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ABSTRACT

An N-compact space is one which can be embedded as a closed

subspace in a product of countable discrete spaces. Associated

with each space X is a unique N-compact space vX (called the

N-compactification of X) which plays the same role that px

does for compact Hausdorff spaces: vX is the reflection of X in

the category of N-compact spaces. In particular, if ind X = 0

the map from X into vX is an embedding. A conjecture of long

standing is that every N-compact space X satisfies dim px = 0.

Prabir Roy has described a complete metric space A such that

ind A = 0, dim A = dim pA = 1. The author showed in Report 70-40

that A is not N-compact, thus eliminating A as a counterexample

to the conjecture. But vA remained a promising candidate for the

honor. We now give an explicit construction of VA and prove

that dim VA = ind vA = 0, so that dim p(vA) = 00
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by

Peter Nyikos

Introduction. Prabir Roy's space A is of great importance

in dimension theory, being the first example of a metrizable space

for which the small inductive dimension is zero and the Lebesgue

covering dimension is positive. (These terms are defined below,,)

Indeed it is the first example for which the two dimensions are

unequal, whatever they are.

A has shed light on the relationship of N-compact spaces

(Spaces which can be embedded as closed subspaces of N for

some cardinal M, where N denotes the space of positive integers

with the discrete topology, are called N-compact; see [N2].) to

other well-known categories of topological spaces. If we let §

be the category of strongly zero-dimensional (see definition below)

realcompact spaces, h the category of N-compact spaces, and &

the category of realcompact spaces of small inductive dimension zero,

then

§ c n <= &.

The inclusion on the right was immediately apparent once the

concept of N-compact spaces was formulated, and the one on the left

has been generally known since 1965 [H~]. A naturally attracted

attention as the key to resolving one of these inequalities:



being metrizable of cardinal 2 ° , A is realcompact [GJ, ch.,15]

and it is in & but not in S. Had A turned out to be N-compact,

the first containment would have been shown to be proper; but, as

the author has shown [N.,] A is not N-compact and we have n c &.

But the relevance of A to this problem did not end with this

proof, for there remained the chance that the N-compactification

(defined below) of A might turn out not to be in S. However,

as we shall show in this report, it is in §, and the question

remains whether S = n.

Basic Definitions. All spaces are assumed to be Hausdorff. A

space X of small inductive dimension zero (ind X = 0) is one having

a base of clopen sets. X is of (Lebesgue) covering dimension

zero (dim X = 0) if every finite open cover of X can be refined

to a partition of X into clopen sets. Equivalently, given a

pair of disjoint closed sets Fi>Fo} tliere exists a clopen set C

such that F-.cc and C H F = 0. (To show equivalence, imitate

the proof of 16.17 in [GJ].) A space is strongly zero-dimensional

if it is completely regular and for every pair of disjoint zero-sets

Z, ,Z , there exists a clopen set C such that Z c c and

C 0 Z2 = 0. It is easy to show that a space X is of dim 0 iff

it is strongly zero-dimensional and normal (use Urysohn's lemma to

get disjoint closed sets contained in disjoint zero-sets). One

of the main results of this report is that dim VA = 0.

(Some authors use dim X = 0 to mean that X is strongly

zero-dimensional. See [GJ], chapter 16 and Notes, for a discussion



of the rival definitions of covering dimension. [A], fD], and

give a number of different definitions of dimension and discuss their

main properties and relation to each other. In all cases, a defi-

nition of an n-dimensional space is given for all n) .

Given a space X, there is associated with it an N-compact

space vX, called the N-compactification of X, having the same

sort of universal property that pX has with respect to compact

Hausdorff spaces: vX is

N-compact, and we have a

map ex : X—3>vX such that,

for any continuous function

f from X into an

N-compact space Y, there

is a unique continuous

fv : vX—>Y, making the

diagram at right commute.

(vX is the reflection of X in the epireflective category

of N-compact spaces. We can show the N-compact spaces to be

epireflective by noting that every product of N-compact spaces and

every closed subspace of an N-compact space is N-compact. See [H, ].)

The image of X under ev is dense in vX and ev is an

embedding iff ind X = 0. [H2, 5. 1, (a) , (b) , (i) ] .

The Structure of an N-compactification. We indicate how to

construct the N-compactification of any space X for which ind X = 0.

We let N, be the uniformity which has as a base the set of all



equivalence relations partitioning X into countably many clopen

sets. (Analogously, for any ordinal a we define N to be the

uniformity whose base is the set of all equivalence relations

partitioning X into < ̂ a clopen sets.) The uniformity is

obviously compatible with the topology on X and plays the same role

for vX that C and C* play for uX and px respectively

[GJ, ch.15] and that N plays for £X: the completion of X in

the uniformity N, is the N-compactification of X. This follows

from the fact that any continuous function from X into any space

of inductive dimension zero is N,-uniformly continuous (easy proof)

and the following theorem.

Theorem. Let ind X = 0. The following are equivalent:

1. X is N-compact, i.e. can be embedded as a closed subspace

of a product of countable discrete spaces.

I1. X can be embedded as a closed subspace of a product of

discrete spaces of nonmeasurable cardinal.

2. X is N,- complete.

2'. X is N -complete for some X > w
0' where H is either

nonmeasurable or ais the first measurable cardinal (if any exist).

3. Every clopen ultrafilter with the countable intersection

property is fixed on X.

Proof. We can get 2. from 1. and 2'. from I1, by noting that

a discrete space of cardinality <N is clearly N -complete and

using general results concerning products and closed subspaces of

complete uniform spaces. The proof that 1. and 3. are equivalent

is in [B2, Beispiel 6]. Since 1. implies 1'. and 2. implies 2'.



we are done as soon as we show that 2'. implies 3.

A filter Vf is N -Cauchy iff for every partition of X into <N

rlopen sets, one (and, of course, only one) member of the partition

is in 3. Now let U be a clopen ultrafilter with the countable

intersection property; it is enough to show that U contains a member

of every partition P of X into <N clopen sets. For each Dcp let

2* = UfU: U€ V) ; then S* is clopen. Define |j,(D*)=l if S*eli, M,(2*)=0

otherwise. UeU for some UeP, as otherwise (a, would induce a measure

on the discrete space whose points are elements of P, contradiction.

In constructing the N- compactification of a space X of induc-

tive dimension zero, one adds ideal points to X in 1-1 correspondence

with the free clopen ultrafilters with the countable intersection

property and uses as a base for the topology the closures of the

clopen sets in X, with an ideal point in the closure of A if, and

only if, A is a member of the clopen ultrafilter associated with

that point. There are numerous ways of justifying this procedure

and I will mention two.

One can show that countable intersections of clopen sets

form a strong delta normal base H [see [AS] for a definition],

show that clopen ultrafilters with the countable intersection property

(write c.i.p.) are in 1-1 correspondence with S-ultrafilters with

the c.i.p., so that &-realcompactness is equivalent to N-compactness.

The rest follows from the discussion in [AS] .

Or one can define a proximity relation on X thus: for any two

subsets A, B of X we say A5B if every clopen set containing A



meets B. Then one can show that clopen ultrafilters with the

c.i.p. are in 1-1 correspondence with round N,-cauchy filters and

follow the standard construction of a completion [cf. T, p.206].

