV(p,n,+)ij: moV s

a a-locally finite clopen cover of A
W note in passing the fact that any two distinct regions

R’(p,d} and R'(CLTT) in ry of level M are disjoint. This follows

i mediately from 2.1.4 if |py] = |9y (and, of course,

n =.M- | px| = M- |qx| =m). Oherw se assune W thout |oss of

generality that |pX| < lgxl* then Case Il above shows that if they were
not disjoint we'd have . <2 *™M™> pg * " evenfor 4 = 1x

contradiction. O course by 2.1.1, any two distinct regions in F,

of level M are disjoint.

Next we | ook at accumul ati on points of ry regions in greater

detail. Let [R } . with Ix ] =N for all a be such that

X I cS ac
(X

p is a boundary point of the union, where |Ipy] < N

Case 1|I. < N- 1.
Ipxl
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Then, for infinitely many a, (Label them a,l,...,a.n,...)

there exists J, such that R, - R (_ N-|-|pyl,s)sn C«Priity

hol ds because the regions are on the sane |level). Wthout |oss of

general ity assume that the sign at the end of y(P>"- 1 - |py4 >) iy
is +. Nowfor each n,x starts off with (0,. ., ,pu( | pv) .
an XX
PA(N- 2- |p| +4 ), -F~ (P)>...) and continues with
an( | p«l +1)

negative reals as long as it lasts. The variance between the x
a

n
takes place at the two ternms following p, (IpM), and the second
of these depends upon the first and upon p,. It is clear that
any qel‘-\*zp N-1-{po]) is a boundary point of the R . What el se?
3 X Xan
i +
la.  lagl < Ipgl. If Rig,m O Rxa #0 then we nust have
n
the term |p, + 1 positive, sothat P{N- 2 - |p)l +j ) is
- n
equal either to + F;;l (g;) or else + q.(i) for some i,
ap ([ ayl+1)
and the signs remain positive. But then, for m;> N R(q,m}/H §a = 0.
n

So g is not an accunul ation point.

Ib.  |ax] = |pxl. i f R(q_’_‘m) N Ry m) £ 0, where
m=N- 1- |pX], then the two are equal and qeR‘ip’m).

lc. |Pv] < Igy] < N (The second inequality follows fromour
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not wanting q to be already in one of the R .) Since all the terns
X
a

of these x after |p | + 1 are negative, and since there nust occur

a switching of signs between |q.l + 1 and |qg-] + 2, the only case
A A
to consider is | g =N- 1. If R ,» 0OR- "0, then
A ng, i; X
u

ax(p | + 1) = RAm + j ) and this can be true for at most one n,

so that (¢ Is not an accumul ation point of the R

an

Case 11. IEAI =N- 1. W then have infinitely many % such

that (without |oss of generality) there exists jn such that
Xa = (0,. .., px(Ipx), PLIn))

What ot her boundary points are there?

Ila. | gqx] < N- 1. Thenthe Nh termof "i(g.,mz)j 1is either
fixed for all m and all | or else (in the case |q | = N- 2)
A
depends upon the previous term which is the sane for all the x .
a
n
Hence R OR., A0 for at nost one n and so R .n 1S not
*a vet* 1\ (c[j -w
n
an accunul ati on point.
lib. |gJ = N- 1. if g =py, and g has infinitely many

A A A Y
n

of the | as ternms, then g 1is indeed an accumnul ati on point; other-

wise it is not.

Let us try to apply these results to the task of finding an anal ogue
of Lemma 6.2 for rg-regions. Take a clopen set A and take the set

of regions Rx with t he property that Ael”., Afuy, [resp. AKT*J;p’hJ]
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for any R, [resp. R, .>] containing R properly.
X (p, U) X
Suppose we take the famly of all regions R eT, of level N

whi ch are chosen in this way. Any boundary point of the union of

this collection nust be a pePp wth |PV‘L < N, W can now show
that Pl is "t less than N- 1 by using Ib and the following

| ema.

