# APPLICATIONS OP FORCING <br> TO DEFINABILITY PROBLEMS <br> IN THE ARITHMETICAL HIERARCHY 

by
Alan L. Selman

## Report 70-52

December, 1970

# APPLICATIONS OF FORCING TO DEFINABILITY <br> PROBLEMS IN THE ARITHMETICAL HIERARCHY 

by

## Alan L. Selman

## Abstract

Forcing arguments are used to obtain generalizations of some well-known theorems about the degrees of unsolvability with the jump operator.

## APPLICATIONS OF FORCING TO DEFINABILITY PROBLEMS IN THE ARITHMETICAL HIERARCHY ${ }^{1}$

## by

Alan L. Selman

Introduction, It has been remarked by Addison [1] and Hinman [6] that applications of forcing techniques (Cohen [2]; Feferman [3]) often allow results about recursiveness to be extended to higher levels of the arithmetical. (and hyperarithmetical) hierarchy. In this paper we present a description of the forcing method, and then use this technique to obtain generalizations of some well-known theorems about the degrees of unsolvability. We prove:
(1) a generalized Spector ${ }^{1}$ s theorem [15],

$$
\operatorname{Va} 3 \mathrm{~b} 3 \mathrm{c}\left[\mathrm{a}^{(\mathrm{n})}=\mathrm{b}^{(\mathrm{n})}=\mathrm{c}^{(\mathrm{n})}-\mathrm{b} \mathrm{~V} c\right], \mathrm{n}<C D,
$$

and
(2) a generalized Friedberg ${ }^{1}$ s theorem [4],

(3) a generalized Kleene-Post theorem [11],
$3 A 3 B\left[A / D_{n}^{B}\right.$ and $B / E_{n}^{A}$ and $d_{\sim}^{(A)} \leq{\underset{\sim}{\sim}}^{(n)}$
and

$$
\left.\underset{\sim}{\mathrm{d}}(\mathrm{~B}) £{\underset{\sim}{(n)}}_{(\mathrm{n})}\right] \quad, \quad \mathrm{n}<w .
$$

Each of these theorems concern the existence of sets (characteristic functions) of natural numbers. Our proofs will involve the construction of a total function as the union of a chain of initial segments. This general approach to degree problems was initiated by Kleene and Post in [11]. In the original Kleene-Post construction one is presented with a sequence of recursive conditions, and then defines a function (or functions) to satisfy these conditions by successively choosing greater initial segments in order to meet each condition one by one. In substance, we do the same. Forcing however, allows us to handle sequences of prescribed arithmetical conditions that are not necessarily recursive.

## 1. Preliminaries.

The purpose of this section is to present notation and set forth some definitions. Much of the contents are standard and refer mainly to [9] and [13].

Prime number factorization. Let the prime numbers in order of magnitude be $P_{0} * P-i * \cdots * P_{1} \bullet>\cdots\left(P_{n}-{ }^{2}\right) \cdot L^{\text {et }}$ a be an arbitrary natural number. By the fundamental theorem of arithmetic there is a unique representation of $a$, if $a>0$, of the form

$$
\begin{equation*}
a=p_{Q}^{a_{0}}{ }_{\cdot P ; L}^{a_{1}} . \quad \ldots-_{P_{i}}^{a_{1}} \ldots \tag{1}
\end{equation*}
$$

As shown by Kleene in [9], the following functions are all primitive recursive:

$$
p_{\dot{j}}=\text { the } i+l-t h \text { prime number } ;
$$

$(a)_{i}=\left\{\begin{array}{l}\text { the exponent } a \cdot{ }_{1} \text { of } p ._{1} \text { in (1), if } a \text { j\& } 0 ; \\ 0, \text { if } a=0 ;\end{array}\right.$
$\operatorname{lh}(a)=\left\{\begin{array}{l}\text { the number of non-zero exponents in }(1), \text { if } a \wedge 0 ? \\ 0, \text { if } a=0 .\end{array}\right.$

We can represent any finite sequence $a_{n_{J}^{\prime}} \ldots \#_{s}$ of natural numbers by the number $a=p{ }_{\mathrm{wJ}}^{\mathrm{a}_{0}+1} \stackrel{\ldots}{ }{ }^{*} \mathrm{p}_{\mathrm{s}} \mathrm{s}^{+1}$; then $\mathrm{lh}(\mathrm{a})$ is the length $s+1$ of the sequence represented by $a$.

A sequence number is a number $a=p_{\gamma_{J}}^{a_{0}} \cdot \ldots \cdot{ }_{p}{ }_{s}^{a}$ so that for all $i<£ s, a .>0$. For any two sequence numbers $a$ and $p$, define $a>p$ if and only if $l h(a) \wedge \operatorname{lh}(P)$ and (p) $.1=(a) 1$, for all $i<\operatorname{lh}(p)$.

Let $f$ be any partial function whose domain includes the set $\mathrm{f}(\mathrm{i})+1 \quad-$ $(0,1,2, \ldots, n\}$. Define $f(n+1)={ }_{i \leq n}^{I I} p . \quad . \quad f(n+1)$ is a sequence number. Moreover, if $a$ is any sequence number, and if a partial function $f$ is defined by $f(i)=(a) i_{1}-1$, for all $i<l h(c x)$, then $a=\bar{f}(\operatorname{lh}(a))$.

Arithmetical properties. Let 7 be a one-place function variable ranging over number theoretic functions.

Definition 1. A predicate $-\mathrm{A}\left(\mathrm{r}, \mathrm{x}, \overline{\mathbf{1}}, \ldots, \mathrm{XF}_{\mathbf{k}}\right), \mathrm{k} \hat{-}^{>} 0$, is an grithmetical property if and only if it is expressible in the form

$$
Q_{1} Y_{1}, \ldots, Q_{j} Y_{j} R\left(\bar{T}\left(y_{j}\right), x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{j-1}\right),
$$

where $j^{\wedge} 1$, for each $i £ j, Q^{\wedge}$ is $3 y_{i}$ or $V y^{\wedge}$ and


Observe that by Definition 1, the negation of an arithmetical property is an arithmetical property.

Lemma 1. Suppose $R\left(w, x_{1} \ldots, x_{k}\right)$ is any recursive predicate.
 $3 v\left[\operatorname{lh}(v) \& \operatorname{lh}(w) \& V i<\operatorname{lh}(v)\left((v)_{i}=(w)_{i}\right) \& R\left(v, x_{x}, \ldots, x^{\wedge}\right)\right]$. Then,
(i) $R *\left(w, x_{1}, \ldots, x_{k}\right)$ is a recursive predicate;
(ii) $3 y R^{*}\left(\bar{T}(y), x_{1}, \ldots, x_{k}\right)=` y R\left(x^{\prime \prime}(y)^{\wedge} x^{\wedge} \cdot \ldots, x^{\wedge}\right) ;$ and
(iii) if $a$ and $p$ are two sequence numbers and $a<p$, then $R^{*}\left(a,{ }_{-}^{* \wedge} \ldots, x^{\wedge}\right)$ implies $R^{\wedge}\left(P, x_{1, \ldots}, \ldots, x_{k}\right)$.

Lemma 2. Suppose $R\left(w, x_{1} \ldots, x_{\mathbf{K}}\right)$ is any recursive predicate.
 $\operatorname{Vv}\left[\operatorname{lh}(v) \quad i \operatorname{lh}(w) \& V i<i h(v)\left((v)_{i}=(w)_{i}\right) \rightarrow R\left(v, x_{1}, \ldots, x_{k}\right)\right]$. Then,
(i) $R^{1}\left(w, x_{1}, \ldots, X_{K}^{\prime}\right)$ is a recursive predicate;

(iii) if $a$ and $p$ are two sequence numbers and $a>\beta$, then $R^{!}\left(a, x_{[1}, \ldots, 3^{\wedge}\right)$ implies $R^{1}\left(p, x_{] L I}, \ldots, x^{\wedge}\right)$.

The proofs are immediate. A recursive predicate that satisfies clause (iii) of Lemma 1 will be called monotonic increasing, and a recursive predicate that satisfies clause (iii) of Lemma 2
will be called monotonic decreasing. We will assume, without loss of generality, that every arithmetical property is expressed in the form

$$
Q_{1} y_{1} \ldots Q_{j} y_{j} R\left(T\left(y_{j}\right), x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{j-1}\right)
$$

 if $Q_{\mathbf{j}}{ }^{Y} \mathbf{j}$ is $3 y_{\mathbf{j}}$ and monotonic decreasing if $Q_{\mathbf{j}} y^{\wedge}$, is $V y_{\boldsymbol{j}}$.