The N-compactification of A. In [N3] we constructed 2 °

free clopen ultrafilters with the c.i.p. on A. These were

associated with the basic clopen subsets of A given in [R^ and

[Ro], regions of the form R and R, , . Intuitively, what2. x ip3nj

happens is that the clopen subsets of A which "take a big bite

out of" R [resp. R, •.] form a free clopen ultrafilter with the
x (p, n)

H
M-intersection property for every cardinal M < 2 ° , labeled

U [resp. U/ \ ] • We will now show that there are no other free
x (p, n)

clopen ultrafilters on A with the c.i.p. In doing this we make use

of the equivalence of 3. and 2'. above: a clopen ultrafilter with

the c.i.p. must contain a clopen set from any partition of A.

To understand what follows, we need to recall some of the

definitions and results of [R?]. (All notation is taken from there

unless otherwise noted). In Section l,we were given the space A

in terms of its points and basic open sets called "regions",

divided into families T-, and r?. For purposes of this present

paper we also include A itself in T , identifying it as R

where x is the finite sequence consisting of the single term 0,



(This notation is fully compatible with that used in [R2]} and all

the lemmas that are proven remain true when r, is taken to

include this extra member).

In Section 2, we were given a sequence G, 3 G 3 G-, 3 . . . of covers

l ^ 2. ^ 6 ^

of A by members of r, and r~. To simplify the notation of this

present paper, we also add the cover G = r, U F?.

For the time being, we need only know the definitions of

Section 1, the definitions of the covers, and the following facts.

1. The regions form a base for a topology. This is the

content of Lemma 2.7; the proof of Lemma 2.7 requires nothing

beyond Lemma 2.1.

2. Given peP-, , the regions R with x < p (we use x < p to

stand for: x(i) = p(i) for all i = 1,..., |x|) form a local base

at p. Given peP2, the regions R, > where n runs over infinitely

many positive integers form a local base at p. This is the content

of Lemma 2.8, whose proof requires nothing beyond Lemma 2.1.

3. Given ReT\ U T~, there exists an N such that RiG>T.

This follows immediately from the definitions.

4. The regions are clopen. This is the content of Lemma 5.1.

If the reader has not read all of [R2] he may either assume this

without proof or follow the proof in the Appendix to this present

paper.
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5. If H.. r> H~ ZJ . . . is an infinite sequence of regions with

(55

H eG for all n, then n H =j= 0* This follows from the above
n n n=l n

results and 4.1,whose proof can be followed right after 2.2.4.

In addition, we need a result whose proof is put into the

Appendix because it requires an exhaustive (and exhausting]) case-by-

case analysis which would break the continuity of this report; it is

about as long as all the rest of this entire report]

Lemma. Let R be a region in F, or T , and let C be

a clopen subset of R.

a. If R = R eF-, and C^U , then there exists a a-locally

finite cover of C consisting of clopen sets each contained in

proper subregions of R .

b. If R = R. . eFo and ciu, x, then there exists a
(p,n) 2 r (p,n)

a-locally finite cover of C consisting of clopen sets each contained

in proper subregions of R, •. .
(p, xi)

We also need the following lemma; its proof also

has been deferred to the Appendix.

Lemma. Let ReG
N«

 A nY proper subregion R1 of R (i.e. R'

is a region which is properly contained in R) is in G ,.
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We now sketch a proof of a rather basic result in general topology.

oo
Lemma. Let y = \J y. be a a-locally finite clopen cover

of a space Y. Then if can be refined to a partition of Y into

clopen sets.

Proof. For each locally finite y. let V. be the set of all

points which are members of sets in y., then V. is clopen and

y. can be refined to a partition of V. into clopen sets in two

steps. For each xeV. let V. = OfV. : xeV. el;.}; the V.X

a a
form a locally finite clopen refinement of y. such that

if V i
X n V i

Y ^ 0 then V ±
X c V ±

y and/or V±
Y c V±

x. From thisX n V i
Y ^ 0 then VX c Vy and/or VY c Vx

it follows that if we let

then ic. = (W. : xeV. } is a partition of V. into clopen sets

refining V..

Now [V. }<f_1 is a clopen cover of Y which can be refined

n-1
to the partition (V ' }CD 1 = [V \ U V. I

00
 n . Then (V. ' n W.x

 : xeV. '
n n=l nN._, in=l I i i

is a partition of each V.' into clopen sets and the union of all

these is a partition of Y refining 1/.

This lemma will be used both to characterize vA and to
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show that dim vA = 0.

Property VII. The clopen ultrafilters on A with the countable

intersection property are precisely the fixed clopen ultrafilters

and the free clopen ultrafilters of the form U and U
x

Proof. Let U be a free clopen ultrafilter and suppose U

belongs to none of these classes. If for each N there exists

such that Re It, then by 3,5, and the first Lemma we can select a

descending sequence of regions R eli whose intersection is nonempty.

Careful scrutiny of the proof of 4.1 in [R_] shows that the

intersection is a single point of A and the R form a local

base at that point. Hence it converges to p and is therefore

fixed. Now suppose there exists Gw such that U contains a

region R^GN, but no regions in
 G

N+-i • if.

R = R and U ^ U then there must exist a clopen set C c R
X X X

such that C€U, C^U • Then c may be partitioned into clopen sets

each of which is contained in a region in G,, thanks to the

three lemmas above. None of these clopen sets can be in U.

Therefore U does not have the countable intersection property.

A similar argument works for R = R, > .

So now vA can be identified as the space whose underlying

set is A U X U F, where

T = ( [p,n] : peP2* n ;> 1, where [p,n] = [q,m] iff m = n and qeR?
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and where the base of (clopen) sets is the set of all C where

C is clopen in A and C = C U{x : CeU } U { [p,n] : CeU/ v }
x (p i nj

(To show C is clopen simply consider the unique extension

of f : A-»fO, 1) to vA, where f(C) =0 and f(A\C) = 1.)

To shorten the proof of the other main result we write A6B

in place of "every clopen set containing A meets B". (The

notation is quite apt,, for & defines a proximity relation.) So

"dim vA = 0" is equivalent to "If A and B are closed and

A 0 B = 0, then

Property VIII. dim (vA) = 0.

Proofo Let A and B be two closed sets such that ASB,

Let R be a set of the form R or R, . , satisfying
X IP > **y

(A D R) 6 (B n R) . Suppose R = R and suppose (A 0 C) 5 (B n C)

for all CeU (i^e. all C containing x). Then x is in A 0 B

X

because the C containing x form a local base at x. If this

is not true for all Cell , then (A 0 (R\C~))6(B n (R \c") ) for some
CeU . Partition R \C into A-clopen sets [K } each contained

X X OC OC^C
in a proper subregion of R . (K } is a clopen partition

x ex. cce a

of R \C (take the discrete space with underlying set G, add an

extra isolated point *, map K to the point a and A\C to *,

use the unique extension property) and if (A 0 "K ) 6 (B fl "K ) for
a T oc

any a, then for each K" there is a clopen set "D c ~K such that
a c a a

(A fll) cT5 , B fl D = 0. Then U "D is a clopen set containing
a a a aea a



12

AD (R \ C) and missing B (1 (R \ C) , contradiction. So for some a

we must have (A H K ) 5 (B (1 K ) . Now pick R1 with K c R1 c R,
CC CC ^ a£

whence (A n Rf)5(B 0 R'). A similar argument works for R of

the form R, > . Beginning with R = A where it certainly holds,
IP* H; O

pick a sequence of regions R zi R. z> . . . such that (A 0 R ) 5 (B 0 R )

for all n. If the sequence terminates after a finite number of steps,

we get a point in vA\A in the intersection of A and B, as shown.

