MR 23T

A NONLI NEAR SPECTRAL THEOREM FOR
ABSTRACT NEM TSKY OPERATCORS

by

Her mann Fl aschka

Report 71-13

February, 1971

This research was supported by NSF G ant GU- 2056.
University Libraries
Carnegie Mdlon Unwersity
Pittsburg, PA 15213-3890

HUNT  LIBRARY
UBNEGIE4EUQN UWVEASTY



- A NONLI NEAR SPECTRAL THEOREM FOR ABSTRACT NEM TSKY OPERATORS

by
Her mann Fl aschka

81. In this paper, the concepts and nethods of |inear spectra
theory on Hilbert space are adapted to the analysis of a class
of nonlinear operators. The goal is a representation of such

an operator ¢ by a (strongly convergent) integra

(1) | (u) = | AE(dA) u;

the domain of integration A should admit a natural inter-
pretation as the spectrumof <& the values of the ' spectra
measure' E are to be idenpotent operators, and, when <& is
l'inear, (1) should of course yield the conclusion of the
classical spectral theorem At this stage of my investigation
the class of operators under discussion is small, but also
quite basic: it consists of abstract anal ogues of the

Nem t sky operators
(2) $ o ou(x)—* cp(u(x) ,x) ,

whi ch make up the nonlinear portion of many nonlinear integra
equations [l]Jo When the underlying space X is a subset
of E® it is possible to give smoothness and grow h-conditicns

on the function cp which guarantee that the operator $ be
2

conti nuous, bounded, etc., on L (X)([l,2]), Regularity

questions aside, the crucial property fromour nore abstract



point of viewis that the value of (<I>)(X) depends on u only
through the value of wu(x); this neans that enough projections
(characteristic functions) in the Hilbert space comute

with <£ to allow a deconposition of the space. Mbdre precisely,

we nmake the

Definition 1: Let H be. a. _real Hilbert space. _An_operator $
from H to H Js called an abstract Nem tsky operator

provi ded that

(i) $ _is continous and bounded (takes bounded

sets into bounded sets):;

(it) there exists a nmaxinal _abelian algebra G

of bounded, linear synmmetric operators on H

(abbreviated: ma.a.s.), such that for

every projection P&G

(3) pd = ¢P;

(iti) for every wueH _the function of A defined
by.

“W(A) = *(A)

is uniformy continuous on every set G a G

whi ch is bounded in the operator norm

In additi on, we shall al ways assune that

$ has been normalized to make <0 = O.

The basic properties of these operators are discussed in 8§2;
in particular, the somewhat surprising condition (iii) wll

be notivated. It is proved in Theorem11l that, corresponding




to every Nem tsky operator <€ H can be realized concretely
2

as a space L (x) on which * acts as a functional operator

Condition (3iii) ensures that the generating function cp(c,Xx)

will be continuous in ¢ for a.e. x ; this restriction

on cp is a standard one ([1,2]). The discovery of the

rat her delicate connection between the continuity of cp(*,Xx)

and the uniformty property (3iii) was made by V. J. M zel

in his study of additive functionals [3]j t he argunents

presented in his paper are crucial to the proof of Theoreml|,
In view of the active research on additive functionals,

as evidenced by [3] and the referencescited there, we prove

(Theorem 2) an abstract Hil bert-space version of Mzel's

basic representation theorem Nanely, if a real-val ued

function 0 on H satisfies additivity and uniformty

properties anal ogous to those of Def. 1, then 8 has a
. 2
concrete representation on sone L (Xx),

(4) 9 : u->J 0(u(x),x)dn, uelL?(X).

X
If the Nem tsky operator < is the gradient of a function O
on H then 9 wll be shown to satisfy the hypotheses of
Theorem 2, so that both <£ and its potential can be
represented in the standard forms (2), (4). If $ is not
only a gradient, but also Gateaux differentiable, and if the
function u—><J>'(u) is bounded from H to the space 8(H
of continuous |inear operators on H, a necessary and

sufficient condition for <£ to be an abstract Nemtsky




operator is that the derivatives be nutually commuti ng:

$ (W (v) =*"(v) *« (u, for all u,veH (Theorem3).

It is interesting to note that the integra
representation (1) can be obtained even when < is not a
gradi ent (concretely, this is generally the case for vector-
val ued Nem tsky operators [2]); since a linear operator is
a gradient precisely when it is symetric, it appears that
t he évailability of the algebra G is nore inportant to
our spectral theoremthan the notion of synmmetry attached
to gradients. (As stated before, the majority of gradient

operators is still excluded).

