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ON THE GEOMETRY OF SPHERES IN SPACES OF CONTINUOUS

FUNCTIONS. I.

by

Juan Jorge Schaffer

1. Introduction

In [16], we introduced certain parameters associated

with the inner metric of the unit sphere of a normed space:

the inner diameter, the perimeter, and the girth. The

first, for instance, is the diameter of the unit sphere, con-

sidered as a metric space in its inner metric; the last is

the infimum of the lengths of symmetric simple closed curves

on the unit sphere. The study of these parameters was con-

tinued in several papers. The first significant results for

spaces of infinite dimension appear in [21] and [7], where the

relationship between the girth and reflexivity is explored.

In [8], Harrell and Karlovitz supply further insight into the

properties of the girth and discuss the concept of a "flat"

Banach space: one that has a curve of length 2 with antipodal

endpoints, lying in the unit sphere.

A complete determination of the values of the parameters

for L-spaces was made in [19]. The nature of the results

encouraged an exploration of other "classical" spaces; in

particular, the spaces C (K) of continuous real-valued

functions on a compact space K, skew with respect to an

involutory automorphism cr, appeared to be a likely object



of study. These spaces include some congruent to the spaces

C(T) and C (T) for topological spaces and locally compact

spaces T, respectively, and occupy a significant place among

spaces whose duals are L-spaces [2; pp. 87-96],[12]. A

complete survey of these spaces as to their flatness was

carried out in [13]; an example was also found among them

showing that the perimeter is not always twice the inner

diameter [20].

In the present work, we shall complement the studies

just quoted by determining the values of the inner diameter,

the perimeter, and the girth of all spaces C (K), C(T), and

C (T). Since these parameters are extrema of distances in

the inner metric, and these in turn are infima of the length

of curves, the manner of attaining of these extrema, or the

failure to do so, is of some interest. Indeed, for the

girth, whose value is fixed at 4 for all non-reflexive

spaces [21], this question is the one of greatest interest,

and to it the major portion of the present Part I is devoted.

The forthcoming Part II will deal with the perimeter and the

inner diameter.

Sections 2 and 3 introduce the parameters and the

function spaces to be studied. Section 4 contains some

topological results on the concept of "perfect core" of

a space and on scattered spaces (i.e., spaces with empty

perfect core). Sections 5 and 7 take up the work in [13]

on the spaces C (K), showing the conditions on K and a

for various ways in which the girth attains, or fails to attain,



its value 4. Sections 6 and 8 translate these conditions

for application to spaces C(T) and CQ(T). The relationship

of these conditions with the topology of T is particularly

interesting, and Section 9 contains a discussion that

leaves some questions open, but that is complete at least

for metrizable spaces T.

Since L°°-spaces are congruent to spaces of continuous

functions, they could be included in this study. Section 10

contains some results on these spaces, including a necessary

condition for a cr-algebra of sets to admit a measure with

a prescribed a-ideal of locally null sets. Thanks are due

to C. V. Coffman for permission to include his proof of the

crucial Lemma 10.3.



2. Spheres in normed spaces

We generally denote by X a real normed space with

dim X > 1. Its norm is || ||, its unit ball is 2 (X), and

its unit sphere, the boundary of £(X), is d£(X). We

write £,c)E if confusion is unlikely. A subspace of X

is a linear manifold of X provided with the norm of X.

A congruence is an isometric isomorphism of one normed

space onto another.

A curve in X is a "rectifiable geometric curve" as

defined in [1; pp. 2 3-26]; for terminological details see

[16; p. 61]. The length of a curve c is denoted by t(c),

and its standard representation in terms of arc-length is

gc : [O,l(c)]-+ X.

We define on SS the inner metric 6 induced by the

norm, by means of 6v(p,q) = inf{£(c) : c a curve from p
.A.

to q in B£}. This function is studied in detail in [16],

where it is shown to be a metric equivalent to the restriction

of the norm metric. We denote it by 5 if there is no danger

of confusion. A trivial result from [16] is that, if Y is

a subspace of X and p,qe3£(Y), then

(2.1) 5(p,q) £ Sy(p,q).

This inner metric is used in the definition of several

metric parameters of d£. As in [16; (5.1)], we define



D(X) = sup{S(p,q) :

(2.2) M(X) = sup{6(-p,p) :

m(x) = inf(5(-p,p) :

We call D(X) the inner diameter of 5£, and 2M(X) and 2m(X)

the perimeter and the girth of Z, respectively. We recall

from [16; Lemma 5.2] that

(2.3) 2 <; m(X) £ M(X) £ D(X) < 4.

If the supremum in the definition of D(X) is attained,

i.e., if <5(p,q) = D(X) for some p,qed£, we say, straining

the language a little, that D(X) ̂ s. attained (at p,q) ; if

there is, in addition, a curve of length D(X) from p to q

in SS, D(X) is strongly attained (at p,q). Finally, D(X)

is very strongly attained if D(X) is attained and if such a

curve exists for each pair p,qec)£ with 6(p,q) = D(X) .

Similar definitions apply to M(X) and m(X). The fact

that two points rather than one appear in the definition

of D(X) permits further case distinctions for this parameter;

these we forgo. The concepts just defined are significant

only when dim X is infinite, as the next result makes

plain.

2.1. Lemma. J[f_ dim X is finite, then D(X) ,M(X) ,m(X)

are all very strongly attained.

Proof. By compactness; see [16; Theorem 3.3, (b) and

Lemma 5.1,(b)].



In discussing these parameters, special significance

attaches to the bounds in (2.3). We shall deal with M(X) = 4

and D(X) = 4 later (Section 11); here we are concerned

with m(X) and the number 2. Their relationship is important:

thus, m(X) > 2 if dim X is finite [16; Theorem 5.5], but

min{m(X) : dim X = n} = 2 + [jn] , n=2,3,... [18]. On the

other hand, if X is a Banach space, m(X) > 2 implies

reflexivity [21]; in the opposite direction, if m(X) = 2

is strongly attained, X is non-reflexive [7].

A point ped£ is a flat spot of X (or of dS) if

<5(-P*P) = 2 . It is a strictly flat spot if there exists a

curve of length 2 from -p to p in 3S. Harrell and

Karlovitz [8] call the space X flat if it has a strictly

flat spot; we shall call it very flat if it is flat and every

flat spot is strictly flat. These concepts are related to

the previously introduced terminology: with the use of (2.3),

we have the following equivalences:

(i) : m(X) = 2 jis attained at p jLf and only if p

l£ a. flat spot _of X;

(ii) : m(X) = 2 JLS strongly attained at p _if and only

if p jis_ at strictly flat spot of X; m(X) = 2 jls strongly

attained if and only if X ±s^ flat;

(iii) : m(X) = 2 _is_ very strongly attained if and only if

x has it flat spot, and all flat spots are strictly flat;

i.e., if and only if X is very flat.



3- Spaces of continuous functions

All our topological spaces will be Hausdorff spaces;

this assumption will not be explicitly repeated.

Let T be a topological space; then C(T) is the

Banach space of all bounded real-valued continuous functions

with the supremum norm. If T is locally compact, CU(T)

denotes the closed subspace of C(T) consisting of the

real-valued continuous functions on T that vanish at

infinity.

Let K be a compact space and <j an involutory auto-

morphism of K, i.e., a homeomorphism a : K —+ K with

CFO(T = id~. We set Ka = fteK : ort ̂  t}, the open set of
IV

points not fixed by a• We let C (K) denote the closed

subspace (feC(K) : f + (focr) = 0} of C(K); we observe

once and for all that

(3.1) f(K\KCT) c {0}, feC^K) .

We recall a well-known device for subsuming the study

of CQ(T) for locally compact T and of C(T) for compact

T under that of C (K). Let T be locally compact.

The product space T x (-1,1} (the second factor discrete)

is locally compact; it is homeomorphic to the direct sum

T + T. Let K be T x {-1,1} if T is compact, and its

one-point compactification (T x {-1,1}) U {oo } otherwise;

K is compact. Define a : K —*K by a(t,j) = (t,-j),

teT, j = +1, and, if pertinent, croo = oo . This is an involutory
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automorphism of K, and K*7 = T x {-1,1}.

3.1. Lemma. If T jjs locally compact and K,cr are

constructed as described, the mapping f t—* f : CU (T) —*• C (K)— — (j 0

is a. congruence, where f jLs defined by f((t,j)) = jf(t),

teT, j = ±1, and, if pertinent, f(oo) = 0.

Proof. Trivial.

We require two standard constructions. The first concerns

the "middle of three" function. For real numbers a,b,c,

we let mid(a,b,c) be the "middle" number: formally,

mid(a,b,c) = max{min{a,b},min{b,c},min{c,a]}; the same

value is obtained with "max" and "min" interchanged •. For

any space T, the function mid : (C(T)) —>C(T) is defined

by (mid(f,g,h))(t) = mid(f(t),g(t),h(t)), f,g,heC(T), teT.

3.2. Lemma. If K JJL compact and a jin involutory

automorphism of K, and if feC,(K), geC(K), then

Proof. By direct verification and the fact that mid

is symmetric in every pair of arguments.

The second construction refers to a compact space K

and an involutory automorphism a of K. Suppose V is a

closed set in K, and that fQeC(V) is given and satisfies

(3.2) -fo(crt) = fo(t) for all teV n CTV.

Then there is a unique f,eC(V U CTV) such that f-^t)

-f1(crt) = fQ(t) for all teV; it obviously satisfies



IIf2II = ||foll' By the Tietze Extension Theorem, there exists

f2eC(K) with ||f2|| = ||f1|| = ||fo|| and f2(t) = -±2{ot) = f

fQ( t) , teV. We set f = ̂ (f2~ (f^a)) and find

(3.3) feCff(K), ||f|| = ||fo||, f(t) = f o ( t ) , teV.

A function f satisfying (3.3) shall be called a skew

Tietze extension of f ; this definition generalizes one

given in [13; p ]. (Conversely, if feC (K) is given

and f is its restriction to V, fo must satisfy (3.2).)
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4. Perfect cores, scattered spaces, and continuous functions

The geometric properties of the function spaces intro-

duced in the preceding section depend on topological properties

of the underlying domain spaces and automorphisms. Here we

deal with those properties that are relevant to the study

of the girth.

Every topological space T contains a largest dense-in-

itself subset; this set is closed [11; Par. 9]. We denote

it by T and call it the perfect core of T. A space is

perfect if it coincides with its perfect core; it is scattered

if its perfect core is empty„

Pefczynski and Semadeni [14] have given several equivalent

conditions for a compact space to be scattered; we record one

that is fundamental for our work, mainly through its use in

[13].

4.1. Theorem. (Pelczynski and Semadeni). A compact

space T jLs3 scattered if and only if there exists feC(T)

such that f(T) = [0,1].

Proof. [14; Main Theorem, (0) and (3).]

One-half of the proof of this theorem is a consequence

of the following lemma, given essentially by Rudin [15].

4.2. Lemma. If K,J are compact spaces and f : K —*• J

is continuous and surjective, then f(K ) 3 J . Consequently

a. continuous image of a. scattered compact space is scattered.
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Proof. By Zorn's Lemma; see [15].

We now describe several auxiliary results concerning

scattered and perfect spaces.

4.3. Lemma. Jjf T ;Ls & perfect compact space and tQ

a point in T, then ft } is a G^-set if and only if there

exists feC(T) such that f(T\{t )) = (0,1].
Q

Proof. Since T is compact, any f as described

must satisfy f" ({0})= ft }. Since a zero-set is a Gc-set,

the existence of f is obviously sufficient; we must show

its necessity.

The closed Gg-set (t J is a zero-set; there exists,

therefore h€C(T) with h(t ) = 0, h(T\{t }) c (0,1]. Since

T is perfect, t is not an isolated point, and there exists

a strictly decreasing sequence of numbers (g ) with e = 1

and lim t^ = 0, such that h~ ((c ,t _.)) ̂  0, n=l,2,...
n -»-oo n n

These non-empty sets are open, hence dense-in-themselves;

therefore the compact sets W = h" ([f. ,e ]])> n=l,2,...,

are not scattered. By Theorem 4.1 there exists, for

k=l,2,..., a function *keC(w
2k+l^

 s u c h that
(4.1) f

k (
W

GD

Now the set {0} U ^f£2k+l'f2k^ i s c l o s e d i n C 0 * 1 ] ; therefore

oo
W = [t ] U U WO1 _, its pre-image under h, is closed in K.

We define f : W -* R by



12

ff (t)
(4.2) f'(t) = <

1° t = tQ.

Since each f, is continuous and the W_k , are disjoint,

f is continuous except perhaps at t = tQ. But, for each

n,t€W D h"1([O,c2n)) implies t = tQ or teW2k+1 with

k ^ n, whence f' (t) <£ e^ _o * Thus f is continuous at

t = tQ also, and feC(W). By (4.1) and (4.2),

(4.3) f'(W\{t0)) = U[f2k,£2k_2] = (0,1];

by (4.1),(4.2), and the definition of W ,

(4.4) h(t) ^ f ( t ) , teW.

By the Tietze Extension Theorem, there exists f"eC(K)

such that f"(K) c [0,1] and f"(t) = f'(t), teW. We set

f = max(f",h}eC(K). By (4.4), we have f(t) = f'(t), teW;

by (4.3), (0,1] =f'(W\ft0}) cf(K\{tQ}) c [0,1]; but

f(t) = 0 implies h(t) = 0 , i.e., t = tQ, so that, in fact,

f(K\ft0}) = (0,1], as desired.

4.4. Lemma. Assume that the space T jis[ paracompact,

locally compact, and scattered. If feC(T) satisfies

cl(f(T)) = [0,1], there exists a countably infinite discrete

closed subspace Q £f T such that cl(f(Q)) = [0,1].