Otherwise the R close down on a single point p in A [R2>4.1]

and since the R form a local base at p in VA, peA H B. So

for two disjoint closed sets A,B we must have A<f>B.

The reader may enjoy rearranging and rewording the proof of

property VII to make it follow the lines of this proof. The two can

be made to bear an uncanny resemblance.

Concluding Remarks. With VA eliminated as a possible counter-

example, we can ask with increased boldness, "Is every N-compact

space strongly zero-dimensional?" If the answer is yes, it would

follow that the category of N-compact spaces is precisely the

category of strongly zero-dimensional realcompact spaces [cf. H~,

Beispiele 5,6]. This would be a very significant result, because

the category of N-compact spaces is closed under the taking of

arbitrary products and closed subspaces, and it is not even known

whether the product of two strongly zero-dimensional realcompact

spaces is strongly zero-dimensional. Indeed the only really

promising candidate for an N-compact space that is not strongly

zero-dimensional is the Sorgenfrey plane. It is the product of two
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copies of the real line with intervals of the form [a,b) as a

base for the topology (called the Sorgenfrey line). The Sorgenfrey

line has a base of clopen sets and is Lindelof. Hence [cf. GJ, p.115,

pp. 245-7] it is both of (Lebesgue) covering dimension zero and

realcompact. Hence it is N-compact, and so the Sorgenfrey plane is

also. But the Sorgenfrey plane is not normal and is thus of

positive covering dimension. But it may be strongly zero-dimensional;

we do not know.

For a further discussion of strongly zero-dimensional spaces

see [GJ, ch. 16] [E, ch.6, §2], [H2, Beispiele 5,6] and [N2, §2].

The first two references also give an analogue of strongly zero-

dimensional spaces in higher dimensions and go into some detail

on results in this area; they use "dim X" to refer to the dimension

of a space under this system. It turns out to be equal to dim pX

where this second dim refers to Lebesgue covering dimension. It

is also equal to the analytic dimension of C*(X) as defined by

Katetov [A],[GJ, ch.16].

The following two problems generalize certain aspects of the

unanswered question above. First: given completely regular

spaces X,Y, is it true that

dim $ (XXY) <1 dim px + dim pY

or, if one adopts the notation of [GJ], simply: is it true that

dim XXY <. dim X + dim Y.

The result is known to be true for metric spaces [N,,pp.20-28] and

for compact Hausdorff spaces [GJ,16j] and as far as this author knows,

there is no known counterexample in the general case. (Alasl p is

not distributive over products!) Second: given a realcompact space X

HURT LINMY
CARNEGIE-MELLON UNIVEWITY
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and a closed subspace Y of X, is it true that dim £Y £_ dim

Here we must say " realcompact" rather than "completely regular"

since there are counterexamples to the latter, for instance one

discovered by Smirnov and included as an exercise in [E, p.307].

The result is true for all normal spaces [GJ, 161] , realcompact or

otherwise, and even for some non-normal, non-realcompact spaces like

the Tychonoff plank, which is hereditarily strongly zero-dimensional.

It should be mentioned that the strict equality

dim XxY = dim X + dim Y does not even hold for compact Hausdorff

spaces. Pontryagin constructed a counterexample by pasting together

Mobius strips of ever-decreasing size in a kind of higher-dimensional

analogue of the snowflake curve. By modifying the Mobius strips

slightly he got another space whose product with this other one

was of covering dimension 3, while both surfaces were of covering

dimension 2. [A] mentions this result along with an example of

2
a compact metric space X such that dim X < 2 (dim X).
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APPENDIX

In this Appendix we prove the two Lemmas whose proof was

deferred, and supply a proof that the regions are clopen. We also

give properties of N»A which, while not needed, follow from results

which will be proven along the way and which it would be awkward to

introduce in a separate paper.

To facilitate comparison with [R~], we continue the practice

begun in [N-.] of giving results numbers which show where they might

logically occur were they incorporated into [R ]. Thus the first

result we prove would best come right after 2.2O4 in [R«] and has

been numbered 2.2.5. After the proof that the regions are clopen

we begin a new set of results on A; they will all begin with a 6

and they pick up where [N-J left off.

At first, we will assume nothing beyond 2.2.4 in [R9] and

everything up to and including that.

2.2.5. Lemma. Let R be a region in G» . Let R1 be a

proper subregion of R(i.e. a region such that R1 c R) . Then

RT 6 G N + I -

OD

Proof. Since G , = U G1. we need only show R'eGJ ,

for some k ^ 1.
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Case I. R and R' are both in r,. Then R = R for some
X X

x w i t h | x | = N ( 2 . 2 . 3 ) and by 2 . 1 . 1 R1 = R^ f o r some x1 w i t h

| x | £ | x ' | . S i n c e R' ^ R we mus t h a v e | x ' | ^ N + 1, whence

f o r some k > 1.

Case II. ReT, * R'eT o. Then R = R , RT = R, » and since1. z x ^p, n;

R. n R p,n) R r? R , whence
PX

R eG'|(p,n) e G'| P x| +n

Case III. R and R1 are both in To. Then R = R, *
z vp} n)

where |p | + n = N and R1 = R, « . If | p x | = | q x | then

by 2 . 1 . 4 . m > n and we a re done. Since R contains

we must have |p

(2 .1 .5)

t h a t R

q | (1.3.4-7). If |px| < |qx| then

qxl >. IPxl- + m + 1> soR(qjItl)
 a n d b v

(q,m)£GN+r

Case IV. ReTo, R
1 eT-, . Let R = R

by 2.1.3. H

., and R' = R , then
\P } X\) X

some j. If |x

x'

p x | + n,

R contains some P«-points q with |qx| = px + n which cannot

be in R,

are done.

(1.3.5-7) . Consequently x px| + n + 1 and we

2.2.6. Corollary. Let R be a region in G , R1 a proper

subregion of R, then R1 eG , .

Proof. We need only go back to the definitions, 2.2.3 and 2.2.4,

and use 2.2.5.
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Next we prove that every region of A is closed, adopting the

following notation-. if o and a1 are finite or infinite sequences,

we write a1 > a to mean that o' extends c, i.e. a' is

defined for all positive integers for which o is defined, and

a' (i) = a(i) for all î >l for which a (i) is defined.

X1

Lemma. Each region of A is closed.

Proof. Let R eV-, and let peP-, . Choose x1 < p with
1 X X X

= |x|. If p^R then R H R ,= 0 by 2.1.1 and so p

is not in the closure of R . If peP~ and p^Rv then if
xl <L |Pvl we ^ a v e R H R - 0 by 2.1.1, while if |x > |pX X px ]

and R OR- , > ^ 0 then x (| p I + 1 ) = ± pv(j) for a unique j
X vp j 1) X x

(and the sign is determined also) so that R O R / -, \ c R , , , ..

Now let n = j + 1. R. > H R , , . . = 0 because

p y(n + k - 1) ^ p (j) for any k (1.1.3). Hence R ( p j n ) n Rx ^ 0

and p is not in the closure of R .

