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ARITHMETICAL REDUCIBILITIES, II

by

Alan L. Selman

Abstract

Certain reducibilities which generalize many-one reducibility

are studied. Let < be the result of eliminating the bounded

quantifier in the definition of 3" . it is shown that § differs

from the reducibility <̂  on sets of the same Kleene-Post degree.

Also, a characterization of "S in" is given, which for n = 1

enables us to make more precise the difference between "AeS7" and

"A § B".
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Arithmetical Reducibilities, II

by

Alan L. Selman

Introduction.

Concepts and notation present in this paper refer to our

paper [3]. For brevity, Theorem x.y of [3] will be cited here

as Theorem I.x.y. For the convenience of the reader we repeat

here the following two definitions.

Definition 1. If ft and X are binary relations defined on the

set of all subsets of uo, then ft is an X-reducibility relation,

if ft is reflexive, ft is transitive, and for all sets A and B,

if AftB, then AXB.

Definition 2. A S B nVx[BeS^-> A^S*], n > 1.

A P B <-> VxfBell —» Aell ], n > 1. A ^ B <—> there exist recursive
n n n ' ^ 1

functions f and g so that Vx(xeA <-> 3yVz .g(x,y,z)eB).

The £ -reducibilities § , n > 1, (and to a lesser extent the
n n ^~

n -reducibilities P , n ;> 1) , were studied in Chapter 2 of [3] .

Also, citing Theorem 1.2.8, A § B -*-» A 3" B for all sets A

and B so that B ^ 0 and B ^ u). It was shown that none of the

reducibilities § generalize relative recursion, but it is an im-

mediate consequence of Theorem 1.2.8 and the hierarchy theorem,

Theorem 1.2.3, that each S- does generalize many-one reducibility.
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One aim of the present paper is to make clearer the difference

between § and "25 in". The first two sections are largely de-

voted to this end. Central to this discussion is the concept of a

positive reducibility to be introduced in section 1. Also, this con-

cept will enable us to elaborate on the principal open questions

raised in [3].

Another aim of this paper is to study certain other reducibili-

ties which also generalize many-one reducibility. In this direction,

our attention is restricted to certain £ -reducibilities which arise

naturally from our considerations of the sequence S , n ^ 1. This

study will be taken up in sections 3 and 4. in section 3 we study

a reducibility, <[_ , which is the result of eliminating the bounded

quantifier in the definition of U . It is proved in this section

that S differs from <T on sets of the same Kleene-Post degree.
1 rm

In section 4 we study the reducibility § fl P . As is easily seen

(Theorem 6), S- fl 9 is a proper subrecursive reducibility.

1. Positive Reducibilities.

Definition 3. Let A and B be any two sets. If AeS2, then
n

AeTr in a positive sense if there is a predicate 3yS(x,y) which

satisfies the following two properties:

(i) Vx(xeA *- 3yS(x.y)) ; and

(ii) S is constructed using the propositional connectives A

and V, together with bounded quantifiers, from predicates

Pl''""'Pk'PiG^n' ^ ~ l,....k, k ;> 1, and from predicates f(x,y)eB

and f(x,y,x ,...,x )eB, f recursive, x ,...,x not free in s,

n ;> 1.
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Definition 4. A S -reducibility relation ft is positive if for
— — n

each set A and B so that A&B, AeZT in a positive sense.

Theorem 1. If & is a positive E -reducibility, then ft c § .
n ~ ~~ n

Proof. The proof consists of an easy induction argument.

Q
Essentially, if A&B and BeS . then there is a predicate

n
S(x,y) which satisfies properties (i) and (ii) of Definition 3,

Q
and there is a predicate R which is recursive in C so that

Q
xeB «-» 3z Vz . . . Qz R (x,z , ...,z ). If all occurrences of B in S

Q

are replaced by 3z Vz ...Qz R (x.z ,...,z ) , then, because S con-

tains no occurrences of ~ and no occurrences of unbounded quan-

tifiers, the resulting predicate can be put into prenex normal

form 11M, where the prefix II consists of n-alternating quanti-

C
fiers, and the matrix M is recursive in C. Thus AeS .

n

Remark. It is clear that Theorem 1 will not hold if material im-

plication and negation are used in the underlying propositional

logic of Definition 3 (ii). (Also, see Theorem 3 and the discussion

preceding Theorem 3). Moreover, suppose $ is an arbitrary truth

function of two arguments and suppose cp is the binary connective

whose truth-table is given by $. Direct examination of the six-

teen distinct truth-functions of two arguments shows that at least

one of the following holds:

(1) <p is defined in the logic generated by { A,V} ;

(2) $ is a constant function;

(3) negation is definable in the propositional logic gen-

erated by f(O,A,v};



4.