Turning nowto the representation (1), we shall notivate
it by aformal di scussion of the concrete case, and defer
preci se statements to 83» Thus, let (2) induce a suitably
regul ar operator on L 6&;d\i) , and defi ne:

A = essential range of §>c,x) = cp(c,x)/c as function from
IRXX to E;

A (x) = essential range of ©Cp(«,x) as a functionon IR ;

AX) = ATl A (0 U{0}; M= (ul?(X); $(u = au

sone neasurable function a, with a(x) < A and a{x)eA(x)
for a.e. x], for AeR » When '4? is linear, cp(cx) = I(X)c,
then A is precisely the usual spectrumof < and M,

consi sts of those functions in L2 whi ch vani sh wherever

t (x) J> A so that M is the range of the spectral

projection E((-00,A)) associated with <> In a limting
sense, then, we may think of the range of E(dA) in (1)

as consisting of those u(x) for which $(u) = Au, and of (1)

as a superposition of such eigenfunctions.




In 83, these ideas are refornulated in the abstract
setting, without (explicit) intervention of cp ; hopefully,
they will thereby becone relevant in the study of nore
general operators. At this point, we only remark that
the appropriate description of the 'spectrum A is not
sinply an anal ogue of the usual definition given in the
| inear case (although the result is then the same); in
particular, the set of A's for which (A-<f>)~1 fails to

exist as a differentiable operator on H (the spectrum

according to Neuberger [4]) does not necessarily coincide

with A For exanple, when H= 3R and cp(c) = c3+ cz,

then A= i—Fi', 00), but the inverse of r_,l’ -¢p does not
have a finite derivative everywhere. It mght be quite
useful to have a description of A in terns of properties

of the resolvent.

82. In this section, we develop sone inplications of

Definition L Throughout, (X S, \i) is a finite neasure

2 _ . .
space, L (X) consists of the real, square-integrable functions
on X, and H is areal, separable Hilbert space with norm || « ||

and inner product (e,").

Definition 2; A real-valued function g on TOX X is a

Car at heodory function if

(i) cp(«,x) is continous on IR for a.e. Xx;

(ii) cp(c,®) is measurable on X for every celR.




V¢ al ways assume that cp(Q x) == Q

Definition 3: Let cp be a Caratheodory function. |If the

2
operator <£ defined by ($u) (x) = cp(u(x),x) mapsL (X) into
itself, and is continuous and bounded, then it is called

a (concrete) Nem tsky operator. W shall also wite:

$u =9 o u,
Krasnosel 'skii [1] shows that when X c H", the continuity

and boundedness of <£ are autonmtic as soon as it is known

that $ : L2—> L2. This property, in turn, is equivalent
to the estimate dp(c,x;’| < a(x) + b|c|, aeLz(X),b_’?O.

Anot her, rather subtle, characteristic of * was identified

by Mzel [3] :

Lemma_1: Let < he a concrete Nenmitsky operator. Then <3

considered as _a map from L°° (X)) jt£ LZ(X), ds uniformy

conti_nuous on bounded subsets of L°°(X). The proof requires

only m nor nodifications of the argunents given in [3, p.454-5],
and will be omtted.

2
Corotlary 1: For any. uel (X)), the mgp a—>%au) Ffram

2 . . .
Lw X) 1o L X)) s _uniformly _continuous on bounded

subsets of L% (X) .

Proof; Fix M > 0, £>0. Since $ is continuous, there
isa 6 >0 such that K&V || < £/3 whenever |lv|| < 6.

Nov put Ey = {X:|lu(x) | <~ N}, and choose N so large

that ||Xx_e Nu” < 6/M. Then for any aeL® (X) with lall i £ M,

llaxy,_p ull < 6, and so
N




6a

(*) l®ax, _, w) - &by~ u)|| < 26/3
T 7N TN
whenever ||la]] , 'NI~ < M. On the other hand, ux_is
QO QO En
bounded, so by Lemma 1 there is 6, > 0 such that
(**) || $(axe U) - *(bxeu)|| <E3
N N

when [la-bl* < 64, and Ha”, HjI* *M (*) and (*)
together with additivity of $ establish the uniformcon--

tinuity, g.e.d.