Let R. > eT and let qeP, . Choose x' < q with(p 9n)2 i

I x' = Pu. I + n + 1. If qiR, > then R ,0 R , > . = 0 for
ic -̂r (p,n) x! y(pjnji)j

all j by 2.1.1, and R , 0 R°. > = 0 by 1.3.3.. Hence R ,J J ' x' (p,n) J x'

is a nbhd of q missing R. . . I f qeP o and |q I = |p
(P j Ii) zl X X

then R, .0 R, , ^ 0 implies the regions are identical by(p,n) (q,n) ^ ^ -̂

2.1.4 and so qeR, .. Hence if q^R, > , R, x misses R, .
(pj-n) ^T (p5n) (q,n) (p,n)
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If < |px! and R

p (|q | + 1) = + qv(k) for some (unique) k by 1.3.5 - 9, so

the intersection of the two regions is contained in R , ^ +)k*

Let m = k + 1, then reasoning as above, R, . H R. . = 0:R/

is a neighborhood of q which misses R, . .

Finally, suppose | px | < | qx and n R
(q,l)

Since R°. > 0 R(p,n) = 0 (1.3.5-7). It follows that the intersection

of the two regions is contained in Rj , . If p' is a point in

the intersection, then p ' ( + 1 ) and p1 ( + 2 ) are of

opposite sign; on the other hand, p' (j p | + i) are of the same sign
X

for i = 2,...,n + 1(1.3.9-11). Since

follows that + n. If

+ 2 ̂  | q^ | + 1 it

+ n + 1 then

R c R for some j by 2.1.1 and so qeR
D

So

if q^R/ _\ we must have

p'dcfci) =

p x | + n. If n = 1,

% ^ = ± P Y
( 3 ) f o r a (unique) j , s o t h a t

+ 1 ) = ~ F ~ (pv) = + qv(k) for a unique k - - i n o the r words,
PY(J) Y Y

the intersection of R, > and R
(p,n)

is contained in R

for a k which is determined by p,n, and q alone. If n > 1,

p' ( j qv| + 1 ) = + p (n - 1) = ± qv(k) for a unique k. So in both
A z

 Y

cases, we can let m = k + 1 and, reasoning as above, R, , O R , .
(p,n) (q,m)

= ,0.

Since the regions are open, this shows A has a base of clopen

sets.
1If pT ^, read as is; if p< ep^, imagine a subscript X for p' .
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Now we come to the last and greatest hurdle, the problem of

covering a clopen set that does not "take up a big chunk" of a region R

with a a-locally finite collection of clopen subsets, each contained

in a proper subregion of R.

In what follows we will assume every numbered item in this report

and in [R~] up to 2.2.6, as well as 2.7, 2.8, and 4.1 (which,

as pointed out earlier, can be proved right after 2.1), and also

some definitions and results from [̂ 3!:

1. The fact that U and U, ^ are free clopen ultrafilters,

and we have precisely one associated with each R eT, (including

the case where R = A) and each R, >ero:U has R for a

member but no proper subregion of R is in U , and similarly
x x

for \x, s. This is all included in 5.15.1 and 5.15.2.(pn)

2. Let A be a clopen set and let x be fixed. If, for

uncountably many x1 with, x1 > x, |x' | = |x | + 1,

we have AeU ,, then AeU • This follows immediately from 5.4.1

and the definition of U (strangely enough, we do not need to know

the definition of U or U, . at any point in this appendix,

once we accept the results listed herel) and in referring to this result

we will use the number 5.4.1.
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3. Let A be a clopen set and peP2, n fixed. If, for un-

countably many reR there exists qreR? \ with q (n) = r

such that AeU , then AeU/ v • The number for this result
(qr,n+l) (P'n)

is 5.4.2.

4. Let A be a clopen set such that AeU/ n\• Then

AeU / » . for all but finitely many j, and both + and

The number for this result is 5.7'.

5. Let R be a region and let A be a clopen set contained

in R. If AeU for some x, then R c R, and if AeU. _» forx x vp,n;

some p,n, R, N c R. This follows from 5.3,5 and 5.3.6 inif> (p,n)

[Ng] and the definitions of the U and the \x, v .

We will make use of the following simple topological lemma

without comment: a collection of disjoint clopen sets in a space X

is locally finite if, and only if, the union has no boundary points

(equivalently, the union is clopen). This follows immediately from

the definition of "locally finite". An even more elementary fact

is that if \s is a a-locally finite cover of clopen set A by

sets clopen in X, then V' = (V 0 A:Ve\r} is likewise a-locally

finite, a cover of A, and composed of sets clopen in X. So all

we need aim for is a a-locally finite cover of A (if A c R and A

is not in the ultrafilter associated with R) by clopen subsets of A.

each a subset of a proper subregion of the region R under consideration.

To keep notation down to a minimum, we will refer to the regions
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in G^ as "the regions of level n". Note that every region is

on some level (namely, if the region is R the level is |x|, if

it is R, v it is |p | + n) and no region can belong to more

than one level.

Basically, our plan of attack will be to use these levels to

obtain a cover of A, as follows: for each point p in A we take

the "largest subregion R' of R "(or: "the subregion R1 of R

on the earliest level") containing pa such that A is in the clopen

ultrafilter associated with R1 (there may be more than one) . We

break up each level N into sublevels: the sublevel of F,-regions

and the N sublevels of ro-regions R, . with a fixed |pv|«

^ vP > n) x
We try to show that the regions R on each sublevel which we have

thus associated with each p eA form a locally finite collection by

showing that their union has no boundary points, use 2.1.1 and 2.1.4

to show they are disjoint, and use the observation above. The tricky

part is showing their union contains no boundary points, and a

major part of the effort in the following pages is expended in this

direction. The basic idea is to try to obtain a contradiction by

showing that a boundary point will have a region R1 associated with

it so that A is in the clopen ultrafilter associated with R'--here is

where those results 1,2,3,4 above will come in handy--and so that

R1 contains the regions R whose unions we are forming as

proper subregions, thereby contradicting the way the R were defined.

Then we put all these locally finite collections together (there are
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countably many of them).

As it turns out, we have to be a bit more subtle than this to

get a a-locally finite clopen cover. What we have just outlined

is a good "first approximation", though. We will modify it as

we go along.

The reader may find it helpful to prepare a rough sketch for

himself of the way the various regions of A intersect, using as

a guide the description of A given in [R.. ] . (Note: The

reference there to Hilbert space is somewhat misleading; the reader

can prepare a crude but quite serviceable series of illustrations on

a two-dimensional manifold, such as the surface of a sheet of paper

or a blackboard.

6.1.1 Lemma. Let [R ) be a family of disjoint regions

in T->, with |x | = N for all n. Then? U R is not closed <=•>
aea a

there exists P^P?' P^Rx f o r a n^ a* a Pos:'-t:'-ve integer k such
a

that, for infinitely many a. there is a j for which

Remarks prior to proof. If such a p exists, the k described

must satisfy IPyl + k + 1 ^ N, i.e. k ^ N - | P-v-l ~ !• (2.1.1.)

Furthermore, let k1 > k, then R , , ,> . 3 R . .
VfP^^)] Y(pkf +)j (k'k) '

Proof, r̂r : If there is such a p and k, then j = j
^^ CX p

so that there are infinitely many distinct j . Then for each k 1^ k
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there exists a such that j >(k'-k), so that j -(k'-k) is

a positive integer. Therefore, for each R, , ,. there exists j

so that R 3 R . , . . /1 , .. . and hence R O R , , , N ^ 0,*a Y(p,kr ,±) Da- (k'-k) xa (p,k») ^ ^J

so p is an accumulation point of IJ R
a

=^ : If !J R is not closed then any point on the boundary
a

is in Po, for if peP, , p£l) R , then R where x < p, |x| = N,
a

is disjoint from all the R and hence p is outside the closure
xa

of U Rx .
a

So let peP? be on the boundary of U R , we will show that
a

it is of this form. Suppose on the contrary that there exists M

such that no R contains R,, , . ,x. for j > M, and any k.
X V irj V -4-1 "i

(X

Then R n R , , x . = 0 for all a and all j > M

when k ̂ > N - |p | , which means that, if p is in the closure

of U R > it must be in the closure of the union of finitely many
a

of them, which implies that it is already in one of them, contradiction.

