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COLLECTI ONW SE NORMALI TY AND THE EXTENSI ON OF
FUNCTI ONS ON PRODUCT SPACES
by

Richard A AL and Linnea |. Sennott

The concept of extending a continuous pseudonetric is char-
acterized in terns of extending functions on product sets (satis-
fying no pseudonetric axions). For exanple a subspace S is
P- enbedded in‘ X (every continuous pseudonetric on S extends
continuously to X) if and only if for all locally conpact hem -
conpact Hausdorff spaces A, the product set S x A is C*-enbedded
in the product set S x |35 is C-enbedded in the product space
Xx PS (where PS is the Stone-Cech conpactification of S) if
and only if the product set S x A is C-enbedded in X x A for
all conpact Hausdorff spaces A. For Tichonov spaces S this
says that S is P-enbedded in X if and only if u(xxpX) = ux x PX
If X is of non-nmeasurable cardinal then u(XxA) = ux x A for all
conpact Hausdorff spaces A Also our results showthat if S is
C enbedded in X t.hen SXx M is Genbedded in Xx M for all
conpact netric spaces M Using our results and results of Mrita

it follows that if A is a conpact Hausdorff space with a base for




its natural uniformty of cardinality at nost y then X Xx A is
Y- paraconpact and normal if X is. Finally if A is any conpact
Hausdorff space in which X is C‘-enbedded, then X is collection-

wise normal if and only if F x A is C'-enbedded in X x A for

all cl osed subsets F.




COLLECTI ONW SE NORVALI TY AND THE EXTENSI ON OF

FUNCTI ONS ON PRODUCT SPACES

by
Richard A A0 and Linnea |. Sennott
1. I ntroducti on and Prelimnary Resul ts.

Let S be a nonenpty subset of a topological space X
The subset S is said to be P-enbedded in X if every continuous
pseudonetric on S extends to a continuous pseudonetric on X
The subset S is Cenbedded (respectively C'-enbedded) in X if
every continuous (respectively bounded continuous) real valued func-
tion on S extends to a continuous (respectively bounded conti n-
uous) real valued functionon X It is clear that every C enbedded
subset is a C'-enbedded subset; noreover every P-enbedded subset is
a C enbedded one (see Theorem 2.4 of [7]). The concept of P-enbed-
di ng characterizes collectionwi se normal spaces in the sanme way as
C-enbeddi ng (and al so C-enbeddi ng) characterize normal spaces. Spe-.
cifically a topol ogical space X is collectionwise normal if and

only if every closed subset of X is P-enbedded in X (see [12]).

Since a pseudonetric on a space x 1is a function on the pro-
duct set X x X, it is of interest to relate the extension of pseudo-.
metrics to the extension of functions on X x X (wthout the tri-

angle inequality). In [1] we showed that a




subset S is P-enbedded in X if and only if every continuous
function from S into a bounded, closed convex subset of a Banach
space extends to a continuous function on X wth values in the
convex subset. Using results developed in [1] to denobnstrate this
result, we also showed in [1] that if L is any Fréchet space,
then every uniformly continuous function from S into L can be
extended to a continuous function on X. Also uniformcontinuity
of the extended function is shown not to be attainable.

We now turn our attention to relating P-enbedding to the exten-
sion of functions fromproduct sets. By utilizing results from [1]
we show that a subspace S is P-enbedded in the Tichonov space X
if and only if for all locally conmpact hem conpact Hausdorff spa-
ces A, the product set S x A is C-enbedded in the product space
Xx A if and only if the product set S x PS is Ct-enbedded in
the product space X x f3§ where |3 is the Stone-C8ch conpactifi-
cation of S. As a corollary we have that the subspace S is P-em
bedded in the Tichonov space X if and only if for all conpact
Hausdorff spaces A S x A is Ct-enbedded in X x A For Tichonov
spaces X this inplies that X is P-enbedded in wux if and only
if u(XxPX) = ux x OX. Moreover for spaces X of non-neasurable
cardinality, this also inplies that u(XxA) = ux x A for all com

pact Hausdorff spaces A This is simlar to aresult in [4].