(4) 3xA(x)<pB is not equivalent to 3x[A(n)<pB], or

B<p3xA(x) is not equivalent to 3x[B<pA(x)].

Therefore, except for the constant truth-functions, {A,V}

generates the largest underlying propositional logic which can be

used in Definition 3.

Theorem 2. S is a positive £ -reducibility.

Proof. The theorem is a corollary of Theorem 1.2.8 for all but

the special cases. For the special cases, B = 0 and B = u>,

observe that if ArE , then ACTP in a positive sense for all B.

Corollary 1. If AP2T" in a positive sense, B /- 0 and B j4 u>,

then there exist recursive functions f and g so that

Vx(xcA <r̂» 3yVz g(x,y,z)eB).
z<_ £ (y)

Corollary 1 is interesting, since Definition 3 allows for

predicates 3yS of arbitrary finite length.

Is § , for n > 1, a maximal S -reducibility? Is there some-
n' n

thing analogous to Theorem 1.2.8 for n > 1? We conjecture that

the converse of Theorem 1 is true. We state this in the following

Conjecture 2.

An argument identical to the proof of Theorem 1 proves the

following lemma.

Lemma 1. If heTT in a positive sense and B e S in a positive
n * n

sense, then AeB' in a positive sense.
n
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Conjecture 1. §• is a positive S -reducibility.
n n

Conjecture 2. AelT in a positive sense <-* VxfBelr in a positive
n n

sense —) AeTT].
n

By Lemma 1, the implication from left to right of Conjecture 2

is true. By Corollary 1.2.1, Theorem 1, and Theorem 2, both Con-

jectures 1 and 2 are true for the case n = 1. Conjecture 2 im-

plies both Conjecture 1 and the maximality of § . In fact for

n > 1, let 3" denote the relation defined by A 3 B <-> AeZT
' n n n

in a positive sense. (By Corollary 1. Theorem 1.2.8, and Theor-

em 1.2.2, if B / 0 and B ̂  u>, then A 3" B e-^AeBT in a positive

sense.) Then, suppose 3" c & c " £ in", and suppose Conjecture 2

is true. There exist sets A and B so that A&B and A £~ B.

Thus 3X[B 3" X & A/E*] . A&B and B&X, bu t A/E*. Therefore , ft
n n n

is not transitive. Bv Lemma 1, 3" is transitive. Hence 3" is
n n

a maximal S -reducibility relation. By Theorem 1, 3" c § . Hence
n J * n — n

3" = S and § is a maximal S -reducibility.
n n n n

2. The Relations "S in".
n

The following Theorem 3 gives a characterization of AeTT,

B 7̂  0 and B 7̂  0). A comparison of this characterization for n = 1

with Corollary 1 pinpoints the difference between "Ae£7" and

"Ae£7 in a positive sense".
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Theorem 3. For all sets A and B, B ̂  0 and B ̂  u>, the fol-

lowing are equivalent:

(1) Ae2£;

(2) there exists a recursive predicate R and recursive

functions f,g,h so that if n is odd, then

Vx(x€A f-» 3x, Vx_. . . 3x [R(x,xl . . . ,x )
1 2 n , n

& V Y y < f ( x } (g (VY)eB & h (x n ,y ) /B)] ) ,

and if n i s even, then

H*3x Vx.. . .3x Vx [R(x,xn , . . . ,x )
1 2 n-1 n 1 n

V 3yy<f(x )(9(xn,y)eB v h(xn

(3) there exist recursive functions f,g,h so that if n is

odd, then

Vx(xeA <-> 3x. Vx_. . . 3x Vy
1 2 n y<f(x )

(g(x,y,x ,...,xn)eB & h(x ,

and if n is even, then

Vx(xeA -e^ 3x.Vx o . . . 3x _ Vx 3y > ._ . .
1 2 n - 1 n J ry<f(x )

( g ( x , y , x 1 , . . . , x n ) e B V h ( x n

Proof. Suppose AelT, B ̂  0, B ̂  cu, and n is odd.