Note that there are essentially two distinct cases: one where

p | = N - 1, in w?iich case R contains R . , . . properly,
a ' '— a

or |pv| < N - 1, in which case we can take k = N - |pv[ - 1 andX X

then R = R . - ,. . for infinitely many distinct a. Note thatx v (p,k,+) j JT -r
a ' — a
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|p | ^_ N is not allowed because then R O R , , . ^ 0 for
X x (p,K;

any k, a would imply R r> R by 2.1.1.
xa P X

6.1.2. Lemma. Let {R } be a set of disjoint regions
(pa,n) a e a

in T2> with |p^| = M for all a and with n fixed. Then

U R is not closed <£==> there exists qePo such that q
aea (pa,n) z

is an accumulation point of the union of the R— and Iq | £ M + n,
(Pa,n) X

qxl *M.

Proof. ^ : R i p ^ n ) is dense in R ( p ? n ) for any R ( p j n ) e r 2 ,

because it contains all the P,-points of R, . , and every nbbd of

o +
every point in R, ,. contains P,-points. Putting the R—

together gives us a collection of disjoint regions R ,

all on level M + n + 1. By the previous lemma any extra accumulation

point of these regions is a q_£l?~, and if |QVI ^. M + n + 1 then

already R, -,., c R , a v . for some (unique) a, j . If q = M
Iq> -1-) ' IP • n. -TJ j A

then either R, , H R. a > = 0 for all a or else R, , = R, a .(q,m) (p ,n) ^ (q^n) (p , n)

for some a by 2.1.4.

: q cannot be in any of the R, . under these conditions,

Now let us look at what happens when we take accumulation points

of regions of the second kind.
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Let (R _ } be such that Ip^| = N for all a, m fixed.
(P

a,m) a e a X

Any point on the boundary of ij R is on the boundary of
aea (pa,m)

U R— , the union of a collection of (disjoint) regions R
aea (pa,m)

with |x| = N + m + 1. Hence it must be a point

Iqv| < N + m. Without loss of generality we may assume q is a

.A.

OD

boundary point of U R where x = y(P J m» +)j f ° r some infinite
x IT n

n=l n
collection of p . We have the following profile for x :

Since | qv| <L N + m, R P R, ,. = R n Ry , . for all k,n.

Case I. |qx| < N. Let k ̂ . N + 2 and let x = v(q,k,+)j.

Then in the (N + 1)th place we have a negative number, so

Rx n Rx = 0 for all n. If x = y(q,k,-)j, then in the (N + 2)th
n

place we have a positive number, and again R P R = 0 for all n.

So q is not in the closure by 6.1.1.

Case II. |q I = N. Then, if q is an accumulation point, we

have in particular R, , 0 R ^ 0 for some n and so by 2.1.4,
n

R(q,m)
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Case III. |qx| > N. Then, if | qx| < N + m, the (|qx| + 1) th

term of any y(q,'k,±)j is of opposite sign from the (|<3X!
 + 2) th

term, while the corresponding terms of x have the same sign. So

I qv| = N + m, and qv > pv for all X, so that pY is the same

.X. A A A
for infinitely many n.

Ilia. m > 1. Then we can choose the p so that each R
n

is contained in R (otherwise, since Ix | > |qv|, we have
qx n X

R OR = 0) and contains a ball of the form R , , * . (note

the minus sign) properly (see the comment following 6.1.1.). So

we have x = (0,...,q (N+m),-q (j)) for some j; the j's will

of course be different for different n because the x are all
n

different and can only vary in the (N+m)th term. In particular,

R = R for all n.
qX Y(p ,m-l,+)jn

The p are all distinct: -q (j) = - p (m-1) and the terms
Y S

are different for different n. But R is the same for all n.
(p ,m-l)

Illb. m = 1. Then q = (0,. . . ,p^(N) , p£(i )). There are two
A A x n

possibilities: either p is the same for all p (in which case

n n

the j are all different) or p is not the same for all p ,

when j could be the same integer for different n(in fact if the p"

are all different it could even be the same integer for all n).
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There is not much else to be said here except that we can choose p

so that R contains R properly while R contains
qX Y(P ,l,+)j n

R and also R for all n--and that the p's themselves
qx (P

n,l)

are all distinct.

We are now in a position to establish our result for regions of

the second kind.

6.2. Lemma. Let A be a clopen subset of R, . such thatr (p,n)

Aili/ \. Then there exists a a-locally finite cover of A byr (p,n)

proper subregions of R, » .
VP ) nJ

Proof. For each qeR, N HA there exists n such that
(P>n) q

R, > c A and therefore AeU, x . For each q let n be
(q*ng) (q,n ) M q

the least such integer. (In what follows, always assume qeR*? » 0 A.)

Consider the collection (R, ,n> :n = n+1]. By 5.4.2. this
(q,n+l) q

is a collection of at most countably many regions.

Next consider the collection (R. ^,-,fn = n+2}. Any boundary

point of the union comes under the heading Ilia and so must be

the boundary point of the union of subregions of the same R, + i \ '

Each such R, ,^ can contain only countably many such subregions

(otherwise n £_ n+1, contradicting the assumption on the subregions) .

Furthermore if we take a collection of regions R, ,ox with

(q,n+2)

n = n + 2, such that the regions R, ,. are all disjoint, then
q v q.» n+±;
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their union must be clopen. Hence by the axiom of choice we can split

(R, „. :n = n+2} into countably many locally finite families.

Using essentially the same argument we obtain for each N ;> n + 1

a splitting up of [R, x :n = N} into countably many locally
vC['nq,J q

CD

finite families; now let V = { R ( g ^ ))n=l
UfR

V(p,n,+) j
3j=l" V is

a a-locally finite clopen cover of A.

We note in passing the fact that any two distinct regions

R, N and R. . in ro of level M are disjoint. This follows(p,n) (q,m) 2

immediately from 2.1.4 if |pv| = |qv| (and, of course,

n = M - |px| = M - |q | = m). Otherwise assume without loss of

generality that |p I < lqxl* then Case III above shows that if they were

not disjoint we'd have . <2XI
 + m > IPXI

 + n e v e n f o r «i = 1*

contradiction. Of course by 2.1.1, any two distinct regions in F-,

of level M are disjoint.

Next we look at accumulation points of r, regions in greater

detail. Let [R } with Ix I = N for all a be such that
X CCfcS. CC
(X

p is a boundary point of the union, where lpv| < N.