Proof. Since T is paracompact and locally compact,

there exists a locally finite cover G of T such that G

is open and cl G is compact for each GeG. Order all

closed subintervals of [O,l] with distinct rational endpoints
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in a sequence (J ) . We construct by induction a sequence

(q ) in T and a sequence (G ) in G such that, for

n=l

( 4 .

( 4 .

,2,...,

5)

6)

q n e G n \

f ( q

n-1

n>eV

Assume, in fact, q ,G constructed and satisfying (4.5),
n n k-1

(4.6) for n < k. Now U (cl G.) is compact and scattered;
i=l 1

by Lemma 4.2, its image under f is compact and scattered,

and cannot therefore be dense in the perfect set J . But

f(T) is dense in J by assumption; the existence of q,eT

and G, eG satisfying (4.5), (4.6) for n = k follows at

once, and the construction is complete.

Since G is locally finite, (4.5) implies that the

countably infinite set Q = {q : n=l,2,...} is discrete and

closed in T; and (4-6) implies that f(Q) is dense in [0,1].

In the following lemma, the (completely regular) space T

is assumed to be embedded in the canonical way in its Stone-

Cech compactification #T.

4.5. Lemma. Assume that the space T _is paracompact

and scattered. If tQeT has no compact T-neighborhood,

then to€(£T)p.

Proof. Let U be a given j8T-neighborhood of tQ;

the set v = T H clo_U is a T-closed T~neighborhood of tQ

and is consequently paracompact and scattered, but not compact.

HUNT LIBRARY
CARNEGIE-MELLON UNIVERSITY
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There exists, therefore, a T-locally finite class G of T-

open sets such that V <= U G, but such that no finite subclass

covers V. Since V is scattered, the set Q of V-isolated

points is V-dense in V. It is consequently possible to

construct sequences (q ) in Q and (G ) in G such that
n-1 n n

q eG \ U G., n=l,2,... Since G is T-locally finite, then n i = 1 i

countably infinite set Q = {q : n=l,2,...} has no point

of T-accumulation in the T-closed set V, and is therefore

itself T-discrete -- hence homeoraorphic to N -- and T-closed,

Since T is paracompact, it is normal, and therefore

d o Q is homeomorphic to 0N, which is not scattered. Thus

clg_U contains the non-scattered set clg^Q , and consequently

clgTU n (0T) 9* 0. Since (BT) is 8T-closed and U is

an arbitrary jST-neighborhood of t , we conclude that
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5. Flat spots of C (K)

In this section, K is a given compact space, cr a

given involutory automorphism of K, and the notations

S,dE,6 refer to the Banach space X = C (K). Obviously,

dim X > 1 if and only if K0 has more than one pair of

points; this we shall always assume to occur, although in

most theorems it will follow from the hypotheses. Our

immediate purpose is to characterize the flat spots, if any,

of CCT(K).

We begin with a definition and a lemma that will also be

required in later sections. If fe32, (3.1) implies that

the set [-l,l]\f(K*7) differs from the open set [-l,l]\f(K)

at most by the inclusion of the point 0. It is therefore

either a countable (possibly finite or even empty) union of

disjoint open intervals, or such a union augmented by the

singleton (0}. Let A(f) be the length of the longest

interval contained in [-1,l]\f(KCT), and set A(f) = 0 if

there is none, i.e., if the set is empty or fo}; thus

(5.1) A(f) = 0 if and only if f(K) = [-1,1].

5-1- Lemma. j[f fedE, then 6(-f,f) ^ 2 + A(f) .

Proof. If A(f) = 0, the inequality is trivial. Assume

that (a,b) is an interval of length A(f) > 0 in [-l,l]\f(K0)

Let re(a,b) be given, and let c be any curve from -f

to f in dE. Since ||f-f|| = 0 < 1-r < 2 = ||f+f||, there is

a point g on c with ||f-g|| = 1-r. Since geSE, there
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exists "^eK17 such that g(tQ) = 1. Then

f (t0) 2 g(tQ) - |f(to)-g(to) | i l-||f-g|| = r > a.

By the definition of (a,b), we must actually have f(tQ) ̂  b,

and then

l(c) ^ ||g+f|| + ||f-g|| ^ |g(t )+f (t_) f + 1-r ^ 1+b+l-r = 2 + (b-:

Since r was arbitrarily close to a, and -t-(c) to 5(-f,f),

we indeed have 6(-f,f) ̂  2+(b-a) = 2 + A(f).

Remark. We shall see (Theorem 13.1) that actually

6(-f,f) = 2 + A(f) for all fe^S if KCT has no isolated

points.

To find the flat spots in C (K), we next find a special

flat point in a special space. On the compact space [-1,1],

we define the involutory automorphism T : ti-> -t. The space

C ([-1,1]) of odd real-valued continuous functions on [-1,1]

was used as an auxiliary device in [13] and [20]. In this

space we consider the point u given by u(t) = t, te[-l,l].

5.2. Lemma. The point u is a flat spot of C ([-1,1])

Proof. [20; Lemma 1]. The proof makes use of earlier

computations of the girth of finite-dimensional spaces with

cube-shaped unit balls [17].

5.3. Theorem. feC (K) is a flat spot of C (K) if
(T CT

and only ijf f(K) = [ -1 ,1] , i . e . , jlf ajid only j ^ A(f) = 0.



17

Proof. If. f is a flat spot, i.e., if fedE and

5(-f,f) = 2, Lemma 5.1 and (5.1) give A(f) = 0, and hence

f(K) = [-1,1]. Conversely, if f(K) = [-1,1], then

and the linear mapping 0 i—*- cpof : c ([-1,1]) •—*• C (K) is

well defined and isometric; it defines a congruence of

C ([-1,1]) onto a subspace Y of C (K). Since +f = (+u)<> f,

Lemma 5.2 implies 6 (-f,f) = 2. By (2.1) we have

2 £ <5(-f,f) £ 6 (-f,f) = 2; thus equality must hold, and f

is a flat spot.

Theorem 5.3 shows that m(C (K)) = 2 is attained if

and only if there exists feC (K) with f(K) = [-1,1].

But this was precisely a necessary and sufficient condition,

in the main theorem of [13], for C (K) to be flat, i.e.,

for m(C (K)) = 2 to be strongly attained. Being attained

and being strongly attained are thus equivalent in this case:

we now formulate this as part of a general statement that

incorporates part of [13; Theorem 5}. For further equivalent

conditions we refer to the paper just quoted.

5.4. Theorem. Let K Jbe compact and a jan involutory

automorphism for K. Then the following statements are

equivalent:

(a): m(C (K)) = 2 is attained;
0 —

(b): m(C (K)) = 2 is strongly attained; i.e., C (K)

is flat;

(c): m((C (K))*) = 2 is attained;
CT

(d): m((C (K)) ) = 2 is strongly attained; i.e.,
u —

(C (K))* is flat;
u
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(e) : KCT jLs not s c a t t e r e d ;

(f): there exists heC (K) with h(KCT) = [-1,1];

(g): there exists heC (K) with h(K) = [-1,1],
————— (j

Proof. Statements (b),(d),(e),(f),(g) are equivalent

[13; Theorem 5]. The implications (b) —*• (a) and (d)—*• (c)

are trivial. Theorem 5.3 shows that (a) implies (g). To

prove that (c) implies (d) we observe that (C (K)) is

an L-space (cf. [12]), and refer to the study of these

spaces in [19]: it follows from [19; Theorem 8] that an L-

space that is not flat is congruent to some -t. (A), and

[19; Theorem 7] shows that when m(£ (A)) = 2 (i.e., when A

is infinite), it is not attained. This gives the desired

implication.
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6. Flat spots of other function spaces

Theorems 5.3 and 5.4 permit us to obtain analogous

results for normed spaces congruent to some C (K). We

base our selection on the work in [13; Section 6], but leave

the study of L -spaces for later (Section 10). We present

the results in tabular form. Concerning the terminology, we

recall that a topological space is basically disconnected

if the closure of every co-zero set is open; extremally

disconnected spaces are basically disconnected.

6.1. Theorem. Let T _be a. completely regular space.

]f X is and T ji* then feX .is a flat spot
of x _if_ and only if

CQ(T) locally compact |f|(K) U {0} = [0,1] .

C(T) pseudocompact |*|(K) = [0,1]
(in particular,
compact)

C(T) (no restriction) cl(|f|(K)) = [0,1].

Proof. If T is locally compact, we define K,cr as

in Lemma 3.1. By that lemma, f is a flat spot of CO(T)

if and only if f is a flat spot of C (K). By Theorem 5.3,

this is equivalent to f(T) U -f(T) U {0} = f(K) = [-1,1];

but this is in turn equivalent to [ff(K) U fo} = [0,1].

The conclusion for compact T follows from this, since

C(T) = C0(T) and f(T) is compact.

If T is completely regular and embedded in the usual

way in its Stone-Cech compactif ication /?T, the mapping
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f t-* f' : C(T) —» C(jST) is a congruence, where f' is the

unique continuous extension of f to #T. Using the con-

clusion for a compact space as applied to #T, we conclude

that f is a flat spot of C(T) if and only if f is a

flat spot of C(jST), i.e., if cl(|ff(T)) = |f'|(j8T) = [0,1].

If T is pseudocompact, its image ff |(T) is pseudocompact

in R, hence compact. This completes the proof.

6.2. Theorem. Let T be a completely regular space.

The statements

(a) : m(X) = 2 jLs attained;

(b) : m(X) = 2 strongly attained; i.e., X jLs flat;

(c) : m(X*) = 2 _is attained;

(d) : m(X ) = 2 JLS strongly attained; i.e., X is flat,

are equivalent
for X =

C0(T)

C(T)

V

where T is

locally compact

compact

pseudocompac t

not pseudocompact

paracompact (in
particular, metri-
zable)

basically dis-
connected

and hold if and only if

T jLs not scattered; or
equivalently, there exists
heX with h(T) = [0,1];

there exists heX with
h(T) = [0,1];

(always)

T A§. n o t both compact
and scattered;

T is infinite.

Proof. Theorem 5.4 and [13; Theorems 6,7,8,9],
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Remark. In [13] the unsatisfactory nature of the

condition for pseudocompact T was noted, and it was

pointed out that the condition is satisfied even for certain

scattered and locally compact pseudocompact spaces.
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7. Strictly flat spots of C (K)
— — fy

In this section we again assume that K is a given

compact space and a a given involutory automorphism of K,

and the notations £,32,6 refer to X = C (K). Our purpose

is to characterize the strictly flat spots of C (K), if

any; we obtain a description similar in nature to Theorem

5.3, but necessarily more complicated.

Theorem 5.4 shows that, if C (K) has a flat spot, it must

have a strictly flat spot. It should not be inferred, how-

ever, that each flat spot is necessarily strictly flat. Indeed,

the "test point" u in Lemma 5.2 is a flat spot of C ([-1,1]),

but is not strictly flat; and indeed a different "test point"

of C ([-1,1]) was shown in [13; Lemma 3] to be a strictly

flat spot. The question raised here, which is the question,

"For what K,cr is m(C (K)) = 2 very strongly attained?",

leads to considerable topological ramifications; we shall

explore here some of those we found most significant.

7.1. Theorem. feC (K) is a strictly flat spot of
Or — —

C (K) _if and only if there exists a. compact A c Ka such

that f(A) = ffK0) = f(K) = [-1,1] and f (A fl aA) c {-1,1}.

Proof. Since a strictly flat spot is a flat spot,

Theorem 5.3 allows us to stipulate, as we do, that f(K) = [-1,1]

The condition is necessary: By the definition, there

exists a curve c of length 2 from -f to f in d£;

we parametrize it, for convenience, by g : [-1,1] —* CCT(K),

defined by g(s) = g fs+1) , se[-l,l]. Thus g(+l) = +f.
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Define the set

A = fteK : (g(s))(t) = 1 for some se[-l,l]}.

Obviously, A c Ka. We claim that A is closed in K,

hence compact. Suppose t eK\A; since the function

s »—»• (g(s))(t ) : [-1,1]—*[-l,l] is continuous and does

not take the value 1, there exists p, 0 < p < 1 such that

(g(s))(tQ) £ p
2 for all S€[-l,l], Since g : [-1,1]-* C a (K)

is continuous, the set fg(s) : se[-l,l]} is compact, hence

equicontinuous in C(K); there exists therefore a neighborhood

U of t such that teU implies f(g(s))(t)-(g(s))(tQ) f £ p(l-p)

for all se[-l,l], and consequently (g(s))(t) ^ p < 1 for

all se[-l,l]. Therefore U c K\A, and K\A is open; hence

A is closed.

Let se[-l,l] be given. Since ||g(s)|| = 1, there exists

t_eK such that (g(s))(t ) = 1; this implies t eA. Since ss s s

is arc-length on the curve c (up to a constant shift) we

find, as in the proof of [13; Theorem 5],

s = l-(l-s) < l-||g(l)-g(s)|| = l-||g(s)-f|| £ l-(l-f(tg)) =

= f(tg) = (l+f(ts))-l £ ||g(s)+f||-l = !|g(s)-g(-l)||-l ^

^ (s+l)-l = s,

so that s = f(t )ef(A). Since se[-l,l] was arbitrary and

f(K) = [-1,1], we find f(A) = f(KCT) = [-1,1], as required.

If t,eA fl crA, there exist s,sle[-l,l] such that

(g(s))(t1) = 1, (g(s'))(t1) = -(g(s'))(at1)= -1. Then



24

2 = f(g(s'))(t1)-(g(s))(t1) | £ ||g(s')-g(s)|| £ |s'-s| £ 2

Thus equality holds, (s,s'} = f-l,lj, and fCtj) = (gfl))^)

= _+l. Thus f(A (1 crA) cr f-1,1] (an empty intersection is

not excluded).