In particular we will use the starred and primed versions re$\underset{*}{\text { spectively of }} \quad \mathrm{T}_{\mathbf{1}}$ and $\mathrm{T}_{\mathbf{1}}$ as defined in $\underset{1}{[D]} . \mathrm{T}_{\mathbf{1}}$ as defined in pO] enables the normal form and enumeration theorems to be written using $\underset{f}{ }$ instead of $\tilde{f}$.

## 2. Foreing.

As briefly explained in the introduction of this paper, the forcing method will be applied to construct functions $f$ as unions of chains of initial segments f^,f,,...ff ,.•. • We desire rela○ 1 n
tivized forms of such constructions. Therefore, at the n-th stage of a construction, $f^{\boldsymbol{n + 1}}$ is chosen from some $\overline{\text { admissible }}$ subset of the set of all initial segments. Accordingly, forcing is defined relative to a notion of admissibility.

Definition_2. A characteristic sequence number is a sequence a.
number $a=\operatorname{II}_{i<n+1} p_{x}{ }^{*}$ so that $a_{x} €\{1,2\}$, for all $i<n+1$.

Definition 3. Let $a d m(o c)$ be a unary relation defined on the set of all characteristic sequence numbers. For any two characteristic sequence numbers $a$ and $(3$, define $a>-p$ if and only if adm
$a>j 3, \operatorname{adm}(a)$, and $a d m(p)$. Let $\frac{1}{n}, \ldots, r^{k}$ be arbitrary numerals. Then, the relation a adm-forces $A\left(T, n, \underset{\sim}{l} ., n,{ }^{\boldsymbol{K}}\right)$, in symbols a |[- ${ }^{\text {adm }} A\left(T, n^{\mathbf{l}}, \ldots, n^{k}\right)$, is defined inductively for arbitrary sequince numbers a and arithmetical properties $A\left(T, x, \mathbf{l} ., . x^{k}\right.$, as follows:
(i) $\quad \mathrm{a} l^{-a d m} 3 y \mathrm{R}\left(\mathrm{T}^{\prime \prime}(\mathrm{Y}), 1^{\wedge}, \ldots,!^{\wedge}\right)$, where $R\left(\mathrm{w}, x_{ \pm}, \ldots\right.$, is recursive, if $\operatorname{adm}(a)$ and $R\left(o c, n, \frac{1}{0} . \bullet i^{\wedge}{ }^{K}\right)$;
(ii) $a \mid\left[-{ }_{a d m} \operatorname{Vy} R\left(T(y), 1^{\wedge}, \ldots, n^{\wedge}\right)\right.$, where $R\left(w, x_{] L}, \ldots, \mathbf{x}_{k}\right)$ is recursive, if $\operatorname{adm}(a)$ and for each $p>-a$, $R\left(\beta, n_{1}, \ldots, n_{k}\right) ; \quad$ a am
(iii) a $\|_{a_{a d m}} 3 y A\left(T, n, r^{\bullet} \cdot, n_{k}, y\right)$, if for some $n \in \boldsymbol{a}$, $\alpha H_{\operatorname{adm}} A\left(\tau, n_{1}, \ldots, n_{k}, n\right) ;$
(iv) a If $\left.a d m{ }^{T} Y A C r^{\wedge \wedge \wedge, ~ . ~ . ~, ~} \mathrm{n}_{\mathrm{k}}, \mathrm{Y}\right)$, if $\operatorname{adm}(\mathrm{a})$, and for each $3>$ adm $a$ and for each neou there is some $V>a p$ so that $y\left|\mid-a d m . A\left(r, n_{1}, \ldots, 1^{\wedge}, 11\right)\right.$.


Proof; if $a$ 正 adm $3 y \operatorname{R}\left(r^{\prime-}(y){ }_{3} n_{1 \$} .\right.$. . $\left.n^{\wedge}\right)$, and $R\left(w, x_{x}, \ldots, x_{k}\right)$
 $R\left(\mathrm{p}, \mathrm{n} \mathbf{1}^{\prime} \cdots, \mathrm{n}^{\wedge}\right)$, because $\mathrm{R}\left(\mathrm{w}, \mathrm{x}, \ldots \mathrm{x}^{\wedge}\right.$ is monotonic increasing.

If a $\left\|\|^{-a d m}{ }^{v} Y\left(\bar{T}(y), n_{x}, \ldots \wedge\right.\right.$ and $\left.R f w^{\wedge}, \ldots, x^{\wedge}\right)$ is
recursive, then $p>_{a d m} a$ implies $R\left(P, x_{1}, \ldots, 3^{\wedge}\right)$ by definition.
 $\mathrm{p}>\mathrm{adm} \mathrm{a}$.

Suppose a ll-adm $3 y A\left(T, n_{1}, \ldots \wedge^{\wedge} n^{\wedge} y\right)$ and $A\left(x, x_{1}, \ldots{ }^{\wedge} x^{\wedge} y\right)$ is an arithmetical property. Then, for some ne o>, ex $H_{\text {adm }} A\left(T, n_{\perp}, \ldots, n_{k}, n\right)$. Assume as induction hypothesis that $p \|_{\text {adm }} A\left(T, n_{1}, \ldots, n_{k}, n\right)$, for every $p$ adm $a$. Then, by definition, for each $0>_{a d m} a, p \|_{a d m} 3 y A\left(r, n_{r} \ldots, 1^{\wedge}, 7\right)$.

Suppose a $\|_{\text {adm }} V y A\left(r, n_{i r} \ldots \wedge^{\wedge} y\right)$ and $A\left(T, 11^{\wedge} \ldots, x^{\wedge}, y\right)$
is an arithmetical property. For each $y>a d m a$ and nell there
is $6>{ }_{\text {adm }} Y$ so that $6 \|_{\text {adm }} A\left(r_{1}, n_{1}, \ldots, n_{K}, n\right)$. Let $p$ adm $a$. >aam is a transitive relation, therefore for each $y>a d m$ and
 Thus, $p \|_{a d m} Y_{Y} A\left(T, n_{1}, \ldots \wedge^{\wedge} y\right)$.

Lemma 4. For each $a$ so that $\operatorname{adm}(a)$, numerals $n_{i}, \ldots, n_{k}$ and arithmetical property $A\left(T, x_{1} \cdots, X_{k}\right)$, there is some $P$ so that


Proof; The proof is by induction on the number of quantifiers, $j$, under which $A\left(x_{1} x_{1} \ldots, X_{k}\right)$ is expressible in the form given in Definition 1.

Case $j=1$. For some recursive predicate $R\left(w, x_{l} \ldots, x^{\wedge}\right)$, $A\left(x, x_{1}, \ldots, x_{f c}\right)$ is expressible in the form $3 y R\left(T(y), x_{1}, \ldots, x_{k}\right)$
or $\operatorname{Vy} R\left(\underset{T}{ }(y), x_{1}, \ldots, x_{k}\right)$. It follows from Definition 3 that either $3 p>_{\text {adm }} a \quad H_{\text {adm }} 3 y R\left(r(\bar{y}), n_{r} \ldots, 1^{\wedge}\right)$ or
a $H_{\text {adm }} V_{Y} T^{\star}\left(T^{\boldsymbol{\pi}}(y), n_{l f} \ldots, 1^{\wedge}\right)$. Thus, if $A\left(T, K_{ \pm \prime} \ldots ., x_{k}\right) \equiv$ $3 y R\left(T(y), x_{1}, \cdots \mathbf{k}^{x}\right)$, then there is some $p \wedge d m^{a}$ sothat

 or there is some $g^{>}{ }_{a<3}{ }^{a}$ so that $P$ "" $\operatorname{adm} \overline{\mathbf{A}}\left(\boldsymbol{\tau}, n_{1}, \ldots, n_{k}\right)$. Case j > 1. Assume as induction hypothesis that Lemma 4 is true for each arithmetical property expressible in the form given in Definition 1 with fewer than $j$ quantifiers. Let $A\left(T, x, \ldots, \mathbf{x}_{\boldsymbol{k}}\right.$ ) be expressible in the form with j quantifiers. Then, there is
 $3 y B\left(T, x_{1}, \ldots, x^{\wedge}, y\right)$ or so that $\left.A\left(T, x_{1}, \ldots{ }^{\wedge} x^{\wedge}\right) \neq V y\right] \bar{B}\left(T, x_{] L}, \ldots{ }^{\wedge}, y\right)$

 there exists $P>, a$ and nra> so that for each $Y^{>}{ }^{>}, \beta$, adm $T$ adm Y Vf $\mathbf{a d m} \bar{B}\left(T, n_{1}, \cdots, \mathbf{k}^{\prime}, n\right)$. Therefore, by induction hypothesis


 Thus, if $A\left(r, x_{\mathbf{1}} \ldots, X_{\mathbf{k}}\right) \equiv 3 y B\left(T, x_{\mathbf{1}^{\prime}} \ldots, x_{\mathbf{k}_{\mathbf{k}}}, Y\right)$, then there is some


And, if $A\left(T, X_{1} \ldots, 3 C_{k}=V_{y} B\left(T, X_{\mathbf{I}} \ldots, 3 C_{\dot{\mathbf{k}}}, y\right)\right.$, then there is
 $\alpha H_{\operatorname{adm}} A\left(\tau, n_{1}, \ldots, n_{k}\right)$.