In section 3 the results of section 2 are generalized to give
results concerning P’'-enbedding and y-collectionwi se nornality.
See [1] for definitions of these terms. Fromthese results we are
able to showthat if S is a c-enbedded subset of a topol ogica
space X then S x M is Cenbedded in X x M forlall conpact
metric spaces M In [10] Morita considers y-paraconpact norm
spaces and such spaces are always Y-collectionwi se normal. W ob-
tain characterizations of Y-collectionw se normal spaces. As a
corollary to results of Morita in [10], we showthat if X is a
Y- paraconpact normal space and if A is a conpact Hausdorff space

with a base for its natural uniformty of cardinality at nost vy,

then X x A is a y-paraconpact nornmal space. This theoremis then
related to our results on PV-enbedding and Y-col |l ecti onwi'se nor nal
spaces.

In Theorem4.1 we inprove a characterization on collectionw se
nor mal spaces given by H Tamano in [13] and close with some open
guestions concerni ng P-enbeddi ng.

The maj or tool of this paper will be Theorem 1.2 bel ow (which
appeared as Theorem 2.3 of [1]). W state the relevant portion of
this result here for convenience. However first we need the fol-

| owi ng definitions.

Definition 1.1: Let X be a topological space and let y be

an infinite cardi nal nunber. A function f on X is said to be a




(L, M -valued function on X if f aps X into a conplete, con-
vex, nmetrizable subset M of a locally convex topological vector

space L. A function f on x is said to be a (L,y,M-valued

function on x ififc A 3 (L M-valued function and if the image
of X wunder f is a Y-separable subset of M (that is, there is
a dense subset A of f(x) and the cardinality of A is not great-

er than Y)e A Fréchet space is a conplete, metrizable locally

convex topol ogical vector space.
Let us recall that the set of all bounded, real valued contin-
uous functions on X is a Banach space under the sup norm that is

[If]] =sup | f(x) | . This Banach space will be denoted by Ct(X) .
xeX

Theorem1.2: Let S be j* _nonempty subspace of X and let vy

be an infinite cardinal nunber. Ihe following statenents are equiva:

| ent :

') The subspace S _i* PY-errbedded in X

2) Every continuous (L,Y,M-valued function on S extends

to £ continuous (L,M-valued function on X

3) _Every continuous (L,Y.M-valued functionon S extends

r

toja_continuous function from X _to

4) Every continuous function from S 1o a Fr échet space,

such that the image of S .is Y-separable extends to a

continuous function on X




5) _Every continuous function from S into C*(S), such

that the image of S .is._y- separable, extends to at

continuous function on X

Furthernore, _the above conditions are also equivalent to the

conditions obtained from (2) through (5 by requiring the imge

of S jt

be a. _bounded_subset _of the locally convex space in ques-

tion.

Since a subspace S of a topological space X is P-enbedded
in X if and only if it is P'-enbedded in X for all infinite
cardi nal nunbers y (Theorem 2.8 of [12]), it is clear that we ob-
tain characterizations of P-enbedding from Theorem 1.2 by renoving

all mention of cardinality.

2. P-enbeddi ng and the Extension of Functions on Product Spaces.

Now we devel op the material needed to characterize P-enbeddi ng
in terns of product spaces. If A and B are topol ogical spaces,
C(A,B) will denote the set of all continuous functions from A to B
equi pped wi th the conpact-open topology. A subbase for this topol ogy
is the collection of all sets (KW = (feC(A, B): f(K cw where K
is a conpact subset of A and W is an open subset of B. On

page 80 of [11], the follow ng proposition is shown.

Proposition 2.1: jM A _is a. Hausdorff topological space and

if B i8 ci_locally_convex topological vector space, then C(A B)

is also a*_locally _convex topol ogi cal vector space.




In addition we need to knowwhen C(A B) is a Fre chet space.

Consequently a hem conpact space is defined as one that is a count-

abl e uni on of conpact subsets (Ki)ie such that every conpact sub-

N
set of the space is contained in sone Ki Conpact spaces, Euclid-
ean spaces R®, and countable direct sunms of conpact spaces are
exanpl es of hem conpact spaces. In [3] R chard Arens showed t hat

t he concept of hem conpact spaces is useful in showing when C(A B)

is a Fréchet space.

Proposition 2.2: Jf A is a _hem conpact Hausdorff space and

if B is. .8 Fréchet space, then C(A B) s a_ Fréchet space.