6.3. Lemma. Let p€P2 and let A be a clopen set such that

AeU /

Yip,n,,‘:))(j. for infinitely mny j (for sonme fixed n). Then AeU/lp’l\”-

Proof: Suppose AdTU,(PNnihen Ae‘\x(p r'1)> and so from5.7" there exists a |

< for an A A o . . .
such that A eUY{P,”?\_rk o This inplies that AeU ’YtPsn)s)iJk

only for k < j.

So if that boundary point p had |[p | < N- 1, we would have
X

AeU((pn_]) for n=Nmn IPX. n 1} and R(pn), 3RX )f(Or any RX RS(n

level N such that R ,. . P R 7~ |6, which wuld contradict the way that

the R. were chosen.

The case |piJ =N- 1 isnoredfficult. W need a strengthening
of 5.4.1.

6.4. Lemma. Let A be a clopen set and let xeX If for
infinitely mny x* with |[x']|] =]x +1, x<x! x'(|]x +1) >0

[resp. X" (|]¥ + 1) <0 AeU,, then AeU.

Proof. W give the proof for x' (| +1) > O.
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By hypothesis there is a sequence of x* of the form (O,...,

x(|x|),rn) wher e rr$R+} for which AeU «*

W split the remainder of R" wup into 2% disjoint sets of
di stinct positive real nunbers each. Take any one of these sets H
and now let S be the set of all sequences which contain the nunbers

M in the 2n th place and the numbers of the set chosen, exactly once

and no others (so that theywill all be pernmutati ons of each other). It

is a sinple exercise in set theory to showthat S has cardinality 270

For each aeS pick qOéP0 so that g = x, g = a, and now for

al | qc, y(q°,|,+)ﬂ (%) = rj for all j. And, for all but countably

many aeS, y(9°,1,+)o. (\x\ + 1) is suchthat AeU/ o, >,., because

of 5.4.1 and the fact that AeUx,.

This is true for any fixed j, and so, for all but countably

many aes,
AeUi(g?, 1,+4)2] for all j.
Then, for these sane a, (let this set be called S) AeU ; for
' (a%1)
c c
either A or A nust be in, and if A were in U for any a we
(g% D
woul d get a contradiction from5.7', 5.15.1 and 5.15.2: A° woul d have
to be in U . -~ for all but finitely many j.
Y(q, 1, +)2]
| ndeed by the same argunent AeU for all but
y(a® I, +)2j +l

finitely many j given any oeSk. Order the reals in « in a sequence
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fsn}. Si nce Si i's uncountabl e there exists m such that, for un-

countably many ceS,, AeU where | n is the termof a
! Y(g3 1) 2jigy
which is equal to s . Since the U are all in R ,
y(q '1’+)2jm m
wher e X .= (0,. .. ,x(] x]) - ) and are all disjoint because of the

way F is defined, it follows fromb5.4.1 that AeU
°*m \y

W can now repeat the argunment for all the other sets into which RF

was split, thus obtaining ZNO distinct x' with x! > x

x1 (| +1) >0, |x | = |x] + 1, such that AeUX,- Anot her application
of 5.4.1 gives us the fact that AeUx-

Now consi der the collection of all regions in ry of level N

with the property that each is maximal with respect to AeUx. Any

boundary point p of this collection nust be of the formindicated

by 6.1.1., and could only have |pX| = N- 1 by the reasoning

following 6. 3. But now any such p can only be the accumul ation

poi nts of those regions contained in R . Ip L =N- 1 neans that the
Py X
regions involved satisfy the conditions of 6.4. Because they are cl osed,

there must be infinitely many of them whence AeU , contradicting

PX

the way these regions were chosen. So the collection is locally finite.
Next we show that we can indeed speak of "a |argest region con-

taining p" satisfying the conditions given in the discussion preceding

6.1. 1.

6.5. Lemma. Let A be a clopen set. The collections
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(R, :AeU, but AW, fresp. A<ﬂn¥”ﬂy] for any R,, fresp. R(p,n)]

cont ai ni ng F& properly)
and

{R :Acl but Aﬂk& fresp. A"

2 0 for any
ot

(p,n) Ulq,m}]

Rdresp. R(qm ] containing Rp"n) properly.}

together forma cover of A

Proof . Let peA, then by 2.8 there is a region R containing p
and contained in A If peP,, say peR c A then Aeli . Simlarly

for pePp. If R is not in either collection, there is a region R.l

such that A is in the clopen ultrafilter associated with R.l and

FR%‘FE. Repeat the argument, obtaining a sequence 1R, cth c ... |if

necessary; but if R is on level N, then R,l is on an earlier |evel,
etc. (2.2.5.) The sequence nust stop somewhere and the last termis in
one of the above coll ections.