Definition 4. If $f$ is a number theoretic function, define adm(f) if for every natural number $n$, $\operatorname{adm}(\bar{f}(n))$. If $A\left(T, x_{1}, \ldots, x^{\wedge}\right)$ is an arithmetical property and ${ }^{n} \mathbf{1}^{\prime \ldots, n_{k}}$ are numerals, the relation f $\operatorname{Ih}_{\text {adm }} A\left(T, n_{15}, \ldots, 3^{\wedge}\right)$ is defined by $\left.f E_{a d m} A f r^{\wedge}, \ldots, n^{\wedge}\right)$ if and only if $\operatorname{adm}(f)$ and there is some $n$ so that

$$
\operatorname{ad}^{*} A\left(\tau, n_{1}, \ldots, n_{k}\right)
$$

Definition 5. A set $G$ of arithmetical properties is closed if:
(i) each arithmetical property in $G$ is expressible without free number variables (if $A$ is an arithmetical property, then $T$ is free in A) ;
(ii) for arbitrary numerals $\mathrm{n}_{\mathbf{1}} \cdot \cdot \cdot{ }^{\mathrm{n}_{\mathbf{k}}}$ and recursive predicate $R\left(w_{1} x_{\mathbf{1}}, \ldots, x_{\mathbf{k}}\right)$, if $3 y R\left(T(y), n_{1}, \ldots, n_{\mathbf{k}}\right)$ belongs to $G$, then $V y T^{\wedge}\left(T(y), n 1 \cdots n^{\wedge}\right)$ belongs to $G$, and conversely;
(iii) for arbitrary numerals $n \mathbf{1}^{\prime} \ldots, n_{\dot{k}}$ and arithmetical property $3 y A\left(T, x_{1}, \ldots, x_{k}, y\right)$, if $3 y A\left(r . n^{\wedge} . . . n^{\wedge} y\right)$ belongs to $G$, where $A\left(T, X_{\perp}, \ldots, x_{\mathbf{k}^{\prime}} Y\right)$ is also an arithmetical property, then $V y \bar{A}\left(r, x_{1}, \ldots, x^{\wedge}, y\right)$ belongs to $G_{\prime \prime}$ and for each new, $A\left(T, n_{1}, \ldots, n, n\right)$ belongs to $G$;
(iv) if $\operatorname{Vy} A\left(T, n{ }_{I^{\prime}} \cdot{ }^{\wedge}{ }_{\mathbf{k}} x^{\wedge} y\right)$ belongs to $G$, where $A\left(T, X_{1}, \ldots{ }^{\wedge} X_{k}, y\right)$ is also an arithmetical property, then $3 y \bar{A}\left(r, n_{1}, \ldots, i \frac{j_{k}}{\prime} y\right)$ belongs to $G$, and for each neci)^A(T,n $\left.\mathbf{1}^{\bullet} \ldots, \eta_{\mathbf{k}}, n\right)$ belongs to $G$.

Lemma 5. Let $G$ be a closed set of arithmetical properties and let $f$ be a number theoretic function so that adm(f). If for each $A e G, f \| L$. $A$ or $f \mid h=\bar{A}$, then for each $A e G, A(f)$ if and only if $f \stackrel{a d m}{H_{t}} A$.

 some $n, T(n) \quad k_{a d m}{ }^{2} Y R\left(T(y), 11^{\wedge} \cdots, 1^{\wedge}\right) \leftrightarrow<$ for some $n$, $R\left(T(n), n_{19} . . \wedge_{k}\right)^{\wedge}>{ }^{a} Y R\left(\bar{f}(\mathrm{y}) \wedge \wedge \bullet \bullet, n_{k}\right)$.

Suppose $\operatorname{Vy} R\left(T^{\pi}(y){ }^{\wedge} n^{\prime} \mathbf{1}^{\prime} \cdot, \frac{r}{K} u\right)$ e\& . By Lemma 3, not both
 Therefore, $f \Vdash_{\text {adm }} \operatorname{Vy} R\left(T(y) \wedge \wedge \wedge \ldots, 1^{\wedge}\right) \wedge f$ Jf $\left.3 y \overline{R(r \bar{T}}(y), n_{1}, \ldots, n_{k}\right) \leftrightarrow$ there is no $n$ so that $R\left(\overline{\overline{\prime \prime}} \overline{(n)}{ }_{5} n, 1^{\bullet} \ldots, T I_{k}\right) \mathrm{f} \wedge$ for each $n$, $\left.R\left(\bar{f}(n), 11^{\wedge}, \ldots{ }^{\wedge}{ }_{.}\right)^{\wedge}\right)^{\wedge}->^{V_{Y}} R\left(\bar{f}(y), n_{1}, \ldots, n_{k}\right)$.

$$
\text { Suppose } 3 y A\left(T, 11^{\wedge} \ldots, n^{\wedge}, y\right) e G \quad . \quad \operatorname{Ih}_{\mathrm{adm}}{ }^{a} Y A\left(r, n_{1}, \ldots, n_{k}, y\right) \leftrightarrow
$$



 lent to: there is $m$ so that $A\left(f, n, \mathbf{1}^{\prime},{ }^{\prime} \mathbf{\prime}_{\mathbf{\prime}}{ }^{\prime}{ }^{m}\right)$. Thus,


Suppose $V \mathbf{Y} A\left(x, n_{1}, \ldots, n_{k}, Y\right) \in G$. $f I f_{a d m}$
$\forall y A\left(f, n_{1}, \ldots, 1^{\wedge}, 7\right) \leftrightarrow f^{\prime} f_{a d m} 3 y \bar{A}\left(T, n ; L, \ldots{ }^{n}{ }_{k}>Y\right) * \rightarrow$ for all $n$, f $J f_{-a d m} \bar{A}\left(r_{n ; L}, \ldots, n_{k}, n\right) \wedge$ for all $n, f \mid f_{a d m} A\left(r, n_{v} \ldots, n_{k}, n\right)$, by hypothesis, 44 for all $n, A(f, n, \ldots, i \underset{\mathbf{K}}{ }, n)$, by induction hypo-

3. Theorems,

For each $k>0$, let $p^{k}$ be a recursive one-one mapping of
k
a) onto a) with recursive inverse functions II ;-.., IL. That is,



For two degrees of unsolvability $a$ and $b$, aeE will mean that there is an $A$ in $\underset{\sim}{a}$ and $a \quad B$ in $d$ so that $A \in \boldsymbol{\Sigma}_{n}^{B}$. References [13] and [14] are cited as standard references to the fundamental concepts in the study of degrees, $\leq_{\mathbf{r}}$ will denote relative recursiveness. The following Theorem 1 for the case $n=1$ without the additional properties $\underset{\sim}{b /} i T_{1}^{a}$ and $\underset{\sim}{a} £ \operatorname{XT}_{1}^{\mathrm{b}} \quad$ is due to Spector [16]. The technique used to prove $b £ \underset{£^{a}}{\sim}$ and $a^{\wedge} t T$ is due to Shoenfield [15].

Propf; Let $h$ be a function with degree $a$. Two functions $f$ and $g$ will be defined so that:
(i) $\quad \mathrm{f} \wedge \mathrm{h}^{(\mathrm{n})} \& \mathrm{~g} \mathrm{~S}^{\bullet}{ }^{\wedge} \mathrm{h}^{(\mathrm{n})}$;
(ii) $f^{(n)} \wedge f V G \& g^{\wedge n)} \wedge f V g$;
(iii) $h \wedge f \& h \wedge g ;$ and
(iv) $d(f)$ differs from the degree of every set which is $£_{n}$ in $h, \underset{\sim}{d}(g)$ differs from the degree of every set which is $\varepsilon_{n}$ in $h$.

Define $\left.\operatorname{adm}(\mathrm{a}) \mathrm{f} \rightarrow \mathrm{Vx}\left[2 \mathrm{x}<\operatorname{lh}(\mathrm{a}) \sim>\left({ }^{\mathrm{a}}\right)_{2 \mathrm{x}} \mathrm{\sim}^{\mathrm{x}}=\mathrm{Mx}\right)\right]$.
will be satisfied if $f$ and $g$ are defined so that $\operatorname{adm}(f)$ and $\operatorname{adm}(g)$ - for in that case, for each $x, h(x)=f(2 x)=g(2 x)$.