Case I. |p < N - 1.
X
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Then, for infinitely many a, (Label them a, ,...,a ,...)

there exists Jn such that
tan =

 R
Y( P,N-l-|p x|, ±) J n C«P»iity

holds because the regions are on the same level). Without loss of

generality assume that the sign at the end of y(P>N - 1 - |px|>)j

is +. Now for each n,x starts off with (0,. . „ ,pv( | pv|) ,
an XX

p^ (N - 2 - |p | + j ), -F~ (Pv)>...) and continues with
an(|px|+l)

negative reals as long as it lasts. The variance between the x
a
n

takes place at the two terms following pv (Ip̂ l), and the second

of these depends upon the first and upon py. It is clear that

any qeR*

la.

is a boundary point of the R . What else?
xa

If R-r . 0 R 0 then we must have
a
n

the term |pv| + 1 positive, so that P (N - 2 - |p | + j ) is
X n

equal either to + F~ (q ) or else + qz(i)
 f o r some i,

and the signs remain positive. But then, for m ;> N, R, v H R = 0

n

So q is not an accumulation point.

Ib. |qx| = |px|. if R(q^m) n 0, where

m = N - 1 - |p then the two are equal and qeR

Ic. |Pv| < Iqv| < N. (The second inequality follows from our
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not wanting q to be already in one of the R .) Since all the terms
Xa

of these x after |p | + 1 are negative, and since there must occur

a switching of signs between |q I + 1 and |q | + 2, the only case
A A

to consider is I qj = N - 1. If R, ,» 0 R ^ 0, then
A ^q, i; x

un
qv( |p | + 1) = pv(m + j ) and this can be true for at most one n,

A X Y n

so that q is not an accumulation point of the R
an

Case II. |p | = N - 1. We then have infinitely many a suchA n

that (without loss of generality) there exists j such that

xa = (0,. . . ,px (|px|),PY(Jn) )
n

What other boundary points are there?

Ila. | qx| < N - 1. Then the Nth term of "i(q.,m,±) j is either

fixed for all m and all j or else (in the case |q | = N - 2)
A

depends upon the previous term, which is the same for all the x
an

Hence R OR ^ 0 for at most one n and so R, .N is not
x
a vet* -w (c[j -w

n

an accumulation point.

lib. |qJ = N - 1. if qv = p v, and q has infinitely many
A A A Y

of the j as terms, then q is indeed an accumulation point; other-

wise it is not.

Let us try to apply these results to the task of finding an analogue
of Lemma 6.2 for r,-regions. Take a clopen set A and take the set

of regions Rx with the property that Ael^., A£U X, [resp. A<^U( . ]
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for any R , [resp. R, > ] containing R properly.
X (p, U.) X

Suppose we take the family of all regions R eT, of level N

which are chosen in this way. Any boundary point of the union of

this collection must be a pePp with |Pvl < ^. We can now show

that IPyl is n°t less than N - 1 by using Ib and the following

lemma.

6.3. Lemma. Let p€P and let A be a clopen set such that

AeU / ,x • for infinitely many j (for some fixed n). Then AeU/ \ •

Proof: Suppose AdU, N ,then A e\x, •> and so from 5.7' there exists a jT (P^n) (p,n)

such that A eU / n +\
 f o r a^ ^ ^. J• This implies that AeU , »

only for k < j.

So if that boundary point p had |p | < N - 1, we would have
X

(p,n)
A e U(pn) for n = N " IPX' " 1} and R(pn) 3 Rx fOr any Rx °nx y Rx

level N such that R, . Pi R ^ j6 which would contradict the way that

the R were chosen.

The case | p__| = N - 1 is more difficult. We need a strengthening

of 5.4.1.

6.4. Lemma. Let A be a clopen set and let xeX. If for

infinitely many x1 with |x'| = |x| + 1, x < x1, x'(|x| +1) > 0

[resp. x' (|x| + 1 ) < 0] AeU ,, then AeU .

Proof. We give the proof for x' (|x| + 1 ) > 0.
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By hypothesis there is a sequence of x1 of the form (0,...,

x(|x|),r ) where r eR , for which AeU , •
n n x

We split the remainder of R up into 2 ° disjoint sets of

distinct positive real numbers each. Take any one of these sets H

and now let S be the set of all sequences which contain the numbers

r in the 2n th place and the numbers of the set chosen, exactly once

and no others (so that they will all be permutations of each other). It

is a simple exercise in set theory to show that S has cardinality 2 o .

For each aeS pick q ePo so that q^ = x, q^ = a, and now for

all q , y(q ,l,+)2j (|x|) = r. for all j. And, for all but countably

many aeS, y (q° ,1,+) 0. (\x\ + 1) is such that AeU / o , > 0 ., because

of 5.4.1 and the fact that AeU ,.

This is true for any fixed j, and so, for all but countably

many aeS,

AeU
Y(q

a,l,+)2j for all j.

Then, for these same a, (let this set be called S,) AeU ; for
1 (qO,l)

c c
either A or A must be in, and if A were in U for any a we

(qa,D
would get a contradiction from 5.7', 5.15.1 and 5.15.2: AC would have
to be in U - for all but finitely many j.

Y(q,l,+)2j

Indeed by the same argument AeU for all but
y(qa,l,+)2j + l

finitely many j given any oeS,. Order the reals in « in a sequence
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fs }. Since S, is uncountable there exists m such that, for un-

countably many ceS,, AeU where j is the term of a
1 Y(q°l+)2j

which is equal to s . Since the U are all in R
y(q ,1,+)2jm m

where x = (0,. . . ,x( | x| ) , s ) and are all disjoint because of the

way F is defined, it follows from 5.4.1 that AeU
sm \y

We can now repeat the argument for all the other sets into which R

was split, thus obtaining 2 o distinct x' with x1 > x. ,

x1 (|x| + 1 ) > 0, |x' | = |x| + 1, such that AeU ,• Another application

of 5.4.1 gives us the fact that AeU •

Now consider the collection of all regions in r, of level N

with the property that each is maximal with respect to AeU . Any

boundary point p of this collection must be of the form indicated

by 6.1.1., and could only have |p | = N - 1 by the reasoning

following 6.3. But now any such p can only be the accumulation

points of those regions contained in R . Ip I = N - 1 means that the
P x X

regions involved satisfy the conditions of 6.4. Because they are closed,

there must be infinitely many of them,whence AeU , contradicting

P X

the way these regions were chosen. So the collection is locally finite.

Next we show that we can indeed speak of "a largest region con-

taining p" satisfying the conditions given in the discussion preceding

6.1. 1.

6.5. Lemma. Let A be a clopen set. The collections
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(R :AeU b u t A^U , f resp . A<£li, „, ] fo r any R , f r e sp .x x x p̂̂ rny x

containing R properly)

and

„ . but A^H fresp. A^U, ,] for any

Rxfresp. R(qjm) ] containing R(p^n) properly.}

together form a cover of A.

Proof. Let peA, then by 2.8 there is a region R containing p

and contained in A. If peP,, say peR c A, then Aeli . Similarly

for pePp. If R is not in either collection, there is a region R..

such that A is in the clopen ultrafilter associated with R.. and

R c R Repeat the argument, obtaining a sequence R, c R c ... if
^ 1 1 t 2 t

necessary; but if R is on level N, then R, is on an earlier level,

etc. (2.2.5.) The sequence must stop somewhere and the last term is in

one of the above collections.

Note that these regions are not necessarily disjoint, so that a

point may be in more than one "largest" region. As it turns out, this

does not prevent us from reaching our goal, it merely makes our work

much more complicated.