The condition is sufficient: As a preliminary step, we

consider in R the compact set fi = ((S,T7) : f§ | + |f? | <[ lj

and define the continuous function tp : [0,1] x 0 —* R by

(p(s,l,rj) = mid(§,s,-s) + mid(r?,l-s,-(1-s)) .

For all values of the arguments cp obviously satisfies

(7.1) (p(s,-g,-r)) = -tp{s,%,ri)

(7.2) |co(s,§,r7) I £ \l\+\r}\ £ 1

(7.3) v{O,l,V) =V co(l,?,?7) = §•

For each sefO,l] we have (s,l-s)€fi and

(7.4) o(s,s,l-s) = s + (1-s) = 1.

Finally, a simple but tedious computation shows that the

piecewise linear function to satisfies

(7.5) |<p(s',5,77)-«»(s,5,»7) | ̂  |s'-sj, s,s'e[0,l], (?,t7)e

We are now ready to carry out the proof proper. We

define hQeC(A) by hQ(t) = l-ff(t)j, teA. Since

f(A 0 crA) c {-1,1}, we have hQ (A (1 crA) <= fo] . We construct
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a skew Tietze extension h,eC (K) of h , and define

h = mid (1^,1- |f |,-(1- ff |)) ; by Lemma 3.2, heC (K), and

(7.6) |f | + fhf £ 1

(7.7) h(t) = 1- |f (t) \, teA.

In this paragraph, upper signs in _+ correspond through-

out, as do lower. We define g~,g+ : fO,l]—»• C (K) by

setting

(7.8) (g±(s))(t) = <o(s,+f(t),h(t)), se[O,l], teK,

as we may, in view of (7.6) and (7.1). From (7.8) and

(7.2), j!ĝ (s) !! <; 1, se[O,l]. Given se[O,l], there exists,

by the assumption, t—eA such that ±£ (t~) = s; by (7.8),

(7.7), and (7.4), Hg^s)!! ^ (g±(s))(t^) =<p(s,s,l-s) = 1.

Therefore equality holds, and g—(s)eS^. Further, (7.8)

and (7.3) imply ^(0) = h, g^(l) = +f. Finally, (7.8)

and (7.5) yield ||g±(s • ) -g±(s) || ̂  |s'-s|, s,s'e[0,l].

Thus g and g are Lipschitzian and are parametrizations

of curves of length <£ 1 each, from h to -f and from h

to f, respectively, in o"£. Combining end-to-end the two

curves, the former traversed backwards, we obtain a curve

of length <£ 2 from -f to f in BE; since the endpoints

are antipodes, the length must be precisely 2. We conclude

that f is a strictly flat spot.
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7.2. Corollary. C (K) is very flat if and only if

K07 is not scattered and there exists, for every f€C^

with f (K) = [-1,1], a. compact set A <= K0^ such that

f(A) = [-1,1] and f (A D CTA) C f-1,1}.

Proof. Theorems 5.4, 5.3, and 7.1.

It is often convenient to be able to assume that K is

perfect. We now show that, as far as the issues discussed

in this section are concerned, this implies no loss of

generality.

Assume that K0^ is not scattered; this is necessary if

C (K) is to have any flat spots at all (Theorem 5.4). The

perfect core K of K is compact and obviously invariant

under CT; for typographical reasons we denote the restriction

of a to K , an involutory automorphism of K , again by CT.

Since K0" is open in K, we find that (K )CT = K 0 f = (Ka) ,

the non-empty perfect core of Ka. For each feC (K) we

denote by f its restriction to K and find that

f : C (K) ~> C (K ) is a linear contraction. We write

7.3. Theorem. Assume that Ka JLS. not scattered.

If fed£ , there exists fed£ such that f = f . If
P P

fedS, then f _is a flat spot £f C (K) _if and only ±f_ f

Is. a. flat spot £f C (K ) , and f .is a strictly flat spot

jof C (K) if and only if f is, a. strictly flat spot jDf
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Proof. If fed£ , we have f'eC(K ), -f'(at) = f'(t),

teK , and ||f' |l = 1. A skew Tietze extension f of f will

satisfy feC (K) and |[f|| = 1, i.e., fed£, as well as f = f• .

Assume that fedE. Then f(K) = [-1,1] if and only

if f (K ) = f (K ) = [-1,1], by Lemma 4.2. It follows by

Theorem 5.3 that f is a flat spot of C (K) if and only

if f is a flat spot of C (K ).
p * crv p'

Assume still that fecff. If A c KCT is a compact set

with f(A) = [-1,1] and f (A D crA) c f-1,1}, its perfect

core satisfies A p c (K
a) p = (Kp)

CT, f (A ) = f (A ) = [-1,1]

(by Lemma 4.2), and f (A n crA ) = f (A D ak ) <= f (A D <rA) C

c f-l,l}. Conversely, if A1 <= (K )CT c Ka is a compact

set such that f (A) = [-1,1], f (A1 f) ak' ) = f-1,1}, we

have f(A') = [-1,1], f(A' n CTA') c f-1,1}. It follows by

Theorem 7.1 that f is a strictly flat spot of C (K) if

and only if f is a strictly flat spot of C (K ).

7.4. Corollary. C (K) is very flat if and only if Ka

cr —
is not scattered and C (K ) is very flat.

g- p

Proof. Theorems 5.4 and 7.3.

The results in this section make it easy to construct

spaces K and automorphisms a such that C (K) is very

flat, as well as others for which this is not the case. A

useful, though extremely special, sufficient condition is

given in the following theorem. Here the terms "simple arc"

and "simple closed curve" are taken in their topological

sense, as denoting homeomorphic images of a closed interval
and a circle, respectively.
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7.5. Theorem. If every point of K*7 lies on some

a-invariant simple closed curve in K, then C (K) jls very

flat.

Proof. It is assumed that K is not empty. Any a-

invariant simple closed curve is perfect and must lie in

KCT; thus Y? is not scattered. Let feCCT(K) satisfy

f(K) = [-1,1] and find ^eK*7 such that f(tQ) = 1.

By the assumption there is a simple arc A c K connecting

t_. and crto such that A D ok = fcrtQ,tQ}. Now A is

compact and connected, and {-1,1} = ff (atQ) ,f (tQ)} cr f(A) cr

c f(K) c [-1,1]; we infer f(A) = [-1,1]. Further,

f(A n crA) = {f (crt0) ,f (tQ)} = {-1,1}. The conclusion follows

from Corollary 7.3.

7.6. Scholium. The simplest instance of the application

of Theorem 7.5 is obtained by letting K and a be a circle

and reflection in its centre. Other examples in which K is

a perfect compact subset of a finite- or infinite-dimensional

real Hilbert space and a is reflection in a closed subspace

of co-dimension greater than 1 are available in profusion:

they include all the cases in which K is a convex reflection-

invariant compact set with a core point, or (in the finite-

dimensional case) the boundary of such a set. In all these

cases, C (K) is very flat.

It is equally easy, on the other hand, to give examples

of a similar nature for which C (K) is not very flat. This

is the case, for instance, for C ([-1,1]): the flat spot u
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clearly does not satisfy the conditions of Theorem 7.1. In

this case, of course, the function space is congruent to

Cn((O,l]); it is, however, almost as easy to give an example

that is not "decomposable" in this way. Let K, for instance,

be a circle with a pair of equal radial segments attached

at opposite points, and let a be the reflection in the

centre. Then the condition of Corollary 7.2 is clearly

not satisfied.

7.7. Problem. Characterize all perfect compact sets K

in a real Hilbert space H that are invariant under the

reflection a in a closed subspace H~ of H with codim H o > 1

and are such that C (K) is very flat. What about the

special case dim H = 2, H Q = fo}, K connected?

When we come to enquire, in Section 9, what spaces

CO(T) or C(T) are very flat, we shall see that the topological

problems that arise are of a quite different nature.
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8 . Strictly flat spots of other function spaces

8.1. Theorem. Let T _be a locally compact space.

Then feC~(T) is a strictly flat spot of Crt(T) if and only

if If I(T) = [0,1] and there exist compact sets A ,, A, c T
— x x

such that

(8.1) ~f(A_x) U f(Ax) = [-1,1] and ff f(A_]_ fl A±) c {1}.

If f(T) <= [0,1], condition (8.1) is equivalent to

(8.2) f(A_x) = f(A-_) = [0,1] and f(A_1 fl A±) c flj.

If T is compact, the conclusion holds with C~.(T) replaced
— __________ y —

b% C(T).
A

Proof. We construct K,cr, and the congruence f i—»• f :

C0(T) —» Ca(K) as in Lemma 3.1. We consider the relations

(8.3) A, = fteT : (t,j)eA), j = + 1, and A = f(t,j)eTxf-1,1}:teA • j
J ~~ 3

between a pair of sets A pA. in T and a set A in

T x {-1,1} = 1 ^ as defining either in terms of the other;

they are obviously compatible. Since the mappings

t t-Hf (t,j) : T —* T x {-1,1} are topological embeddings, A_1,A,

are compact if and only if A is compact.

For every feCQ(T), the definition of f and (8.3)

imply

(8.4) -f(A_1) U f(Ax) = fjf(t) : teAj,j = + Ij =

: (t,j)eA} = f(A)



31

|f (t) |:(t,-l),(t,l)eA} = { |f (t) j: (t,l)€AflCTA} =

Now f is a strictly flat spot of CQ(T) if and only

if f is a strictly flat spot of C (K). By Theorem 7.1

this is the case if and only if there is a compact set

A c KCT = T x {-1,1} such that f (A) = %{Y?) = [-1,1] and

f(A H CTA) c {-1,1}. By (8.4) with the preceding discussion,

this is equivalent to the existence of compact sets A ,,

A1 c T satisfying (8.1), together with Jf|(T) = |f|(Ka) = [0,1].

The conclusion for f ̂  0 follows by inspection,

since f(A_,),f(A,) are compact. The conclusion for compact T

follows since CQ(T) = C(T).

8.2. Theorem. Let T jse a. normal space. Then feC(T)

is a strictly flat spot of C(T) if and only if cl(|f|(T)) =

= [0,1] and there exist closed sets A_,, A, c: T such that

(8.5) -cl(f(A_1)) U cl(f(A1)) = [-1,1] and |f |(A_1 fl A±) a {1}

Proof. We consider T embedded in fiT, with the ex-

tension mapping f »—*• f' : C(T) —»• C(i8T) , a congruence.

Obviously |f|' = |f |, feC(T).

If cl( |f|(T)) = [0,1], we have |f' \(8T) = cl( [f |(T)) =

= [0,1]. If A ^ , A, c T are closed sets satisfying (8.5),

we can use the Tietze Extension Theorem to find heC(T) with

h(t) = 3 (1- |f (t) |) , teA., j = + 1 . If h' is the extension

of h to BT, we define A^1? A^ cr 0T by A'. =

= {teBT : h\(t) = j(l-|f'(t) f)}, j = ±1. These sets are
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compact. Obviously |f |(A^, fi A') <= {1}. Since A. c A l ,

j = +1, (8.5) yields [-1,1] => -f (A^) U f' (A|) = -cl(f(A_1)) U

cl(f(A1)) = [-1,1], so that equality holds. By Theorem 8.1

applied to #T, f , and Â -., Ai we conclude that f is

a strictly flat spot of C(jST) ; hence f is a strictly flat

spot of C(T).

Conversely, suppose that f is a strictly flat spot

of C(T), whence f is a strictly flat spot of C(flT).

By Theorem 8.1, cl(|f|(T)) = |f |(T) = [0,1], and there

exist compact sets A' , A' <= /3T satisfying -f'(A' ) U f' (A')

= [-1,1], |f ICA^ H A},) cz {lj. By a construction similar

to that in the first part of the proof, there exists

h'eC(j3T) such that h' (t) = j(l-|f'(t)|) for all teA'.,
%J

j = +1. We set B\ = {teST : |f' (t) | + 2jh' (t) > 1} and

A. = clT(Bl. fl T) , j = +1. Then the sets A 1, A, <= T are

T-closed; since the B1. are jST-open, B'. H T is dense

in B1., and therefore
}

(8.6) cl(f(A .)) = cl(f (BU), j = +1.
J J ~

On the other hand, t€A'.\B'. implies 1 ̂  |f' (t) | + 2jh' (t) =
o 3 ~~~

= 2- |f' (t) |, so that |f' (t) | = 1. Therefore f' (B1.) U {-1,1]

f'(Al), j = +1. Combining this with (8.6), we find
J

[-1,1] = -f (A^jUffA^) c -f> (B'jJUf (BpU{-l,l) cr

c -cl(f (B:i))Ucl(f(B^))U{-1,1) c [-1,1];
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equality must hold, and this implies the first half of (8.5).

Finally, A^ c clflTB^ c {tejST : \f (t) | + 2jh< (t) ̂  1},

j = +1, so that teA_1 D A x implies 2 |f(t) | = 2 |f'(t) [ =

= |f' (t) - 2h' (t) + |f' (t) | + 2h' (t) ̂  1 + 1 = 2, whence

[f(t)| = 1. This implies the second half of (8.5).

Remark. It is possible to extend Theorem 8.2 to any

completely regular T at the cost of requiring A-,, A, to

be zero-sets. We omit a description of the modifications

required in the proof.

8.3. Corollary.

If T is

then the func-
tion space X =

is very flat if
and only if T is

and there exist,
for every feX with

sets A , ,A, c: T— _ — _ j_ ĵ

that are

and satisfy

Proof. Theorems

locally compact

CO(T)
u

not scattered

f (T)UfO}=[O,l]

compact

(8.1)

6.2, 6.1, 8.1, and

compact

C(T)

not scattered

f (T)=[O,1]

compact

(8.1)

8.2. Note that

paracompact

C(T)

not both com
pact and
scattered

cl( f (T)) =
= [0,1],

closed

(8.5) .

(8.1) requires Oef(T), whence |f|(T) = [0,1], when T is

locally compact.