Let $C_{n, e}$ denote the characteristic function of the e-th set $f_{n}$ in $h$. Let $\left\langle p_{z}\right.$, for any function $f$, denote the $z$-th function recursive in f. (iv) will be satisfied if $f$ and $g$ are defined so that:

 even. Let $Q x_{1}$ denote $a x_{1}$, if $i$ is odd, and denote $V x_{1}$, if i is even. Let $n$ be fixed. Let $e, x_{1}, \ldots, x_{n-k}$ be constants, where $1 £ k £ n$, and let $m=\langle e ; x, \ldots, x$ ^〉. To the arithmetical
 we associate the index number $n » m+k$. Define $\left[n \star_{m}+k\right]$ to be the arithmetical property with index number $n * m+k$. Clearly, to each integer $I, I \wedge 1$, there exist unique $m$ and $k=1, \ldots, n$ so that $I=n \star_{m}+k$. Thus with $n$ fixed this indexing is unambiguous.

For ease of notation, we will write -i [I] for the negation of the arithmetical property [t], rather than $\overline{[I]}$. The set of all arithmetical properties of the form [1] and $-i[£], I>1$ is a closed set of arithmetical properties.

Construction of $f$ and $g$ :
Stage 0. Define $f_{0}=g_{\mathbf{O}}=1$. Since $\operatorname{lh}\left(\mathrm{f}_{\delta}\right)=\operatorname{lh}\left(g_{0}\right)=0, \operatorname{adm}\left(f_{0}\right)$ and $\operatorname{adm}\left(\mathrm{g}_{\mathbf{0}}\right)$.

Stage $41+1$. By induction hypothesis $\sum_{\dot{4}_{v}^{\prime}}$ and ${ }^{9} 4 \dot{i}$ are defined; $\operatorname{adm}\left(\mathrm{f}_{4} \wedge\right), \operatorname{adm}\left(\mathrm{g}^{\wedge}\right), \quad$ and $\operatorname{lh}\left(\mathrm{f}_{4} \lambda=\operatorname{lh}\left(\mathrm{g}^{\wedge}\right)\right.$.

Case 1. Sm, $k[I+1=n * m+k \& 0<k<n]$. By Lemma 4, there
 $\boldsymbol{\alpha} \wedge \operatorname{adm} 7 \boldsymbol{\gamma}+\mathcal{I}_{\text {-i\# }}$ Define ${ }_{{ }_{4} i_{+1}}$ to be the least such a. Define

$$
g_{4 \ell+1}=g_{4 \ell} \cdot{\ln \left(f_{4 \ell)^{\leq i<l h}\left(f_{4 \ell+1}\right)} p_{i}^{\left(f_{4 \ell+1}\right)_{i}} . . . .\right.}
$$

Case 2. $3 \mathrm{~m}\left[\wedge+1=\mathrm{n}{ }^{\star} \mathrm{m}+\mathrm{n}\right]$.

$$
\text { If } 3 \mathrm{a} \wedge \mathrm{adm}^{f} A l^{a} \mathrm{l}^{\wedge} \text {-adm }{ }^{[1+1]}>\text { then let } P="^{a}<^{a} \wedge \mathrm{dm}^{\mathrm{f}} 4 \wedge \propto
$$ $\operatorname{lh}(a)$ is odd \&a $\left.\mid \wedge_{a d m}[1+1]\right)$. Define $f^{\wedge}{ }_{+1}=P-p J_{h(p)}$, and define

$$
g_{4 \ell+1}=g_{4 \ell} \cdot \prod_{\operatorname{lh}\left(f_{4 \ell}\right) \leq i<\operatorname{lh}(\beta)}^{p_{i}}{ }^{(\beta)} \cdot p_{\operatorname{lh}(\beta)}^{1} .
$$

Otherwise, let $3=u ̛ a\left(a>, f_{A} \neq \& \operatorname{lh}(o t)\right.$ is odd \& aam 4C
$\left.a H_{\operatorname{adm}} \neg[\ell+1]\right)$.


$$
g_{4 \ell+1}=g_{4 \ell} \cdot \underset{\ln \left(f_{4 \ell}\right) \leq i<\operatorname{lh}(\beta)}{\mathrm{m}_{i}^{(\beta)}{ }^{i} \cdot p_{\operatorname{lh}(\beta)}^{2} .}
$$

Stage $4 £+2 . f_{4 \ell+2}$ and $\mathbf{g}_{\mathbf{4} \boldsymbol{\ell}+\mathbf{2}}$ are to be defined as in stage $41+1$, but with $f$ and $g$ interchanged.
 already defined, " $\operatorname{adm}\left(\mathrm{f}_{44+2}\right)$, $\operatorname{adm}\left(\mathrm{g}_{4}{ }^{\wedge}+2\right)$, and $\operatorname{lh}\left(\mathrm{f}_{4} \wedge_{+2}\right)={ }^{\mathrm{lh}}\left(\boldsymbol{g}_{\mathbf{4} \boldsymbol{\ell}+2}\right)$. Let $I=\langle x, y, z\rangle$. $f_{\text {A9.o }}$ shall be constructed at this stage so $\overline{\mathrm{w}}$

 $f^{l}=f_{4 \ell+2} \cdot p_{l h\left(f_{4 \ell+2}\right)}^{h(x)+1} \cdot p_{l h\left(f_{4 \ell+2}\right)+1}^{2}$, if $\quad \operatorname{lh}\left(f_{4 \ell+2}\right)$ is even. If
$\operatorname{lh}\left(f_{4 \ell+2}\right)$ is odd, then let $f^{0}=f_{4 \ell+2} \cdot p_{\operatorname{lh}\left(f_{4 \ell+2}\right)}$ and

$$
{ }_{\mathrm{f}} 1
$$

Case 1. There do not exist characteristic sequence numbers $a$ and $p$ so that $\operatorname{adm}(a), f_{\text {Af }}, \sim<$ a, $3<\wedge^{\wedge} p^{a}$, and $f^{\circ}<^{\wedge}{ }^{\beta}$. In this


Case 2. There do exist characteristic sequence numbers $a$ and $p$ satisfying the hypotheses of case 1 , but there do not exist characteristic sequence numbers $a$ and $p$ so that $f_{A O}<\quad a_{\text {, }}$,


Case 3. There exist characteristic sequence numbers $a_{0}^{0}, p_{0}^{0}, a$, $1 \quad 0 \quad 1 \quad 0 \quad c L^{1} \quad 1 \quad 0 c^{1}$

 and $f^{\mathbf{I}}$ differ for some argument, $\mathrm{p}^{\mathbf{0}}$ and $\mathrm{p}^{\mathbf{1}}$ must disagree for
 that argument. If $p$ disagrees, define $f^{\mathbf{4 \ell + 3}}=a$; otherwise define $f^{\wedge}+3=a^{1}$.

$$
\operatorname{gefine~}_{4 \ell+3}=\Pi p_{i}{ }^{\left(f_{4 \ell+3}\right)_{i}}, \operatorname{lh}\left(f_{4 \ell+2}\right) \leq i<\operatorname{lh}\left(f_{4 \ell+3}\right)
$$

Stage $41+4 . f_{4 \ell+4}$ and $S N / . L 4$ are to •西 $\wedge^{e}$ fined as in stage $4-6+3$, but with $f$ and $g$ interchanged.

Define $\left.f(y)=l t_{m\{y<l h(f} j,\right)_{y}-1$, and define
$g(y)=\left(g_{\mu m\left(y<l h\left(f_{m}\right)\right)}\right)_{y}=1$.
Claim i. $f \leq_{-\wedge} h^{(n)}$ and $g \int_{r} h^{(n)}$.
Proof; It is only necessary to see that the conditions used to define $f$ and $g$ are at most $f_{n}$ in $h$. First, consider cases 1 and 2 of stage $4 £+1$. if $I+1=n^{\#} m+k, 0<k<n$, then $[I+1]$ has fewer than $n$ alternating quantifiers. Thus, by Definition 3 of the forcing relation, $a \|_{\text {adm }}[I+1]$ is $S_{i}$ in $h$, for some $\mathrm{i}<\mathrm{n}$. Thus, $3 \mathrm{a}>\mathrm{f}, \mathrm{f}(\mathrm{a} \|-\quad[I+1]$ va $\mid(-\mathrm{n} n[£+1])$ is at most $S_{\mathbf{n}}$ in $h$. If $t+1=n * m+n$, then by Definition 3
of the forcing relation, a $\left.\operatorname{Ih} a d m I^{1}+1\right]$ is $\circ_{n}$ in $h$. Thus $3 a>{ }_{\text {adm }} f_{A_{4} g_{\mathrm{V}}}\left(\mathrm{a} \mid[-\mathrm{aãm}[I+1])\right.$ is $f_{\mathrm{n}}$ in h . Similarly, the hypotheses in stage $41+2$ are $£_{\mathbf{n}}$ in $h$. It is easy to observe that the hypotheses of cases 1, 2, and 3 of stages 41 -f 3 and $41+4$ are $£{ }_{n}$ in $h$. Therefore, both $f$ and $g$ are recursive in predicates which are $f_{n}$ in $h$. That is, $f<\dot{i}_{\boldsymbol{r}} h^{(n)}$ and $g \leq_{r} h^{(n)}$.