W note that if A is a conpact Hausdorff space and if B 1is

a Banach space, then by the above C(A B) is a Fr échet space. More

than this, it is a Banach space under the norm ||f|| = sup ||f (@) ||
aeA B
(see [3]). It is easily verified that in this case the topol ogy

defined by this normis equivalent to the conpact-open topol ogy.

The following lemma is due to Ral ph Fox (see [6]).

Lemma 2. 3: _Let X A _and B be topological spaces and let f

be a continuous function from Xx A into B. The function <p

defined from X into C(A B by ((x)) (a) = f(x,a) for all x

in X and a jln_ A JS continuous. Conversely, if A JS regular

and locally conpact, and if <p jls “a_continuous map _from X into

C(A, B), _then_the map f _from Xx A into B defined by f(x,a) =

(Pp(x) ) (a)_for all (x,a) _in Xx A is_continuous.




Using Theorem 1.2 as stated in section 1, we can now prove the

foll owing product space characterizations of P-enbedding.

Theorem 2.4: Let S be_ja subspace of a"_conpletely reqular Ty

space X.

1)

2)

4)

6)

7)

The foll owing are equival ent:

The subspace S _is P-enbedded in X

For all locally compact, hem compact Hausdorff spaces A,

the product set S x A s P-enbedded in the product space

X X A

For all locally conpact, _hem compact Hausdorff spaces A,

the product set S x A jls C_enbedded in the product space
X x A
For all locally conpact, hem conpact Hausdorff .spaces A,

the product set S x A s C'-enbedded in the product space

X x A

The product set S x PS .is P-embedded in the product space
X X PS.

TIhe product set S x [ jjs C_enmbedded in the product space
X x pS.

The product set S x 3S JIS C*-enbedded_in the product space

X x pS.

Proof: To showthat (1) inplies (2), let A be a locally

compact,

and (4)

hem compact Hausdorff space. By the equival ence of (1)

in Theorem 1.2 and the remark after Theorem 1.2 relating to




P-enbedding, it is sufficient to prove that if f s a continuous
function fromthe product set S x A into a Fréchet space B,
then f extends to a continuous function on X x A Let f be
a continuous function from S x A into a Fréchet space B, and
define amap <p from S into C(A B) by (p(x) ) (a) = f(x,a) for all
a in A and all x in S Then (p 1is continuous by Lenmma 2. 3
and C(A B) is a Fréchet space by Proposition 2.1. By assunption S
is P-enbedded in X. Hence by Theorem 1.2 the map (f> extends to a
conti nuous function < from X into C(A B). Define amp f*
from Xx A into B by f*(x,a) = (<p*(x))(a) for all (x,a) in
Xx A The function f* is an extension of f and is continuous
by Lemma 2. 3.

The inplications (2) inplies (3) inplies (4 inplies (7),
and (2) inplies (5 inplies (6) inplies (7) are clear. It renains
to showthat (7) inplies (1). By Theorem1.2 it is sufficient to
prove that every bounded continuous function from S into Cf(9)
extends to a continuous function on X Let <p be such a function.

The Banach space C*(S) is isonorphic to C*(PS), by the mapping

Q
f —=f which assigns to every bounded real valued continuous function

7Q
f on S its unique extension f to PS. Hence we may think of (p
as mapping S into C*(pS).
Define f from S x PS into R by f(x,z) = ((p(x))(z) for all

(x,z) in Sx PS. Themp f 1is continuous by Lemma 2.3. Since <p

i s bounded, there is a constant K such that \\<p(x) \\ £ K for all




X in S Hence sup |p(x) (z) | =sup | f(x,z) | <~ K for all x in
ze3S zegS

Therefore, f is a bounded continuous function on S x PS. By hypo-
thesis f extends to a continuous real valued function f* on
X x PS. Defining a function < from X into C*(PS) by
((p*(x))(z) = f*(x,z) for all x in X and z in gS, we see that
* is continuous by Lemma 2. 3 and is the desired extension of the
mp <

As a result of this theorem extendi ng pseudonetrics froma sub-
space S to the space X 1is the sane as extendi ng bounded conti nu-
ous real valued functions from S x A to Xx A where A is a

conpact Hausdorff space.