We have an analogue of Theorem 7.3. Instead of deriving

it afresh from Theorems 6.1 and 8.1, we prefer to reduce it

to its prototype. Let T be locally compact and not scattered;
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then T is a closed, hence locally compact, and non-empty

set. Let f M - f : CQ(T) —* CQ(T ) be the restriction

mapping. With K,CT constructed as in Lemma 3.1, we find

(K )CT = (KCT) = T x {-1,1}; therefore K ,a (restricted
Xr i* ir ir

to K ) correspond to T under the construction of Lemma
P P

3.1. With these constructions we find that f = (f )

for all feCo(T). The desired theorem then follows at once

from Theorem 7.3.

8.4. Theorem. Assume that T jte locally compact and

not scattered. If f'eSi:(C~(T )), there exists fed£(r (T) )— y p y

such that f' = f . If f€^S(c^(T)), then f is a flat
p u —

spot of C^CT) if and only if f is a flat spot of C~(T ),
u — ——• p — — — — — u p

and f is a strictly flat spot of (^(T) if and only if
—— JJ — —

f Ĵ . Ik strictly flat spot of CO(T ) . _If_ T jis compact,

the conclusion holds with C~(T), C«(T ) replaced by C(T),y up — —

C(T ), respectively.

8.5. Corollary. If T ±s_ locally compact, then Cn(T)

is very flat if and only if T is not scattered and CL.(T )
y p

is very flat. J[f T jis_ compact, then C(T) ij3 very flat if

and only if T is not scattered and C(T ) is very flat.
p

Proof. Theorems 6.2 and 8.3.
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9. Very flat and not very flat function spaces

In this section we investigate conditions on T that

ensure or preclude that C(T) or CQ(T) is very flat. We begin

with some negative results that are applications of Lemma 4.3.

9.1 . Lemma. If T jls compact and if there exists

t~eT such that [ t_} is a G^-set -- at least relative to T --
U p — ^ — (j o p
then C(T) JLS. not very flat.

Proof. On account of Corollary 8.5 we may assume with-

out loss that T is perfect and {tQ} is a Gc-set. By Lemma

4.3, there exists feC(T) with f(T\{tQ}) = (0,1]. Since T

is compact, f(T) = [0,1]. By Corollary 8.3 and Theorem 8.1,

if C(T) were very flat there would exist compact sets A_,,

A, cz T satisfying (8.2). But then Oef(A.), j = +1, whence

t eA , 0 A, and 0 = f(t )ef(A , fl A , ) , in contradiction to (8.2)

9.2. Theorem. Assume that T is completely regular

and first countable. If T jLs_ paracompact and not locally

compact, or if T jis_ not scattered, then C(T) xs_ not very flat.

Proof. In both cases it is enough to prove that

T n (0T) ^ 0: indeed, 0T is first countable at any t eT 0 (0T).

(see [5; 9.7]), so that {t } is a G§-set in BT; since C(T)

is congruent to C(0T), the conclusion follows from Lemma 9.1

applied to C(flT).

If T is paracompact and not locally compact, the

existence of toeT D (#T) follows from Lemma 4.5. If T is

not scattered, we have T fl (/?T) ^ T ^ 0.
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9.3. Theorem. Assume that T _is locally compact.

If T is compact and first countable, or if T is notp p

compact but paracompact, then CQ(T) _is_ not very flat.

Proof. If T is empty, CO(T) is not even flat

(Theorem 6.2). If T is compact and non-empty, it is

enough, on account of Corollary 8.5, to show that C(T )

is not very flat; if T is also first countable, this

follows from Theorem 9.2, since the perfect non-empty space

T is not scattered.
P

For the remaining case we may assume without loss,

on account of Corollary 8.5, that T is perfect, locally

compact, and paracompact but not compact. By [3; Theorem

XI.7.3], T has a partition into closed-and-open cr-compact

sets. Since T is not compact, at least one of these sets

is not compact, or else the partition is not finite; in

either case, T contains a closed-and-open cr-compact non-

compact set P. Since P is open, it is perfect; since it

is not compact, its one-point compactification P U {oo}

is (compact and) perfect. Since P is cr-compact, the

singleton {oo} is a Gg-set in P U {oo}. By Lemma 4.3

applied to {oo} in P U {oo} , there exists foeCo(P) such

that fQ(P) = (0,1]. We now define feCQ(T) by f(t) = fQ(t),

teP, and f(T)eT\P (the latter set may be empty); this

definition is sound, since P is closed-and-open. Also,

f(T) U {0} = [0,1]. Assume by contradiction that CQ(T)

is very flat. By Corollary 8.3 and Theorem 8.1 there must

exist a compact set A, <= T such that f(A,) = [0,1]
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(forget about A , ' . ) . Now A, H P is compact, so

f(A fl P) = fo(A, O P ) is a compact set in (0,1], hence

in [£,1] for some £ > 0. But then [£,1] U {0} => f(A1 OP) U

U f(A1\p) = ffA^ = [0,1], a contradiction.

We next give a sufficient condition for C(T) to be

very flat.

9.4. Theorem. If T j.s_ paracompact, locally compact,

and scattered, but not compact, then C(T) 2JL very flat.

Proof. We apply Corollary 8.3, as we may, since T

is paracompact but not compact. If feC(T) satisfies

cl(|f|(T)) = [0,1], there exists, by Lemma 4.4, a countably

infinite discrete closed subspace Q of T such that

|f | (Q) is dense in [0,1] or, equivalently, such that

-f(Q) U f(Q) is dense in [-1,1]. It is then clear that Q

can be partitioned into disjoint sets Q.,Q,, both of course

still discrete and closed, such that -f(Q -,) U f(Q,) is

still dense in [-1,1]. It follows that f satisfies (8.5)

with A. = Q., j = +1. By Corollary 8.3, C(T) is very flat.

Before we give further instances of affirmative results,

we observe that Theorems 9.2, 9.3, and 9.4 include a complete

survey of CQ(T) and C(T) for paracompact first countable T;

this includes all metrizable spaces.

9.5. Theorem. Assume that T ±s^ paracompact and first

countable, in particular metrizable. Then C(T) J^ very flat

if and only if T jis locally compact and scattered, but
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not compact. If T is also locally compact, then C,-,(T)_____ _ _ — {j

is never very flat.

Proof. Consider first C(T). The condition is sufficient,

by Theorem 9.4, even without first countability. Assume,

conversely, that C(T) is very flat; by Theorem 9.2, T must

be locally compact and scattered; and, by Theorem 6.2, T

cannot then be compact.

As for CO(T) when T is locally compact: since the

subset T is closed, it is both paracompact and first

countable, so that CO(T) cannot be very flat, on account

of Theorem 9.3.

Remark. If A is any infinite set, Theorem 9.5 shows

that >t°° (A) is very flat, since a discrete space is metrizable,

locally compact, and scattered, and an infinite one is not

compact. By contrast, cQ(A) (or t (A)) is not even flat

(and m(cQ(A)) = 2 is not attained at all), by Theorem 6.2.

We conclude this section by giving another sufficient

condition for C(T), and our lone sufficient condition for

C0(T).

9.6. Theorem. Let T be the product of an uncountable

family of compact spaces, each with more than one point,

and t_ a point in T. Then C(T) and C~(T\{t_}) are bothu — — u u

very flat.

Proof. Since T contains a subspace homeomorphic to

a Cantor cube, it is not scattered; the same is true of
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T {"tQ}. We deal with C(T) first; the parts in square

brackets serve to prepare the proof for CQ(T\{t0}).

We assume T = JT T > I uncountable, each T compact
lei % l

with at least two points. Let feC(T) be given with

(9.1) |f|(T) = [0,1]

[and with f(*o) = 0]• Now each function in C(T) depends

only on a countable set of co-ordinates (see [4]; the proof

consists in observing that the functions in C(T) with this

property constitute a subalgebra satisfying the assumptions

of the Stone-Weierstrass Theorem). This means that there

exists a partition of I into disjoint non-empty sets I1,I",

the latter uncountable, such that, with T1 = JI T ,

T-r l e I < l

T" = Tj T , we have -- modulo standard identifications --
l e l " X

T = T1 x T" and

(9.2) f(t',t") = f ' ( f ) for some f'eC(T)

and all (t1,t")eT' x T".

Since I" is not empty [nor a singleton] we may choose

distinct points t ^ , tJeT" [and both distinct from t£,

where tQ = (t^,t£)]. We set Aj = {(t',t!j) : t'eT1},

3 = ±1; these are compact sets in T [in T\{to}]. They

are disjoint, and (9.1), (9.2) imply -f(A_x) U f ^ ) =

= -f'(T1) U f•(T1) = [-1,1]. By Corollary 8.3, C(T) is

very flat.

Let now foeCQ(T {tQ)) be given, with |fQ|(T\ftQ}) U {0} =
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= [0,1]. Define feC(T) by setting f(t) = fQ(t), t ^ tQ,

and f(tQ) = 0 . Then |f|(T) = [0,1]. With A ^ A , constructed

for this f as precedingly, we find that these disjoint

compact sets in T\{tQ} satisfy -f
0(

A_i) u fo^Al^ =

= -f(A_1) U f(Ax) = [-1,1]. By Corollary 8.3, C0(T\Ct0))

is very flat.

Remark. Lest it should be thought that the condition

of Theorem 9.6 is sufficient because of the great "thickness"

of the compact space T, we shall give in Example 10.7 a

very "thick" compact space T such that C(T) is not very

flat.
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10. L°° -spaces

The last type of space congruent to some C (K) that

we shall investigate as to its being very flat is L

spaces. We shall see that the "usual" L -spaces are

indeed very flat.

Let S be a non-empty set, S a cr-subalgebra of the

algebra of subsets of S, and S o a a-ideal of S. The

triple (S,S,S~.) is given. A function f : S-*• R is measurable

if f" (U)eS for every open set U c: R, and a measurable

function is null if f (R\{o})eS~. Two measurable functions

are equivalent if their difference is null. If f is a

measurable function and EeS, the essential image of E under

f is the set ess f(E) = (reR : f~1(U) 0 E/SQ for all

open U c R such that reU}; it is a closed set in R, and

is the same for equivalent functions and for sets that

differ by an element of S-. It may thus be called the

essential image under the equivalence class of f of the

element of the quotient algebra S/So represented by E.

A measurable function f is essentially bounded if ess f(R)

is bounded.

ooThe space L (S,S.S~.) is defined as the linear space

of all equivalence classes of essentially bounded measurable

functions, with the norm ||f|| = max{ |r [ : re ess f(R)};

here, as in common practice, we strain the language by

inessential confusion of an equivalence class with some

representative of it. This space is a Banach space; we shall
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generally write L°° for it if the triple (SJSJSQ) is

understood. We quote the fundamental representation

theorem for L°°-spaces in the form required for our

applications.

10.1. Theorem. If § ls± the Stone space of the

a-complete quotient algebra S/S~, S is compact and_* — ^/ /^J{J —

basically disconnected, and there exists £i positively-

preserving congruence f s—*• ¥ : L°° —> C(§) such that, for

every EeS and the closed-and-open set E c S corresponding

to the elements of S/S-. represented by E, we have
1 — — — — — — _ - — - f~*if r-^yj " ' - * 1 1 " • — • • • • " • " * - " • • • • • — — - —

f(E) = ess f(E), feL .

Proof. [22; pp. 206-207]. That T is basically

disconnected follows from [22; pp. 85-86] and [5; Theorem

16.17].

The following result appears in [13; Theorem 10].

10.2. Theorem. L00 jis flat unless it is finite-

dimensional .

Proof. Theorems 10.1 and 6.2.

To formulate our main theorem we need to discuss

measures on S. If (S.S,^) is a measure space, a set EeS

is locally M-null (cf. [9]) if u(E fl F) = 0 for all FeS

with n(F) < oo or, equivalently, if FeS, F c E implies

H(F) = 0 or ji(F) = oo (we shall use the latter formulation) ;

these sets constitute a cr-ideal of S. The triple (S^jELJ
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is said to admit the measure \x if (S,S.\x) is a measure

space and S~ is precisely the a-ideal of locally u-null

sets. Our aim is to show that L°° is very flat provided

(S,S,Sn) admits some measure. The argument is presented

in three steps. The first result is due to C. V. Coffman

(private communication).

10.3. Lemma. (Coffman). Let B be the class of

Borel sets in [0,1] . and let ([0,1] ,B,v) be a. finite measure

space such that v(J) > 0 for every interval J c [0,1].

Then there exists a, Borel set D such that v(J H D) > 0

and v(j\D) > 0 for every interval J c: [0,1] .

Proof. We consider the Banach space L (v). For given

r,s,0 £ r < s £ 1, we define Z = {(peL1(v) : w Cl 1 0} .

It is obvious that Z is a closed set in L (v); we claim

that it is nowhere dense. Indeed, let coeZ and £ > 0

be given. Since <peL (v) there exists 6 <; yE such that

[<pldv < •=-£ for every Borel set B with v(B) < 6.
JB 2

We choose a positive integer n so great that n6 > v([r,s]),

and a set of n pairwise disjoint intervals contained in

[r,s]; there must be one. say J, such that, under the

assumption, 0 < v(j) <; n v([r,s]) < 6. We set

jj> = <p - (1 + ( p)x J eL 1 (v ) . Then ||o-j|)|| = J (l-hp)dv ^ v(J ) +
«J

+ [ cpdv < 6 + -if <; f ; but I j/)dv = -f dv = - v ( J ) < 0 ,JJ I - Jj Jj

so that ib^Z
Y? r s

The set Uf-Z^^ U Z^o : r,s rational, 0 < r < s < 1}
J r S
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is of first category in L (v); there exists, therefore, an

element <PoeL (
v) that does not lie in this set. We define

the Borel set D = <pl ([0,oo)) -- it is defined modulo

v-null sets, so we pick some arbitrary representative --

and we claim that D satisfies the conclusion. Let J be

an interval, and choose rationals r,s,O<^r<s<;i such

that [r,s] c j. if v(J fi D) = 0 , it follows that oQ is

negative v-a.e. on J, a fortiori on [r,s]; certainly

(P0\rY sl ^ 0, whence <Po
e~Zrs' a c o n t r a d i c t i o n ; i f v(j\D) = 0,

it follows that J, and a fortiori [r,s], is v-essentially

contained in D, so that avVXrv i i> 0, whence ccueZ , another
vj|_r,sj — \j rs

contradiction. Our claim is thus established.