Claim ii. $f^{(n)}<^{\wedge} f V g$ and $g^{(n)} \wedge f V g$.
 $\underline{\text { mutandis» }}$ For each $m$ and $k=1,2, \ldots, n, f H_{\text {adm }}^{-}[n<m+k]$ or f $\|^{-a d m}-j[n * m-f k]$. Therefore, by Lemma 5, f $f^{\text {adm }}[n * m+k]$ if and only if $[n * m+k]$ (f) • In particular, since $3 x, \ldots Q x_{n}{ }_{n}{ }^{T}\left({ }^{T}\left(x_{n}\right), e, e, x_{l L}, \ldots * n^{-1}\right)$ is $[n . e+n]$,
 We show that for each e,

$$
\text { £ } \left.l^{\wedge} \text { adm }{ }^{[n} \star^{e}+n J \ll{ }^{3 a}>a d »{ }^{f} 4((n-e+n)-1){ }^{a} \gg " a d m{ }^{\wedge}+n\right] \text {, }
$$

in fact, suppose $3 a \wedge f_{4((n \cdot e+n)-1)} a \| \wedge[n-e+n]$. Then, ${ }^{f} 4\left(f n^{*} e+n\right)-l$ ) -fl is an admissit)le extension of such an a. Therefore, by Lemma 3, ${ }_{4}((n \cdot e+n)-11)+1$ I- adm fn-e $\left.+n\right]$. Thus, for some $m$, $\left.\vec{f}(m) I I-{ }_{\text {adm }} f n^{*} e+n\right]$, that is, $f h_{a d m}[n * e+n]$. Now, suppose there exists an $m$ so that $T(m) \not H_{\text {aam }}^{\underset{a}{-}[n-e+n] . ~ F o r ~ s u c h ~ a n ~} m$, if $I(m) \wedge d m{ }^{f} 4((n-e+n)-l)^{\prime}$ thenbへLemma $\cdot 3$;

$$
\mathfrak{H} \boldsymbol{\alpha} \text { >ad» }{ }^{\mathrm{f}} 4\left(\left(\mathrm{n} \cdot \mathrm{e}_{+} \mathrm{n}\right)-\mathrm{l}\right)+\mathrm{l}^{\text {a }} \text { "" } \operatorname{adm}[\mathbf{n} \cdot \mathbf{e}+\mathbf{n}] .
$$



$$
\Psi \boldsymbol{a}>\mathrm{adm}^{\mathrm{f}} 4\left(\left(\mathrm{n}-\mathrm{e}_{+} \mathrm{n}\right)-1\right) \times{ }^{\mathrm{lh}} \mathrm{adm}[\mathrm{n} \cdot \mathrm{e}+\mathrm{n}] .
$$

Therefore,

Define a function $K$ by

$$
\text { if and only if } f(\mathrm{~K}(2 \mathrm{e}))=1 \text {. Hence, }
$$

$$
T_{1} \ldots Q x_{n} B_{n}^{1}\left(F\left(x_{n}\right), e, e, x_{1}, \ldots, x_{n-1}\right)
$$

if and only if $f(\mathrm{~K}(2 \mathrm{e}))=1$. Thus $\mathrm{f}^{(\mathrm{n})} \leq_{\mathrm{r}} \mathrm{f} V \mathrm{~V}$.
Claim iii. $h \leq_{\boldsymbol{r}} f$ and $h \leq_{\boldsymbol{r}} g$, since $\operatorname{adm}(f)$ and $\operatorname{adm}(g)$.

## C

Vx[Vz $\left.\mathrm{g}^{*}\left\langle P_{z}{ }^{n}\right\rangle * \operatorname{VVyc}{ }^{\wedge} \mathrm{x}^{\wedge}{ }^{\wedge}\right]$.
Proof: It will be shown for every $x, y$, and $z$, that either $C_{n, x} /\left\langle p_{y}^{r} \text { or } f \wedge i f\right)_{z}^{C}>^{x}$.

For any $x, y$, and $z$, let $I=\langle x, y, z\rangle$. If $f_{4 \ell+3}$ is con-
structed according to case 1 or case 2 of stage $41+3$, and if

$$
\begin{aligned}
& K(o)=/ i x[f(x) \wedge g(x)] \text {, } \\
& K(x+1)=\text { Atyfy }>K(x) \& f(y) \wedge g(y) j . \\
& f \text { and } g \text { have been constructed so that }
\end{aligned}
$$

 constructed according to case 3 of stage 41+3, then


To complete the proof of Theorem 1, let $\sigma=\sigma(f)$ and let
 and $a^{(n)} £ c^{(n)}<^{\wedge} b V c^{\wedge} a^{(n)}$. By(iv),b/E^ and $c i j T$.

In Theorem 1 an arbitrary number $n$ is given, and then remains fixed throughout the entire proof. The idea of the following theorem is to force the set of all arithmetical properties and negations of arithmetical properties of the form $[n * m+k]$, for all $n, m_{5}$ and $k=1,2, \ldots, n . \quad$ (Of course, our indexing must be altered since it is ambiguous if $n$ is not fixed.) Also, the theorem will not be presented in a relativized form, so every sequence number a is admissible, and we will write $\mid \backslash-$, rather than $\backslash \mid-$ adm.
(U>) fiD) (I))
Theorem 2. 3a3b[ $\left.a^{v}=b^{v}{ }^{\mathrm{v}}=\mathrm{o}^{\mathrm{v}}=\mathrm{a} \mathrm{V} \cdot \mathrm{b}\right]$.
Proof; Two functions $f$ and $g$ will be defined so that:
(i) $d(f) 10^{\mathrm{W}}, d(\mathrm{~g})<0^{(\mathrm{U})}$ ) and
(ii) $f^{(u))} 1_{r} f V g$ and $g^{(u))}{\underset{r}{r}}_{f_{r}} V_{g}$.

As before, let B $\operatorname{ll}^{-}(X)$,e,e,x_, . .,$\left.X\right)$ denote
$T_{n}^{1}\left(\bar{T}\left(x_{n}\right), e, e, x_{1}, \cdots, X_{n-1}^{n}\right)$, if $n$ is odd, and denote
$T_{n}^{1}\left(T^{\prime \prime}\left(X_{n}\right), e, e, x_{1}, \ldots, X_{n-1}\right)$, if $n$ is even. Let $Q x_{i}$ denote $3 x_{i}$ if i is odd, and denote $V X_{i}, \quad$ if $i$ is even. For each natural
number $I=\langle n, m\rangle, n] \geq 1$, and $m \wedge \geq 1$, define $[I]$ to be the arithmetical property
 of all arithmetical properties [I] and $T$ [ $£$ ], for $-t=<n, m>$, $\mathrm{n} \wedge 1$, and $m \wedge 1$, is a closed set of arithmetical properties. Construction of $f$ and $g$ :

Stage 0. Define $f_{0}=g_{0}=1$.
Stage $2 b+1$. By induction hypothesis $f_{-f}$ and $g$,r are defined and have the same length.

Case 0. There do not exist $n \wedge \geq 1$ and $m \wedge 1$ so that $I=\langle n, m\rangle$. Define ${ }^{f} 2 l+1={ }^{f} 2 l$ and $g_{2 \ell+1}=g_{2 \ell}$.

Case 1. There exist integers $n, m, q$ and $k$ so that $n^{\wedge} 1, m ;>1$, $I=\langle n, m\rangle, m=n^{\wedge} q+k$, and $0<k<n$.

Define

$$
\left.{ }^{f} 21+1=V^{*}>f_{21} \text { [a If }[I] \text { or a il } \neg[t]\right] \text {. }
$$

Define

$$
g_{2 \ell+1}=g_{2 \ell} \prod_{\ln \left(f_{2 \ell}\right) \leq i<\ln \left(f_{2 \ell+1}\right)}^{p_{i}^{\left(f_{2 \ell+1}\right)} i}
$$

Case 2. There exist integers $n, m$ and $q$ so that $n \mathcal{J} \geq 1, m \wedge 1$, $-\mathrm{t}=\langle\mathrm{n}, \mathrm{m}\rangle$, and $\mathrm{m}=\mathrm{n} * \mathrm{q}+\mathrm{n}$.