Conparison of Corollary 1 and Definition 1 explains
t he significance of property (3iii); (3iii) will necessarily
be satisfied if an abstract Nem tsky operator can be
realized by neans of a Caratheodory function. W do not
know, incidentally, whether or not (3iii) is already a

consequence of (3i) and (3ii).

Theorem1: Let $ be a Nemitsky operator on H  Then

there exist a_measure space (XB]|j) , _an_isonetric isonorphism

K from H onto L%X), and a concrete Nem tsky operator

on L2(X), such that

)

Kf>(uy) = 8(Ku), for all ueH

Proof: The existence of (XRfi) and of the isonetry K
is a consequence of the structure theoremfor G ([5]).
Moreover, G can be identified with the algebra L°° (X
of multiplications on L2(X) . for every AeG there is a
uni que aelL°°(X), such that KAK"! U= aC, udelL?(X); this

map is onto L°° (X)), and [|A| = ||d] . Under the
H oQ 2

i sonorphism,_ & induces an operator <b on L (X . W
showthat $ is a Nenmitsky operator.
The rggularity properties of $ assume the follow ng

formfor <&
(i) $ is continuous and bounded;

(ii) ' for every neasurable Ecz X, and any GeL%(X),

Bixy U) =X () 5




(iti) " <43 asmp from L (X to L (X, is uniforny-

continuous on bounded subsets of L°%°(X).

(Actual ly, (3iii) inplies that $ satisfies the conclusion

of Corollary 1, and (iii)" in turn follows fromthis stronger

assertion),

Next, for rational «c, define CeLZ(X) by T(x) = c,
and put
, cpe(x) = 3(T) (x).
R (x) wll be extended to a Caratheodory function by use

of the follow ng | enma:

Gven any 77 >0, there is _a measurable set Sﬂ such

t hat

(A n(T - ST) <71,

(B) for each pair of nunbers M t >0, there
isa 8 =6(E£,M >0 such that for

rational h,h', we have

h,h'e[-MM and [h-h'| <5=»sup [tp(x) - tp,,(x)| ~fe .
xesv

This lenmma is due to Mzel [3, pp.458-9]; his proof, which

applies alnost verbatimto the situation considered here,

relies heavily on properties (i)' -(iii)" of $. Now select
00

a sequence 7¢, % 0, put S = UI S , and define
m= "m
lim VvJx) for xeS
h-*¢

cp(chx) = (h rational)
0 for xeX- S «




It follows from Mzel' s lemma that cp is a Caratheodory

function. Furthernore, %>(s) =cpos whenever s is a

2
sinmple function with rational values. If wueL (X) and u J> 0,
then u is the pointwise and normlimt of such sinple
. . 2 o
functions, S, U a.e. and in L (X . By continuity of cp
5) chns—>cpouaoeo

In addition, the sequence of integrals
Jep o sa(x) 12

is unifornmy absolutely continuous ([3, p.452]), so that

2
by Vitali's theorem [6, p.134], cp ou is in L (X), and
(6) p ° s || 2 llp ° ullr2
~ n"L L

Because the neasure space is finite, (5 and (6) conbined
yield

lco 0 sn - gp 0ullL2 -*O.
On the other hand, cp o s, = $( s, , and

B ( Sr? - <E(u) ‘LLZ— " O.
Hence $(u) =y ou a.e. . The extension to arbitrary uelL*(X

is imediate. Thus % is'al\lem'tsky operator, q.e.d.

A very simlar theoremholds for additive functionals

on H:

Theorem 2; Let 8 be _a_real-valued functional on H

with 8(0) = O _and suppose that
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i) 8 JLS continuous,

ii) there exists a ma.a.s. C _such that whenever

A, BeG and AB = 0, then 8 (Au+Bu) = 8(Au) + 8(Bu), ueH.

iii) for every ueH the function °u(?) = S(Au) |is

uni fornmly continuous on bounded subsets of G

2
Then H nmay he realized as an_L (X B/\i), and 8

£uneti-onak Q g i- L2(X) e -the form
(8) 8(@) =J *(Gx),x)di, 1Del?X)
X

where vf is a Caratheodory function on | x X

Proof; The representati on space is obtained just as

in Theorem 1. The functional 8 induced by 9 on L2(X)
has the follow ng properties: it is continuous, additive
on functions of disjoint support, and uniformy continuous
on bounded subsets of L°° (X). Mzel's theorem2 in [3]
characterizes precisely such functionals on L”"-spaces, and
in the special case p = 2, assures the existence of the

representation (8), q.e.d»

Suppose now that a Nem tsky operator * on H 1is

the gradient of a functional 9,

1
‘I'iBnT' [S(u+Ev) - O(u)] = (@(w),v), wu,veH,

Then <> of course, has a concrete representation 3]> and on
t he basis of the known properties of <§([2]), it isto
be expected that the potential 8 wIlIl be given by an
expression of the form (8 on the sane representati on space.