Remark. In [9; (18.31)] it is proposed to prove this

lemma, for the special case in which v is Lebesgue measure,

by means of an explicit construction of D.

10.4. Lemma. Assume that (S,S,S«) admits a measure.
- _ — . _ _ " — f^ f~*t\J — — — — — — — '- • » —

If f : S—*R jjs a. measurable function such that ess f (S) =

= [0,1], there exist disjoint sets A ,,A,eS such that

ess ffA-j^) = ess f(A]L) = [0,1].

Proof. 1. We shall first prove the lemma under the

additional assumption that (SJSJJVJ admits a g-finite

measure /i; then S Q is the class of fi-null elements of

S. We perform the usual trick and observe that there

exists <peL (̂j) such that co > 0 ^i-a.e. (a "Freudenthal

unit" of L1(^t); see [2; p. 107]); then (S,S,Sn) admits

the finite measure ^' defined by p,' (E) = J ^du, EGS,
E
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since /i' (S) = ||<o|| < oo and the jx'-null elements of S

are precisely the ju-null ones, i.e., the elements of SQ.

There is thus no loss in assuming, as we shall, that (S,S,jU)

is a finite measure space and that S Q is the class of \x-

null elements of S.

Let f be given as in the statement. The assumption

on f is equivalent to

(10.1) |i(f~1(R\[O,l])) = 0 , ^i(f"1(J)) > 0 for every

interval J c [0,1].

On B, the class of Borel sets of [0,1], we define the measure

v(B) = M(f~ (B) ) , BejB. This measure is finite: v([0,l]) =

= M(S) < OD . For every interval J c [0,1], (10.1) implies

v(j) > 0. We now choose DeB as given in Lemma 10.3, and

define Aj = f~1(D), A_1 = f"
1([O,1]\D); A_1 differs by a

jLi-null set from S\A,. These sets are disjoint; for every

interval J c: [0,1] we have |U(f~1(J) H A_1) = ^(f"
1(j\D)) =

= V(J\D) > 0 and pi(f~1(J) D A ) = (i(f~
1(J n D) ) = v(J 0 D) > 0

Thus [0,1] c ess f(A .) c ess f(S) = [0,1], j = +1, so that
J ~

equality holds.

2. We return to the general case, and assume that (S,S,/i)

is a measure space and that £>o is the class of locally ji-

null elements of S. For the given f, (10.1) is replaced by

f~ (R\[0,l] )eSQ. f'^'fJj/SQ for every interval J <=• [0,1].
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For given r,s,0 <[ r < s < 1, the fact that f ([r,s]) is

not locally j4-null implies the existence of E
rs

G,§ such

that E a c f"
1([r,s]) and 0 < M(E ) < oo . Set S' =

= U{E : r,s,rational,0 £ r < s <; 1}. Then S'eS, and

E,^ c f"1([r,s]) n S' for all rational r,s,0 £ r < s £ 1,rs — —

so that ess f(S') = ess f(S) = [0,1]. We set S' =

= [EeS : E <= S' } and let fi1 be the restriction of \i

to S' . Then (S',S',fx) is a cx-finite measure space,

and S« n S' is the class of u'-null elements of S'.

If f' is the restriction of f to S1, we still have

ess f' (S' ) = ess f(S') = [0,1].

We may then apply the first part of the proof to

(S' ,S' ,SnriS' ) and f . and find disjoint sets A ,,

A^GS' C S such that ess f(A .) = ess f> (A.) = [0,1],

j = +1, as required in the conclusion.

10-5. Theorem. If (S,S,SO) admits SL measure, then

L°° (SJSJS,,.) is very flat unless it is finite-dimensional.

Proof. We assume that L is infinite-dimensional

(equivalently, that S/Sn is infinite). By Theorem 10.2,

L is flat. It remains to show that every flat spot of L

is a strictly flat spot.

Let f be a flat spot of L , and consider

E = f ((-00 ,0) ) e:S, specified up to sets in So- Since

multiplication by \a\-p ~ Xv is a congruence of L

onto itself, there is no loss in assuming, as we shall,

that f ^ 0.
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We now use the positivity-preserving congruence

L°° —*C(S) of Theorem 10.1. We find that f is a flat spot

of C(S) and that f ^ 0. By Theorem 6.1, f(S) = [0,1],

so that ess f(S) = [0,1].

By Lemma 10.4 there exist disjoint sets A_,, A,eS

such that ess f (A .) = [0,1], j = +1. If A. is the closed-

and-open set in "S corresponding to the element of S/S»

represented by A., j = +1, we find that the compact sets

A , ,S", are disjoint and, by Theorem 10.1, ?(A.) = [0,1],

j = _+l. By Theorem 8.1, ? is a strictly flat spot of C(i§) ,

so that f is a strictly flat spot of L

10.6. Corollary. _lf Y jjjs an infinite-dimensional

abstract L-space, then X = Y jls very flat.

Proof. (cf. [13; Corollary 11]). By Kakutani's

Representation Theorem [2; pp. 107-108], Y is congruent

to L (fJ.) for a " localizable" or "decomposable" measure

space (S,S,JI), so that Y is congruent to L°° (SJSJSQ) ,

where S o is the class of (locally) /j-null elements of

S [9; (19.25),(20.20)]. Since (S,S,SQ) admits the measure p

the conclusion follows from Theorem 10.5.

The condition that (S,£S,Sn) admit a measure cannot be

dropped entirely in Theorem 10.5, as the following example

shows.

10.7. Example. Let B be the cr-algebra of Borel

sets in [0,1], and B» the cr-ideal of Borel sets of first
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category. By a remark of Kelley [10; p. 1172], the quotient

algebra B/B_. is isomorphic to the complete algebra of

regularly closed subsets of [0,1]. Therefore the Stone

space of this quotient algebra is homeomorphic to the Stone

space of the latter algebra; this is the "protective envelope"

or "Gleason space" of [0,1] (see [6]). It is an extremally

disconnected space G with a continuous surjective mapping

g : G—>[0,l] that is irreducible; this means that there is

no closed proper subset A c G with g(A) = [0,1]. A

fortiori, there do not exist closed sets A , , A, <= G with

gfA-^ = g(A1) = [0,1], g(A_inA1) c fi}. By Theorems 6.1

and 8.1, g is a flat spot of C(G), but not a strictly flat

spot. Hence neither C(G), nor the congruent space

L°°([O,1],B,BO), is very flat.

10.8. Conjecture. (Converse of Theorem 10.5). If

L°° (SJSJS-.) is very flat, then (S,S,S«) admits a measure.
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ON THE GEOMETRY OF SPHERES IN SPACES

OF CONTINUOUS FUNCTIONS II

by

Juan Jorge Schaffer

Introduction,

In a paper with the same general title [8], we began

the study of certain metric parameters of the unit spheres

in spaces of continuous functions. The spaces considered

were C(T), co^T^ (for locally compact T), and most

especially C (K), the space of continuous real-valued

functions on a compact space K, skew with respect to an

involutory automorphism a of K. This study is part

of a survey of such parameters for the "classical" spaces,

begun in [6] and continued in [2] and [7] . In Part I we

dealt with the properties of the girth; here we shall

deal with the perimeter and the inner diameter of the unit

spherec

We refer to the Introduction of [8] for a more

detailed explanation. We consider that paper and the

present one as a single work, continuing the numbering

of the sections and quoting freely from Part I. However,

only the contents of Sections 2 and 3, as well as Lemmas 5.1

and 5.2 and Theorem 5.3,, will be required for the under-

standing of the present Part II„ This does not apply to

the summary in the final section.



In Sections 11 and 12 we supply required preliminary

material to complement Sections 2 and 3, respectively. In

Sections 13 and 14 we determine the values of the perimeter

and the inner diameter, respectively, and the manner of

attaining of the extrema defining them, for all the spaces

under consideration. Section 15 summarizes in tabular

form most of the results obtained in Parts I and II„



11. Spheres in normed spaces, continued

Sections 5-10 dealt with the girth of a space of

continuous functions and with the manner in which it is

or is not attained„ From this point on, we turn our

attention to the remaining two parameters introduced in

Section 2, the inner diameter and the perimeter. The present

section and the next complement the material in Sections 2

and 3, respectively, with a view to discussing these

parameterso

We return to the context of Section 2: X is a given

real normed space, generally with dim X > 1, and the

notations £, 3£, 6 refer to this space unless another is

indicated. We need a few miscellaneous bits of terminology

and information,,

Several of the curves we shall be constructing are

'polygonal'. A curve in X obtained by joining end-to-end

straight-line segments, each traversed once from one

endpoint to the other, is a polygon; the endpoints of these

segments, in the order of their traversing, are the

consecutive vertices of the polygon.

If X1, x" are real normed spaces, X1 0 X" denotes

the normed space that is, algebraically, the outer direct

sum of X' and X", with the norm |jx'©x"|| = max{ ||x' ||, ||x"||} 0

If X = X' © X", and primes are added to S, 3£, 6 to indicate

reference to these various spaces, we have £ = E' © E"



and 5S = (dS'©S") U (S'©9E")» The following lemma refers

to this situation.

11.1 Lemma. Assume X = X' © X" and dim X1 > 1.

If p,qed£, where p = p1 © p", q = q' © q", and pSq'edS1,

then S(p,q) £ max{ 6 ' (p ' ,q') , ||q"-p"||} .

Proof o By the assumption, ||p"||, ||q"H £ 1« Let c' be

a curve from p' to q1 in d£', ar*d set I = £(cf).

Define g : [0,1]—#X by g(r) = g , (*r) © (rq"+(l-r)p") ,

re [0,1]. Then g(0) = p, g(l) = q, ||g(r) || = max{ ||gc, (<tr) ||,

||rq» + (l-r)p»||} = 1, and ||g(r') -g(r) || = max{ ||gc , {lr') -gc , (Ir) ||,

|r'-r| ||q"-p"||} £ |rT-r|max{-t, ||q"-pn}, r,r'e[0,l] . Therefore g

parametrizes a curve of length not exceeding max{-l, ||q"-p"||}

from p to q in ^S, so that 6(p,q) £ max{£, ||q"-p"||} •

Since K, was arbitrarily close to 6'(p',q'), the conclusion

follows.

Remark, Among closely related results we mention, without

detailing the proof, the following: _if X! _is_ flat, then X

is flat; if, in addition, X jls very flat, then X1 is

also very flat.

We take up again the discussion, begun in Section 2,

of the significance of the bounds in (2.3) for the parameters

D(X), M(X), m(X) . As for the lower bound 2, we merely add a

few trivial remarks that are immediate consequences of the

definitions.



11.2. Lemma. M(X) = 2 if and only if every point of ?)TJ

is ja flat spot. If this is the case, M(X) _is attained;

and then M(X) _i§_ [very] strongly attained if and only if

m(X) = 2 jLs [very] strongly attained (i.e., X _is_ [very]

flat) . M(X) = 2 _is very strongly attained if and only if

every point of B£ _is_ a_ strictly flat spot.

As for D(X) = 2: although spaces with this property-

exist [6], we shall not meet any instance in the body of

this paper.

Before examining the upper bound 4 in (2,3), we state

as a lemma a part of the proof of [5; Theorem 1].

11.3. Lemma, If p,qed£, then 26(p,q) £ 6(-p,p) + 4.

If equality holds, there is a_ plane curve of length 5 (p,q)

from p _to_ q jln 5£. _Tn any case, 2D(X) g M(X) + 4 .

Proof, Let Y be a two-dimensional subspace of X

containing p and q (it is unique if p +. q ̂  0) . By (2.1)

and [3; Theorem 4 O2],

(11.1) 6(-p,q) + 8(p,q) ^ 6y(-p,q) + 6y(q,p) =L(Y) ̂ 4 ,

where L(Y) is half the length of the simple closed curve

describing SS(Y). Therefore

(11-2) 6(-p,p) > 6(p,q) - 8(~P,q) > 26(p,q) - 4;

this proves the first part of the conclusion. The last part

follows by taking suprema. If equality holds throughout (11.2),

it must hold throughout (11.1); in particular, 6(p,q) = 6Y(p,q),



and the shorter arc of B£(Y) from p to q is the required

plane curve.

As in [5], we say that pe&£ is a pole of X (or

of dXJ) if 6(-p,p) = 4. The following proposition is

a restatement of several results and remarks in [5].

11.4. Theorem, D(X) = 4 if and only if M(X) = 4.

D(X) = 4 is attained at p,q _if and only if q = -p and p

is a, pole. M(X) = 4 jus attained at p jlf and only if p

is _a pole. The following statements are equivalent:

(a) : X has a_ pole;

(b) : D(X) = 4 _is attained;

(c): D(X) = 4 _is_ very strongly attained;

(d) : M(X) = 4 _is attained;

(e) : M(X) = 4 _is_ very strongly attained;

(f) : Either X _is congruent to R © Z for some

normed space Z, or there exists a convex cone V with apex 0

and a point a in X such that £ = (a-V) ("1 (-a+V) .

Proofo The first statement follows from (2.3) and Lemma 11.3,

For the second, assume S(p,q) = 4; equality must hold in (11.1)

with 6(-p,q) = 0, i.e., q = -p; the conclusion follows, as

does the next statement, from the definition of pole.

If p is a pole of X, Lemma 11O3 with q = -p implies the

existence of a plane curve of length 4 from -p to p in d£.

