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A NONLINEAR SPECTRAL THEOREM FOR ABSTRACT NEMITSKY OPERATORS

by

Hermann Flaschka

§1. In this paper, the concepts and methods of linear spectral

theory on Hilbert space are adapted to the analysis of a class

of nonlinear operators. The goal is a representation of such

an operator cf> by a (strongly convergent) integral

(1) *(u) = |AE(dA)u;

the domain of integration A should admit a natural inter-

pretation as the spectrum of <&, the values of the ' spectral

measure' E are to be idempotent operators, and, when <3? is

linear, (1) should of course yield the conclusion of the

classical spectral theorem. At this stage of my investigation,

the class of operators under discussion is small, but also

quite basic: it consists of abstract analogues of the

Nemitsky operators

(2) $ : u(x)—* cp(u(x) ,x) ,

which make up the nonlinear portion of many nonlinear integral

equations [l]o When the underlying space X is a subset

of E , it is possible to give smoothness and growth-conditic

on the function cp which guarantee that the operator $ be
2

continuous, bounded, etc., on L (X)([l,2])o Regularity
questions aside, the crucial property from our more abstract



point of view is that the value of (<J>u)(x) depends on u only

through the value of u(x); this means that enough projections

(characteristic functions) in the Hilbert space commute

with <£ to allow a decomposition of the space. More precisely,

we make the

Definition 1: Let H be. a. real Hilbert space. An operator $

from H _to H JLs called an abstract Nemitsky operator

provided that

(i) $ _is continous and bounded (takes bounded

sets into bounded sets);

(ii) there exists a_ maximal abelian algebra G

of bounded, linear symmetric operators on H

(abbreviated: m.a.a.s.), such that for

every projection P&G,

(3)

(iii) for every ueH, the function of A defined

by.

*U(A) = *(Au)

is uniformly continuous on every set G' a G

which is bounded in the operator norm.

In addition, we shall always assume that

$ has been normalized to make <J>(0) = 0.

The basic properties of these operators are discussed in §2;

in particular, the somewhat surprising condition (iii) will

be motivated. It is proved in Theorem 1 that, corresponding



to every Nemitsky operator <£>, H can be realized concretely
2

as a space L (x) on which * acts as a functional operator (2).

Condition (3iii) ensures that the generating function cp(c,x)

will be continuous in c for a.e. x ; this restriction

on cp is a standard one ([1,2]). The discovery of the

rather delicate connection between the continuity of cp(*,x)

and the uniformity property (3iii) was made by V. J. Mizel

in his study of additive functionals [3]; the arguments

presented in his paper are crucial to the proof of Theorem lo

In view of the active research on additive functionals,

as evidenced by [3] and the referencescited there, we prove

(Theorem 2) an abstract Hilbert-space version of Mizel's

basic representation theorem. Namely, if a real-valued

function 0 on H satisfies additivity and uniformity

properties analogous to those of Def. 1, then 8 has a
2

concrete representation on some L (x),

(4) 9 : u->J 0(u(x) ,x)dn, ueL2(X).

x

If the Nemitsky operator <i> is the gradient of a function 0

on H, then 9 will be shown to satisfy the hypotheses of

Theorem 2, so that both <£ and its potential can be

represented in the standard forms (2), (4). If $ is not

only a gradient, but also Gateaux differentiable, and if the

function u—><J>r(u) is bounded from H to the space 8(H)

of continuous linear operators on H, a necessary and

sufficient condition for <£ to be an abstract Nemitsky



operator is that the derivatives be mutually commuting:

$'(u)$'(v) = *'(v) *• (u) , for all u,veH (Theorem 3).

It is interesting to note that the integral

representation (1) can be obtained even when <3? is not a

gradient (concretely, this is generally the case for vector-

valued Nemitsky operators [2]); since a linear operator is

a gradient precisely when it is symmetric, it appears that

the availability of the algebra G is more important to

our spectral theorem than the notion of symmetry attached

to gradients. (As stated before, the majority of gradient

operators is still excluded).