If $3 \mathrm{a}>£_{2^{t}} \mathrm{a} \|-[I]$, then let $0=$ jua $>\mathrm{f} \wedge \mathrm{fa} \|-{ }^{[*]) .}$ Define $f_{2 \ell+1}=\beta \cdot p_{l h(\beta)}^{2}$, and define

$$
g_{2 \ell+1}=g_{2 \ell} \cdot \frac{n}{\ln \left(f_{2 \ell}\right) \leq i<\ln (\beta)} p_{i}
$$

Otherwise, let $p=J x>f,(a \|-1[\wedge])$. In this case, define $f_{2 \ell+1}=\cdot p_{\ln (\beta)}^{I}$, and define

Stage $2^{\wedge}+2$, f.. . and 9 .. - are to be defined as in stage $24+1$, but with $f$ and $g$ interchanged.
 ${ }^{(g} \operatorname{jum}\left(y<l h\left(g_{m}\right)\right)^{\prime} y$ " ${ }^{1}$,

Claim i. $\left.d(f)<O^{(U)}\right)$ and $d(g)<0^{(t 0)}$.
 f^, $^{-}$. are recursive in predicates which are recursive in $£$, where the $n$ can be found effectively from $I$. Therefore $f$ is recursive in 0 • Similarly, $g$ is recursive in 0 . .

 mutandis.

For each $I, f \backslash \backslash[I]$ or $f|\mid-$ ? [£]. Therefore, by Lemma 5, $f \quad \Vdash$ [I] if and only if [I] (f). In particular, since for each $n$,
$3 x_{1} \ldots Q x_{n} B_{n}^{1}\left(\bar{T}\left(x_{n}\right), e, e, x_{\sim}, \ldots, x_{1}\right)$ is $[\langle n, n<e+n\rangle]$,
$3 x_{i} \ldots Q x_{x i} B_{n}^{1}\left(" \bar{f}\left(x_{n}\right), e, e, x_{i}, \ldots, x_{n-i}\right)$ if and only if $\left.f \|-[<n, n-e+n\rangle\right] \cdot$ For each $n$ and $e$, $f \mathbb{F}[<n, n-e+n>]$ if and only if

$$
\mathbf{3 a}>\mathbf{f}_{-} \wedge \quad \mathbf{a} \|-[<\mathbf{n}, \mathbf{n}-\mathbf{e}+\mathbf{n}>]
$$

$2 *<n_{5} n^{*} \mathbf{e}+\mathbf{n}>\quad$ ir
The proof of this statement is identical to the proof presented for the similar statement in claim (ii) of Theorem 1.

Define a function $K$ by
$K(1)=/ i x 3 n ;>13 m\left[x=2^{*}\left\langle n, n * m+n>+1\right.\right.$ or $x=2^{*}\langle n, n * m+n>+2]$,
$\mathbf{K}(\mathbf{y}+1)=\mathbf{J X} 3 \mathrm{n} \wedge 13 \mathrm{~m}\left[\mathrm{x}>\mathrm{K}(\mathrm{y}) \quad \&\left(\mathrm{x}=\mathbf{2}^{*}\langle\mathbf{n}, \mathrm{n}-\mathrm{m}+\mathbf{1}>+\mathbf{1}\right.\right.$
or $\left.\left.\quad x=2^{*}<\mathbf{n}^{\wedge} \mathbf{n}<\mathbf{m}+\mathbf{n}>+2\right)\right]$.
The $y^{\text {th }}$ argument $x$ for which $f(x) \wedge g(x)$ is introduced at stage $K(y)$ of the construction of $f$ and $g$.

Define $p(n, m)=M y\left[K(y)=2 \lll n_{5} n » m+n>+1\right]$. At stage $2 «<n, n » m+n>+1$, the $p\left(n^{\wedge} m\right)-t h$ argument $x$ for which $f(x) j 4 g(x)$ is introduced.

Define $h(1)=1 \operatorname{Ltx}\left[f(x)^{\wedge} g(x)\right], h(y+l)=j \operatorname{tx}[x>h(y) \& f(x) \wedge$ $g(x)]$.
$f$ and $g$ have been constructed so that

$$
\left.3 a>f_{2} .<n, n-e_{+} n>a \quad l^{\wedge}<^{n} l^{n} \star^{e}+n>\right]
$$

if and only if $f(h(p(n, e)))=1$. Thus, for each $n$ and each e, $3 x_{1 L} \ldots Q x_{n} B_{n}^{l}\left(\bar{f}\left(x_{n}\right), e, e, x_{1}, \ldots \bullet x_{n-1}\right)$ if and only if $f(h(p(n, e))) ;=1$.

Therefore $f$ in) is uniformly recursive in $f V g$. By definition
 fore, $f^{(\omega)} \leq_{r} f V g$.

To complete the proof of Theorem 2, let $\underset{\sim}{a}=\underset{\sim}{d}(f)$ and let
 ${\underset{\sim}{o}}^{(\omega)} \leq \underset{\sim}{\underset{\sim}{b}}(w) \leq \underset{\sim}{a} \vee \underset{\sim}{b} \leq{\underset{\sim}{o}}^{(w)}$.

The following Theorem 3 for the case $n=1$ is a relativized version of Friedberg ${ }^{1}$ s characterization of the complete degrees [4].

Theorem 3. $\operatorname{VaVb} 3 c\left[c^{(n)}=c V a^{(n)}=b \vee a^{(n)}\right]$.
Proof; Let $h$ be a characteristic function with degree $\underset{\sim}{a}$.
Let $g$ be a characteristic function with degree $\underset{\sim}{b}$. A function $f$ will be defined so that:
(i) $\mathrm{f}^{(\mathrm{n})} \leq_{r} \mathrm{~h}^{(\mathrm{n})}$ V g;
(ii) $\quad g^{\wedge} \mathrm{f} \mathrm{V} \mathrm{h}^{(\mathrm{n})}$; and
(iii) $h \leq_{r} f$.

As in the proof of Theorem 1, define
$\operatorname{adm}(\mathrm{a}) \leftrightarrow \operatorname{Vx}[2 \mathrm{x}<\operatorname{lh}(\mathrm{a})-4(\mathrm{a}) 2 \mathrm{x}-1=\mathrm{h}(\mathrm{x})] . \quad$ (iii) will be satisfied if $f$ is defined so that $\operatorname{adm}(f)$.

Also let $n$ be fixed, and let the arithmetical properties
 as in the proof of Theorem 1. Then, $\left[n \star_{m}+k\right], k=1,2, \ldots, n$, is
 where $m=\left\langle e, x_{1}, \ldots, x_{n-k}\right\rangle$.

Stage 0. Define $f_{Q}=2^{h(0)+1}$. $\operatorname{adm}\left(f_{Q}\right)$ and $\operatorname{lh}\left(f_{Q}\right)$ is odd.

Stage I + 1. By induction hypothesis $\mathrm{f}^{\wedge}$ is defined, adm (f^),
and $I^{\wedge}\left(\left(\mathbb{I}_{i}\right){ }^{\text {is odd }}<\right.$
Case 1. $3 \mathrm{~m}, \mathrm{k} \mid \mathrm{X}+1=\mathrm{n}-\mathrm{m}+\mathrm{k} \& 0<\mathrm{k}<\mathrm{n}]$. Define

$$
\begin{gathered}
\mathrm{f}_{\ell+1}=\mu \alpha[\alpha\rangle_{\mathrm{adm}} \mathrm{f}_{\ell} \cdot \mathrm{p}_{\mathrm{lh}\left(\mathrm{f}_{\ell}\right)}^{\mathrm{g}(\ell)+1} \text { \& } \operatorname{lh}(\alpha) \text { is odd \& }(\alpha \|-\mathrm{adm}+1] \\
\text { or a } \left.\left."^{-} \operatorname{adm} T[\ell+1]\right)\right] .
\end{gathered}
$$

By Lemmas 3 and 4, such an a exists.