The equivalence of (a),(b),(c),(d),(e) follows. Statements (a)



and (f) are equivalent by [5- Theorem 4.1 and Corollary 4.2]

Remarki For our purposes, statement (f) will be used

only as a sufficient condition for the existence of poles;

this is the "easy" part of the proof of [5; Theorem 4.1],

We note that D(X) = M(X) = 4 does not in general imply

the existence of a pole [5; Example 4 O3].
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12. Spaces of continuous functions. continued

We proceed with the study of the spaces introduced in

Section 3, and especially of C (K) for a compact space K

and an involutory automorphism a of K. The crucial

topological question concerning K and a in the study

of the girth was whether K is scattered or not. Here

we are concerned, instead, with the existence of certain

closed-and-open sets in K.

A non-empty closed-and-open set B a K is a cr-block

if B fl aB = 0; this implies B c K . There are two extreme

kinds of or-block. Firstly, a singleton (trJ is a cr-block

if and only if tQ€K is an isolated point of K or,

equivalently, of KCT; we remark that reference to a point

of K being isolated is unambiguous, since KCT is open.

At the other extreme, a cr-block splits KCT if B U orB = KCT;

if such a cr-block exists, we say that K a _is_ split. The

significance of these extreme cases will soon be made clear.

Of course, both types of cr-block may be present simultaneously.

12.1. Lemma. Assume that B jLs_ _a j-block, set

Kf = K\(BUaB), and let cr' be the restriction of a to K'.

The linear mapping f »-»> f © f ' : C (K) —» C(B) © C , (K')

is _a congruence, where f , f' are the restrictions of f

to B, K', respectively. In particular, if toeK
CT JLS an

isolated point and K' = K\{to,atQ}, with a' as before,

C (K) is congruent to R © C ,(K'). .If B splits KCT,

then C_(K) _is congruent to C(B) .



Proof. Verification from the definitions. For the last

statement, use (3.1); here the obvious convention C(0) = {0}

is used.

When dealing with C
O(

T) f o r a locally compact space T,

the pertinent conditions are given as follows„

12.2. Lemma. Assume that T is locally compact, and

construct K, a _as, .in Lemma 3«1. Then K has a. g-block

if and only if T has a. compact component; K has an

isolated point if and only if T has an isolated point;

KCT _is. split if and only if T jLs_ compact.

Proof. Under the construction of K and a, the

existence of a a-block of K is equivalent to the existence

of a non-empty compact open set in T. This implies the

existence of a compact component of T. Conversely, suppose A

is a compact component of T, and let V be a compact

neighborhood of A. Then A is a component of V, and hence

[1; Paro 47,11] the intersection of a class of sets closed-

and-open in V. Since A cz int V, there is a finite- class

of these sets whose intersection B satisfies A c B c int V .

It is clear that B is compact, and also open in int V,

hence in T. The last two parts of the statement follow

by direct verification.

12.3. Theorem. The following function spaces have poles:

C(T) for every topological space T; C (K) for every compact
cr ——4- ___j

space K and involutory automorphism a such that KCT Jus

split or has an isolated point; C (T) for every locally compact
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space T that is compact or has an isolated point. JEf X

is any one of these function spaces, D(X) = 4 and M(X) = 4

are both very strongly attainedo

Proof. For given T, L(C(T)) = (1-C ) n (-1+C ), where

C = (feC(T) : f > 0} is the positive cone. By Theorem 11.4,

C(T) has a pole. The same conclusion then follows trivially

for C (T) if T is compact, and from Lemma 12.1 for C (K)

if KCT is split. If KCT has an isolated point, Lemma 12.1

and Theorem 11.4 imply that C (K) has a pole, and if T

has an isolated point the same conclusion then follows

for C_(T) by Lemmas 3.1 and 12.2. The conclusions concerning

D(X) and M(X) follow from Theorem 11.4„

In further investigation of the inner diameter and the

perimeter, this theorem allows us to disregard spaces C(T)

(and also L -spaces, in view of Theorem 10.1). When considering

C (K) and c
n(

T) w e m aY assume, when expedient, that

is not split and T is not compact, and that K and T

lack isolated points, i.e., are dense-in-themselves.
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13. The perimeter

Until further notice, K is a given compact space, a

a given involutory automorphism of K, and the notations £>

refer to the space X = C (K)„ We take up the computation

of 6(-f,f) for feSS, begun in Lemmas 5.1 and 5.2 and

Theorem 5.3, in terms of the number A(f) defined there.

13. lo Theorem. Assume that Ka _!§_ dense-in-itself „

If feaS. then 5(~f,f) = 2 + A(f) .

Proof. 1. Let feSS be given, and set A = A(f).

If A = 0, Theorem 5.3 indeed gives §(-f,f) = 2 . We may

therefore assume that A > 0. In view of Lemma 5ol, it

is sufficient to prove §(-f,f) <̂  2 + A. We shall do this

by constructing, for given e > 0, a point ged£ with

(13.1) 9(tm)
 = f ( tm ) = X f o r s o m e tmeKa'

(13.2) ||g-f|| ̂ A + f,

(13.3) g(K) = [-1,1] .

By (13.1), the straight-line segment with endpoints f, g lies

entirely in 5£. (13.2) then implies §(g,f) ^ -^A + £ .

Theorem 5.3 and (13.3) yield 6(-g,g) = 2 . We conclude

that 5(-f,f) £ 6(-f,-g) + 6(-g,g) + 6(g,f) g 2 + A + 2e .

Since 6 was arbitrarily small, the conclusion follows. The

remainder of the proof consists in the construction of g.

2. Since ||f|| = 1. we may choose ^eK17 such that f(tm) = 1.
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By the definition of A there exists a finite set Q with

{-1,1} c Q = -Q c f(Ka) c [-1,1], and such that the distance

between consecutive points is never greater than A. (One

possible construction: include in Q, firstly, -1 and 1;

secondly, the odd integral multiples of -jA that lie in f(KCT);

lastly, for each odd integral multiple of -^A that lies in

[-1,1]\f(KCT), the endpoints'of the component of this set in

which it lies.) Let £ > 0 be less than one-third the

least distance between distinct points of Q, but otherwise

arbitrary.

We conclude from these properties of Q and e that there

exists a positive integer n and points t.eK , i = l,...,n,

such that

(13.4) 1 = f(tm) > f(tx) > ... > f(tn) > 0,

(13.5) 3£ < 1 - f(tx) £ A, 3e < f(ti_1)-f(ti) g A, i=2,...,n.

(13.6) f(tn) = 0 or € < | 6 < f(tn) £ ̂ A

(here Q = f ({tm, t±,..., V ^ l ' ^ m ^ ) . The set f~1((l-e,l])

is open and contains t o Since t is not an isolated point,
m m c

we may choose t eKa such that

(13.7) 1 > f(tQ) > 1 -£ , tQ ^ tm ;

we may then replace (13.5) by

(13.8) 2£ < f(ti_1) - f(t±) ^ A, i = l,...,n.
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Let U. be an open neighborhood of t. such that

(13.9) f(U±) c f(t±) + (-€,£), i = 0,...,n;

Assume in addition, as we may by (13.7), that t m/
u * also,

if f (t ) = 0, that U n H aUn = f6. It follows from the

construction and from (13.6) and (13.8) that the sets

U_,... ,U , CTU ,.. o, crU are pairwise disjoint; let V be

the complement of their union in K; then V is compact

and t eV.

Let V. be a compact neighborhood of t. such
X X

that V. c= u., i = 0,..o,n. Since each V. is a neighborhood
X -L S.

in the dense-in-itself set KCT, it is not scattered. By

Theorem 4.1 there exist functions v.eC(V.), i=0, ...,n, such

that

W = [Tf(t0} + -̂ (ti),!]

(13.10) " ^ = [ ^ ( t i ) - ^ ^ i + l ^ ^ ^ ^ +lf<ti-l>l'-

i = 1,...,n-1,

From (13.6) , (13.7), (13.8) it follows that

(13.11) v.(V.)c= [-1,1] n (f(t.) + [-iA^A]), i = 0,..o,n.
XX X £* £

Consider the pairwise disjoint compact sets V,V , ...,V ,

and their union W; we define w eC(W) by

'0 teV
(13.12) wn(t) =•

(vi(t)-f(t)

HUNT LIBRAIY
GARNEGIE-MELLOK UKIVEMITY
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We observe that -wQ(crt) = wQ(t) = 0 for teWDoW = V;

by (13o9) and ( 1 3 . 1 1 ) , ||wo|| £ - | A + E . We c o n s t r u c t a

skew Tietze extension w of w , and set g = mid(f+w,1,-1).

C e r t a i n l y geC (K), by Lemma 3 .2 , and ||g|| £ 1 . Now

g - f = mid(w,l-f,-l-f), so that ||g-f|| £ ||w|| = ||wo|| £ \A + e ,

and (13.2) is verified. Since t^V* w e have g(t ) = f(tm) - 0

and (13.1) holds. On V., g coincides with mid(v^,l,-l) = v i

(by (13.11)); therefore, us

conclude from (13.10) that

(by (13.11)); therefore, using the fact that geC (K), we

[ - 1 , 1 ] z> g ( K ) => ( - U v ( V . ) ) U ( U v . ( v . ) ) =
0 X X 0

= [-1,0] U [0,1] = [-1,1]

Equality must hold, so that ged£ and (13.3) is verified.

13.2. Theorem. Assume that KCT _is dense-in-itself and

not split , .If fedS, then 6(-f,f) £ 3, with equality if

and only if f(K) = {-1,0,1}. When equality holds, there is

_a curve of length 3 from -f Jbo f _in

Proof. For every t > 0 the set f(KCT) 0 (-e,e) is

not empty; for otherwise f~ ([e,l]) is a a-block that

splits K°'. Therefore A(f) £ 1, with equality exactly

when f(Ka) = {-1,0,1}; but this last condition is equivalent

to f(K) = {-1,0,1}, since we have just ruled out f(KCT) = {-1,1}

Theorem 13.1 then yields the conclusxon, except for the

existence of the curve. This existence will follow from the

more general result given in Theorem 14.3, but we give a

direct proof here in view of its simplicity.
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Assume that f(K) = {-1,0,1} = f(Ka). Set B = f"1({l}),

K1 = f"1({0}). Then B is a cr-block and, by Lemma 12.1,

there is a congruence C (K)--*'C(B) © C ,(K') under which f

corresponds to 1 © 0. Since B is not a singleton, there

exists heC(B) with {0,1} c h(B) c [0,1]; since KlCT' = K'liKCT ̂  j6,

there exists ge3£(C ,(K'))» It is then verified by inspection

that the polygon with consecutive vertices -1 © 0, (h-1) © g, h ® g,

1 © 0 is a curve of length 3 from -1 © 0 to 1 © 0 in

9£(C(B) © C ,(K')); under the congruence, it corresponds to

the required curve of length 3 from -f to f in 5£«

13.3. Theorem, If K has no g-block, then M(C (K)) = 2

is strongly attained; and it is very strongly attained if

and only if m(C (K)) = 2 is very strongly attained. If K
— ______ _ Q. _ _ ________ _________»__, __________ ___

has a^ cr-block, then M(C (K)) _is very strongly attained; it

is equal to 3 _if K _is dense-in-itself and not split, and

equal to 4 otherwise.

Proof. If feaL and A(f) > 0, there exists a£ [ -1,1] \f (K) .

Then f~ ((|a|,l]) is a a-block. Consequently, if K has

no a-block, A(f) = 0 for all fe^E; by Theorem 5.3, all

fed£ are flat spotSo By Theorem 5.4, m(C (K)) = 2 is

strongly attained. The conclusion of the present theorem for

this case then follows from Lemma 11.2.

If K is not dense-in-itself or is split, M(C (K)) = 4

is very strongly attained, by Theorem 12.3. Assume then

that K a is dense-in-itself and not split. By Theorem 13.2,

M(C (K)) _• 3; and, according to the same theorem, equality

will hold, with M(C^(K)) = 3 very strongly attained, provided
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there exists feC (K) with f(K) = {-1,0,1}. But if B

is a a-block of K, f = X-™ - X •>-, satisfies these conditions,
a CTB

since B does not split K .

We can translate the last two theorems into statements

about C0(T), by means of Lemmas 3.1 and 12.2.

13.4O Theorem. Assume that T _is_ locally compact and

dense-in-itself, but not compact. If fe3£(Cn(T)), then

6C ,Ts(-f,£) g 3, with equality if and only if | f | (T) = {0,1}.

When equality holds, there is _a curve of length 3 from -f

.to f in BS(Cn(T)).

13.5. Theorem. Assume that T JLs_ local ly compact.

If T has no compact component, then M(C (T)) = 2 is

strongly attained; and it is very strongly attained if and

only if m(Co(T) ) = 2 _is_ very strongly attained. If T

does have a_ compact component, then M(C (T)) jls very

strongly attained; it is equal to 3 _if T _is dense-in-itself

and not compact, and equal to 4 otherwise.
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14. The inner diamater.

We again assume that K is a given compact space and a

a given involutory automorphism, and that the notations £,

refer to the space X = C (K). Our aim in this section is to

show that, except for the cases covered by Theorem 12.3,

the inner diameter of 3£ is always 3 and is very strongly

attained. It is the proof of the latter assertion that

turns out to be surprisingly intricate„ We preface the

main argument with results for two special cases.

14.1. Lemma. Assume that f,geSL and f(K) = [-1,1].

Then there exists _a curve of length £ 3 from f _to g jm s£ .

Proof, By Theorem 5.3, f is a flat spot, i.e.,

6(-f,f) = 2. Lemma 11.3 then yields 6(f,g) £ -|( 6 (-f, f) +4) = 3;

and if equality holds, there exists a plane curve of length 3

from f to g in d£. If 6(f,g) < 3, the existence of

a curve as required in the statement follows from the

definition of s <,

14.2. Lemmao Assume that f,ge3£ and that the

following conditions are both satisfied.

