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Abstract

The object of this note is to give two applications of an

intersection lemma of Ky Fan. First it is used to obtain a var-

iational property of a strongly continuous function on a weakly

compact convex subset of a normed space. In the second half we

apply the lemma to obtain a direct proof of a result on the ex-

tension of monotone sets in topological linear spaces. It was

established separately by Debrunner and Flor, Fan, and Browder.
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ON A LEMMA OF KY FAN

by

Om Parkash Kapoor

The object of this note is to give two applications of a lemma

of Ky Fan [7, Lemma 1]. First it is used to prove a variant of a

result of Ky Fan restated as theorem 1 below. In the second half

of this note we apply the lemma to obtain a direct proof of a theor-

em about the extension of monotone sets in topological vector spa-

ces. It was established separately by Debrunner and Flor [5],

Fan [8 ] and Browder [4 ].

The lemma is

Lemma jL. Let K be a nonempty subset of a Hausdorff linear topo-

logical space E. Let for each X€K, F(x) be a closed subset of K

such that

(1) The convex hull of any finite subset {x ,x ,...,x } of K
n

is contained in U F(x.).
i=l X

(2) F(x) is compact for some xeK.

Then D F(x) ^ (p.
XGK

We shall use the following notation: the topological vector

spaces will be Hausdorff and over the reals as scalars. > and —*

denote convergence in the given topology and the weak topology
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respectively. A function f will be called strongly continuous, if

x-*x=^f(x ) —> f (x) ; weakly continuous, if x_*x=^f(x ) —*f(x);

weakly closed, if x —»x, f(x ) _*y =>f(x) = y; compact if it takes

bounded sets into precompact sets; and completely continuous, if it

is continuous and compact. The convex hull of a set X will be de-

noted by co X.

Ky Fan [6] has recently obtained the following theorem.

Theorem JL. Let K be a nonempty compact convex set in a normed vec-

tor space E. For any continuous mapping f : K-^E, there exists a

point yneK such that

llyQ - f(Y0)!l = Min ||x - f (y ) | | .
xeK

This result reduces to the Schauder fixed point theorem, if f(K) c:

It is of interest to obtain more results of this kind. We have the

following result.

Theorem J2. Let E be a normed linear space and K a nonempty,

weakly compact convex subset of E. Let f be a strongly continu-

ous mapping of K into E, then there exists a point Y n
€ K such

that,

(3) ||y - f(YQ)ll = Min ||x - f(y )||.

xeK

Proof. For each xeK define

F(x) = fy€K : ||y - f (y) || £ ||x -



3.

For each x, F(x) is weakly closed. For, let y _>y, fy } a net
oc ex

in F(x) . By strong continuity of f, f(y )-»-f(y). So that

y - f(y )—iy - f(y) and x - f(y )-»x - f(y) . Now because norm

is weakly lower semi-continuous, we have the following.

llya - f (y a ) II 1 II* - f (ya>

lim inf ||ya - f (ya) II £ lim inf ||x - f (ya)

||y - f(y)|| £ lim inf ||ya - f (ya) II

lim inf ||x - f (ya) || = ||x - f (y)

and therefore yeF(x).

L e t f x , , x _ , . . . , x } be a f in i te subset of K. The cofx , ,x_ , . . . , x }<
1 2 n — 1 2. n

n n
U F ( x . ) . I f n o t , s u p p o s e zecx>{x , x , . . . , x } a n d z / U F ( x . ) .

i=l i=l
n

There exist a ,a ,...,a such that a. ;> o, E a , = 1, and
1 z n L i = l 1

n
z = S a . x . . z / F ( x . ) f o r i = l , . . . , n means t h a t ||z - f ( z ) | | >

i = l 1 x 1

| |x . - f ( z ) | | f o r i = l , 2 , . . . , n . Hence

n
||z - f ( z ) | | = | | S a . x . - f ( z ) | | = ||C a . ( x . - f ( z ) ) | | < ||z - f ( z ) | | ,

i = l

which is a contradiction and the conditions of lemma 1 are satisfied

and there exists Yn
£K such that ye H F(x). Hence we have a point

xeK

yQeK w i t h t h e p r o p e r t y ||y - f (y ) | | = Min ||x - f ( y ) | | .
xeK

In particular we have a special case of Altman' s result [1].
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Corollary _1. Let B be a Banach space which is reflexive.