Case 2. $3 m[t+1=n-m+n]$. If

$$
\mathcal{G} \alpha>_{a d m} f_{\ell} \cdot p_{\ln \left(f_{\ell}\right)}^{g(\ell)+1}\left[\alpha \|^{\operatorname{adm}}[\ell+1]\right]
$$

then define

Otherwise, define
 Define a function $K$ by $K(x)=f$. . As in the proof of claim $i$ of Theorem 1 and 2, it is easy to see that $K \leq_{r} h^{(n)} V g_{\#}$ Thus, it is proved that $f \leq_{\mathbf{r}} h^{(n)} V$ g. We need to prove the stronger statement:

Claim i. $f^{(n)} \wedge h^{(n)} V \operatorname{G}$.
Proof; Again, as in the proof of Theorem 1,


$\overline{\mathbf{f}}(\mathrm{m}) \quad \mid k_{a d m}[\mathrm{n} \gg+\mathrm{n}] . \quad$ Conversely, suppose that for some $m$,

then by definition, $f \underset{n \gg+n}{\mid h} \underset{d m}{a d m}\left[n^{*}+n\right] . \quad$ If. $n \gg+n$ adm

${ }^{f} n \cdot e+n^{\wedge} \operatorname{adm}{ }^{t n} e^{e+n]}$. Therefore,
f II-adm $[n-e+n] f-4 \star_{n} \star^{f} e+^{\prime} n \ V_{a d m}[n-e+n]$.

Thus,

$$
\left.3 x_{1} \cdot, Q x_{n} B_{n}^{l_{n}}\left(T(x)_{n}, e, e, x_{-1} \cdot \cdots, x_{n-I}\right) f \rightarrow K(n \gg+n)\right)\left\|\|_{a d \bar{m}} \quad[n * e+n] .\right.
$$

The right hand side is recursive in $h^{(n)}$ and $g$. Thus, $\mathrm{f}(\mathrm{n}) \hat{\mathrm{h}}_{\mathrm{h}}(\mathrm{n}) \quad \mathrm{vg}<$

Claim ii. $\quad g \leq_{r} f V_{h}^{(n)}$.
Proof; $g(x)=f(l h(K(x))$ for all $x$. Using the definition
of $K$, substitute $f(l h(K:(x)))$ for $g(x)$ in the definition of $K$, to obtain $K \leq \sum^{\wedge} \mathrm{Vh}^{(n)}$. Then, use $g(x)=f(\operatorname{lh}(K(x) V)$, to obtain $\mathbf{g} S_{r} f V^{(n)}$.

Claim iii. $h \leq_{r} f$, since $\operatorname{adm}(f)$.
To complete the proof of Theorem 3, let ${\underset{\sim}{c}}^{\sim}=d_{\sim}(f)$. By (i),
(ii), and (iii), ${\underset{\sim}{C}}^{(n)} £ \underset{\sim}{a}\left\langle^{n)} V \underset{\sim}{b} £ \underset{\sim}{C} V \underset{\sim}{a}{ }^{(n)} \sum_{\underset{\sim}{C}}^{(n)}\right.$.

The proof is immediate.


## Proof;

$$
c^{(n+1)} \wedge c V a^{(n+1)} \leq: c^{(n)} V a^{\wedge n+1)}=\left(c \vee a^{(n+1)}\right) V_{c}^{(n)} 1 c^{(n+1)} .
$$

Corresponding to the original Kleene-Post construction
of $£_{1}$-incomparable sets in ${ }^{\&} \boldsymbol{2}^{\prime}$ we can now prove the existence of $£_{\mathrm{n}}$-incomparable sets in $A_{\mathrm{n}+\mathbf{1}^{\prime}}$. In the following theorem we incorporate ideas from Theorem 3 to get a stronger result. Peter Hinman [7] has proved, corresponding to the Friedberg-Muchnik theorem ([5] and
[12]), that there exist $A$,-incomparable sets in $S$..


Proof; Two functions $f$ and $g$ will be defined so that
(i) $\tilde{\mathrm{a}}\left(\mathrm{f}^{(\mathrm{n})}\right) £ \tilde{\sigma}^{(\mathrm{n})}$ and $\tilde{\mathrm{d}}\left(\mathrm{g}^{(\mathrm{n})}\right) 1 \tilde{\sigma}^{(\mathrm{n})}$; and
(ii) $f / 2_{n}^{\wedge}$ and $g^{\wedge}>^{\ddagger}{ }^{\prime}$.

 Let $Q x_{1}$ denote $3 x_{1}$, if i is odd, and denote $V x_{1}$, if i is even. Let $e, x_{1}, \ldots, x_{n-K}$ be constants, where $1 \leq k \leq n$, and let

```
m}=\langlee,\mp@subsup{x}{i}{\prime
Qx
variable u, we associate the index number n.m + k. Define
    [n*m + k](u) to be the arithmetical property with index number
n<m + k. With n fixed this indexing is unambiguous.
    Observe that [n*e + n] (e) is the arithmetical property
3x
<x> >> x, for all x.)
```

    Construction of \(f\) and \(g\) :
    Stage $0 . \quad f_{0}=g_{0}<1$.

Stage $64+1$. By induction hypothesis $f_{\& / \sim}$ and $g 6 i$ are defined.
case-1. $3 x, a, m, k[4=\langle x, a\rangle \& x<n \gg m-f k \& 0<k<n]$.
 and define $g_{6 \ell+1}=g_{6 \ell}$.

Case 2. Vf, $a, m, k[(4 \ll x, a>\& x=n * m+k) \sim(k=0$ or $k=n)]$.


Stage $64+2 . \mathrm{f}-\#$, $\circ$ and $q_{r i t 0 \%}$ are to be defined as in stage ov+2 0-0+2
$64+1$, but with $f$ and $g$ interchanged.

Stage $64+3$. By induction hypothesis $f_{-u+2}$ and $g_{6 i+2}$ are defined.


Define

$$
f_{6 \ell+3}=\mu \alpha>f_{6 \ell+2} a \|-[n \cdot l+n]\left(\ln \left(g_{6 \ell+2}\right)\right)
$$

Define

$$
g_{6 \ell+3}=g_{6 \ell+2} \cdot p_{1 \mathrm{~h}\left(g_{6 \ell+2}\right)}^{l}
$$

Case 2. Va $\left[\mathrm{a}>f_{6 l+2}->\right.$ a $\left.\mathbf{J F}[\mathrm{n} .<\mathrm{t}+\mathrm{n}]\left(\mathrm{lh}\left(\mathrm{g}_{6 \mathrm{t}+2}\right)\right)\right]$. By Lemma 4,

$$
3 a>\mathbf{f}_{6}^{\wedge}+2 \text { a II- } i[n .<t+n]\left(1 h\left(g_{6 \ell+2}\right)\right)
$$

Define

$$
f_{6 \ell+3}=\mu \alpha>f_{6 \ell+2} \alpha \mid F \neg[n \cdot l+n]\left(\ln \left(g_{6 \ell+2}\right)\right)
$$

Define

$$
g_{6 \ell+3}=g_{6 \ell+2} \cdot p_{1 h\left(g_{6 \ell+2}\right)}^{2}
$$

Stage $S i+4 . \quad$ f.. and $9 \hat{A}$. . are to be defined as in stage $6 t+3$, but with $f$ and $g$ interchanged.
 defined.

$f_{6 \ell+5}=\mu \alpha>f_{6 \ell+4} \alpha \|[n \cdot \ell+n](\ell)$, and define $g_{6 \ell+5}=g_{6 \ell+4}$.
Otherwise, define $\left.{ }_{6} \boldsymbol{i}_{+5}=M^{\prime \prime}>{ }^{\mathrm{f}} \mathrm{e}^{\wedge}+4^{\mathrm{a}} \mathbf{H}-1 \mathbf{t}^{\mathrm{n} \#<\mathrm{t}}+\mathrm{n}\right](\ell)$
and define $g_{6 \ell+5}=g_{6 \ell+4}$.
Stage $61+6 . \quad f_{-},-\quad$ and $g \hat{.}, s /$ are to be defined as in stage $6 t+5$, but with $f$ and $g$ interchanged.

$$
\begin{aligned}
& \text { Define } f(x)=\left(f \wedge \wedge f, r>_{x} * \wedge\right. \text { and define } \\
& g(x)=\left(g_{(\mu m}\left(x<\ln \left(g_{m}\right)\right)_{x} \wedge 1 .\right. \\
& \\
& \text { Define } A=(x \mid f(x)=1\}, \text { and } B=(x \mid g(x)=1) .
\end{aligned}
$$