We will apply this lemma to A c R for a fixed region R by

noting that if Aeli . then R c R, and if AeU, . , then R, c R.
x x \P>nl (p,n)

In spite of all these preliminaries the case of a region R eT-,

remains much more difficult than that of a region in T~ , because
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the pePo with |pv| minimal do not all belong to one R, , as

they do for a V? region, and because there is no analogue here of

the R , ,s. which provided such a convenient countable cover of
Y(p,n,+Jj

the rest of the points in R, . Even after we are done with the

(p, n) .

peP 9 of |pYi
 we still have to go down within each R , with x' > x

and take care of the points in there.

Even the cover we have obtained for a clopen set A c R by 6.5
is not as well-behaved. True, the R , of a given level N form a

locally finite collection as explained above, and we can take care

of the R, > with n > 1 by a technique like that employed in 6.2,

but we have not yet accounted for possible boundary points of regions

R, ,* (case lib preceding 6.2).

So now, suppose we have a clopen set A c R , A ^ U . Take those p

such that p = x, AeU/ 1N . If q is a boundary point of U R
a (p ,1)

then q^ c R , |q I = jx| + 1 , and R contains infinitely many balls

of the form R . If AeU for infinitely many of

Y(P ,I,±) jn Y(Pa,i,±) j.
these balls in R , then AeU (6.4) and there can be only finitely

many such distinct R (6.4). But there is apparently no restriction
qX

on the number of R for which AeU a for only finitely many a.

cc

No matter: we can get around this by noting that A<£u for

only finitely many j, given a fixed a (5.71), and producing a refinement
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of the cover presented in 6.5. (We keep the assumption that A c R ,
X

Take all the R in that cover and replace each one by
(Pa, 1)

R \ U R where the union is taken over exactly those
(pa,l) Y(pa,l,±)J

subregions for which A^U and those which are subregions
(Pa,l,±)j

of R where AeU and q is a boundary point of U R n

% <*x a (P
a,l)

We have just seen that there are only finitely many Y(pa>l.»±)j in

each category for a fixed a. Call the resulting set R
P a

Now we go down within each R , with |x' = |x| + 1, x1 > x,

and A<£u , . Take A D (R ,\ U R ) (where the union involved is effectively
a p

over a finite number of regions, so that the resulting set is still

clopen and of course is not in U ) and repeat the process for this set

relative to R ,: construct a cover like that given in 6.5 and then

truncate the R, ,,. regions in the cover for which p = x1. as above.
(p, J-J X

Then go by induction to the r. subregions of each R on the next
_L X

level, the level following that, and so on as long as necessary. At

each stage, the R, > regions with n > 1 and the R .-regions with
IP J *v x

AeU i remain as in the original cover.

It is a routine but important exercise to verify that the regions

(or truncations of regions) in the refinement thus constructed are

incomparable, i.e. if R is a member of the refinement and R' is
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another member so that R c R', then R = R'. This was trivially true

for the original cover and remains true for the refinement.

What results is indeed a cover: let PeA fl P., then we obtain

a member of the original cover containing p as in 6.5. Should it

be a region of the form R, ., (the only nontrivial case) then if

Aeli , where [x'| = |x| + 1, x1 < p, we are done. If A<£u ,

we then obtain a cover of A f) (R ,\U R ) as in 6.5, and if piUR
X CX (X

p p

then one of the members of this cover contains p...eventually the

process must end either with a region R. . with n > 1, or with

an R , . , or with an R, ,> such that AeU , (where x1 is definedx \q, JLj x

as above). It cannot go on indefinitely because there exists an R
XP

with peR c A, so that A contains every subregion of R and is
P P

a member of the free clopen ultrafilter associated with each such sub-

region; then, since |qx| increases by at least 1 at each step

of the process just outlined, we eventually must get to a point

where Iqvl > |x I and then R, ,, c R if peR, ,,.

If peA (1 Pp, the only nontrivial case is where every region

of the original cover containing p is of the form R, .. > for

some |q | < |pv|, then we use an argument like that above, and
-A. .A.

since R, > c A for some n, the process must stop at or somewhere

before |Pyl + n'

At last we are ready to prove the main result.
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6.6. Lemma. Let A be a clopen subset of R . If A<£u , then

there exists a a-locally finite cover of A by clopen sets each

of which is contained in a proper subregion of R .

Proof. Define a clopen cover for A as in 6.5 and take the

refinement described above. We wish to show that this refinement

is a-locally finite. Let |x| = M.

For each fixed N > M take the set of all f,-regions of level N

which are members of the refinement. This is a collection of disjoint

regions (2.1.1). Suppose its union is not closed; let p be a

boundary point, so that p is as described in 6.1.1. Then if I pvl < N- 2,

the reasoning following 6.3 applies to give a contradiction, \/hile

if |Pyl = N - 1, the reasoning following 6.4 gives a contradiction.

Of course we must have |pv| <L N - 1. Finally in the case where

|pY| = N - 2 (so that the To-region involved in 6.3 is R, ,v)x z (p, j.)

the truncations only eliminate finitely many R , . . . and there

are still infinitely many R , with R , c R. TA'J R / i ,\ •

contradiction. So for each N we have a locally finite collection.

Next we look at the truncated regions R, - A IJ R / •, ,\ ••
^ (p,D Y(P;1>±)D

The union is finite and so the resulting set is still clopen for all p.

For each fixed N ̂  M take the family of all such truncated regions

in the refined cover with |pvl
 = N. Any boundary points of these

-A.

truncated regions must come under Case III of the discussion

following 6.1.2., specifically Illb. But the truncations have
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eliminated all these accumulation points and were in fact designed with

this end in mind. So we have a locally finite collection for each N.

Finally, for each pair (N, ,N2) with N.. ;> |x|, N > 1, we take

the family of all R, * in the refined cover so that |p,J = N,,
(p,n) IJ^X' 1'

n = N2- Each such region is contained in R. . along with at

most countably many other regions R, . > of the refined cover (5.4.2).
IP > n>

And since we are in Case Ilia the only possible boundary points are

points qePo with Iq | = N1 + N o, qeR, ,» and on the boundary

of the union of those countably many subregions of R, ,« . So
(p, n- L)

we can, as in the proof of 6.2, apply the axiom of choice to get a

countable collection of locally finite families for each pair (N ,NL) .

And so, putting everything together, we have a countable collection

of locally finite families, each of them composed of disjoint clopen

subsets of regions each properly contained in R .

The Topology on the N-compactification. The N-compactification vA

of Roy's space is obtained by adjoining ideal points in 1-1 correspon-

dence with the free clopen ultrafilters with the countable intersection

property, so a convenient way of labeling them would be x (in correspon-

dence with U ) and [p,n] (in correspondence with U, ») where it is

x (p,n;

understood that [p,n] = [q,iri] iff m = n and qeR, > (i.e. iff R. ,

= R, .--see 2.1.4). The topology has as a base the clopen sets A

where A is a A-clopen set and

A = A U {x:Aen } ij f [p ,n] :Aell,_ _. } .
•x \P>n)
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Since the ultrafilters U and \x, x have the M-intersection
x (Pjn)

property for all M < 2 ° t^J > it follows that the corresponding

points in VA are not G.'s; indeed, every intersection of M

neighborhoods of either kind of point has nontrivial intersection with

Nevertheless, it is possible to get every point of vA as a limit of

a sequence of distinct points.

If xeX, take a sequence of distinct points {x } with x > x,

x | = |x| + 1 . Any basic clopen set containing x is of the form A

where AeU • Then AeU for all but finitely many n (6.4) and
X xn

so x eA for all but finite many n. And if the point is of the

form [p,n] let x. = Y(P*n>+)J- L e t A *>e any clopen set containing

[p,n], so that AeU, N. Then AeU for all but finitely many j.