(a): there exist t, , t9eK
CT such that t~ ^ at, and

" • ^ • ' X ^ ••|'T " • n i . . . ^ j _ '

f(t1) = g(t2) = 1;

(b): f(t)g(t) > 0 for some teKa.

Then there exists _a curve of length < 3-p from f jto g _in B£,

where p = maxfminff (t) ,g(t) } : teK, f(t)>0, g(t) > 0} > 0o

Proofdo On account of (b), p is well defined, and there
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is a point t_eK such that

(14.1) 0 g p = min{f(to),g(to)) g 1.

2. Assume first that g(t,) = p. By assumption (a)

there exists a function zeC (K) such that
a

||z|| = z(t-) = z(t2) = 1 - p > 0 (use a skew Tietze

extension; t, = t2 is not excluded: it would imply p=l,z=O).

Set h = mid(g+z,l,-l)eC (K) (Lemma 3O2). Then

h(t1) = h(t2) = ||h|| = 1. Since f(t1) = h(t1) = h(t2) = g(t2) = 1,

the polygon p with consecutive vertices f, h,g is a curve

from f to g in d£. Now g - h = mid(-z,-1+g,1+g) ;

therefore *(p) = ||h-f|| + ||g-h|j £ ||h|| + ||f|| + ||z|| = 1 + 1+ (l-p) =

= 3 - p, as required.

The same proofs with f,g interchanged, is applicable

if f(t2) = p.

3. We may assume in the rest of the proof that

f(t2),g(t,) < p £ 1; this implies that
 tn'tl't2 a r e

pairwise distinct. Since f(at,) = g(crt2) = -1, (14.1) and

assumption (a) then imply that t , t,, t2,at ,at,j crt are

pairwise distinct.

We define f = m±d(f,p,~p) and g = mid(g, p, -p) ;

by Lemma 3.2, f ,geC (K). (14.1) implies
f

P
( v = f

P ^ i ) = iifpii = y v = 9p(t2) = iigpn = P
(14 . 2.)

( f - f p ) ( t l ) = !|f-fp|| = (g-gp)( t2) = ||g-gp|| = 1 - p.

Let U1:JU2JU be open neighborhoods of t J t . , t 2 ,
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respectively, such that the six sets U.,crU., i = 0,1,2

are pairwise disjoint and such that

(14.3) f(U1),g(U2) c [0,1] .

There exist zQ, z-^z^C (K) such that

(14.4) z i ( t i ) = \\z±\\ =* 1-p, z i(U i) c [0,1-p],

z
i(K\(UiU<TUi)) = {0}, i = 0,1,2.

We set z^ = mid(mid(z0, 1-p+f-f - (l-p)+f-f ), 1-p+g-g ,

-(l-p)+g-g ) e Ca(K). By (14.1), (14.2), (14.4) we have

z o ( V = ^o 1 1 = 1"/0^ z o ( K N ( u o U o r U o ) ) = { 0 } '
(14.5)

(z^+fp-f)(U0) ,(z^+gp-g)(U0) c [ - ( 1 - p ) , 1 - p ] .

We set h x = zx + z^ + fp, h 2 = z2 + z^ + gp.

Since z',z,,z2 have pairwise disjoint supports, (14.4),

(14.2), (14.5) imply 1 = p + (1-p) = ̂ ( t ^ £ \\h^\\ £ ||fp|| +

^ ||z1||} = p + (1-p) = 1, so that equality holds;

and likewise h9(t ) = ||h-?|!
 = 1- Thus h,,ho€9i;, and

the same formulas imply f(t1) =hL(t],) = h1(tQ) = h2(t2) = g(t2) = 1,

Therefore the polygon p with consecutive vertices f, h-, h2, g

is a curve from f to g in as. We proceed to estimate

its length.

Now h- - f coincides with z' + f - f on U^ U crU and

with f - f elsewhere. By (14.2),(14.3),(14.4) we

find (z-L+fp) (Uj) c z1(U1)-(f -f) (Ux) c [O,l-p]-[O,l-p]=[-(l-p),l-p] .

Combining this with (14.2) and (14.5) we find ||h;,-f|| £ 1 - p.
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In a similar fashion we find ||g-h2|| £ 1 - p. Finally,

h2 - h, = z2 - z-, + g - f ; since z,,z2 have disjoint

supports, ||h,-h.J £ ||f || + ||g || + max{ ||z J | , ||zJ } = 2p + (1-p) =
/£ X — p p J- .̂

= 1 + p . Thus

*(p) = H^-fH + Hl^-hJ + ||g-hz|| £ (1-p) +(l+p) + (1-p) = 3 - p,

as required.

14 o 3. Theorem. Assume that Ka jls dense-in-itself

and not spli t . If f,ged£* there exists a. curve of length £ 3

from f Jbo g ^n

Remark, Under the assumptions of the theorem, it is easy

to show that, for given F > 0, there exists f'edS such

that 6(f,f) £i and such that f',g satisfy the assumptions

of Lemma 14.2. it follows at once that 6(f,g) £ 3. The

difficulty of the following proof therefore lies in the actual

construction of a curve of length not exceeding 3O

Proof. We consider the non-empty compact sets

T(f) = fteK : f(t) = 1}, T(-g) = [teK : -g(t) = 1} of KCT,

and the following exhaustive set of mutually exclusive

possibilities:

(A): T(f) 0 T(-g) = 0, i.e., ||f-g|| < 2;

(B) : T(f) n T(-g) ̂  j6, but not both sets are singletons;

(C) : T(f) = T(-g) = { t ^ for some tj^eK17.

On the other hand, consider the following exhaustive set of

mutually exclusive possibilities:
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(X): f(t)g(t) > 0 for some teKCT;

(Y): f(t)g(t) £ 0 for all teK, with equality for

some teK ;

(Z) : f(t)g(t) < 0 for all teKCT,

Now (A) v (B) is condition (a) of Lemma 14.2, and (X)v(Y) is

condition (b) of the same lemma; in cases (AX),(AY),(BX),(BY)

the conclusion of the theorem then follows from Lemma 14.2

Case (CX)o With p defined as in Lemma 14.2, condition (X)

and (14.1) imply p > 0. Choose £,0 <e < p. The open

set g~ ((l-t,l]) contains crt, ; but this point is not

isolated; therefore there exists t2€K°" such that at-, ̂  t2

and l-€ < g(t2)< 1. Set g1 = mid( (l+£ ) g, 1, -1) eC^K) ;

then g'fcrt.̂  = g'(t2) = ||g'|| = 1. If toeK
a satisfies (14.1),

we have min{f (tQ) ,g'(tQ) } > p. By Lemma 14.2, 6(f,gT) £ 3 - p.

But g'(crt,) = g(at,) = 1; therefore the straight-line segment

with endpoints g',9 lies in 3£, and 6(g',g) = ||g-g'|l ̂  € >

so that 6(f,g) £ 5(f,g') + 5(g',g) ^ 3 - p + g < 3 . The

conclusion follows from the definition of 5.

Case (AZ) „ By condition (A) there exists £ , 0 < 6 < -̂

such that the open sets l^ = f~1(( 1-6,1]) and U2 = g~
1( (1-e, 1] )

satisfy U, H CTU2 = j60 By the choice of 6 and by

condition (Z), the four sets U,,U9, crU,, <yU0 are pairwise disjoint.

We choose t,eT(f) a u,, t2eaT(-g) c U2<)

Since f,g vanish nowhere on KCT, we have

77 = min{£ ,min{|f(t) | : g(t) > 1 - £ }, min{|g(t) | : f(t) > 1 - £ }} > 0.

As shown at the beginning of the proof of Theorem 13»2,



22

the set g~ ((-17,77)) H KCT is not empty; let t be a point

in it. By assumption (Z) we have f(t_)g(t ) < 0;

if |f(t )| < |g(t ) | , we interchange f and g; further

replacing t_. by °"tn, if necessary, we may assume

(14.6) -e £ -T? < g(tQ) < 0 < |g(tQ)| £ f (tQ) .

By the definition of r\, t n does not lie in U, ,U2,crU,, or tfU2.

We may choose an open neighborhood U n of t so small that

U Q fl aU = j6 and, on account of (14.6),

(14.7) g(UQ) c (-T?,0), f(UQ) c (0,1-e).

It follows from these conditions that the six sets U.,aU.,i=0,1,2,

are pairwise disjoint. There exists zeC (K) satisfying

(14.8) z(tQ) = ||z|| = 1, z(UQ) c [0,1], z(K\(UQUa0)) = {0}.

We set z' = mid(mid(z, l - f ( t Q ) + f, - (1 - f ( t Q ) )+f ) , l-g(tQ)+g, '

-(l-g(to))+g)€C f f(K) (Lemma 3.2), and find, using (14.6), (14.8),

z ' ( t 0 ) = | |z' | | = 1,

(14.9) (z'-f)(UQ) c [ - ( l - f ( t o ) ) , l - f ( t Q ) ]

(z'-g)(UQ) c [ - ( l - g ( t o ) ) , l - g ( t o ) ] = [ - ( l + | g ( t o ) | ) , l + | g ( t o ) | ]

Define jpeC ([-1,1]) by

fO 0 ^ t ^ l - €
cp(t) = -cp(-t) = < n "

I 1 - e x ( i - t ) i - & ^ t ^ 1,

and set h, = z' + (qj 0 f) ,h = z1 + (cp o g) , both

elements of C (K). Now

| | cpof | | = ( c p o f ) ( t 1 ) = 1 , (cpo f ) (1^ ) c: [ 0 , 1 ] , (cpc f) (K\(tXLUaUL)) ={0}

( 1 4 . 1 0 )
| | q>°g | | = (cp« g ) ( t 2 ) = 1 , (<po g) ( U 2 ) c [ 0 , 1 ] , (cp o g) ( K \ ( U 2 U ai£)) = { 0 } .
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It follows that 1^^)= h-L^) = HhJ = h2(t2) = h2(tQ) =

= ||h2|| = 1, so that h1Jh2eas. Since also fitjj = g(t2) = 1,

the polygon p with consecutive vertices f, h,, h2, g is a curve

from f to g in 9£. We estimate its length.

Now h, - f coincides with z1 - f in U U aU , and

with tp o f - f = (cp-u) o f elsewhere (here ueC ([-1,1])

i s given, as in Section 5 , b y u(t) = t , t e [ - l , l ] ) . Using

(14O9), we find ||h -f|| £ max{ ||z' -f | | , || (cp-u)p f ||} £

£ max[l*f(to),Hcp-u||}- = 1 - min{f( t o ) ,€}. Similarly,

||g-h2|| £ max{||z'-g||,||cp-u||} £ 1 + | g ( t Q ) | . Finally, ^ - ^

coincides with -(cp°f) on U, U CTU, and with cp o g on

U2 U crU2 and is zero elsewhere. Therefore (14.10) yields

||h2-h,| | = 1. Then we compute, using (14.6),

4(p) = H^-fJI + Hhg-hJI + ||g-h2|| ^

^ ( l -min{f ( t o ) ,£}) + 1 + ( l + | g ( t Q ) | ) ^ 3,

as requi red .

Cases (BZ),(CY),(CZ)„ 1» If either f(K) or g(K)

is [-1,1], Lemma 14.1 gives the desired conclusion,, We shall

therefore assume in the remainder of the proof that

(14.11) f(K) 7* [-1,1] t g(K),

and under this assumption we shall prove 5(f,g) < 3; the

conclusion then follows from the definition of 6.

Under assumption (B) or (C) there exists t,eKCT such

that f(t1) = -g(t1) = 1. Under assumption (Y) or (Z),
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the functions f, -g are nowhere of strictly opposite signs;

therefore "f(t) > 0 or -g(t) > 0" is equivalent to

»(f-g) (t) > 0"o

We consider the class B = {B c K : B closed-and-open,

t._eB, (f-g) (B) c (0,1]}. We shall see in a moment that B is
u ~

not empty. Meanwhile, we observe that BeB implies that B

is a cr-block; since KCT is not split, KCT\(BUaB) ^ 0.

Further, B is closed under non-empty finite unions and

intersections. By these remarks, the numbers

^ = max{f (t) :teK\(BUcrB) }, ^(B) = min{ f (t) :teB},

oc2(B) = max{-g(t) :teK\(BUaB) }. c^(B) = min{-g(t):teB}

are well defined for each BeB, and lie in [0,1].

By (14.11) and the fact that f(K) = -f(K) and g(K) = -g(K),

there exist s1,s2e(O,l) such that s,/f(K), s2/-g(K).

Therefore the sets B1 = f~
1((s1,l]), B2=(-g) ~"

1( (s2, 1])

belong to B, which is thus non-empty? and we also find

(14.12) ai(Bi) < s i < caL(Bi), i = 1,2.

We s e t a o i = inf (oufB) :BeB}, w o i = sup{w i(B) : BeB}, i = 1,2.

I t fo l lows from (14.12) t h a t a Q i < ccQi, i = 1,2.

2O Choose £ , 0 < e < -? min{ COO1 ~
aoi^ a)o2~a02-'* r^ien t h e r e

e x i s t P i , Q i e B , i = 1,2, such t h a t c t o i £ a i(P j L) £ a Q i + c ,

WQi - € £ ^ i (Qi) £ %±» i = I* 2 - Set P = p± U P 2 U Q± U Q2,

0 = 0-2̂  H Q2 . Then P^QeB, Q c P, and

(14.13) a o i £ a±(P) £ a Q i + 6 , w Q i - £ ^ a>±(Q) ̂  wQi, i = 1,2.
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Replacing f,g by -g,-f, if necessary, we may assume

that

(14.14) 6^(0) - co-ĵ P) £ tt^(Q) - a2(P).

