```
A SPECTRAL SEQUENCE THAT RELATES
    THE HOMOLOGY OF A POLYHEDRON
    TO THE HOMOLOGY PRESHEAF
        by
        Richard N. Cain
        Report 71-20
```

 April 1971
 /ps -- 4/15/71

A SPECTRAL SEQUENCE THAT RELATES THE HOMOLOGY
 OF A POLYHEDRON TO THE HOMOLOGY PRESHEAF

by
Richard N. Cain

ABSTRACT

In section 1 we describe first the notion of the (generalized) homology presheaf of a polyhedron, and secondly, the outline of a spectral sequence from cochains in this presheaf to homology of the polyhedron. Sections 2 and 3 provide, respectively, a certain space pair (AlxX,K) that strongly suggests existence of the spectral sequence, and a series of lemmas that prove this existence.

A SPECTRAL SEQUENCE THAT RELATES THE HOMOLOGY OF A POLYHEDRON TO THE HOMOLOGY PRESHEAF
by
Richard N. Cain
J..ㅇ Let X be a polyhedron, i.e., a space for which there can be found a CW complex structure. Let $h=\underset{q}{\odot} h q$ be a homology theory in the sense of [2]. For open sets U for which $X-U$ is a subcomplex of X under some $C W$ structure, consider the groups

$$
P(U)=h(X, X-U) .
$$

They form the homology presheaf P over X.
.1..IL Let X be given a CW complex structure. Let $U=\left\{\mathrm{u}^{\mathbf{i}}\right.$ iel\} be an open covering of X such that the index set I is finite and each U^{i} is the complement of a corresponding subcomplex of X. By $C^{n}(U ; P)$ (for $n=0,1, \ldots$) one means the group of all families $\S=\left\{?^{\mathbf{i}} \star \mid i_{. .}=\left(i_{\text {_ }}, \ldots, i^{i}\right) l^{\mathbf{n + 1}}\right\}$ with the properties
(a) each $?^{\wedge} G P\left(U^{10} n-\cdots n u^{1 n}\right)$, (b) $\S^{x *}=0$ if i,...i are not
 permutation TT: $\{0,1, \ldots, n\}->[0,1, \ldots, n\}$. These groups $c^{n}(\mathrm{U} ; \mathrm{P})$ form a sequence

$$
2 f(U): h(X) \rightarrow C^{-}(U ; P) \quad \sim \wedge C(U ; P) \simeq 4 \ldots
$$

in which 6 and the $5^{\mathbf{n}_{\mathrm{T}}} \mathrm{S}(\mathrm{n}=0,1, \ldots)$ have the definitions
(d) for each $\operatorname{seh}(X), t(6)=\left(\left.9\right|_{\substack{A \\ A, A-U T}} \underset{T}{T} i!i e l\right\}$? (e) for each $5 \sec ^{\mathrm{m}}(\mathrm{U} ; \mathrm{P})$ and $\mathrm{i}_{\#}=\left(\mathrm{i}_{\mathrm{Q}}, \ldots, \mathrm{i}_{\mathrm{n}+1}\right) \mathrm{el}^{\mathrm{n+2}}$,
J.. 2 With $h(X)$ and $£$ omitted from $\tilde{(U)}$, call the remaining sequince $C(U)$. We shall obtain a spectral sequence $E(U), E{ }_{2}(U), \ldots$, and a filtration $F K(X)=h(X) \wedge F \hbar(X) \Rightarrow F^{\boldsymbol{c}} \mathrm{h}(\mathrm{X}) \wedge \ldots$ such that

$$
\left\{\begin{array}{l}
C(U) \cong_{E ; L}(U), \\
0 F^{n} h(X) / F^{n+1} h(X) \overbrace{E_{O O}}(U)
\end{array}\right.
$$

J.. 3 More significantly, what we obtain is a diagram of exact helices

such that $a^{n} p^{n}=5^{n}$. This will be recognized as a bigraded exact couple whose spectral sequence satisfies the description claimed in 1.2. Here, P_{q} stands for the presheaf of groups

$$
P_{q}(U)=h_{\mathbf{q}}(X, X-U),
$$

while the definition $p^{1^{\dot{~}}}, a^{\dot{1}}, B_{q}^{\dot{x}}(U) \quad\left(i^{\wedge} O\right)$ will be apparent from the sequel.