Let Ch(z) s z is characteristic sequence number. (See [3,chapter 2,

§1].) For some e, Vx(xeA «-̂  3x. Vx_. . . 3x T (h(x ) , e,x,x, ,. . . ,x , ) ,
l z n n n 1 n-1

where h is the characteristic function of the set B.
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xeA (h

3x J x v . . 3 x [Ch(x ) & Vy < th(x ) ( ( x ) = 1
1 2 n n n n y

& ] .

Then

Le t R ( x , x 1 , . . . , x n ) = Ch(x n ) &

xeA W 3x Vx . . . 3 x [R(x,x , . . . , x )
1 2. n 1 n

& Vy < ) ( ( x ) = 1 H yeB) ] .
n n y

Vy < ) ( ( X ) =

yeB) & Vy <
n

Y€B) •-» Vy <

) (yeB -*> (x )n

( (xj = 1

)
n y

= 1) .

Let aeB and b /B . Define

Define

a, o t h e r w i s e .

h(x ,
n

b, otherwise.

Also ,

Vy < £h(x 1 -> yeB) <->Vy < ^h(xn) g (x n , y ) eB.

Vy
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Thus, xeA*-* 3x Vx2...3xn[R(x,x1,...,xn) & Vy < <th(xn) g(xn,y) eB

& Vy < th(x )h(x ,y)/B]. Let f(x ) = lh(x ). Then,
n n n n

xeA <->3x J x v . . 3x [ R ( x , x , . . . , x ) & Vy < f ( x ) ( g ( x , y ) eB & h ( x ,
l z n i n n n n

Hence, for n odd, (1) implies (2).

Define

, R ( X , X ,...,X )

Then, R(x,xn,...,x ) & Vx < f(x )g(x ,y)eB«-^Vx < f(x )in n n n

g (x,y,x ,...,x )eB. Thus xeA <—> 3x Vx ...3x [Vx < f(x )

(g-,(x,y,x ,. . . ,x ) eB & h(x ,y)^B)]. That is, (2) —> (3), for n odd.

It is clear that (3)—* (1).

Now, suppose n is even. Ae2T. Thus, for some e,

—1 —
Vx(xeA<r~> 3x Vxo. . . 3x Vx T (h(x ) , e, x , x . , . . . ,x ,) where h i s

1 2 n - l n n n 1 n - 1

the characteristic function of B.

—1 —

oaxivx2...axn_ivxn[ch(xn) & vy < *h(xn)((xn)y = 1

(r-> yeB) -̂  T (xn,e,x ,. . . »x ) ]

i oc V y S v - * * y * » / ^ y - - . /

& T^(xn,e,x1,...,xn_1)].

As for the case n odd, there exists a recursive predicate

R(x,x ,...,x ) and recursive functions g and h so that
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x e A <-> 3 x V x . . . 3 x . - i 3 x [ R ( x , x , . . . , x ) & V y < £ h ( x ) g ( x , y ) e B
1 2 n - 1 n 1 n nn

& Vy < <th(x ) h ( x , y ) ^ B ] . As b e f o r e , l e t f ( x ) = £ h ( x ) . T h e n ,
n n n n

x Vx . . . 3 x Vx [ R ( x , x . , . . . , x )
1 2. n- I n 1 n

v 3y < f ( x ) ( g ( x , y )^B v h ( x , y ) e B ) ] .
n n n

Interchanging g and h, and R and R, we have (1) -> (2).

(2)—> (3) is proved as in the case n odd. And, again, it is

clear that (3)—* (1). Thus, the proof of Theorem 3 is complete.

Corollary 2. For all sets A and B, B ^ 0 and B ^ <u, AeTT
n

if and only if:

(1) if n odd, there exists a recursive predicate R and

a recursive function f so that

Vx(xeA «-» 3x, Vx_. . . 3x Vy 3ueB 3WB
1 2 n J y < f ( x n )

R ( x , x , . . . , x > y , u , v ) ) ;

(2) if n even, there exists a recursive predicate R and

a recursive function f so that

VxfxeA 4-? 3x, . . . Vx 3y _, _ . . 3ueB 3v^B
1 n Jy<f(xn)

R(x,x1,...,xn,y,u,v)).