Not e that these regions are not necessarily disjoint, so that a
point may be in nore than one "largest” region. As it turns out, this
does not prevent us fromreaching our goal, it nerely makes our work
much nore conpli cat ed.

W will apply this lemma to A° R for a fixed region R by

noting that if Aeli , then R ¢ R and if AeU,. ., then R c R
X X \ P> (p, n)

In spite of all these prelimnaries the case of a region R eT-,

remai ns much nore difficult than that of a region in T} , because
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o

the peP, with |py] mnimal do not all belong to one R, .. as

they do for a V, region, and because there is no anal ogue here of

the R 5. which provided such a conveni ent countabl e cover of
Y(p, n, £3 *
the rest of the points in R, . Even after we are done with the
(p, n).
pePg of |pyi " still have to go down within each R, with x' > x

and take care of the points in there.

X
Even the cover we have obtained for a clopen set Ac R by 6.5
is not as well-behaved. True, the R, of agiven level N forma

locally finite collection as explained above, and we can take care

of the R’tp n’> with n> 1 by a technique like that enployed in 6.2,
2

but we have not yet accounted for possible boundary points of regions

R * (case lib preceding 6.2).

(S=FR Y
So now, suppose we have a clopen set Ac Rx AN UX. Take those pa
such t hat p%= X, AeU . If g 1is a boundary point of UR
i a (p.1
then g% c R¥ |gXl = jx] +1, and Hx contains infinitely many balls
of the form R © : [f AeU for infinitely many of
Y(P ,1,%) jn Y(PYi, 1) .
these balls in R, , then AeU (6.4) and there can be only finitely
9x Ix
many such distinct R (6.4). But there is apparently no restriction
X
on the nunber of Rq for which AeU 4 for only finitely many a.
X

v(p ,1,113&

No matter: we can get around this by noting that A<tu “ for
. '\’(p 3lsi)j

only finitely many j, given a fixed a (5.7'), and producing a refinement




35

of the cover presented in 6.5 (W keep the assunption that Ac R

X

A¢ux) .

Take all the R In that cover and replace each one by

(P% 1)
R \ UR where the union is taken over exactly those
(p* 1) Y(p* 1, +)J
subregions for which AMU and those which are subregions
(P 1,4)]

of R where AeU and q 1is a boundary point of UR , .

% <X a (/&A1)
W have just seen that there are only finitely many Y(p®l.»t)] i"
each category for a fixed a. Call the resulting set R

Pa

‘Now we go down within each R_, wth |x |=|x] + 1, x! > x,

and Afu , . Take AD (R,\UR,) (where the union involved is effectively

a p
over a finite nunber of regions, so that the resulting set is still

clopen and of course is not in U)) and repeat the process for this set

relative to. R_,: construct a cover like that given in 6.5 and then
truncate the R . regions in the cover for which p.. = x*. as above.
(p, H X
Then go by induction to the r. subregions of each R, on the next
L X

. level, the level following that, and so on aslong as necessary. At

each stage, the R > regions with n>1 and the R .-regions wth
| PJ*v X

AeU’i remain as in the original cover.
It is a routine but inportant exercise to verify that the regions
(or truncations of regions) in the refinenent thus constructed are

i nconparable, i.e. if R is a nmenber of the refinenent and R S




36

anot her nenber so that R c R, then R=R. This was trivially true
for the original cover and remains true for the refinenent.