Now A = P\ Q is empty or a cr-blocko

Set K1 = K\(AUaA) = K\(PUCTP) U Q U aQ, and let cr' be the

restriction of a to K1 . Let L S a S S S ' refer to C ,(K').

Let f , g1 be the restrictions of f,g, respectively, to K';

then f ,g'eC ,(K'). Now t-^Q c K', and f'ft^) = -g'(t.^ = 1.

Therefore f'j9'e3E'« By Lemmas 12.1 and 11.1 if A j4 f6, and

trivially otherwise, we have 6(f,g) <̂  maxfs'(f', g'),2}.

It will therefore be sufficient to prove e'tf',?1) < 3.

Since K|CT = K' n K a is open in KCT, it is dense-in-itself;

since it contains t,, it is not empty. We claim that it is

not split: if B1 were a a'-block that splits K'*7 , it is

immediately verified that A U B' would be a cr-block in K

that splits Ka, a contradiction.

3. We now work in C ,(K'). We claim that

(14.15) A(f') = ^(Q) - a1(P).

By the construction of K' we indeed have f'(K|Cr ) D

^ = l&, so that

(14.16) A ( f ) >

On the other hand, since K' is not split, the argument

at the beginning of the proof of Theorem 13.2 shows

that A(f') = b - a for some interval (a,b) c (0,1)
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with f'(K'CT ) n (a,b) = ,0. Since f does take the

value a-i(P) on K°\(PUaP) c K'ff and the value

on Q a K1 , the interval (a,b) must either coincide

with (cc-i (P) > UH (Q) ) or be disjoint from it; the latter

alternative will now be disproved, and this will establish

the claimed validity of (14.15).

Set B1 = f'~ ((a,l]); then B' is closed-and-open.

If 0 £ a < b <£ a-i(P), we find that P U B'eB, since

f(PUB') a [ax(P),l] U [b,l] <z (0,1], the other conditions

being trivially verified. The definition of B1 also

implies a-i(PUB') = a. Then (14.13) implies

A(f') = b-a £ a^PJ-cc^PUB') ^ t t l(P)-a 0 1^ t < i
(abl"a0l) ^

contradicting (14.16). If, on the other hand, Ui,(Q) £ a < b £ 1,

we find that B'CZQ, B'eB, ,W, (B1) = b. Then

A(f') = b-a £ ^(B 1) - ^(Q) £ co01 - 0^(0) ^ e < "3
(abl~aoi) ^

- a i(P),

again contradicting (14.16), Thus (14O15) is proved.

By Theorem 13.1 and (14.15) we know that 6'(-f,f) =

= 2 + A(f') = 2 + ^(Q) - a1(P). To prove that 6'(f',g') =

= 6(-f',-g') < 3 it will suffice to prove that 6'(f',-g) <

< 1 - («,_«}) - ttl(P)). Since f (tx) = -g'f^) = 1, the

straight-line segment with endpoints f',-gT lies in

thus e'ff'j-g1) = IJf'+g'H, and all we have to prove is
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(14.17) llf'+g'll < 1 " (^(Q) - a1(P)).

4. Now f and -g are nowhere of strictly opposite

signs, so

(14.18) llf'+g'll = max{u',ii«).

where

(14.19) nf = max{|f(t)-(-g(t)) | :teK\(PUcxP) } £ maxfa^P) ,a2(P) )

(14.20) u" = max{|f(t)-(-g(t)) | :t€Q} £ max{l-c^(Q), 1-afc (Q) }.

Suppose oc,(P),a2(P) > °'
 i f equality holds in (14.19),

there exists t_eK\(PUcrP) such that either f(tQ) = a i(
p) > 0*

-g(tQ) = 0, or -g(tQ) = a2(
p) > °> f(fc

0) = 0?
 i n either

case, t eKa, and condition (Z) is excluded in favour of (Y).

The same conclusion is reached if a-i(P) or a2(
p) 1 S °)

since then either f or -g vanishes in all K°\(PUcrP) ^ j6.

Thus condition (Z) requires a-i(p)ja2(P) > 0 and strict

inequality in (14.19).

Likewise, suppose o)i(Q)j^(Q) < 1* if equality holds

in (14o2o), there exists toeQ such that either

f(tQ) = cOj_(Q) < 1, -g(tQ) = 1, or -g(tQ) = afc(Q) < 1

and f(tn) = 1; in either case t_ ^ t,, and either T(-g)

or T(f) is not a singleton; this excludes condition (C)

in favor of (B) . The same conclusion is reached if co,(Q)

or 0^(0) is 1, since then Q, which is not a singleton

(there are no isolated points in K a ) , is contained in either

T(f) or T(-g) . Thus condition (C) requires oi (Q) , ctu (Q) <

and strict inequality in (14.20).
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We substitute (14.19) and (14.20) in (14.18); using (14.14),

we find

(14.21) llf'+g'H = max[n',|j") <; max{a]L(P) ,1-0^(0.) ,a2(P) ,1-a^ (Q)} £

£ max{l-(u>L(Q)-ai(P)),l-(6^(Q)-a2(P)) }

= l-(coL(Q)-a1(P)).

To prove (14.17), and thereby complete the proof for the cases

under scrutiny, it remains to exclude equality between

extreme members of (14.21).

Suppose equality does hold. Assume first that ]|f'+g'|| =

= |i« = a±(P) = l-(coL(Q)-a1(P)) for i = 1 or i = 2.

By (14.14) we then have 1 > co±(Q) = u±(Q) - a±(P) + a±(P) =

(dC±(Q) - a±(P)) + 1 - (0^(0) - a1(P)) > 1, so that

equality holds, and oi, (Q) = 1; since equality

also holds in (14.19), neither (C) nor (Z) holds,

contrary to the assumption for the present cases. If, on

the other hand, ||£'+g'|| = u" = 1 - u±(Q) = 1 - (o^(Q) -

for i = 1 or 2, we again conclude, from (14.14), that

0 £ a±(P) = co±(Q) - (tcL(Q) - a±(P)) =

- a^P)) £ 0, so that ai(P) = 0 and equality

holds in (14.20); thus (C) and (Z) are again both excluded,

contrary to the assumption. Thus equality cai not hold between

members in (14.21), and (14.17) is proved.

14.4. Theorem, If K a îs dense-in-itself and not

split, then D(C (K)) = 3; otherwise D(C (K)) = 4. in
— , Q. _ _ _ _ _ _ _ _ _ g.

either case, D(C (K)) is very strongly attained.
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Proof. We may'assume that Ka is dense-in-itself and

not split, since the other cases are covered by Theorem 12.3.

The conclusion under these assumptions is then evident from

Theorem 14.3, provided we show that there exist f,ge;}£

with 8(f,g) > 3.

Since K is dense-in-itself, it is not scattered,

and there exists, by Theorem 5.4, a function heC (K)

with h(K) = [-1,1]. Define v,weC ([ -1,1] ) by

v(t) = -v(-t) = t - -| + |t - -|| 0 £ t £ 1,

Wl(t) = -w(-t) = - t - j + | t - - i | 0 £ t £ 1,

and s e t f = v o h , g = w e h . Then f*g£9S* s i n c e

||v|| = ||w|| = v ( l ) = -w(l) = 1 . We cla im t h a t 6 ( f , g ) > 3

(actually, equality must of course hold, by Theorem 14.3).

Let c be any curve from f to g in d£, and r

a given number, 0 £ r < 1. Since ||f-f|| =0, ||g-f|| = ||w-v|| = 2,

there exists a point p on c such that ]|p-f|| = r .

Since pe3£, there exists teK*7 such that p(t) = l0

Now v(h(t)) = f(t) > p(t) - ||p-f|| = 1 - r > 0. From the

definitions of v and w we must have h(t) > - j ,

whence g(t) = w(h(t)) = - 1 . Then

-t(c) > ||p-f|| + ||g-p|| ^ r + |g ( t ) -p( t ) | = r + 2.

Since r is arbitrarily close to 1, and l(c) is arbitrarily

close to 6(f,g), we indeed conclude that s(f,g) > 3.

As in Section 13, Lemmas 3.1 and 12.2 yield a translation

of the results into statements about c
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14.5. Theorem. Assume that T is locally compact.

If T Jjs dense-in-itself and not compact, D(C (T) ) = 3;

otherwise D(Cn(T)) = 4. In either case, D(C_(T)) is

very stronqly attained.



31

150 Summary

In this final section we tabulate some of the results

we have obtained for the spaces C (K), C0(T), and C(T) .

We observe that the relevant properties of Y? for the

classification of the first of these types of function

space can be put in the following sequence of increasing

restrictiveness: (none); infinite; not scattered; dense-

in-itself; without cr-blocks. Cutting across this hierarchy-

is the question of whether KCT is split or not (of course,

KCT is always split if it is finite, and never split if

it has no cr-blocks) » On account of Lemma 12.1, the

discussion of C (K) when KCT is split is replaced, with

some gain in clarity, by the discussion of C(T) for

compact T. To these case-distinctions correspond analogous

ones for C
O(

T) with locally compact T.

15.1. Theorem. Let K .be a, compact space and <j

an involutory automorphism of K, and assume that KCT is

not split. Let T _be ja locally compact space that is not

compact. Say that X = C (K) or C
O(T) .is in

Case if K a .is, ^r _if_ T _is_

-I infinite, but scattered, infinite, but scattered;

II not scattered, but not not scattered, but not
dense-in-itself, dense-in-itself;

JJL1 dense-itself, but with dense-in-itself, but
q-blocks, with ci compact component;

IV without g-blocks, without compact components.
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Then the following holds;

If X _is in
Case

m(X) = attained? m(X)= attained? D(X)= attained?

II

III

IV

no

strongly*

strongly"

strongly*

very 4
strongly

very 4
strongly

very 3
strongly

strongly** 3

very
strongly

very
strongly

_very
strongly

very
strongly

^sometimes very strongly, but not always; e.g., not for Cn(T)
when T _is_ paracompact and first countable, in particular
metrizable.

**very strongly if and only if m(X) JLs very strongly attained.

Proofo Except for footnote (*), by Theorems 5.4, 6.2,

13.3, 13.5, 14.4, 14.5. As concerns that footnote, examples

of X that are very flat and examples of X that are not

can be found for Cases II,III, and IV, as follows. Theorem 9.6

provides examples of X = C (T) in Cases III or IV (depending

on the connectivity of the factor spaces) that are very flat;

an example for Case II is obtained by adding isolated points

(Theorem 8 O5) O Theorem 9»5, on the other hand, shows that if T

is paracompact and first countable (in particular, metrizable),

then X = CQ(T) is not very flat; such spaces exist in

Cases II,III, and IV. Lemma 3-1 then yields instances

for X = C (K) for all cases; further instances for Case IVa

can be found at the end of Section 7.
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Remark; In Case IV, M(X) = 2 < 3 = D(X) ; this refutes [3;

Conjecture 9.1]; a special instance of this fact was noted

in [7], and it was pointed out that here the inequality is

as strong as the bounds recorded in Lemma 11.3 will permit.

15.2. Theorem. Let T be a compact space with more

than one point. Then M(C(T)) = D(C(T)) = 4 are both very

strongly attained; further,

ji T is m(X)= attained?

finite (n points) 2n(n-l) very strongly

infinite, but scattered 2 no

not scattered 2 strongly; sometimes very
strongly, but not always.

Proof. Theorems 12.3, 6.2, 9.3, 9.5, 9O6; for finite T,

Lemma 2.1 and [4; Theorem 5].

15.3. Theorem. Let T be a first countable paracompact

space, in particular a. metrizable space, with more than one

point. Then M(C(T)) = D(C(T)) = 4 are both very strongly

attained; further,

if T is m(X)= attained?

finite (n points) 2n(n-l)~ very strongly

infinite, but compact and 2 no
scattered

not compact, but locally 2 very strongly
compact and scattered

not locally compact, or 2 strongly, but not
not scattered very strongly

Proof. Theorems 12.3, 6.2, 9.5, and 15.2.
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Results for other C(T) are contained in Theorems 6,2

and 12.3 and in Section 9. The results for L°°-spaces are

mainly covered by Theorems 10.2 and 10.5 (see also Conjecture 10.8);

we merely add that, if 1 < dim L°° = n < oo, then m(L°°) = 2n(n-l)l:L

(very strongly attained); and that, in any case, M(L°°)=D(L°°)=4

(both very strongly attained). This follows from Theorems 10.1

and 15»2.

For purposes of comparison, we record here the corresponding

classification for L-spaces, according to [6],

15.4. Theorem. Let (S,^,^) be a measure space, and

set L 1 = L1((j). Then;

if \X JLS m(L')= attained? M(L1)= attained? D(lf)= attained?

purely atomic;
n atoms,n>l

purely atomic;
infinitely
many atoms

neither atom-
less nor
purely
atomic

atomless

2n(n-l) *

2

2

2

very
stronqly

no

very
stronqly

very
stronqly

4

4

4

2

very
stronqly

very
stronqly

very
stronqly

very
stronqly

4

4

4

2

very
stronqly

Very
stronqly

Very
stronqly

very
stronqly

Proof. For atomless \x, [6; Theorem 2] . For M(L )

and D(L ) in all other cases, [6; Theorem 4] and Theorem 11.4.

For m(L ) when \x is purely atomic, [6; Theorems 6 and 7]

and Lemma 2.1O in the intermediate case, [6; Theorem 5] shows

that m(L ) = 2 is strongly attained; we have to show that it



35

is very strongly attained. We denote by (i1 the atomless

part of |j; then L (|i') is a subspace of L (|i) . The

argument of the proof of [6; Theorem 1], adapted to this

case, shows that if f€d£(L (|a)) is not in L 1 ^ 1 ) ,

then 5(-f,f) > 2; therefore, every flat spot of L (|i)

lies in L (|i') ; by [6; Theorem 2] it is then a strictly

flat spot of L (|j'), and a fortiori of L (\i) .
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