For any two sets A and B, we have shown, in Theorems 1 and 2,

that A S B •«-» AeST in a positive sense. Moreover, by Theorem 1.2.8,

Theorem 2, and Corollary 1, if B ^ 0 and B ^ tu, then AeS: in a
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positive sense if and only if there exist f,g, recursive so

that Vx(xeA«-> 3yVz ._. .g(x,y,z)eB). Compare this with the

following Corollary 3.

Corollary 3. If B ^ 0 and B ^ cu, then Ae£7 if and only if

there exist recursive functions f,g and h so that

Vx(xeA <-> 3yVz (g(x,y,z)eB

3. The S -reducibility £

We consider in this section the effect of eliminating the

bounded quantifier in the definition of 3" .

Definition 5. A < B *—>there exists a recursive function f so
-̂ rm

that Vx(xeA <-» 3yf (x,y) eB) .

Theorem 4.

(1) < is a E. -reducibility relation;
rm 1

(2) A

(3) (A < 0 -> A = 0) & (A < ou -̂  A =
rm rm

(4) B ^ 0 & B ^ U J - > - (AeSn -• A < B) ;
1 —rm

(5) flirmE iBcZ^ ™ - r

(6» ^rZ^™

Proof. The proofs follow immediately from the definition. We

will present the proof of (4). Suppose AeS & A ^ 0. Let

aeB and b/B. Define
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a, R(x,y)

f(x,y) = <

b, R(x,y),

where xeA <•-> 3yR(x,y) . Then, xeA <-* 3yf (x,y) eB. Suppose A = 0.

Choose b/B. Define f(x,y) = b, all x and y. Then, xeA <-^> 3yf (x,y) eB.

Corollary 4. A £ B 4* A < m
 B>

Proof. Let AeS so that A is not recursive. Then A < B

only if B is not recursive. Thus, (4) above is not true for < .

We show now that A <[„ B -[•» A <̂  B. Thus, the bounded
C* inn

quantifier in the definition of 3" , Theorem 1.2.8 and Corollary 1

cannot be eliminated.

2 2
Lemma 2. Let f(x) = x + 1 and g(x) = (x+1) . Then

VxVy(x>0 & y>0 -V f (x) ^ g(y) ) .

2 2 2 2

Proof. If x + 1 = (y+1) , then (y+1) - x = 1.

( y + l + x ) ( y + l - x ) = 1 . T h u s , y + l + x = - l a n d y + 1 - x = 1 ,

o r y + l + x = l a n d y + 1 - x = 1 . T h u s y = - 2 a n d x = 0 ,

o r x = y = 0 .

Lemma 3. There exist functions a and 3 so that:

(1) Vx(a(x) = 0 or a(x) = 1 ) , Vx(p(x) = 0 or 3(x) = 1);

(2) Vx(a(x) = O ^ p ( x 2 + 1 ) = p((x+l)2) = 0 ) ,

Vx(P(x) = 0<na(x2+l) = a((x+l)2) = 0);
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(3) there is no partial recursive function h so that

oc(x) = 0 <r* 3yp(h(x,y) ) = 0;

(4) there is no partial recursive function h so that

P(x) = 0H3ya(h(x,y)) = 0.

2 2
Proof. Let f(x) = x + 1 and g(x) = (x+1) . For each natural

number, define C(x) inductively by:

(i) xeC(x) ;

(ii) yeC(x)-> f(y)eC(x) A g(y)eC(x);

(iii) C(x) is the smallest set satisfying clauses (i) and (ii).

We define functions a and |3 by induction. This construc-

tion differs from the constructions in [3] in that at stage s + 1

not only are initial segments <x and 3 defined, but, for

each x < £h(a .) so that (a .) = 1 , and for each x < th(p .)
S+l S+l X S+l

so that (p ) = 1, a and 3 are defined on C(x), so that (2)
S T I 3C

is satisfied, as follows: If yeC(x) and a(y) = 0, then p(f(y)) =

P(g(y)) = 0. If yeC(x) and P(y) = 0, then <X(f(y)) = a(g(y)) = 0.

Thus, at stage s + l , infinitely many values of a are defined.