Corollary 2. 5: Let S bs_a. subspace of a* _conpletely reqular

T1 space X Then S i’s P-enbedded in X _if and only if S x A

is Cr-enbedded in X x A for all conpact Hausdorff spaces A

As nentioned in the introduction, Theorem 2.4 gives new char-
acterizations of Tichonov spaces which are collectionw se normal.
Recal |l that a space is collectionwise normal if and only if every
cl osed subset is P-enbedded. W state here two of the characteriza-

tions for these spaces which result from 2. 4.

Corollary 2.6: Let X be a conpletely regular T, space.
_ 2 —d

The follow ng are equival ent;

1) _The space X is collectionw se nornal.

S.
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2) _For all locally compact, _hem compact Hausdorff spaces

A and for all closed subsets F of X the product

set F x A is Cr-embedded in X x A

3) _For all closed subsets F pf X, _the product set

F x pF _is C -_empedded _in X x PF.
The other characterizations can be obtained in a |ikewi se fash-
ion. We also obtain a result on the Hewitt real compactification of
a product that is simlar to a result of W W Confort (see Theor-

em 1.2 of [4]) .

Corollary 2.7: JM x is. ja_completely reqular T.l space,
f

then X is P-enbedded in ux i

D
o

nd only Lf u(xxPX) = ux x PX

Moreover, if X has noinmmeasurable cardinality, then u(xxA) = ux x A

for all compact Hausdorff spaces A.

Proof; If X is P-embedded in wux, then by Theorem 2.4 the
space X x pX is C-embedded in ux x PX.  The product of a conpact
Hausdorff space and a real compact space is realconmpact. Therefore,
ux x pX is a realcompact space in which X x PX is dense and
C- embedded. By the uniqueness of the Hewitt real compactification,
it follows that wu(xxPX) = ux x PX. Conversely, if u(XxPX) =
ux x PX, then X x PX 1is c-embedded in ux x PX  Therefore,

by Theorem 2.4 it follows that X is P-enmbedded in ux.
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To prove the second statenment we note that in [12] it was
shown that if S is a dense C enbedded subset of a conpletely
regul ar T1 space X and if the cardinality of S is nonneas-
urable, then S is P-enbedded in X  Consequently if X has
nonnmeasurabl e cardinality then X is P-rnbedded in uX  Thus
the statenent follows from (1) inplies (2) of Theorem2.4. This
conpl etes the proof.

A nonenpty subset S of a topological space X is Z-enbedded
in X if for every zero set Z of S there is a zero set Z*
of X such that Z fl S =2 Every C'-enbedded subset is Z-enbed-
ded but the converse is not true. This concept was studied in [2].
In Theorem 2.4, statenent (7) cannot be inproved by stating "the
product set S x PS is Z-enbedded in the product space X x PS."
In fact an equivalence to (1) cannot be obtained even if S is

required to be closed. The follow ng exanples are instructive.

Let R be the real line and let S be the open interva
(0,1). Since S is a cozero set of R and since Sx PS is a
cozero set of Rx PS, then S is Z-enbedded in R and S x PS
is Z-enbedded in Rx PS (see [2]). However S 1is not P-enbedded
in R since it is not G enbedded.
Now | et X be the Tichonov plank, that is X= [0,d] x [0, cul\(n, c
and let F be the closed subset { (Qa) : a<u>}. Since F is a Lin-

del df subset of X and since F x PF is a Lindel of subset of X x pF,
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it follows that F x pF is Z-enbedded in X x pF. However, F is

not P-enmbedded in X since it is not C-enbedded in X

\
3. P --erbeddi-rg ane Preduct Spaces—

This section attenpts to generalize the results of the pre-
. . Y . :
vious section to the case of P -enbeddi ng. It wll be seen that a
generalization of Corollary 2.5 is possible, with suitable restric-

tions on the spaces A referred to in the corollary.

Lemma 3.1: Let A be _any topological space and let Y be

an infinite cardinal nunber. Let S be_a" subspace of ji topol ogical
Y . v

space X If S x A JS P, -enbedded in Xx A then S .is P -em

— b el — —

bedded in X JF S x A JS P-enbedded in X x A then S .is P-em

bedded in X

Proof; The second statement follows fromthe first by choosing
Y to be the cardinality of S For if S x A is P-enbedded in
X x A by Theorem 2.8 of [12], it is PY-enbedded in Xx A There-
fore by the first statenent, S 1is PY-enbedded in X  But since
every continuous pseudonetric on S is y-separable, this nmeans that
S is P-enbedded in X