Turning now to the representation (1), we shall motivate

it by a formal discussion of the concrete case, and defer

precise statements to §3» Thus, let (2) induce a suitably

2
regular operator on L (X, d\i) , and define:

A = essential range of q>(c,x) = cp(c,x)/c as function from

!R X X to E ;

A' (x) = essential range of cp(«,x) as a function on IR ;

A(x) = A fl A1 (x) U {0} ; MA = (u6L
2(X); $(u) = au

some measurable function a, with a(x) < A and

for a.e. x ] , for AeJR » When 4? is l inear , cp(c,x) = l(x)c,

then A is precisely the usual spectrum of <£, and M,
2

consists of those functions in L which vanish wherever

t (x) J> A, so that M, is the range of the spectral

projection E((-oo,A)) associated with <i>. In a limiting

sense, then, we may think of the range of E(dA) in (1)

as consisting of those u(x) for which $(u) = Au, and of (1)

as a superposition of such eigenfunctions.



In §3, these ideas are reformulated in the abstract

setting, without (explicit) intervention of cp ; hopefully,

they will thereby become relevant in the study of more

general operators. At this point, we only remark that

the appropriate description of the 'spectrum' A is not

simply an analogue of the usual definition given in the

linear case (although the result is then the same); in

particular, the set of A's for which (Al-<f>)~ fails to

exist as a differentiable operator on H (the spectrum

according to Neuberger [4]) does not necessarily coincide

3 2with A. For example, when H = 3R, and cp(c) = c + c ,

then A = i—r ,oo), but the inverse of --r- -cp does not

have a finite derivative everywhere. It might be quite

useful to have a description of A in terms of properties

of the resolvent.

§2. In this section, we develop some implications of

Definition L Throughout, (X, S, \i) is a finite measure
2

space, L (X) consists of the real, square-integrable functions

on X, and H is a real, separable Hilbert space with norm || • |

and inner product (•,").

Definition 2; A real-valued function qj on TO X X is a

Caratheodory function if

(i) cp(«,x) is continous on IR for a.e. x;

(ii) cp(c,°) is measurable on X for every ce]R .



We always assume that cp(O, x) == O.

Definition 3: Let cp be a Caratheodory function. If the
2

operator <£ defined by ($u) (x) = cp(u(x),x) maps L (X) into

itself, and is continuous and bounded, then it is called

a (concrete) Nemitsky operator. We shall also write:

$u = 9 o u,

Krasnosel'skii [1] shows that when X c H n, the continuity

and boundedness of <£ are automatic as soon as it is known

2 2
that $ : L —> L . This property, in turn, is equivalent

2
to the estimate cp(c,x; | <^ a(x) + b|c|, aeL (X),b _̂> 0.

Another, rather subtle, characteristic of * was identified

by Mizel [3] :

Lemma 1; Let <i> he_ a_ concrete Nemitsky operator. Then <i>,

considered as _a map from L°° (X) jt£ L (X), _is uniformly

continuous on bounded subsets of L°°(X). The proof requires

only minor modifications of the arguments given in [3, p.454-5],

and will be omitted.

2
Corollary 1; For any ueL (X), the map a—>$(au) from

L (X) _to L (X) _is_ uniformly continuous on bounded

subsets of L00 (X) .

Proof; Fix M > 0, £ > 0. Since $ is continuous, there

is a 6 > 0 such that ||<±>(v) |j < £/3 whenever ||v|| < 6.

Now put EN = {x:|u(x) | <^ N}, and choose N so large

that ||xx_E u|| < 6/M. Then for any aeL00 (X) with ||a|| £ M,
N

_p u|| < 6, and so



6a

Y _ p ^ F u) | | < 26/3
N N

whenever ||a|| , !NI~ < M. On the other hand, ux_ is
OO OO E N

bounded, so by Lemma 1 there is 6-. > 0 such that

(**) ||$(axE u) - *(bxE u)|| < E/3
N N

when lla-bl^ < 61, and H a ^ , Hbjl^ ^ M. (*) and (**)

together with additivity of $ establish the uniform con-

tinuity, q.e.d.



Comparison of Corollary 1 and Definition 1 explains

the significance of property (3iii); (3iii) will necessarily

be satisfied if an abstract Nemitsky operator can be

realized by means of a Caratheodory function. We do not

know, incidentally, whether or not (3iii) is already a

consequence of (3i) and (3ii).