Condition (3) is equivalent to the following (3" ) :

(3') Ve3x{ [a(x) = 0 & Vy ({e} (x,y) def ined -̂  (3 ({e} (x,y)) = 1)]

or [a(x) = 1 & 3YP((e}(x,y)) = 0]}.

Condition (4) is equivalent to the following (41 ) :

(4') Ve3x{[3(x) = 0 & Vy({e} (x,y) def ined -> a ({e} (x,y) ) = 1)]

or [p(x) = 1 & 3ya({e}(x,y)) = o]}.
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Stage 0. Define a = B = 1.

Stage s + 1. By induction hypothesis a and 8 are already
s s

defined. Also, the following conditions are satisfied:

(5) Vx[cc(x) defined & Ct(x) = 0 -» 8(f(x)) is defined and

p(g(x)) is defined & B(f(x)) = 3(g(x)) = 0 ] .

(6) Vx[B(x) defined & 3(x) = 0 -*a(f(x)) is defined and

a(g(x)) is defined and a(f(x)) = a(g(x)) = 0 ] .

(7) Vx[a(f(x)) defined & a(f(x)) = 0 -=> [B(x) defined &

a(g(x)) defined & (B(x) = 0<^a(g(x)) = 0)]].

(8) Vx[a(g(x)) defined & a(g(x)) = 0 -> [B(x) defined &

a(f(x)) defined & (B(x) = o«-»a(f(x)) = 0)]].

(9) Vx[B(f(x)) defined & B(f(x)) = 0 -> [a(x) defined &

a(g(x)) defined & (a(x) = 0<-»a(g(x)) = 0)]].

(10) Vx[3(g(x)) defined & B(g(x)) = 0 -» [a(x) defined &

P(f(x)) defined & (a(x) = O«-»p(f(x)) = 0] ] .

s = 2e. a and B. . shall be defined at this stage so that
2e+l 2e+l

(3') is true at e for all extensions of a_ . and B o •• •
2e+l 2e+l

Case 1. 3x[(a(x) has not been defined or (<x(x) has been defined

& <x(x) = 0) ) & Vy[{e}(x,y) defined —=> B({e}(x,y) defined &

P({e}(x,y)) = 1]].

Note. <x(x) defined includes both the case x < -th(a, ) and
2e

x ;> £h(a ) where a(x) is defined at some stage £ 2e. cc(x) = 0

includes the case (a ) = 1.

RUNT umn
GARNEGIE-MILLON UNIVERSITY
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Let a be the least x satisfying the hypothesis of case 1.

Suppose a(a) is already defined and a(a) = 0. Then (3' ) is

already satisfied at e. If a(£h(a )) is already defined, then

define

ex = oc p .
2e+l 2e lh(<x )

2e

and Po J. = Po . It is clear that a and P satisfy
2e+l 2e 2e+l ^e+1

the induction hypotheses (5)-(lO). If a(<th(cc )) is not defined,

then define a. ., = ^ ' P ^ a ^ ) a n d P2e+1
 = P2e* a2e+l

 a n d

(5)-(10).

Suppose a(a) has not been defined. If a ^ f(b) and a ^ g(b),

for any b, then define

^ , = cc • II
2 e + l 2e

where h(x) = oc(x) + 1, if ot(x) is already defined, and h(x) = 2,

otherwise. Define p = P . Then, (31) is satisfied at e by

a2 +1 a n d ^2 ]' a2 1 i s d e f i n e d s o t h a t a(a) = 0. Therefore,

define values of a and P on C(a) by the rules:

yec(a) & a(y) = 0 -»p(f(y)) = P(g(y)) = 0, and yeC(A) & p(y) = 0

a(f(y)) = a(g(y)) = 0. Then, c c ^ ^ and P 2 e + 1 satisfy (5)-(10).

Suppose 3b a = g(b). By clause (6), P(b) is not defined or,

P(b) is defined and P(b) = 1. (In fact, if the latter, then

b < £h(P2e).) Also, by (7), qc(f(b)) is not defined or, oc(f(b)) is
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defined and a(f(b)) = 1. Define

TT
 h(x)

a = a • n p
2e+l 2e p

where h(x) = a(x) + 1, if a(x) is already defined, and h(x) = 2,

otherwise. (Then, in particular, a(f(b)) = 1, since f(b) < g(b).)