To prove the first statenment let d be a y-separable continu-
ous pseudonetric on S. By Theorem 2.1 of [12] it is sufficient to
show that d extends to a continuous pseudonetric on X  Define

a pseudonetric e on S x A by
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e((x,a),(x" ,a)) =d(x,x«)

for all (x,a) and (x*,a') in Sx A Then e is a continuous
pseudonmetric on S x A since Seﬁ(x,a),£) = Sd(x,t) x A for

al | £. > 0. Fromthis relationship it is also clear that the
Y-separability of d inplies the y-separability of e. There-
fore by assunption e extends to a continuous pseudonetric e*

on Xx A Fix b in A and define a function d* on Xx X
by d*(x,x'") = e*((x,b), (x*,b)), for all x,x* in X Then d*
is a pseudonetric on X which extends d. To see that d* is
continuous, let y eS, (x ,£) . Then (y ,b)eS”((x ,b),£). Hence

o d* o 0 e* 0
there are U and V, neighborhoods of vy, and b respectively

such that Ux V<=s ((x ,b) ,£) . Therefore yeUc S . (x ,£) .
e* o] o] a* o
This conpl etes the proof of the |enma.
The followng result is probably known, but we cannot find a
proof of it in the literature. The proof will be included here

for conpl eteness. Recall that a conpact Hausdorff space possesses

a unique adm ssible uniformty, that is generated by all continuous

pseudonetrics on the space. In the case of a conpact Hausdorff
space, this uniformty will be referred to as its natural uniform
ity.

Lenma 3. 22 Let X be a _conpact Hausdorff space and let y be

n infinite cardinal nunber. Then X has a" base for its natural

uniformity of cardinality at most y JJ and only if X has_a” base

for its topology of cardinality at nmost .

HUNT LIBRAIY
CJUWEGIE-*(EUe« UNIVERSITY
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Proof; Suppose that JB forns a base of cardinality at
nost y for the natural uniformty of X  For each d in S
and each n in N, consider the cover of X by d-spheres about

the points of X withradii 1/n. Let (S., (x.,1n)) . , oy
Vod¥ 1 i=l,...,md)

be a finite subcover. The collection of the spheres in these fi-

nite subcovers, for all d in JB and n in N, has cardinality
at nost Y and forns a base for the topology of X  To see this
| et xer, an open subset of X  The natural uniformty is adm s-

sible. Therefore there exists d in $ and n in N such that
erSa(xo,lln) C u. Let X be in S%§x1,I/2n), an el enent of the

finite subcover associated with d and the natural nunber 2n.

It follows that Sy(x.,l/2n) is contained in U
d |

Conversely, suppose that U is an open base for the topol ogy
of X of cardinality at nost y. W may assune that a finite
union of elenments in U is also in U since these unions wll
not increase the cardinality of U  Suppose that F c: G where F
is a closed set and G is an open set in X By an easy argunent
i nvol ving the conpactness and normality of X, it can be shown
that there are U and V in U such that FcucclUcvec G
Consider a pair (U, V), where clUcv and UV are in U  Since
every conpact Hausdorff space islnornal, there exists a continuous
function f on X wth values in [0,1] such that f(x) =0 for
all  x in clU -and f(y) =1 for all y in XW Pick a func-

tion f wth these properties for each pair (U V) such that
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clucv and UV are in U The collection of finite supremum s

of the $f is a base for the natural uniformty on X  Note that

this collection has the proper cardinality.

To show this we will show that for every continuous pseudo-
metric d on X and £> 0, there exists f,,... f in this
collection and 6 > 0 such that i/>f V... véf (x,y)n£6 i nplies
that d(x,y) £ £. for all x,y in1 X "

Let d be a continuous pseudonetric on X and let 0 < £< 1.