U = fx : ||x|| £ r } . Let f : U —>B be a strongly continuous

mapping satisfying

(4) ||f(x) - x||2 ^ ||f(x)||2 - ||x||2 for every x with ||x|| = r.

Then f has a fixed point in U .

Proof. By theorem 2, there exists a point yneU such that

(5) ||y0 - f(yQ)ll = Min f||x - f(yQ)|| :

We shall show that y is a fixed point. If not, we must have

l|f(yo)ll > r. Moreover ||yo|| = r. If ||yo|| < r, then there is a

point x on the open line segment (y ,f(y )) which is in U

i.e., x = Ay + (l-A)f(y ) for some A such that 0 < A < 1 and

xeU .r

By (5)

lly0 - f(yQ)H £ 11% + d - ^ f ^ ) - f(y0
} i |

= M\Y0 - f(yo)ll < lly0 - f(yo)ll,

which is a contradiction. Therefore llynll = *". By (4) we have

(6) ||f(y0) - yol|2 ^ | |f(yo)| |2 - ||yol|2 = ||f (yQ) | | 2 - r2

and by (5)

f(yo)
lly0 - f(yo)ll <1 H

(7)

(yo)

lly0 - f(yo)ll <1 Hrjifj^ii - f(yo)ll =
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Combining (6) and (7) we get a contradiction and therefore

II f (y ) II £. r an^ y is a fixed point of f.

Remark 1^. Another interesting consequence of theorem 2 is the

well-known fact that any weakly compact convex set K in a normed

space E is an existence set, i.e., for each point x in E,

there exists at least one point zeK such that ||x - z|| = Min ||x - y||

yeK
We apply theorem 2 to the constant map f(y) = x for each y in K.

Remark 2.- In a Banach space, the condition that f be strongly

continuous can be replaced by the equivalent condition that f be

weakly closed and completely continuous; that continuity is not

enough can be seen from the

Example. Take the Hilbert space 1 , K the closed unit ball in

it, and the function f defined by x = (x ,x , ...,x ,...)—>f(x) =

(Yl-||x|| ,x,x , . . . ) . Because ||f(x)|| = 1 therefore f(K) c K. If

there were a point yn
£K satisfying ||y - f (y ) || = Min ||x - f (y ) ||,

xeK
it must be a fixed point of f. But it is easily seen that f has

no fixed point in K.

We now turn to another use of lemma 1. The following theorem 3

in its present form was proved by Browder [3]. His approach was

based on

(i) The Brouwer's fixed point theorem,

(ii) The existence for a finite covering of a compact space of

a partition of unity subordinated by the covering.
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Here we use lemma 1 which is a generalization of Knaster, Kura-

towski, and Mazurkiewicz' s theorem which was used by them for

their proof of Brouwer' s theorem. It may be mentioned that

theorem 3 generalizes earlier results of Minty [10] and Grvinbaum

[9] which have interesting applications to nonlinear boundary

value problems.

Theorem _3. Let K be a nonempty compact convex subset of the

topological vector space E, and F a topological vector space,

with a bilinear pairing between E and F to the reals which we

denote by (w,u) for w in F and u in E. We suppose that the

mapping of K x F into reals which carries [u,w] into (w,u) is

continuous. Let T be a continuous mapping of K into F and

let G be a monotone subset of K x F i.e., for each pair of

elements [u,w] and [u ,w ] of G, we have

Then there exists an element u of K such that for all [u,w]

in G

(TuQ-w,u0-u) ^ 0.

Proof. Let A = {xeK : [x,w]ĵ G for any weF} and let

B = K ~ A = (xeK : X / A ] . Now define for each xeK, F(x) as follows:

F(x) = K, if xeA, and

F(x) = [yeK : (Ty-w,y-x) ;> 0 for all weF for which [x,w]eG}.
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We shall prove that these F(x)'s satisfy the conditions of lem-

ma 1. Clearly F(x) for each x is a closed subset of K, the

function T and the bilinear pairing being continuous on K and

K x F respectively. To prove that the convex hull of any finite
n

subset {x ,x , ...,x } of K is contained in U F(x.), we con-
1 2 n i = 1 l

sider two cases.