If p(b) is defined, define 3 = 3 ; if not define

32e+l = P2e' . ,Q * *x * '^(3)<

where h(x) = 3(x) + 1, if 3(x) is already defined, and h(x) = 2,

otherwise. Also, define values of a and 3 on C(a) as described

above. Then (3') is satisfied at e for oc . and 3- ,, and
2e+l 2&+L

a2e+l a n d P2e+1 s a t i s fY (5)-(10).

Suppose cc(a) is not defined and 3b a = f (b) . By clause (6),

3(b) is not defined or, b < ih(3o )
 a™3 (3O ), = 2. Also, by

2e 2e b
clause (8), <x(g(b)) is not defined or, a(g(b)) is defined and

= 1. Since a = f(b) < g(b) , g(b) is not defined. Define

= a • n ph{x)-P
l. n P

h

2e+l 2e ,, . w „ x ^a ^ ^ ,, x x^ h ( a ) ^ < a a<x<:g(b)

where h(x) is defined as before. If b < £h(P ), define £

3 ; otherwise define
2e

3 = 3
P2e+1 P2e
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where, again, h(x) is defined as before. Define values a and (3

on C(a) in the usual manner. Then, a and 3 satisfy

(3») at (e) , and satisfy (5)-(10).

Case 1 of stage 2e + 1 is now complete.

Case 2. Vx[(a(x) has not been defined or a(x) = 0) —> 3y[{e}(x,y)

defined & (3({e}(x,y)) not defined or 0({e}(x,y)) = 0)]].

Let a be the least x so that, for all y, a j4 f(y) and

a ¥ g(y)J and so that a(a) is not yet defined. Let b be the

least y satisfying the consequent of case 2 at x = a.

Suppose p({e}(a,b)) is defined and g({e}(a,b)) = 0. Then,

define

<xo , = a • n p h ( x ) ,2e+l 2e ,, . ^ , *

h(x) = a(x) + 1, if a(x) defined, h(x) = 2, otherwise. Define

3 2 e + 1 = P2e- Then, (5)-(10) hold, and (3') is satisfied at e

for all extensions of a^ , and 3
2e+l 2e+l

Suppose p({e}(a,b)) is not defined. Also, suppose (e}(a,b)

f(c) and {e}(a,b) ^ g(c), for any c. First, define

s

where h(x) = P(x) + 1, if p(x) is already defined, and P(x) = 2,

otherwise. Secondly, define
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o = a • n P
h(x)

2e+1 2e= a • n P ,
2e X

where h(x) = a(x) + 1, if a(x) is already defined, and h(x) = 2,

otherwise. In particular, cc(a) = 1 and P(fe}(a,b)) = 0. Thus

(3') is satisfied by a and P at e. Since |3({e}(a,b))

has been defined so that 3({e}(a,b)) = 0, define the necessary val-

ues of a and 3 on C({e}(a,b)) as before. That is, (yeC({e)(a,b))

& P(y) =0)->a(f(y)) =a(g(y)) = 0 , and (yeC( (e) (a,b) ) &a(y) = 0 )

—} 3(f(y)) = P(g(y))= 0. Then (5)-(10) are satisfied also.

Suppose p({e}(a,b)) is not defined and 3cfe}(a,b) = g(c).

By clause (5), a(c) is not defined or, a(c) is defined and cc(c) = 1.

Also, by (9), P(f(c)) is not defined or, P(f(c)) is defined and

3(f(c)) = 1. Firstly, define

2 6 + 1

where h(x) = P(x) + 1, if p(x) is already defined, and p(x) = 2,

otherwise. (Then, in particular, p(f(c)) = 1, since f(c) < g(c).)

Secondly, define values of a and p on C({e}(a,b)) in the usual

manner. Now we want to extend a so that a(a) is defined,

co(a) = 1, a(c) is defined, and a(c) = 1. c < g(c) = (e}(a,b).

Thus, c/C((e} (a,b) ) . Hence cc(c) is still undefined, or a(c) is

defined and oc(c) = 1 . a was chosen so that, for all x, a ^ f(x)

and a ^ g(x) . Thus ot(a) is still undefined. Define
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= a • n

where h(x) = co(x) + 1, if a(x) is defined, and <x(x) = 2, other-

wise. a(a) = 1 and 3({e}(a,b)) = 0, thus (3') is satisfied at e.