Let (Sa(xl., /2)|):[’_,_ N be a finite subcover of the covering
of X by d-spheres of radii £/ 2. Since this cover is normal,
there is an open cover (lwi):'l,.’ R of X such that

cIV\é_ C Sd(xi,£/2) for i =1,...,n.. By the remark above, for each

1 <i <n we my choose U and W in U such that
A ) I

U.I cclu.I <= v ch(xl.1,£/2) and such that V(Lf')i':l S covers X

Then for 1 £1i £n, (U,V.,) are in the pairs nmentioned above, and
therefore we have the corresponding functions f_, for i =1,...,n:

Assune t hat $f_(x,y) £ £/2 for 1<Mi A~ n.  This nmeans that

| £ (x) - f.(y)l| £ e2 for 1 £i £n. Since (U). , - s
an open cover, X 1S in some U.j If y is not in S&x.,J/Z),
then y is in X\V.J. Hence fj(x) =0 and f.§y) = 1, which can-
not be. Therefore yeSéx.j £/2), which inplies that d(x,y) € £

W can now state the generalization of Corollary 2.5 for

PY- enbeddi ng.
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Theorem 3.3: Let S be a subspace of a. _topological space X

and let A be a" conpact_ Hausdorff space with a® base for its nat-

ural uniformty of cardinality at most y. Tf_ S is” pY- enbedded
\l

in X then S x A _is P'-enbedded in X x A

Y

Proof; Let S be P -enbedded in X, and let A be a com
pact Hausdorff space with a base for its natural uniformty of
cardinality at nost . Let f be a continuous function from
S X A into a Banach space B such that f(SxA) is a y-separable
subset of B. By the equivalence of (1), (4), and (5 in Theorem
1.2, it is sufficient to showthat f extends to a continuous
function on X x A

Let 1B be a dense subset of f(SxA) of cardinality at nost v,
and let & be a base of cardinality at nost Y of continuous
pseudonetries for the natural uniformty of A  Define a function ¢
from S into C(A B by (g(x))(a) = f(x,a) for all x in S and a
in A As was nentioned before Lenma 2.3, C(A,B) with the conpact-

B
open topol ogy is a Banach space with norm ||f || = sup |[f(a) || . Hence
aeA

Lemma 2.3 shows that g is continuous. Nowif g(S) is a y-separ-
abl e subset of C(A,B), then by the equivalence of (1) and (4) in
Theorem 1.2, the mapping g wll extend to a continuous map g*
from X into C(A, B). Def‘i ne then a function f* from X x A
into B by f*(x,a) =g*(x) (a for all (x,a) in Xx A The map-

ping f* is an extension of f and Lemma 2.3 shows that it is




17.

continuous. The renmainder of the proof then will be devoted to
showing that g(S) is a y-separable subset of C(A, B).

For each d in $ and each n in N let (S (a.,1/n))._.
c 1

1+j o o

be a finite subcover of the cover of A by d-spheres of radii 1/n.

Every open cover of a conpact Hausdorff space is a nornal cover

(see [12]). Therefore, this cover has a partition of unity
(W'%:I” m subordinate to it such that A\Z(h.ﬂ c Sa(a1,lln)

for 1 £1 £m

C of m elenents of &

... ,m

consider the function which maps A into B and is defined by
* m

For each subset p = (b.
I

—_——

m m
( Shaby) (@) = Eh.{a)by (aeA) .

Now for each d in $ and each n in N formthe function

Each function h.b. is continuous. To see this, let 0 de-
11 ' '

note the continuous function whichmaps r in R to rb in 3

where b is a fixed element of p. Then hib = 0«hi, and consequent -

ly it is continuous. Therefore, each f, , is continuous.
dnP

The totality of these functions is a collection whose cardinality
does not exceed y. W now show that every function in g(S) is
uni formy approxi mated by functions in this collection. Since any
Y-separabl e nmetric space is hereditarily y-separable, this wll

prove that g(S) is itself y-separable.

o,m
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Let k be an elenment of ¢g(S) and Iet £ > 0. The function
k mps A into B, and is uniformy continuous. Therefore there

isa d in JS and an n in N such that d(a,a') £ 1/n inplies

that ||k(a) - k(a>) Il £ 6/2. Let (h.)_. be the partition
11~~J.feseyH

of unity subordinate to the cover (S, (a.,l/n)). |, . For each
a | i=l,..., m

1£ i<Lm the image k(&) is an elenent of f (SxA) . Hence there
isa b* in © such that |[|k(ad) - bYy| £ £/2. W will show that
m * *
Ik - Enibi|| £ £.
il

|k - H].lb.JJI = sup| | k(a) - Zn, (a)b, |

aeA

Let a be a fixed elenent of A Then
lk(a) - 2o, ()b, ll < lk(a) - Bn,(a)k(ag) | + B, (a)k(a;) - Ih, (a)b Il
Since k(a) = Ehi(a)k(a), the first termof this sumbecones:
IZh, (a)k(a) - Bh, (a)k(a,) |l = §Th, (a) (k(a) - Kk(a.))
< Erta) (k(a) - k(ai)) Il =7(a) |lk@ - k(as) |l