Theorem 1: Let $ be _a Nemitsky operator on H. Then

there exist _a measure space (X,B,|j) , an isometric isomorphism
2

K from H onto L (X), and _a_ concrete Nemitsky operator

$ on L (X), such that

K<f>(u) = 8(Ku), for all ueHc

Proof: The existence of (X,R,fi) and of the isometry K

is a consequence of the structure theorem for G ([5]).

Moreover, G can be identified with the algebra L°° (X)
2

of multiplications on L (X) : for every AeG, there is a

unique aeL°°(X) , such that KAK"1 U = aC, ueL2(X); this

map is onto L°° (X) , and ||A|| = ||a|| . Under the
H oo

isomorphism, <3> induces an operator <b on L (X) . We

show that $ is a Nemitsky operator.

The regularity properties of $ assume the following

form for <&:

(i) ' $ is continuous and bounded;

(ii) ' for every measurable E cz X, and any ueL (X),

u) = x
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(iii) ' <i>, as map from L (X) to L (X) , is uniformly-

continuous on bounded subsets of L 0 0(X).

$(Actually, (3iii) implies that $ satisfies the conclusion

of Corollary 1, and (iii)' in turn follows from this stronger

assertion),

2
Next, for rational c, define ceL (X) by c(x) = c,

and put

cpc(x) = $(c)(x).

cp (x) will be extended to a Caratheodory function by use

of the following lemma:

Given any 77 > 0, there is _a measurable set S such

that

(A) n(T - S ) < 77,

(B) for each pair of numbers M, t > 0, there

is a 8 = 6(£,M) > 0 such that for

rational h,h', we have

h,h'e[-M,M] and |h-h'| < 5 =» sup |tp.(x) - tp.,(x)| ^fe .
xes V

This lemma is due to Mizel [3, pp.458-9]; his proof, which

applies almost verbatim to the situation considered here,

relies heavily on properties (i)'-(iii)' of $. Now select
00

a sequence 77 —*• 0, put S = U S , and define
m=l ^m

l im VvJx) for xeS
-* c

cp(c^x) = ) (h rational)

0 for xeX - S <,



It follows from Mizel' s lemma that cp is a Caratheodory

function. Furthermore, <£>(s) = cp o s whenever s is a
2

simple function with rational values. If ueL (X) and u J> 0,

then u is the pointwise and norm limit of such simple

2
functions, s —> u a.e. and in L (X) . By continuity of cp,

(5) c p O s - > c p o u a 0 e 0

In addition, the sequence of integrals

dJ|cp o sn(x)

is uniformly absolutely continuous ([3, p.452]), so that
2

by V i t a l i ' s theorem [6 , p. 134] , cp o u is in L (X), and

(6) i)cp ° s || 2 -*• IIcp ° u||T2 .

~ n"L L

Because the measure space is finite, (5) and (6) combined

yield

||cp o sn - cp o u | | L 2 - * O .
On the other hand, cp o sn = $( sn) , and

n "*• ^ ii*(s ) - <£(u) L 2 -^O.11 n "L

Hence $(u) = y o u a.e. . The extension to arbitrary ueL (X)

is immediate. Thus <i> is a Nemitsky operator, q.e.d.

A very similar theorem holds for additive functionals

on H:

Theorem 2; Let 8 b_e _a real-valued functional on H,

with 8(0) = O, and suppose that
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i) 8 JLS, continuous,

ii) there exists a m.a.a.s. C such that whenever

A,BeG, and AB = 0, then 8 (Au+Bu) = 8(Au) + 8(Bu),ueH.

iii) for every ueH, the function 9
U(

A) = S(Au) is

uniformly continuous on bounded subsets of G.
2

Then H may be realized as an L (X,B,\i), and 8 as a
/\ 2

functional 9 oji L (X) _of the form

(8) 9(u) = J *(u(x),x)d|i, ueL2(X)
X

where vf is a Caratheodory function on I x X.