That this is indeed the case follows fromTheorem 2 and
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Lenma 2; Let the Nemitsky operator $ be the gradient of 8.

Then 0 satisfies the hypotheses of Theorem?2 (the algebra G

needed there coincides with that associated with <3 .

Proof: The additivity property (7ii) of 0O 1is a consequence

of the basic fornul a
|

e(u) =J($(tu),u)dt
0
(see [2]). Indeed™ if A and B are projections, then
(71i) follows immediately from (3ii). The general case
may be reduced to this, since whenever AB = 0, there are
projections P, Q@G such that PA= A B=B and PQ = 0.
Now | et ueH be fixed, and let K > 0. Since <£

is bounded, there exists a constant K such t hat
(9) [[*(Anf] < K,

whenever ||A| £ K Conmbining (9) with Lagrange' s formula ([2]),

we find
|O(Au) - 9(Bu)| = |9(Bu+ [Au-Bu]) - 8(Bu)| £
£ |[*(Bu + T[Au-Bu])|| * jl|Au-Bulj, 0 < T <1
EK[|ulll1A-B]I,

which inplies (7iii). q.e.d.

Finally, under strong snoot hness assunptions, gradient

Nem t sky operators can be characterized nore intrinsically.

Theorem 3; Let $ bhe _a_continuous _gradient operator on H

and suppose that the Gateaux derivative $' (u) exists at
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each ueHo Denote by G the famly f < (u) ;ueH}. Then:

(A < has property (3ii) _if, and only _ij_,__CIO

is abelian;

(B if the mp u->% (uy from H to G is

bounded, and G, jl§8 abelian, then $ jLs

ja_Nem t sky operator.

Remar k: _ If $ is a concr'ete Nem t sky operator given by the
function cp(c,x), then, formally, $ (u) ~is multiplication
by >I~(u(x),x), where "~ =" cp This relationship is usually
proved ([2]) under the assmlmotion that \> is itself a

Car at heodory function; fromthis one can deduce, for X c3R",

that the famly Go must be uniformy bounded.

Proof: Recall that the $' (u), as derivatives of a gradient,
are necessarily symretric,, Thus, if Go is abelian, it is
contained in a ma.a.s. G Let PeG be a projection Q=1 -
and let ueH be fixed, if we put $(v) = <E(Pv + Qu) , then

¥ (v) = ¢?(RW + QU)Q= G (Pv + Qu) . Hence 0= P (v) =

= (PY ' (v) ; inparticular, P*0) = P>£(u), or

(10) P$P(u) = P$(u) .

Next, differentiating the operators <£Ri) and P$(Pu)
with respect to u, we find that the derivatives are identical,

and since $(0) = 0,
(11) *(Pu) * P$(Pu) ,

(10 and (11)together show that $ comutes with projections.

P,
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The uniformcontinuity condition (3iii), is obtained just as
in Theorem2, and assertion (B) follows. The converse of (A

is an easy consequence of the definition of $. g.e.d.

83. In the last section, we discussed the anal ogue for
Nem t sky operators of the |inear spectral representation
theorem (which states that a symmetric operator may be
realized as a nultiplication operator on an L 2-spac:e); now
we turn to the spectral jntegral for $. First, we translate

the definitions made in 81 into Hilbert space |anguage.

Definition 2; The operator spectrumof <£ is the set

<£ = {AeG; Au = <f(u) for sone ueH} .

Definition 3: The spectrumof < 1is the set

A= [A Aesp A for sone Aef}.

(By 'sp A' we denote the usual spectrum of the symetric

operator “A).

Definition4; For -coev <\i <+co, put Evu: {AeX v <E sp A < \X).