If h.(a) ji 0, then aeA\Z(hi)._ Hence d(a,a.l) < 1/n, so
[|k(a) - k(aj)||_.<_ /2. Therefore Sh.(a) ||k(a) - k(ai) || ~ Ehi(a)£/2 =£/2,
Simlarly, the second termof the sumcan be shown to be £ £ /2.
This conpl etes the proof.

The follow ng corollary conbines Theorem 3.3 and Lemma 3. 1.
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Corollary 3.4: Let A be_a, conpact Hausdorff space withja

base for its natural uniformty of cardinality at npst y. A

Vv
1

subspace S ts+ P' - embedded _in X Jf and only if S x A .is

PY. embedded in X x A

Since P c"-erﬂ:)edding Is equivalent to C-embedding, we obtain

the following from Lemma 3.2 and Theorem 3. 3.

Corollary 3.5: Xf_ S .is C-embedded in X, then S x M is

—

C-embedded in X x M for all compact metric spaces M

From Corollary 3.4, the followi ng characterization of Y-col-

| ecti onwise normality is obtained.

Corollary 3.6: Let X Dbe a. topological space, let Y be an

— — g— ———

infinite cardinal number, and let A _be * conpact Hausdorff space

with a base for its natural uniformty of cardinality at most Y«

The followi ng statements are equival ent:

1) The space X .is Y-collectionw se norml.

2) _For all closed subsets F of X _the product F x A

. Y
is P -embedded in X x A
It is known that every Y-paraconpact normal space is Y-collec-
tionwi se normal. K. Morita proved the followi ng theorems (see Theor-

ems 2. 1 and 2. 2 of [10]) : (1) jE_ X jls_ja Y-paraconmpact space and

if A jls a" _conmpact space, then X x A J}s Y-paraconpact; and (2)

If X s < Y-paracompact normal space and if A .is_a. conpact nor-

mal space with an open base of power at most Y, then X x A.is normal.
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Conbi ning these two theorens and recalling Lemma 3.2, we have the

follow ng result.

Theorem 3.7: If X i8 a" y-paraconpact nornmal space and if A

is a_conpact Hausdorff space with _a_base for its natural uniformty

of power at nost vy, then X x A jls_a. Y-paraconpact nornel space.

This result is parallel to that of Corollary 3.6 in the foll ow
ing sense. If X is a Y-paraconpact nornmal space and if A is a
conpact Hausdorff space with a base for its natural uniformty of
power at nost Y, then X x A is a Y-paraconpact normal space by
3.7. Hence Xx A is Y-collectionwise normal, therefore every
cl osed subset of the form F x A where F is closed in X is
PY-enbedded in Xx A But the latter can al so be obtained by
first noting that X is y-collectionwise normal, and then using
Corollary 3.6 to argue that if F is closed in X then F x A is
P'-enbedded in X x A

The next section deals with sonme special results for collection-

W se normal spaces.

4. Product Space Characterizations of Collectionwse Normality.

Recal | that every par aconpact nor mal space is collectionw se
normal . H Tamano proved that if BX is any Hausdorff conpactifi -
cation of a conpletely regul ar T1 space X, then X is paraconpact
if and only if X x BX is normal (see [13]). Since X x BX is
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paraconmpact if X is paracompact, this can be restated as: A

Ti chonov space X is paraconpact if and only if X x BX is nor-
mal if and only if X x BX is paracompact. The next theoremis

a parallel result for collectionwise normality. If A is a com
pact Hausdorff space in which the space X 1is C*-embedded, this
result will show that the collectionwi se normality of X is equiv-
alent to the following conditions: (1) For all closed subsets F
of X, the product F x A is C*-embedded in X x A and (2) For
all closed subsets F of X the product F x A is P-enmbedded in
X x A We know that every closed subset of a normal space is
C*-embedded and every closed subset of a paracompact Hausdorff space
~is P-embedded. Hence it is clear that these conditions are weaker

than the normality or paracompactness of X x A

Theorem4.1: Let A be ja_compact Hausdorff space in which X

is Cr-embedded. The following statements are equivalent:

1) The space X s collectionw_se normal.