Proof; The representation space is obtained just as

in Theorem 1. The functional 8 induced by 9 on L (X)

has the following properties: it is continuous, additive

on functions of disjoint support, and uniformly continuous

on bounded subsets of L°° (X). Mizel's theorem 2 in [3]

characterizes precisely such functionals on L^-spaces, and

in the special case p = 2, assures the existence of the

representation (8), qoe.d»

Suppose now that a Nemitsky operator * on H is

the gradient of a functional 9,

_1
lim t [S(u+£v) - 0(u)] =

Then <i>, of course, has a concrete representation <J>, and on

the basis of the known properties of <£ ([2]), it is to

be expected that the potential 8 will be given by an

expression of the form (8) on the same representation space.

That this is indeed the case follows from Theorem 2 and
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Lemma 2; Let the Nemitsky operator $ b_e the gradient of 8.

Then 0 satisfies the hypotheses of Theorem 2 (the algebra G

needed there coincides with that associated with <f>) .

Proof: The additivity property (7ii) of 0 is a consequence

of the basic formula
l

e(u) = J($(tu),u)dt
0

(see [2]). Indeed^ if A and B are projections, then

(7ii) follows immediately from (3ii). The general case

may be reduced to this, since whenever AB = 0, there are

projections P,QeG such that PA = A, QB = B, and PQ = 0.

Now let ueH be fixed, and let K > 0. Since <£

is bounded, there exists a constant K' such that

(9) ||*(Au)|| <; K',

whenever ||A|| £ K. Combining (9) with Lagrange' s formula ([2]),

we f ind

|0(Au) - 9(Bu)| = | 9 ( B u + [Au-Bu]) - 8(Bu)| £

£ ||*(Bu + T[Au-Bu])|| • j|Au-Bu|j, 0 < T < 1

£K' | | u | | | |A-B | | ,

which implies (7iii). q.e.d.

Finally, under strong smoothness assumptions, gradient

Nemitsky operators can be characterized more intrinsically.

Theorem 3; Let $ b_e _a continuous gradient operator on H,

and suppose that the Gateaux derivative $' (u) exists at
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each ueHo Denote by G^ the family f <3>' (u) ;ueH}. Then:

(A) <i> has property (3ii) _if, and only if, CI

is abelian;

(B) if the map u -> $' (u) from H to G is

bounded, and G jL§_ abelian, then $ jLs

ja Nemitsky operator.

Remark: If $ is a concrete Nemitsky operator given by the

function cp(c,x), then, formally, $'(u) is multiplication

by >I^(u(x),x), where ^ = ^ cp. This relationship is usually

proved ([2]) under the assumption that \I> is itself a

Caratheodory function; from this one can deduce, for X c3Rn,

that the family G must be uniformly bounded.

Proof: Recall that the $' (u) , as derivatives of a gradient,

are necessarily symmetric,, Thus, if G is abelian, it is

contained in a moa.a.s. G. Let PeG be a projection Q = I - P,

and let ueH be fixedo if we put $(v) = <£(Pv + Qu) , then

*' (v) = cj?'(Pv + Qu)Q = Q<£>' (Pv + Qu) . Hence 0 = P^1 (v) =

' (v) ; in particular, P^(0) = P>£(u), or

(10) P$P(u) = P$(u) .

Next, differentiating the operators <£>(Pu) and P$(Pu)

with respect to u, we find that the derivatives are identical,

and since $(0) = 0,

(11) *(Pu) * P$(Pu) „

(10 and (11)together show that $ commutes with projections.
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The uniform continuity condition (3iii), is obtained just as

in Theorem 2, and assertion (B) follows. The converse of (A)

is an easy consequence of the definition of $'. q.e.d.

§3. In the last section, we discussed the analogue for

Nemitsky operators of the linear spectral representation

theorem (which states that a symmetric operator may be

2
realized as a multiplication operator on an L -space); now

we turn to the spectral integral for $. First, we translate

the definitions made in §1 into Hilbert space language.

Definition 2; The operator spectrum of <£ is the set

<£ = {AeG ; Au = <£(u) for some ueH} .

Definition 3; The spectrum of <i> is the set

A= [A; Aesp A for some Ae£}.

(By 'sp A1 we denote the usual spectrum of the symmetric

operator A ) .