Definition 55 Denote by M\m-oo <V <\x <00, the set of

ueH for which there is an AeEW1 satisfying <€(u) = Au, and

(12) if PeG is a projection, and Pu =0, then PA= 0,
Remar k: 1. In 81, we introduced the set MA in the

concrete case; its relation to the above definition is
just: M =M - M.
2. Wthout additional conditions - such as raono-

tonicity - which nake the behavior of O nore predictable,

HURT LIBRARY
MIWEGIE-MELLON UNIVERSITY
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t he Mvp are likely to be very conplicated sets. For exanple,
if H=IR and $(c) = sinc, then I\/k)u= {c;ve<? sin ¢ < fie};
i.e., M\)LL is a collection of intervals, and as v and |]
vary, these intervals may nerge or separate.

3. in the function representation, (12) states that

support u = support A . -These definitions are not vacuous:
Lemme 3: i) If v, v <|j_<tu, then M _c Mlul ;
ii) lim [lim Mll:{O};
W=>-00 V->-00 Y
iii) lim M is dense in H
vh-00 YA
U > +00
Proof: i) follows imediately fromthe definition» The

remai nder of the proof is nost efficiently carried out in
2
that L -representation of H in which G corresponds

to nmultiplications by the L% funct i ons; we denote the inages
of ueH, AeG by ulx) and *.(x), respectively.
Fix wueH, and put <42Au = v. Define

En={x [U) ! A~ ,Tvw(x)| ~n], and put” 2, =Xe . P, is
n

then a projection in 0 and with the notation u = P u, v =Py,
n n n n

(3ii) inplies

Moreover, again by (3ii), support V_cz support U . Thus,
we define An:ﬁ -nvAu eL , then sp An i s bounded, so

that A, ef, u for some -00 <Y, < A < +00, and
n~n

Pu, =0 "™ PA_= 0, for projections PeG
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Consequent |y, uneM , and as n— <, u, —u. Thi s

VnHn

proves (iii). Assertion (ii) follows fromthe fact that
to any nonzero ueMW‘l -00 <V < |i <+00, there corresponds
precisely one AeC wth the properties denmanded by
Definition 5. Indeed, suppose that <X u = Au = A' u;

then (12) inplies that

-~
(13) support L= support A = support §>(u).

and so Au = Au nmans A=A a.e, or A=A, q.e.d.

Remark; (Cbserve that only property (3ii) of < was needed
in the proof. \While continuity of $ wll play a role |ater,
the uniformcontinuity condition (3iii) is unnecessary, and
the spectral theorem (1) will be obtained for operators
whi ch may not have a spectral representation by a
Car at heodory functi on.

Next, we introduce the 'spectral projections' Eu whi ch.

enter into (1), Until further notice, ueH is a fixed el enent,

Definition 6; PW:{PeGl P 1s a projection, Puel\/L)u}.

p = inf{|[pu-ul]; PeP,"}.

bserve that P_ 40 for v <0<\j., since then CeP_;
Vil VH

furthernore, p exists since the nunbers |jpu-ul| are

bounded belowby 0. W will showthat there is a

uni que PePW for which the inf is attained.




Lemma 4; Let P; Q°®P,, ¢ Then P+ Q- PQ=Ref, .

Proof: By assunption, there are A BeE\)H such that
a) APu=$%$( Pu)
b) BQU=3$(Qu)

Wite Q= PQ+ (I-P)Q then b) becones
BPQuU + B(I-P)Qu = $(PQu) + $((I1-P)Qu).

Mul tiplying by (1-P), and using (3ii) and commutativity,

we get

c) B(I-P)Qu = $((1-P)Qu).

Let C= AP + B(I-F)Q and add a) and c) to obtain:
C(Ru) = $(Ru).

Now APef ., B(l1-P)Qef .., and the product of AP wth
B(1-P)Q is zero; therefore v <[ sp C<|i and CeEW»
Since A B have property (12), so does C. Thus
RueMw, q.e.d.

Corollary 1: If p=[|R-ul| = ||Qu]l, then P=0Q

Proof; Put R=P+ Q- PQ Then RePW, and if P " Q
||IRu-ul| < p, which contradicts the definition of p.

Corollary 2; if [jpu-ul| > p, then there is an ReP

VL
such that PR = P, and [JRu-u|| < |PU-UJ|O

Proof: By definition of p, there is a Qel:{u such that
[|[Qu-u|] < |PU-U|. Put R=P + Q-PQ; R has the desired

properties.
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Corollary 3: If_ p = ||Pu-u]| < ||Qu-ul|, then PQ = Q.