VWhat results is indeed a cover: let PeA fl Pi’ then we obtain

a nmenber of the original cover containing p as in 6.5  Should it

be a region of the form th.l,} (the only nontrivial case) then if
]
Aeli_, where [x'| =|x] + 1, x' <p, we are done. |If A<fu_,
we then obtain a cover of Af) (R,\UR ) as in 6.5 and if piUR
X (014 (X
p p

then one of the nenbers of this cover contains p...eventually the

process must end either with a region R'¥™ with n> 1, or with

an R,., orwith an Ry, > such that AdJ , (where x' is defined
as above). It cannot go on indefinitely because there exists an R
X
P
with peR, c A so that A contains every subregion of R. and is
P P

a menber of the free clopen ultrafilter associated with each such sub-
region; then, since |y« increases by at least 1 at each step
of the process just outlined, we eventually nust get to a point

where IqJl. > [x | and then R ,, CR if peR,
- - YAs Ty "'p T T

If peA (1 Pp, the only nontrivial case is where every region
of the original cover containing p is of the form R tCI'ﬁ for
>

sonre |Q.] < |pv], then we use an argunent |ike that above, and
-A A

since R'‘P:%: ¢ A for some n, the process must stop at or sonewhere

before |Pyl T ™
At last we are ready to prove the nmain result.
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6.6. Lenma. Let A be a clopen subset of R. If A<Eu , then
there exists a a-locally finite cover of A by clopen sets each

of which is contained in a proper subregion of R .

Pr oof . Define a clopen cover for A as in 6.5 and take the

refi nenent descri bed above. W wish to show that this refinenment

is a-locally finite. Let |x] =M

For each fixed N> M take the set of all fl-regions of level N
whi ch are nenbers of the refinenment. This is a collection of disjoint
regions (2.1.1). Suppose its unionis not closed; let p be a

boundary point, so that p is as described in 6.1.1. Then if | pJ < N 2,

the reasoning followwng 6.3 applies to give a contradiction, \/hile
if |Pyl =N- 1, the reasoning following 6.4 gives a contradiction.

O course we nust have |[py] <L N- 1. Finally in the case where

|p)(| = N- 2 (so that the E,-region involved in 6.3 is(rgi’j_,)v)

the truncations only elimnate finitely mny R NP3 1,4 ] and there
are still infinitely mny R, with R, cR (4AJ R Iy B, 0%,
contradiction. So for each N we have a locally finite collection.
Next we look at the truncated regions R, -AIJR [/ e \ ee
n (p,D Y(P,1>x) D
The union is finite and so the resulting set is still clopen for all p.

For each fixed N~ M take the famly of all such truncated regions

in the refined cover with |pJ = N Any boundary points of these
-A

truncated regions nust cone under Case IIl of the discussion

followng 6.1.2., specifically 11IlDb. But the truncations have
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elimnated all these accunulation points and were in fact designed wth
this end in mnd. So we have a locally finite collection for each N

Finally, for each pair (N ,N) wth N. ;> |x]|, > 1, we take
is L -

the famly of all R * in the refined cover so that |p,J = N,
(p, n) |J/\)<I 1|

n = N,- Each h [ [ [ [ : : i

b ach such region is contained in R(p,n—l} along with at
most countably many other regions R ., > of the refined cover (5.4.2).

| P>">
And since we are in Case Ilia the only possible boundary points are
poi nt's quo' wi t h Fq_] = N + No, QeR, ,» and on the boundary
of the union of those countably many subregions of R ,« . So
(p1 n- L)

we can, as in the proof of 6.2, apply the axiomof choice to get a
countable collection of locally finite famlies for each pair (NN .

And so, putting everything together, we have a countable collection
of locally finite famlies, each of them conposed of disjoint clopen

subsets of regions each properly contained in R,

The Topology on the N-conpactification. The N-conpactification VA

of Roy's space is obtained by adjoining ideal points in 1-1 correspon-
dence with the free clopen ultrafiltersw ththe countable intersection
property, so a convenient way of |abeling themwould be x (in correspon-

dence with U) and [p,n] (in correspondence with U, ») where it is
X (p,
_ .. . _ [e) . .
understood that [p,n] = [qgiri] iff m=n and qu{tp,gj (i.e. iff Rkp,ﬁ)
= qu m) " S€e 2.1.4). The topology has as a base the clopen sets A

where A is a A-clopen set and

A=AU {x:Aen,} ij f[p,n] :AeII,,rP>D)}.
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Since the ultrafilters U and \x, x have the Mintersection
X (A n)
property for all M< 27 t"J> it follows that the correspondi ng

points in VA are not Gb's; I ndeed, every intersection of M
nei ghbor hoods of either kind of point has nontrivial intersection with
Nevertheless, it is possible to get every point of VA as a limt of

a sequence of distinct points.