Also (5)-(10) are satisfied by this a and 3 . (The only

important clause in this case is (9), which still holds, since

P(g(c)) = 0, but P(f(c)) = a(e) = 1.)

Finally, suppose 3({e}(a,b)) is not defined and 3c{e}(a,b) =

f (c) . By clause (5), oc(c) is not defined or, a(c) is defined and

ct(c) = 1. Also, by (10), P(g(c)) is not defined or, 3(g(c)) is

defined and 3(g(c)) = 1. Since f(c) is not defined and f(c) <

g(c), g(c) is not defined. Firstly, define

3 = 3 n p h ^ 1 • n
2 e + 1 2 6 U h ( e K x < { e } ( a b ) X f e }( a ^) {} (a

where h(x) is defined as before. In particular 3 is defined

so that 3((e}(a,b)) = p(f(c)) = 0 and p(g(c)) = 1. Secondly,

define the necessary values of a and 3 on C({e}(a,b)). Now

we want to extend a so that <x(a) is defined, a (a) = 1, a(c)

is defined, and a(c) = 1. Proceed exactly as in the previous para-

graph. Then a and 3 are obtained so that (3r) at e
2e+l 2e+l

and (5)-(10) are satisfied.

Case 2 of stage 2e + 1 is now complete.
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s = 2e + 1. a,, „ and p_ _ shall be defined at this stage so
2e+2 2e+2

that (4') is true at e for all extensions of a and p_ ,„
2e+2 2e+2

Stage 2e + 2 i s t h e same m u t a t i s mutandis as s t age 2e + 1.

Define a and 9 by a(x) = < % s [ x ^ h f c g ]>x ^ X> a n d

a
Clearly, a and 3 satisfy (3') and (4') and therefore (3)

2

and (4). By induction clauses (5) and (6), cc(x) = 0 —> p(x +1) =

3((x+l)2) = o, and 0 (x) = O-»cc(x2+l) = cc((x+l)2) = 0. By

clauses (7)-(10), the converses are also true. Thus oc and p

satisfy clause (2).

The proof of Lemma 3 is complete.

Theorem 5. There exist sets A and B so that A < B, A <£„ B,

and A ^ B. In fact, the § -degrees of A and B are identical

and the rm-degrees of A and B are incomparable.

Proof. Apply Lemma 3 to obtain functions a and 3. Let

A = (x|a(x) = 0} and B = fx|p(x) = 0}. Then, there exist recur-

sive functions f and g so that Vx(xeA *->f(x)eB & g(x)eB), and

VX(XGB <-* f (x) eA & g(x)€A). Thus A £ B. (Also, B £ A.) By the

definition of S , A £_ B and B £_ A. On the other hand, by

Lemma 3, A j£ B and B j£ A.

It is also interesting to notice that for two sets A and B,

the existence of recursive functions f and g so that

Vx(xeA <-> f (x) eB & g(x)€B) does not imply A < B.
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By Theorem 1.2.2 (10), A £ B does not imply A < §̂ B. Also,

by Theorem 4 (6) , A <̂  B does not imply A £ B. Theorem 5 gives

an example of sets A and B so that d(A) = d(B), d§ (A) = dg (B),

and d (A)Id (B). Is there a set A so that dQ (A) = d, (A) and
~rmv '~rm 1 l

d (A)Id (A)? This question is open. Notice that by the following
~rmv ' ~rm ^

argument Lemma 3 cannot be used to obtain such a set A. Suppose

there exist recursive functions f and g so that xeA ̂  f(x)/A

& g(x)/A and xeA<->f(x)eA & g(x)eA. Then, xeA->f(x)/A. Also

> xeA, because x^A -> f(x)eA. Thus A < B, which implies

However, we have already established (Theorem 1.2.9) the weak-

er result that there exists a set A so that A and A are S -

incomparable, from which it follows that A and A are also

rm-incomparable.

4. The Reducibility S D P .

We consider in this final section the reducibility relation

§n H P . This reducibility is of some interest since it is easily

defined and, as the next theorem shows, is between many-one reduci-

bility and relative recursiveness.

Theorem 6.

(1) Sx 0 P]_ £ {(A,B) |A <^ B}.

(2) {(A,B)|A ̂  B} ^ s1 n PV
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Proof.