Furthermore, we can get any point of A as a limit of a sequence

of points in vA\A. If peP.,, take the (unique) sequence fx } such

that x | = n, x < p. Then x eR and R is a local base

at p (2.8.1). If peP2
 t a k e the sequence {[p,n]}; it converges

to p by a similar reasoning.

Nevertheless, VA\A is not a sequential space, nor even a c-space.

(A space is> sequential [resp. a c-space] if every sequentially closed

[resp. c-closed] set is closed, where a set A is sequentially closed

if every limit of a sequence of points in A is itself in A, c-closed

if every accumulation point of a countable subset of A is itself
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in A. (See [F, ], [F2] , [B, pp. 146-152].) The most obvious demon-

stration of this is to take a point xeX and take A to be the set

of all [p>l] such that p = x. x is an accumulation point of A
.A.

(see the proof of 6.4: any clopen set belonging to \x, ,v for

all p with p = x must belong to U ). But no sequence of points

in A has an accumulation point: given a sequence [R } we

may take all the R , with x' > x, |x'| = |x| +1 such that

R c R , for infinitely many pairs n,j. There are only

countably many of these and so order them in a sequence [R , }.
x m

Truncate each R by deleting those R which occur

(p »i) Y(P At±)

in R , ,...,R . . The resulting set (call it R' ) is still
x 1 x n p n

clopen in A for each p , and each R , contains only finitely
x n

many R still in R' , namely those for which n < m,

Y (p )l)±)d > x' . Thus R will contain at most one, R at most

OD

two, etc. We have eliminated all possible boundary points of IJ R1 = B
n=l p

which is thus clopen in A. B̂ li because B is a union of countably

many clopen sets each contained in some R and R £u for

any n. So x is not an accumulation point of ([p ,1]}. A

point peA\A is not a boundary point of A, for we can find a

sufficiently small region R containing p so that VA\ R is a clopen
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set containing A. Any x'eX is not an accumulation point of A,

for if x1 > x, R \R , is a clopen set containing A and missing x';
X X

if x > x', and x ̂  x1, the same is true of R ; we have just
X

taken care of the case x = x1 , while in any other case R 0 R ? = 0.
" X p

Similar arguments work for [pn,k] with k > 1 and [q,k] with

q ̂  p for some n and all k. So, actually, A has the single

accumulation point x and that cannot be gotten as an accumulation

point of countably many points of A.

A similar argument shows that T taken by itself is not a

c-space. Take for each fP>k] the set A of points [q,k+l] such

that qeR/ , % . By 5.4.2, [p*k] is an accumulation point of A;
\P>K.)

and there are no others. And [p,k] is not in the closure of a

countable subset of A because we can get a clopen set containing any

countable subset of A by truncating the associated regions R

(qn,k+l)

as we did above for the p and taking the union of what is left. This

shows that we cannot get an analogue of 6.4 for r -regions. 5.4.2 is
2

the best result we can get.
X taken by itself is not a c-space, either. This we can show in

HA

the following manner: split the positive reals into 2 o disjoint

countably infinite sets (the group /Q comes to mind) , arranging

each into a sequence. Take one of these sequences (think of Q ),a,

and for each remaining sequence a let p5̂  be the sequence whose

(2n) th term is a(n) and whose (2n + 1) th term is a (n) .
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Now pick any xeX, take the set of all R , c R on the level
X X

just after that of R , and within each R , take R ,, such that
X X X

x" = (O,...,x(|x|),x« (|x'|), -FxJ"(jx, |j (pp)

where a is the unique index such that a (n) = x1(|x'|) for some n;

there are, of course, countably many R f which contain no such R ? ,

these being the ones such that a(n) = xf (|x' |) for some n. These

we ignore for the moment. So now each ball on the |x| + 1 level in

the upper row of R (see the description in fR1 ]) contains at most one

ball of the form R . , . Any clopen set A such that Aeli , r for
X X

all x'' must also be in U for all a by 6.3. Then for

(p°Sl)
each a there exists n such that Aeli „ for all i > n

^ Y(pa,l,±)-j a

(5.7'). Pick 2m such that 2m > n for infinitely many a, then

AeU . where x1 = (0, . . ,x( | x| ) , a (n) ) for all n > m. (6.4). There-
x a

fore AeU , again by 6.4, and so x is in the closure of the x1'.

It is easy to verify that no other point of X is an accumulation

point of A. Any countable subset of A is contained in countably

many R, ,> and by a truncation method like that used above we can

find a clopen subset of each R< .. that contains each x'eR, .. fl A,
(P.? -w (P.j -L/

and such that their union is clopen. It follows that x is not in

the closure of any countable subset of A.

Yet X does contain subspaces which are c-spaces. For instance:

take any x, and take all x' > x such that x'(i) > 0 for all i > x
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In other words, within any R ball we take the top row of r,-balls

in it, the top row of each of these, and so on. What results (call

it P(x)) is actually a sequential space, an uncountable analogue

of the space S^ [AF] . Each point x' of P(x) is the extra point

of the one-point compactification of the set fx'':x''eP(x), x'' > x',

|x''| = x'| + l]--the points "below x on the following level".

What makes P(x) a sequential space is the lack of interference from

regions. Suppose we have any number of R ,, "two levels down from x,

below it" such that each R . one level down from x contains at

most finitely many R ,,; then U R ,, is a clopen set pure and

simple. With this in mind the proof that P(x) is sequential is

quite easy. Let A be a sequentially closed subset of P(x) not

containing x, then we show x is not an accumulation point of A:

by 6.4 there are at most finitely many x1 on the next level down

from x in A. U R , = A, for all such x1 is a clopen set. In

each other x' on this level there are at most finitely many x1'

in A for the next level below x'; and U Rx,, = A2 for all x''

associated with these x' is a clopen set. Proceeding thus we cover A

by infinitely many disjoint clopen sets. Their intersections with A

form an infinite collection of disjoint clopen sets, and it is easy to

show that no point of A is a boundary point of this collection, so

the union of all these sets is clopen in A and so is the closure in VA ,

Strictly speaking,we should say "above it" since if x is on level G.

the xf are in GN ,, the x'' are in G
N +o (the subscripts are increasing)

but if one has before him a visual image of A as described in [R.̂ ] , it is

much more natural to think of x as being above all the x' extending it.
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which is U A . We hc.ve covered !J A by a discrete collection

of RA each properly contained in R and so x is not an accumulation

point of A. To complete the proof that A is closed, take any point x

in the closure of A, then x1 is in the closure of A 0 P(x) which

is likewise sequentially closed. If £ £ A we adapt the above argument

to obtain a contradiction.

There is an interesting parallel of the P(x) in T: for each

[p,n] take the set P([p,n]) = { [q,m] , qeR, > , m ̂  n]. This is not

a sequential space (see above) but its topology is an uncountable

parallel of that of P(x). For instance, [p,n] is the extra point of the

"one-point Lindelofization" of the set {[q,n+l]:qeR? ,}. And if

we delete all countable limit points from ai + 1 and define a "convergent

N-, -sequence" in a space X as a continuous function from this space

to X and define H,-sequential spaces accordingly, we can show

P([p,n]) is an ^.-sequential space. Details are left to the reader.

It may be that the applications of A to general topology are

not yet exhausted!
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