Definition 4; For -coev < \i < +co, put £ = {AeX;v <£ sp A < \x)

Definition 5; Denote by M , -oo < v < \x < oo, the set of

ueH for which there is an Ae£ satisfying <£(u) = Au, and

(12) if PeG is a projection, and Pu = 0, then PA = 0 „

Remark: 1. In §1, we introduced the set M. in the

concrete case; its relation to the above definition is

just: M^ = M^ - Mv.

2. Without additional conditions - such as raono-

tonicity - which make the behavior of 0 more predictable,

HURT LIBRARY
M1WE6IE-MELL0N UNIVERSITY
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the M are likely to be very complicated sets. For example,

if H = IR and $(c) = sin c, then M = {c;vc<^ sin c < fie};

i.e., M is a collection of intervals, and as v and |j

vary, these intervals may merge or separate.

3. in the function representation, (12) states that

support u = support A . -These definitions are not vacuous:

Lemma 3: i) If v, <^ v < |j <^ u, , then M c M ;
1 1

ii) lim [lim M ] = {0};
oo v-> -oo

iii) lim M is dense in H.
v^-oo v^

Proof: i) follows immediately from the definition» The

remainder of the proof is most efficiently carried out in
2

that L -representation of H in which G corresponds
ooto multiplications by the L -functions; we denote the images

of ueH, AeG, by u(x) and ^.(x) , respectively.

Fix ueH, and put <l?(u) = v. Define

E n = {x; | u(x) ! ^ -̂  , | v(x) | ^ n], and put ? n = XE . Pn is
n

then a projection in 0, and with the notation u = P u, v = P v,
n n n n

(3ii) implies

Moreover, again by (3ii), support v_ cz support u . Thus,

we define A = P • v /u eL , then sp A is bounded, son n n n n

that An e£v for some -oo < vn < ^ < +oo, and
n n

Pu = 0 ^ PA = 0, for projections PeG.
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Consequently, u eM , and as n —> <x> , u —>u. This
n n

proves (iii). Assertion (ii) follows from the fact that

to any nonzero ueM , -oo < v < |i < +00, there corresponds

precisely one AeC with the properties demanded by

Definition 5. Indeed, suppose that <i>(u) = Au = A'u;

then (12) implies that

(13) support A = support A' = support 3>(u).

and so Au = A'u means A = Af a.e., or A = A', q.e.d.

Remark; Observe that only property (3ii) of <J> was needed

in the proof. While continuity of $ will play a role later,

the uniform continuity condition (3iii) is unnecessary, and

the spectral theorem (1) will be obtained for operators

which may not have a spectral representation by a

Caratheodory function.

Next, we introduce the 'spectral projections' E which

enter into (l)o Until further notice, ueH is a fixed element,

Definition 6; P = {PeG 1 P is a projection, PueM }.

p = inf{||pu-u||; PePv^}.

Observe that P 4 0 for v < 0 < \j., since then OeP ;

furthermore, p exists since the numbers |jpu-u|| are

bounded below by 0. We will show that there is a

unique PeP for which the inf is attained.
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Lemma 4; Let p ; Q e P
v u • Then P + Q - PQ = vu

Proof: By assumption, there are A,Be£ such that

a) APu = $(Pu)

b) BQu = $(Qu)

Write Q = PQ + (I-P)Q; then b) becomes

BPQu + B(l-P)Qu = $(PQu) + $((I-P)Qu).

Multiplying by (I-P), and using (3ii) and commutativity,

we get

c) B(I-P)Qu = $((I-P)Qu).

Let C = AP + B(I-F)Q, and add a) and c) to obtain:

C(Ru) = $(Ru).

Now APe£ , B(I-P)Qe£ , and the product of AP with

B(I-P)Q is zero; therefore v <[ sp C < |i and Ce£ »

Since A,B have property (12), so does C. Thus

RueM , q.e.d.

Corollary 1: _If p = ||Pu-u|| = ||Qu-u||, then P = Q.

Proof; Put R = P + Q - PQO Then ReP , and if P ^ Q,

||Ru-u|| < p, which contradicts the def ini t ion of p.

Corollary 2; if |jpu-u!| > p, then there is an ReP

such tha t PR = P, and |JRu-u|| < ||PU-U||O

Proof: By def ini t ion of p, there is a QeP such tha t

||Qu-u|| < | |PU-U||. Put R = P + Q - P Q ; R has the desired

proper t ies .
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Corollary 3: If p = ||Pu-u|| < ||Qu-u||, then PQ = Q.