I f xeX, take a sequence of distinct points {xn} with X, > X,

= |x| +1. Any basic clopen set containing x is of the form A

wher e AeUX- Then AeU for all but finitely many n (6.4) and
“n

SO xneﬂ for all but finite mny n. And if the point is of the

form [p,n] et Xy = Y(P*">*) J- Let AT %3 any clopen set containing

['(p, n], so that Ael, N Then AeU for all but finitely many j.

-

Furthernore, we can get any point of A as a limt of a sequence

of points in VAA | f peR:r take the (unique) seguence fxn} such
that jx | =n, x <p. Then 41e§n and Rxn is a local base
at p (2.8.1). If peP, '2k® the sequence {[p,n]}; it converges

to p by a simlar reasoning.
Neverthel ess, VA\ A is not a sequential space, nor even a c-space.

(A space is>sequential [resp. a _c-space] if every sequentially closed

[resp. c-closed] set is closed, where a set A is sequentially closed
if every limt of a sequence of points in Ais itself in A c-closed

if every accumnul ation point of a countable subset of A is itself
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in A (See [F ], [F]. [B pp. 146-152].) The nost obvious denon-

stration of this is to take a point xeX and take A to be the set

of all [p>] such that p.. = x. x 1is an accunulation point of A
A

(see the proof of 6.4: any clopen set belonging to \x, ,v for

all p with p..=x nust belong to U)). But no sequence of points

in A has an accunul ation point: given a sequence [R n }owe
{(p .1

may take all the R with x' >x, |x'| = |x] +1 such that

R CRX for infinitely many pairs n,j. There are only

n s

vip ,1,4)3

countably many of these and so order themin a sequence [R, }.
X

m

Truncate each R _ by deleting those R whi ch occur

hal

(p ») Y(P At )

in R, ,...,R., . The resulting set (call it R ) is still
X 1 X n pn
clopen in A for each pn, and each R, contains only finitely
X
n

many R still in R

n n Namely those for which n <m
vip 1,43 P

Y(pn)l)i)'d >x'" . Thus R will contain at nost one, R at nost

- -

o)
two, etc. We have elimnated all possible boundary points of 1[J R1n =B
n=l p

which is thus clopen in A  Bliy because B is a union of countably

many cl open sets each contained in sone R 4 and

R fu
(e, 1) (p",1)

% for

any n. So x is not an accunulation point of ([p™1]}. A
point peAl A is not a boundary point of A for we can find a

sufficiently small region R containing p so that VAI R is a clopen




41

set containing A Any x'eX is not an accunulation point of A

for if x* >x, R\R, s a clopen set containing A and nmissing x';
X X
if x>x'", and x "~ x', the same is true of R ; we have just
X
taken care of the case x = x', while in any other case R, 0 R, =0._
n X p
Simlar arguments work for [p" k] wth k>1 and [qg,k] wth
n
qg”™p for some n and all k. So, actually, A has the single

accunul ati on point x and that cannot be gotten as an accunul ation
poi nt of countably many points of A
A simlar argunent shows that T taken by itself is not a
c-space. Take for each fP>k] the set A of points [q,k+l] such
t hat qeRﬁ ,"%. By 5.4.2, [p*k] is an accunulation point of A
\ P>K.)
and there are no others. And [p,k] is not in the closure of a
count abl e subset of A because we can get a clopen set containing any
countabl e subset of A Dby truncating the associated regions R
n (qn’kiLl_
as we did above for the p__and taking the union of what is left. This

shows that we cannot get an analogue of 6.4 for r -regions. 5.4.2 is
2

the best result we can get.

