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ABSTRACT

INVARIANT SUBSPACES OF ABSTRACT MULTIPLICATION OPERATORS

by

Hermann Flaschka

We describe a class of operators on a Banach space ft

whose members behave, in a sense, like multiplication operators,

and consequently leave invariant a proper closed subspace of IB.

One of the sufficient conditions for an operator to be such an

"abstract multiplication" bears a striking resemblence to an

assumption made by j. Wermer, who approached the invariant-

subspace problem from a very different point of view.



INVARIANT SUBSPACES OF ABSTRACT MULTIPLICATION OPERATORS

by Hermann Flaschka

§1. We want to describe a class of operators on a

Banach space IB whose members behave, in a sense, like

multiplication operators, and consequently leave invariant

a proper closed subspace of ft -- that is, they are intransitive.

One of the sufficient conditions for an operator to be such

an "abstract multiplication" bears a striking resemblance to

an assumption made by J. Wermer [1], who approached the

invariant-subspace problem from a very different (and rather

more sophisticated) point of view. Our comments are presented

in the hope that this connection, as well as the more general

pattern which appears to emerge, may be more than superficial.

Wermer considered operators whose deviation from being

an isometry is limited. More precisely, he assumed that T

and T~ are both bounded, and that either

(A) ||Tn | | = 0 ( e ( n ) , n = 0 , + l , 0 < a < 1, and the

spectrum of T contains at least two points, or

(B) ||Tn|| = 0(|n| k), for some fixed k < oo .

Such a. T jus intransitive. If a = 0 in (A) , or k = 0

in (B) , IIT || < K for all n; the space may then be renormed

to make T an isometry, and intransitivity follows from a

theorem of Godement [2] .

The crucial estimate is that in (A); it is a reformulation

of the requirement that



n=-oo 1+n

which in turn plays an essential role in Wermer's delicate

and highly analytic proof.

We take as model of an intransitive operator not an

isometry, but a normal operator on a Hilbert space. Because

of the spectral representation theorem, such an operator is

basically a multiplication by an L -function, acting

2
on an L -space. By controlling the deviation of a more

general operator from normality, we are able to retain at

least those properties of multiplication operators which

have a bearing on intransitivity.

The hypotheses are formulated in the language of Banach

algebras. Let T be a bounded linear operator on the (complex,

separable) Banach space &, let G be the Banach algebra of

operators generated by T; denote by IU the maximal ideal

space of G, and by A—> K the Gel'fand homomorphism of

G to C(to).

Assume that:

(I) G is semi-simple, i.e., X = 0 if, and only if,

A = 0;

(II) G JLS. regular, i.e., if F <= tfi is closed, and

M eTH-F, then there is an AeG such that A(M ) ^ 0, and

A(F) = {0};

(III) for each AeG , there is £i sequence {B } c G

converging to A strongly, with the support of each B
1 ' ' ' * XX



contained in the interior of the support of A.

THEOREM: If T satisfies the above hypotheses, then T is

intransitive.

§2. These assumptions are quite severe, and we hope

to motivate them in a moment. First we give an example of

a non-normal operator satisfying (I)-(III) (this illustration

actually suggested the present development).

Let H be the Hilbert space obtained by completing

C^° ([0,1]) in the norm

|u||2 = J 1|u(x)| 2 + |u'(x)|2
dx.

Thus, H is the first Sobolev space on [0,1]. Now let

<peC ([0,1]); the map M : u—>• cp«u is a bounded operator

which, despite its analytic simplicity, is not normal, since

in general

r _ p _ _
(M u,v) = cpuv + (<pu) ' v' ^ ucpv + u'((pv)' = (u,M v)

Otherwise, M is well behaved. Its spectrum is the range

of (0; its norm satisfies ||M || < sup ( |<p(x) | + \<p* (x) |) .
P [0,1]

If we now take <p real-valued, and T = M , then the

assumptions of the theorem are satisfied: every operator

in G is of the form M , and such an algebra must be

semi-simple (even though some of the smoothness of the

generating function may be lost); regularity of Q is a

consequence of Shilov's criterion described below, and



condition (III) can be verified by expressing suitable B 's

as limits of polynomials in <p . Finally,, since the multi-

plications in G will be defined by functions subject at

least to mean smoothness properties, G will not contain

idempotents., and renorming of H cannot convert T into

a normal operator.

Of course, any of the numerous other Sobolev spaces,

Hilbert or Banach, would do just as well; more generally,

multiplications by suitable bounded functions acting on Hilbert

spaces obtained by equipping the domains of certain unbounded

2
operators in L (X,/i) with the graph norm may be expected to

illustrate conditions (I)-(III). As far as I know, multiplication

operators of this kind do not fall into any of the classes of

non-normal operators studied in the literature, but presumably

they could and should be described and investigated abstractly.

I suspect, and hope to prove, under conditions similar to

(I)-(III), and with IB a Hilbert space, that T may be

realized concretely in the form sketched above. If true,

this property might be thought of as an extension to T of

the finite-dimensional concept of diagonalizability.

Assumption (I) then becomes reasonable; it is necessary and

sufficient in order that a finite matrix be diagonalizable.