Case 1. At least one of the x.'s is in A. So F(x.) = K for
1 1

at least one i and K being convex, we have the truth of the

assertion.

Case 2. x.eB for each i = l,2,...,n.
l

n
Let us suppose the co(x ,x ,...,x } is not contained in U F(x.).

1 2 n i=l L

n n
Let z = £ a.x. where a. ^> 0, S a. = 1 and z/F(x.) for any

i=l X X i=l
i = l,2,...,n. Therefore there exists w,,w_,...,w eF such that

1 2 n

[x.,w.]€G for each i = l,...,n and (Tz-w.,z-x.) < 0, i = l,2,...,n.

Now for any j and k from 1 to n we have

(Tz-w,,z-x ) + (Tz-w , z-x.)
3 K K 3

+ (Tz-w , z-x ) + (w^-w ,x -

The first two terms on the right hand side are negative and the

third is non-positive, G being monotone; we have for all j = l,2,...,n

and k = 1,2,...,n

(8) (Tz-w. ,z-x^) + (Tz-w , z-x.) < 0.
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Multiply (8) by a. and sum over j and using the fact that

a. > o and Sx. = 1
D ^ 3

(Tz-Sx w ,z_xr ) + (Ty-w., z-Sx.x.) < o,
J J •K K 3 3

(9)

(Tz-Bx .w. ,z-x_) < o, (vz = Ebe.x.)

again multiplying (9) by a and summing over k we obtain

(Tz-Sbc .w. , z-22x, x^) < 0, or 0 < 0,
] ] *• K

which gives a contradiction. Hence by lemma 1, there exists a

y eK such that ye D F(x), which is equivalent to saying that
xeK

there exists Yn
€K for which

(TyQ-w,y0-x) ^ 0 for all [x,w]eG,

which completes the proof of the theorem.

When E is a locally convex space: F = E*, the dual with the

topology of uniform convergence on bounded sets and the bilinear

pairing is the natural one [x,f]—>f(x), we have the following par-

ticular case. This corollary has been the basis of "monotonicity"

methods for the solution of nonlinear equations in Banach spaces.

For more references see Browder [4].

Corollary 2. (Browder [4], Proposition 1): Let K be a compact

convex set in a locally convex linear space E, G a monotone sub-

set of K x E*, T a continuous mapping of K into E*. Then there

exists an element u of K such that for all elements [u,w] of G
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we have

(Tuo-w,uQ-u) ^ 0.

In corollary 3, we have a more special case of theorem 3.

But we give a direct proof for it by using lemma 2 (below) which

is a consequence of lemma 1 and was given in the same paper by

Ky Fan [7], Browder [2] proved corollary 3 and used it for ob-

taining some fixed point theorems.

Lemma 2.. Let K be a nonempty compact convex subset of a Haus-

dorff linear topological space E and A is a closed subset of

K x K having the properties

(10) (x,x)eA for every xeK,

(11) for each fixed yeK, the set {xeK : (x,y)/A) is convex (or
empty) .

Then there exists a point yn^K such that K x [yn)
 c A.

Corollary _3. Let E be a locally convex space, E* the dual of E.

K is a nonempty compact convex subset of E. If T : K-*E* is a

continuous mapping, then there exists a point Y ne
K such that

(T(Y0)>y0-x) ^ 0, for all xeK.

Proof. Let A = {(x,y)eKxK : (Ty,y-x) ;> 0}.

By continuity of T, A is closed c K x K. Let A = [x : (x,y)^A}

and let x ,x eA and 0 £ ^ <£. 1, z = Ax + (l-x)x we have there-

fore (T(y),y-Xl) < O and (Ty,y-x2) < O.
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(Ty,y-z) = (Ty,y-Ax1

y-x1) + (1-A) (Ty,y-x2)

< 0

.'. (z,y)/A and zeA .

A is convex for each yeK.

y

By lemma 2, there exists Yn€K such that K x {y } c A

i.e., there exists y in K such that (Ty ,y-x) ;> 0 for all

xeK.

Remark _3. It must be mentioned that theorem 2 of this note is far

from being satisfactory. We feel that the condition of strong con-

tinuity is too strong. The result should be true for completely

continuous functions. Then Altman' s result will follow in its full

strength. We hope to improve upon the present form in the future.
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