2^. $\underline{-1}^{0}$ In the case of standard homology there is a bicomplex whose spectral sequence is the desired one: to get the bicomplex, sim$p l y$ replace h by the cellular chain functor throughout the construction of $C(U)$. However, this approach cannot be extended to non-standard h. An alternative approach is outlined next. (See 2.4 for the essential conjecture.)
\wedge.jL Let A be some functor from subsets of I (and their inclusion maps) to (affine) simplexes (and their simplicial inclusion maps), with the property that, for each $s c x_{9}$ the number of vertices on AS is the same as the number of members of s. Without loss of generality, assume (AS) ${ }_{\mathrm{O}}=\mathrm{s}$.
^.^2 A certain subspace K of AlxX will next be defined: for
 Proposition. $K=\underset{C \subset I}{U} A C \times \underset{I-C}{ }$.

Proof. K is certainly contained in the latter, which we shall denote temporarily as K^{*}, for the ith term of K is the same as the cth term of K^{*} if $c=I-\{i\}$. Conversely, for any $c c i$ and
 ies
U A (I-\{i\}) $x X_{1} C K$. Thus, $R * C K$, so they are equal. Q ies
2.3 There is a diagram $(\mathrm{N}=\operatorname{dim} \mathrm{Al})$

$h_{q^{\prime}+^{\prime} 1}\left(A I X X, A I_{O} X X U K\right)$

in which each helix is exact and each circuit on the right is commutative. This diagram is a bigraded exact couple whose spectral sequence E_{1}, E_{2}, \ldots has

$$
{ }^{E} 1=n_{n, q}^{\circledR} \mathrm{VN}-1-n^{(A 1} N-1-n^{X X U K}>\Delta I N-2-n^{\times X U K)}
$$

$$
\mathrm{d}_{1}=\mathrm{S} \quad \text { (vertical homomorphism on right of diagram) }
$$

$$
\begin{aligned}
& F^{n_{h+N-n}}{ }_{\underline{\text { n }}}(A l x X, \partial \Delta I \times X) \\
& *^{n} \mathrm{~F}^{\mathrm{h}} \quad \mathrm{~h}_{\mathrm{q}+\mathrm{N}-\mathrm{i} \mathrm{n}}(\triangle \mathrm{I} \times \mathrm{X}, \partial \Delta \mathrm{I} \times \mathrm{X}) \\
& \mathbf{F}^{\mathrm{n}} \mathrm{~h}\left(\Delta \mathbf{I} \times \mathbf{X}, \partial_{\Delta I \times X}\right)=\operatorname{Im}\left[h\left(A l x X, A I^{\wedge} j^{\wedge} x X U K\right)-* h(A l x X, \partial \Delta I \times X)\right] .
\end{aligned}
$$

j2.4- Merely judging from the work of [1] and Proposition 2.2, we conjecture that the above spectral sequence has the properties announced in section 1.2. (see below for proof). Incidentally, it is re-. grettable that the steps in the construction so far are not functorial with respect to U (assuming X fixed) unless I is held fixed, but there probably exists a proof that at least the resulting spectral sequence is itself functorial in U.

Remark. For standard homology, the spectral sequence of 2.0 is functorial in U because $C(U)$ is.
3.0^ We now prove the conjecture of section 2.4, using methods of $11]$.
3.1 Lemma. For $n=0,1, \ldots, N-1$, there is an isomorphism

e $\quad i_{q+N-1-n}\left((\Delta(I-s), \partial \Delta(I-s)) \times\left(X, X_{s}\right)\right)$,
$\operatorname{dim} A s=n$
which carries each direct summand via a map induced by inclusion of space pairs.