Proof: Obvious.

Corollary 4; There exists a P\J er such that

PRalVIVI

p = 1IPrU - U]

. . 1
Proof: For each n, pick P,°*”,, such that [|P," —"Il <P +""">

and PAPnh:1™ Pho (by Cor. 2), It is easy to see that
the limit P. = Ilim P exists, and that |p u-u|| £_p.
VAT moo " >
Now by assunption, there are A ef such t hat
n v|j.

APy u=$(P,u) . Wth Q = P,- Ppi® we also have AyQ, u = $(Qu) °

Since the On are disjoint, and Arefvy the series
m
£ ABQ® converges and defines an operator AeG with
n n n
AN - e - FE* -
¥¢(§E ﬁ)fghd Now AP, u=r AQ u= E (Qu) $(£ Q u)

AP, U= TImAP u=Tlim<$P u) = d(p, u),
n n N
the last equality holding by (3i), (120 nowfollows easily:

if R isaprojectionin C, and RP™u = 0, then
RPnu:O and thus RA_.= 0. But then RA = 0. and so

n
PV,\iePHr By definition of P> ”va u_u” 2 P> and th«‘
corollary is proved.
Corollary 5: If v, <v, then P P =P .
T — 1 —— b M vn

This follows fromCor. 3, and gives an unanbi guous nmeani ng to

Deftnition 7. For each ueH Ilet PY(u) denote the
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proj ection constructed above, and define an operator

E : H—=H b
U Y

E u=1lim P .. (uwu.
H Vi
v-» -CO

The follow ng properties of Eu are easily verified:
. 2
Lemma 5; (i) E =1;

(iiy)y, EE =E ., -+
v ' ii v ran{iav}

(iii) for each ueH, lim Eu = u, and
H*co M
lim Eu=0;
|j*-00 VW

(iv) if -o0 <[t < inf A then E =0;
if sup A< (i <+o00, then E, =1;

(v) if v<u, then (E* - E/))uef,,

for each wueH

(vi) the function u, = E u is |left-continuous.

We are now ready to establish the integral formula (1).

Let ueH be fixed, and let 6> 0 be given. Choose N

so large that |[|*( (Ex~E_N)U) - $(u) || <| |lU] ; this is
possible by (iii) of Lenma 5, and by continuity of $.

Now subdi vide the interval [-NN, -N=\i o< ”1 <...< [)r(l = N,
making 1”7 - (—KU_ll <\ for k=1, ...,n. Then

observe that

i
KAl Ak "k-1 k= We A1 k=l xR
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where A. ef. by Lemma 5, (v), and P,u = (E -E ) u.
A Mk-l,Uk K

Thus, if Ay e[|ik__1, l-lk):

n n
{14) T A, Pou - &(E -E Ju) = §% (2 I-A )P, u.
ey kK N C-N IR S St -

Because the P,K u are pairw se orthogonal, and because

Sp Ag £ tAk-1'"AkA Y W STTave taTe egtimat es
n}\kI_'Ak“ s ‘pk-“k—l‘ < % s
n

HE A P U-« (€ -E_ ) £fU5 R u| <[ |ull.
k=1 K K N N Nk-1 0K n

Hence, for sufficiently large N and sufficiently fine

subdivisions of [-N N,

n
(15) s AJLE -E, Ju - *(ull <E[full.

k=l k Tc-1

The sumin (153_00may naturally be interpreted as a Stieltjes-sum

appr oxi mat i ng ‘Jf AE(dA)u. We have therefore proved:

- 00

JThearemd; .let, $ jbe “noperator on H which satisfies
(3i),(3ii). Then.there exists.a fanily {E,} .f idenpotent
lor each ueH,

%
(1) *(u) =1 AE(dA)u;
- 00
the integral is to be taken in the Stieltjes-sense indicated

i nequ. (15).

Remarkst L>The clai mmade at the beginning of this paper, to

the effect that the integral (1) need only be extended over A,
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may be established by replacing E.,u wth P (u)u,
(cf. Def. 7) and studying the properties of Pu(u) as
a resolution of the identity.

2. At this point, it is not clear whether the integral (1)
can be used to construct a functional calculus; the basic
difficulty lies with the non-linearity and discontinuity

of the 'projections' Eu »
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