Proof: Obvious.

Corollary 4; There exists a P eP , such that

p = | | P ^ U - u||.

Proof: For each n, pick p
n

e S : >
v u such that | | p

n
u — ull < P + "^ >

and P P , = P , (by Cor. 2)„ It is easy to see thatn n-1 n-l

the limit P = lim P exists , and that ||p u-u|| £_ p.
V^ n»oo n VM>

Now by assumption, there are A e£ such that
n v|j.

AnPn u = $(Pn u) . With Qn = Pn- Pn+1^ we also have AnQn u = $(Qnu)

Since the Q are disjoint, and A e£ , the series
CD

£ A Q converges and defines an operator AeG, with
n n n

v ̂  sp A < u. Now APn u = r AiQi u = E* (Q±u) = $(£ Q± u) =

AP u = lim AP u = lim <f>(P u) = cb(p u),

n n ^

the last equality holding by (3i)„ (12) now follows easily:

if R is a projection in C,, and RP u = 0, then
RP u = 0 and thus RA = 0. But then RA = 0. and son n
Pv^iePHr By d e f i n i t i o n o f P> IIp

v^
 u-ull 2 P> a n d t h «

corollary is proved.

Corollary 5: If v, < v, then P P = P
— — 1 ' — — v1ii v|j vn

This follows from Cor. 3, and gives an unambiguous meaning to

Definition 7: For each ueH, let P (u) denote the
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projection constructed above, and define an operator

E u = lim P (u)u.
H - C O M

E : H—>H by

The following properties of E are easily verified

2
Lemma 5; (i) E = 1 ;

( i i ) E E = E . r -, ;
v ' ii v rain{ia,v}

(iii) for each ueH, lim E u = u, and
H-*co M

lim E u = 0;
|j*-oo W

(iv) if -oo < |_t <^ inf A, then E = 0 ;

if sup A < (i < +oo, then E = 1 ;

(v) if v < u, then (E^ - Ev)ue£v^,

for each ueH;

(vi) the function u, —>• E u is left-continuous.

We are now ready to establish the integral formula (1).

Let ueH be fixed, and let 6 > 0 be given. Choose N

so large that ||*( (EN~E_N)u) - $(u) || <| ||u|| ; this is

possible by (iii) of Lemma 5, and by continuity of $.

Now subdivide the interval [-N,N], -N = \i < |j, <...< [X = N,

making 1 ^ - (-U_1I < \ for k = 1, ...,n. Then

observe that

k^l ^k "k-1 k=l Wk ^ - 1 k=l
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where A.e£. by Lemma 5, (v), and P,u = (E -E )u.
^ Mk-l,uk

 k Uk ^k-1

Thus, if Ak e[|ik_1

Because the P, u are pairwise orthogonal, and because

sp A, c t^k-l'^k^ ' we •fiave t^ie estimates

HE A P U - «( (E -E )u) || £ f US P u|| <; | ||u||.
k = l K K N N ^ k - 1 K ^

Hence, for sufficiently large N and sufficiently fine

subdivisions of [-N,N],

n
(15) ||S A,(E -E )u - *(u)|| <£||u||.

k=l M'k Tc-1

The sum in (15) may naturally be interpreted as a Stieltjes-sum
f

approximating AE(dA)u. We have therefore proved:

-oo

Theorem 4; .Let, $ jbe ^n operator on H which satisfies

(3i),(3ii). Then there exists a family {E } of idempotent

operators, with the properties listed in Lemma 5, such that

for each ueH,

(1) *(u) = J AE(dA)u;
-oo

the integral is to be taken in the Stieltjes-sense indicated

in equ. (15).

Remarks t L>The claim made at the beginning of this paper, to

the effect that the integral (1) need only be extended over A ,
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may be established by replacing E u with P (u)u,

(cf. Def. 7) and studying the properties of P (u) as

a resolution of the identity.

2. At this point, it is not clear whether the integral (1)

can be used to construct a functional calculus; the basic

difficulty lies with the non-linearity and discontinuity

of the 'projections' E »
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