Property (II) -- regularity of G -- appears to be

common to most multiplication algebras of non-analytic

functions. There is a sufficient condition for regularity,

due to Shilov [3], which establishes the promised connection

with Wermer's theorem:



If sp T îs. real, then G _i£L regular if

(2) 1 O S H % II ds < oo.
J o 1+s^

For self-adjoint T, log| |e i s T | | = 0, so (2) is t r i v i a l l y

isM<p
true. In the example above, with <p rea l , e = M isp

and since

||M is<p || < sup (1 + s |<p' (x) |) £ 1 + se o [Q 1 ] o

(2) again holds. In this sense, Shilov's criterion restricts

the degree of "non-self-adjointness" of T. (Generally,

if T = T1 + iT2, where
 r?1,T commute, and sp T_, sp T2

are both real, then C is regular if (2) holds for T, and

T2 separately, see [3] ; the restriction that cp be real

is therefore unnecessary).

An attempt to estimate log||eis || via the series expansion

isTof e will quickly lead to the imposition of Wermer's

growth condition on ||Tn||; however, (1) and (2) are not quite

equivalent since (1) requires sp T to be located on the

unit circle, while (2) is still satisfied by the operator

M<p of our example.

Condition (III) is the least satisfactory, since its

consequences for T are unexplored. It is needed in the proof

of our theorem to guarantee that certain closed ideals in G

are intersections of maximal ideals; examples from harmonic

analysis indicate that this latter property cannot be expected

to follow from (I) and (II) alone. It is conceivable, however,



that (III), being an assertion about an algebra of operators,

is derivable from the other two assumptions.

§3. Proof of the Theorem

In what follows, the letters u,v,w will denote elements

of the Banach space &, and A,B will denote operators from

C. (We exclude the trivial case T = Al.)

DEFINITION: Let I = {AeC ;Au = 0}. (I is a closed ideal.)

The support of u jijs the set

[u] = [Mefo;Iu c M ] .

The support of AeG _is. the set

[A] = closure{Mein;A(M) / 0} .

[A] 2s. t n e interior of [A] .

(If ue® were a function on iTi, Me[u] would mean that

u(M) £ 0 if A(M) ^ 0 implies Au /O.)

The following propositions express those properties of

[u] and [A] which are to be expected of multiplication operators

(a) [u] = 0 iff u = 0.

Proof: If u = 0, then I = G, so I is contained in no

maximal ideal, and [u] = 0. Conversely, if I is contained

in no maximal ideal, then -- being itself an ideal -- it must

coincide with Ci . in particular, u = lu = 0.



(P) [Au] £ [u].

Proof: Let Me[Au]. If Bu = 0, then 0 = ABu = B(Au),

whence BeM. So I a M, and Me[u].

(Y) [Au] c [A] .

Proof: Suppose to the contrary that there is an M e[Au]

such that A(M) = 0 on a neighborhood & of M . Since G

is regular, there is a B€G such that B(M ) ^ 0, but B = 0

off &. Then AC = 0, and by semi-simplicity, AC = 0.

Hence CAu = 0, and Cel. c M . But this is impossible,

since C(M ) ^ 0.

(6) Au = 0 if, and only if [u] c {M;A(M) = 0}.

[Remark: The "if" part of (6) is equivalent to the assertion:

I = H M, meaning that I is the intersection of the
u Me[u] u

maximal ideals containing it. See §2 above.]

Proof; By (III), there is a sequence [B } c G, such that

B u — > Au and [B ] cz [A]°. For each n, B u = 0, since

on the one hand [B u] c [u] (by (0)), and on the other

[Bnu] c [Bn] (by (Y)); but [Bn] 0 [u] = 0 by hypothesis,

so [Bnu] = 0, and by (a). Bnu = 0. Hence Au = 0.

Conversely, let Meu; since Au = 0, there is a BeC

such that BAu = 0 and B/M (for otherwise, G a M ) . From

BAu = 0 follows BA€M. So 0 = BA(M) = B(M)A(M), and

B(M) ^ 0 requires that A(M) = 0. q.e.d.
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(£ ) _If [v] c [u], and Au = 0, then Av = 0.

Proof: By (6), [u] c (M;A(M) = 0}; since [v] c [u], the

direct part of (6) gives Av = 0.

The theorem can now be stated in somewhat greater

generality. Let uelB. The set 6 = [velB;[v] c [u]} is

a. closed linear subspace of IB, and is invariant under G .

Proof: Invariance is immediate from (/3) . To see that IS

is a subspace, note first that obviously [v] = [av], for

any complex a. Next, let v,we& , and (if v + w ^ 0)

let Me[v + w]. For any Ael , we have, by (£ ), Av = Aw = 0,

hence A(v + w) = 0 , and so AeM. Therefore Me[u], and

[v + w] c [u] , which by definition means v + welS . To show

that IB is closed, let w elB , v —y v. Let Me[v]

(again excluding the trivial case v = 0), and let Ael .

By (£ ), Av = 0 , and so Av = 0. As above, we conclude

that [v] c: [u] , so that veD* . q.e.d.

The only remaining question is whether at least one

of these subspaces IB is proper. There are two possibilities

If there are distinct points M,,M2eITV, contained in [u.. ] ,

[u2], respectively (u.. = u_ is allowed), then there is an

AeG such that A(M_) ^ 0, while A s 0 on a neighborhood

of ML . Put u = Au, ; then u ^ 0, while u-/0 , so that

B is proper. The other possibility is that there is a

single Moeft such that [u] = (M } for all uel&-{0). This

actually cannot happen: because G is semi-simple and

T 7̂  Al, tft contains at least two points. There is then



an AeG , such that A f 0, but A = 0 on a neighborhood of

M . So we would have Au = 0 for all ue&, and yet A ^ 0.

This contradiction proves the assertion, and with it, the

theorem.

Acknowledgement: I want to thank Professor J. J. Schaffer

for some comments which, I think, improved the exposition.
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