Proof, We note first that $\operatorname{dim} A S=n$ jiff $\operatorname{dim} A(I-s)=N-1-n$ (by counting the number of vertices in $A S$ and $A(I-s)$, respective? $l y)$. The union $U A(I-s)$ is therefore $A l_{N-I_{I-n^{\prime}}}$ and so there are
S isomorphisms

$$
\begin{aligned}
& \operatorname{dim} \text { Assn }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (excisions) }
\end{aligned}
$$

(Note: In verifying the excisions, note that $K=U \mathrm{~m}_{\mathrm{S}} \mathrm{m} A(\mathrm{I}-\mathrm{S}) \mathrm{XX}_{\mathrm{s}^{\prime}}$ where int of a simplex means the simplex minus its bounding faces, Then, write A(I-S)XX USA(I-S)XX as int A(I-S)XX USA(I-S)XX. s S

The rest is easy.) Q

3.J2 Lemma. There is a commutative diagram
$h_{q+N-1-\pi}\left(A I_{N-1-n} \hat{n}^{\text {XXUK }}, \quad A I_{W-2-n}\right.$ XXUK $)$

involving $n=0,1, \ldots, N-1$, where C_{k} stands for simplicial oriented chains (with indicated local coefficient system) and d is the simplicial boundary operator.

Proof. The dual of the proof given in [1], with (AlxX,K) in place of $\left(G, G^{\mathbf{A}}\right)$, and using Proposition 3.1. •
(Note: The boundary operator d has the following formulas for simplicial oriented chains: (i) If C (1* = (i ,....,1..))
is the unit chain for the oriented k-simplex whose ordering $\left(i_{0}, \ldots, \frac{\dot{m}_{k}}{k}\right)$ is positive, then $d \underset{i \neq}{C}=\sum_{t=0}^{k}(-1)^{t} C_{i \neq t}^{t} \quad$ (ii) Equivalently, if we work with alternating non-degenerate functions ? of $k+1$ variables in I, referring to these \S as chains, then

3. 3 Lemma. There is a commutative diagram

Proof. Analogous to preceding. \square
3.4 Let co be an orientation of the simplex Al.

Proposition. There is a diagram

$$
\begin{aligned}
& C_{N}\left(A l ; h_{q}(X)\right) \xrightarrow{d} C_{N-1}\left(\Delta I ; h_{q}\left(X, X_{I-(\cdot)}\right)\right) \xrightarrow{d} \ldots \\
& T_{N} \|^{\cong} \quad{ }_{D_{\mathrm{N}}-1} \downarrow \cong \\
& h_{g}(X) \quad \xrightarrow{\varepsilon} \\
& C^{\circ}\left(U ; P_{q}\right) \\
& \xrightarrow{\delta} \ldots
\end{aligned}
$$

that is commutative to within sign.

Proof. Let $T_{\text {. }}$ send a k-chain ? (see preceding note) into the following n-cochain 17, where $k=N-l-n$: for each
$i_{*}=(i, \ldots, i) n^{w i t h} \quad i, \ldots, o_{n}^{i}$ distinct,

$$
\eta^{i_{*}}=\xi_{j *}
$$

 for $i_{\#}=\left(l_{0}, \ldots, i_{n+1}\right)$ and $\left.i^{\wedge} j^{\wedge} 0\right)$, we have
where $i^{\wedge^{t}}{ }_{j} \wedge(t)$ etc. Now,
$i_{*} j_{*} \in \omega$
$\Leftrightarrow \quad i_{t} i_{*}^{t_{*}} j_{*} \in(-1)^{t}{ }_{\omega}$
$\Leftrightarrow \quad i_{*}^{\bullet} t_{t^{\prime}} j_{*} \in(-I)^{n+1}(-1)^{t} \omega$.

Therefore $?_{{ }_{t i 3}^{*} *}=(-1)^{n+1}(-1)^{\mathrm{t}} \S_{\dot{3}(t)^{*}}$ and consequently,
i.e. we have coinmutatively up to sign, as required. \square

J3.J́ㅗ Remark. The projection Al x X $\rightarrow X$ induces an isomorphism $h_{q}(A l x X, K) \rightarrow h_{q}\left(X, u X_{\dot{x}}\right)$. (This is seen by methods of [].)

References

[1] Cain, R. N^{*} g "The Leray Spectral Sequence of A Mapping for Generalized Cohomology", Comm. Pure and Appl. Math, (to appear).
[2] Whitehead, G. W., "Generalized Homology Theories", Trans. Amer. Math. Soc.102 (1962), 227-283.