(1) Follows from Theorems 1 . 2 . 5 , 1 .2 .6 , and 1 . 2 . 2 ( 2 ) .

(2) C l e a r l y A < B -» A <1Q B & A C-, B. Lemma 3 and
^n Sx -J 1

Theorem 5 give us sets A and B so that xeA <-* f(x)eB

& g(x)eB. Thus A £„ B and A C , B. On the other hand, A and
1 1

B are constructed so that A <£ B.

Let R denote a number theoretic predicate recursive uniform-

ly in X, where x is a set variable. By a theorem of Nerode [1,

Theorem 11], A is truth-table reducible to B (A <̂  B) if and only

X B

if there exists such an R so that Vx(xeA«-» R (x) ) . < and £

can be expressed in this form. A < B if and only if Vx(xeA

*—• f(x)eB) for some recursive function f, and A <£ B if and only

if Vx(xeA Hf(x)eB) for some one-one recursive function f. In

either case, f(x)<cX is such an R . We will say that a subrecur-
•v

sive reducibility ft is defined by predicates R if for all A
X B

and B, A&B is and only if there exists R so that Vx(xeA^-» R (x))
and Vc,D[Vx(xeC «-*• R°(x) ) -

Lemma 4. 3A [A £„ A & A ̂  A].

Proof. Choose AeS so that A/II . Then A ̂ .Q B, all B.

_ X

Thus, A C, A. Aell , so A <„ ~K-+ AeTl. . Thus, A ̂  A.
s l *P i ^P

Theorem 7. A <£ B does not imply A ̂  n p B.



22.

Proof. The proof follows from Lemma 4 since A <̂  , A for all A.

Theorem 8. A O, n p B does not imply A <_ B.

Proof. There exist recursively enumerable sets A and B so

that d(A) = d(B) and A £ _ B (see [2, §9.6]). AeE. , hence
•"* ~' tt I

A £ g B. Since Be£ , BenX-> B < X. B <̂  X-» A £ X-> AeIIX. Thus,

A <p B. Therefore A £g ~p B.

Definition 6. © = {R (x)|R (x) is uniformly recursive in X

and VBVcfBeSj-^ RBeS^]}. ©2 = (R
X(x,y) | RX(x,y) is uniformly

recursive in X and VBVC [BeS^->

Theorem 9. Suppose B ^ 0 and B ^ ou. Then A <£„ B <—> there
„

X B
exists R (x,y)€© so that Tx(xeA -> 3yR (x,y)).

Proof. It is immediate from the definition of S that the right

hand side implies the left hand side.

Suppose A £„ B. By Theorem 1.2.8, there are recursive func

1
tions f and g so that Vx(xeA <-» 3yYz . g(x,y,z) eB) . Define

X X
R (x,y) = Vz ^ . g(x,y,z)eX, R e© . This completes the proof.

X X
Theorem 10. © = {R (x,x)|R (x,y)e& }.

Proof. Obviously, RX(x,y)e©2 implies RX(x,x)e© . If RX(x)e© ,

define RX(x,y) = RX(x), then RX(x,y)e&2 and RX(x) = RX(x,x).
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Open Questions.

1. By Theorem 8, S H P is not defined by predicates R

uniformly recursive in X. If Vx(xeA«-} R (x) ) and R e& , is

B X
A <Ls op B ? BY definition of S , Vx(xeA^->R (x) ) and R €&.. im-

plies A < o B, therefore it is sufficient to show AC-, B.
Sl ^ 1

2. Is S fl P a maximal proper S -reducibility?

Remark. S D P £ { (A,B) |A < B}. Choose A and B so that
^ ^ XT

2
A ^ B but so that for some recursive R, Vx(xeA «-» x eB & Vz R(x,z))



24.

Bibliography

[1] Nerode, Anil, "General Toplogy and Partial Recursive Func-
tionals" , Summaries of Talks presented at the Slimmer Insti-
tute for Symbolic Logic, Cornell University, 1957, 247-251.

[2] Rogers, Hartley, Jr., Theory of Recursive Functions and Ef-
fective Computability, McGraw-Hill, New York, 1967.

[3] Selman, Alan L., "Arithmetical Reducibilities, I", Depart-
ment of Mathematics, Carnegie-Mellon University RR 71-6,
1971.