X taken by itself is not a c-space, either. This we can show in
(oY

the follow ng manner: split the positive reals into 2 o disjoint

countably infinite sets (the group /Q ~conmes to mnd) , arranging
+

each into a sequence. Take one of these sequences (think of Q),a

and for each remamining sequence ao let p5® be the sequence whose

(2n) th termis a(n) and whose (2n + 1) th termis a (n) .
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Now pi ck any xeX, take the set of all R, c¢c R on the leve
X X

just after that of R, and within each R, take R ,, such that
X X X

X" = (O x(IX) xe (X)) B (0w [T (pp)

where a is the unique index such that a_(n) = x(|x'|) for some n;

there are, of course, countably many R; which contain no such R, ,

t hese being the ones such that a(n) = x" (|x |) for sone n. These
we ignore for the noment. So now each ball on the |x|] + 1 level in

the upper row of R_ (see the descriptionin fR]) contains at npst one

ball of the form R. , . Any clopen set A such that Aeli ,, for
: X X
all  x"' must also be in U for all a by 6.3. Then for
(p°3)
each a there exists n such that Adli » for all i, >n
N Y(pa,l,i)'j 2

(5.7"). Pick 2m such that 2m> n_ for infinitely many a, then

AeU . where x* = (0, .. .,x(|x|).,a(n) for all n>m (6.4). -There-
X a

fore AeU.,, again by 6.4, and so x is in the closure of the x'.

It is easy to verify that no other point of X is an accunulation
point of A  Any countable subset of A is contained in countably

many pr,lf and by a truncation nethod |ike that used above we can

find a clopen subset of each R< .., that containé each x'eR .. fl A
(P?-w (P.j -U

and such that their union is clopen. It follows that x is not in
the closure of any countable subset of A
Yet X does contain subspaces which are c-spaces. For instance:

take any x, and take all x' > x such that x'(i) > 0 for all i > 'x1°
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In other words, w thin any @c ball we take the top row of rl-balls

init, the top row of each of these, and so on. \What results (call
it P(x)) 1is actually a sequential space, an uncountable anal ogue

of the space S* [AF] . Each point x' of P(x) is the extra point

of the one-point conpactification of the set fx'':x""eP(x), x'' > x',

[x""| =|x"| + I]--the points "below x on the followi ng |evel"

What makes P(x) a sequential space is the lack of interference from T,

regions. Suppose we have any nunber of R_,, "two |levels down fromx,
belowit"! such that each R ., one level down from x contains at
nost finitely mny R_,,; then UR ,, is a clopen set pure and

sinmple. Wth this in mnd the proof that P(x) is sequential is

quite easy. Let A be a sequentially closed subset of P(x) not
containing x, then we show x is not an accunul ation point of A
by 6.4 there are at nost finitely many x* on the next |evel down

from x in A UR, =A_ for all such x' is a clopen set. .In

each other x' on this level there are at nost finitely many x%

in A for the next level below x'; and UR;,, = A for all x'

associated with these x' is a clopen set. Proceeding thus we cover A
by infinitely many disjoint clopen sets. Their intersections with A
forman infinite collection of disjoint clopen sets, and it is easy to
show that no point of A is a boundary point of this collection, so

the union of all these sets is clopenin A and so is the closure in VA

1Strictly speaki ng, we should say "above it" since if Xx is on level Gy,
the x'" are in GN#I the x'' are in GN+o‘_(the subscripts are increasing)
but if one has before hima visual inmage of A as described in [R" , it is

much nore natural to think of x as being above all the x' extending it.
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which is U An. V¢ hc.ve covered !J by a discrete collection

A
n
R

of Rs each properly contained in and so x is not an accunulation

point of A To conplete the proof that A is closed, take any point 2
inthe closure of A then X' is in the closure of A 0 P(x) which
is likew se sequentially closed. If ££A we adapt the above argunent
to obtain a contradiction.
There is an interesting parallel of the P(x) in T:. for each

[p,n] take the set P([p,n]) = {[aqnl, ge® >, m~An]. This is not

a sequential space (see above) but its topology is an uncountable
parallel of that of P(x). For instance, [p,n] is the extra point of the

"one-poi nt Lindel ofization" of the set {[q,n+l]:geR? _,}. And if
we delete all countable Iimt points fron1au + 1 and define a "convergent

N, -sequence” in a space X as a continuous function fromthis space

to X and define H,-sequential spaces accordingly, we can show

P([p,n]) 1is an Al-sequential space. Details are left to the r eader

It may be that the applications of A to general topology are

not yet exhausted!
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