2) _For all closed subsets F pf X _the product set

F x A 18 P-embedded in the product space X x A

3) _For all closed subsets F of X _the product set

Fx A .is, C-enbedded_in_the product space X x A

Proof: The inplication (1) implies (2) follows from (1) im

plies (2) of Theorem 2.4 and the fact that every closed subset of
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a collectionw se normal space is P-enbedded in it. The inplication
(2) inplies (3) is imediate. Hence it suffices to show that (3)
inplies (1).

It is easy to showthat (3) inplies that every closed subset

of X is C'-enbedded in X; hence X is normal. Let (F) _ be
a del
a discrete famly of closed subsets of X  For each a in 1, the
sets F and H = UF are disjoint closed subsets of X  For
a a e#a e’
each a in |, by the normality of X, there exists a continuous

function f ~—on X with values in [0,1] such that Pa(X) = ° for

al | xeFa, and fa(y) =1 for all yekg. Since X is C-enbedded

in A let f be a continuous mapping of A into [0,1] such that
(03]
f restricted to X is f . Let F be the union of F for a
a a d
in |I. Then F is a closed subset of X
Define a real-valued function f on Fx A by f(x,a) =f (a
for the unique a in | such that fa(x) =0. The function f is

clearly bounded and is continuous. To see this, let (Xo’ao) be in
Fx A let £. > 0, and suppose that X isin Fa' There is a
nei ghbor hood U of a, such that if a is in U then
1 f.(a) - T(a)| <a . If (x4 isin F x U then
[ f(x,a) - f()&,z%)| < £.. Therefore by assunption f extends to a
continuous real-valued function f* on Xx A

Define g from X into C(A by (g(x))(a) = f*(x,a) for al
a in A and x in X By Letmma 2.3 the function g is contin-

uous. Hence the pseudonetric d* defined on X by
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d*(x,y) = |lgx) - g(y) || for all x,y in X is continuous. Let
G = U S..(x,1/4) for all a in |I. Then G is an open sub-
@ xeF, a™ a
o
set of X containing F . It remains to showthat (G) . is a
a QC CEX

pairwi se disjoint famly.

Suppose t is in G and G,, where a ™ p. There exist x

in F and y in F, Sl?chthat pd*(t,x) < 1/4 and d*(t,y) < 1/4.
Henceex||g(t) - 9(x) ||p< 1/4 which neans that sup|f*(t,a) - f*(x,a)|< 1/4.
Simlarly, sup|f*(t,a) - f*(y,a)| < 1/4. Let aZA: X. Then

aeA
1f*(t,x) - (o x)| = fR(t,x) - F(x,x) | =]f*(t,x)|] <14 and
[E*(t,x) - f»(y,x)| = [f»(t,x) - f(y,x)| = [f*(t,x) - || < 1/4,

which is a contradiction. This conpletes our proof.

Now as a corollary we have Tamano's original result. (See [14]).

Corollary 4.2: A conpletely regul ar Tl space. X “s_ collec-

tionwse normal if and only if F x [3X _i8 C‘-enbedded in X x PX

for all closed subsets F odf X

5. Concl udi ng Renar ks.

We have just obtained Tamano' s original result on collection-
Wi se nornmality as a corollary to Theorem4.1. W have pointed out
that our conditions are weaker than requiring the paraconpactness
or normality of X x A for A any conpact Hausdorff space. It is
an open question whether the above condition characterizes P-enbed-
ding. That is, is it true that if S is a subspace of X then S

is P-enbedded in X if and only if S x PX is C'-enbedded in X x px?
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In section 3 we discussed two results of Morita from [10].

In this paper his main result is the followi ng: A topol ogical

. . N Y .
space X is Y-P*aconpact and normal if and only if X x | i's
normal, where | denotes the unit interval. W do not know if
there is a parallel result for Y-collectionwise normality. It

m ght be conjectured that X is Y-collectionwise normal if and
Y Y

only if F x I is C-enbedded in X x | for all closed sub-
sets F of X  This would be parallel to the result that X is
collectionwise normal if and only if for all closed subsets F of

X, the set Px PF is C'-enbedded in X x PF.

The authors wi sh to express their gratitude to H L. Shapiro

for his comments.
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