Claim i. $\underset{\sim}{d}\left(f^{(n)}\right) \wedge{\underset{\sim}{O}}^{(n)}$ and $\underset{\sim}{d}\left(g^{(n)}\right) \cdot £{\underset{\sim}{0}}^{(n)} /$
Proof: For each $e$, the set $G$ of all arithmetical properties and negations of arithmetical properties $[n<m+k](e), 1 £ k £ n$, where $m=\left\langle e, x_{-}, \ldots, x,\right\rangle$ is a closed set of arithmetical properties. Let $e$ and $x, \ldots, x$, be arbitrary constants, and let $1 \quad \mathrm{n}-\mathrm{Ki}$
 is chosen so that $f \mathbb{H}\left[n^{\wedge} n+k\right]$ (e) or $f \|-,\left[n \star_{m}+k\right](e)$. At stage $6 e+5, f_{f i} e^{+\prime}$ is chosen so that $f \mid f\left[n^{\#} e+n\right]$ (e) or f $\|-\mid[n \star e+n]$ (e) . Thus, given $e$, for each arithmetical property $A$ in $G, f_{1} \|-A$ or $f \mid[-A . \quad$ By Lemma 5, $3 x^{1} \ldots Q x^{n} B^{n}\left(T\left(x^{n}\right), e, e, x^{1}, \ldots, n^{-l}\right)$ if and only if $f \mid t[n-e+n](e)$.
 easy to see, and has been argued prequiously.) Define a function $K$ by $K(x)=f$ for all $x . d\left({ }^{K}\right) £ 0$. (The argument is similar to the proof ofl claim i of Theorems 1 and 2). It follows that $3 x_{i} \ldots Q x_{n} B_{n}\left(T(x)_{n}, e, e, x ._{1^{\prime}} \cdots, x_{n-1}.\right)$ if and only if $K(6 e+5) \|[n * e .+n](e)$. The right hand side is recursive in $0^{(n)}$. Similarly it may be proved that $d\left(g^{(n)}<\underset{\sim}{\underset{\sim}{0}}{ }^{(n)}\right.$.
$\underline{C l a i m ~ i i . ~} A £ i P \quad \& \quad B \neq \sum_{n}^{A}$.
 similar,

Be I?" if and only if there is some $e$ so that for all a, 1
$g(a)=1$ if and only if $a x^{\wedge}-Q x^{\wedge} B_{n}\left(f\left(x j, e, a, x_{; L}, \ldots x_{n-1}\right) \cdot\right.$ For each e, it will be shown that $9\left({ }^{1 \mathrm{~h}}\left(\mathrm{~g}_{6 \mathrm{e}+2}\right)\right)=0$ if and only if $3 x_{r} \ldots Q x_{n} B^{\wedge}\left(T\left(x_{n}\right), e, l h\left(g_{62+2}\right), x_{15} \ldots, x_{n} \wedge_{1}\right)$-- from which it follows that $B^{\wedge} E^{7 \wedge}$.
n
For each $e$, the set $Q$ of all arithmetical properties and negations of arithmetical properties $[n<m+k]\left(l h\left(g_{6 e+2}\right)\right)$, $1 £ k £ n$, where $m=\left\langle e, \frac{1}{X}, \ldots, X_{X}^{n-} \wedge^{\prime}\right.$ is a closed set of arithmetical properties. Given numerals $e$ and x.,..., $x$, ,
 At stage $6 t+1, f_{g}{ }^{\wedge}+1$ is chosen so that $f \|-\left[n-m+{ }^{k}\right]\left(\ln \left(g_{6 e+2}\right)\right)$ or $f \|-i[n-e+k]\left(l h\left(g_{6 e+2}\right)\right)$. At stage $6 e+3_{5} f_{6 e+3}$ is chosen so that $f \|[n-e+n]\left(l h\left(g_{6 e+2}\right)\right)$ or $f\left\|\|_{n}[n . e+n]\left(l h\left(g_{6 e+2}\right)\right)\right.$. Thus, for each arithmetical property $A$ in $Q, f \| A$ or $f \|-1 A$. $3 x_{1} \ldots Q x_{n} B_{n}^{1}\left(\bar{T}\left(x_{n}\right), e, l h\left(g_{6 e+2}\right), \ldots\right)$ is $[n-e+n]\left(l h\left(g_{6 e+2}\right)\right)$. By
 f |- $[\mathrm{n} . \mathrm{e}+\mathrm{n}](\mathrm{lh}(\mathrm{g} / . \mathrm{J}))$. (It may be remarked that the necessity oe+2 of stages $6 £+1$ is that for each $e, \wedge\left(g_{-}^{\wedge}+\boldsymbol{J}\right)$ is not known in advance, $)$ Again $f \|[n * e+n]\left(l_{h}\left(g_{e+2}\right)\right)$ if and only if $3 a\left[a>f_{6 e+2} \& a \operatorname{II}\left[n^{*} e+n\right]\left(1 h\left(g_{6 e+2}\right)\right)\right]$. On the other hand, by definition of $9_{6 e+3}, 3 a\left[a>f g_{e+2}{ }^{\& a} l l-[n-e+n]\left(1 h\left(g_{6 e+2}\right)\right)\right]$ if
and only if $g\left(l h\left(g_{A_{A}} e^{\circ}+2\right)=0\right.$. This completes the proof of claim ii.
 and by (i), d(A) ${ }^{(n)}=\mathcal{L}^{(n)}=d_{\infty}(B)^{(n)}$.

Remark. Let $f i$ be the set of all degrees. For each $n ; \geq 1$, let
 has been shown in this chapter that certain sentences which hold in $\&_{\text {I }}$ hold in $\$$ for all $n$. Is $f_{n}$ elementarily equivalent to $\varepsilon_{m}$, for $n, m \wedge 1$ ? This question has been answered in the negative by C. G. Jockusch, Jr., in private communication.

Let $G$ be the set of all degrees of arithmetical sets. The proof given by Jockusch uses the fact that $G$ can be simultaneously first-order defined in $\boldsymbol{\varepsilon}_{\mathbf{1}}$ and $\boldsymbol{\varepsilon}_{\mathbf{2}}$ (A corollary to this fact, is Jockusch $^{1}$ s result, announced in [8], that the structures <\$, <£., ${ }^{f}>$ and $\left\langle G, \leq^{\wedge},{ }^{f}\right\rangle$ are not elementarily equivalent.)

The method of proof leaves open two interesting questions. It is not known whether $\mathrm{f}_{\mathfrak{n}}$ is elementarily equivalent to $\$ \mathbf{m}^{\prime}$ for $n$ and $m$ both greater than one; and it is not known whether the structures $\left\langle G, £^{(\mathbf{n})}{ }^{(1)}\right.$ and $\left\langle G, £^{(\mathbf{m})}>\right.$ are elementarily equivalent, for $n, m i z 1$.

## BIBLIOGRAPHY

[1] Addison, J. W., "The Undefinability of the Definable", Abstract 622-71, Notices of the A.M.S. 12. (1965), 347.
[2] Cohen, Paul J., "The Independence of the Continuum Hypothesis", Proc. Nat. Acad. Sci. U.S.A. 50(1963), 1143-1148 (part I) and 1(1964), 105-110 (part II).
[3] Feferman, S., "Some Applications of the Notions of Forcing and Generic Sets", Fundamentae Mathematicae, LVI (1965), 23-24.
[4] Friedberg, Richard, "A Criterion for Completeness of Degrees of Unsolvability", J.S.L. 2j2(1957), 159.
[5] $\qquad$ , "Two Recursively Enumerable Sets of Incomparable Degrees of Unsolvability", Proc. Nat. Acad. Sci. U.S.A. 42(1957), 236-238.
[6] Hinman, P. G., "Generalizations of Some Standard Theorems on Recursive Functions", Abstract 65T-238, Notices of the A.M.S. 12 (1965), 466-467.
[7] $\qquad$ "Some Applications of Forcing to Hierarchy Problems in Arithmetic", Z. Math. Logik Grundl. Math. J. (1969), 341-352.
[8] Jockusch, Carl G., Jr., "Minimal Covers and Arithmetical Sets", Abstract 7OT-E6, Notices of the A.M.S. r7(1970), 295.
[9] Kleene, S., "Introduction to Metamathematics, 5th ed., D. Van Nostrand, Princeton, N. J., 1950.
[10] $\qquad$ , "Arithmetical Predicates and Function Quantifiers", Trans. A.M.S. 79. (1955), 312.
[11] Kleene, S. and Erail L. Post, "The Upper Semi-Lattice of Degrees of Recursive Unsolvability", Annals of Math. 59(1954), 37.9-407.
[12] Muchnik, A. A., "Negative Answer to the Problem of Reducibility of the Theory of Algorithms" (in Russian), Dokl. Akad. Nauk SSSR 108. (1956), 194-197.
[13] Rogers, Hartley, Jr., "Theory of Recursive Functions and Effective Computability. McGraw-Hill Book Co., New York, 1967.
[14] Sacks, Gerald E., "Degrees of Unsolvability", Annals of Mathe一 matics Studies, no,55, Princeton University Press, Princeton, N. J., 1963.
[15] Shoenfield, J. R., "On Degrees of Unsolvability", Annals of Math. 69(1959), 644-653.
[16] Spector, Clifford, "On Degrees of Recursive Unsolvability", Annals of Math. 64(1956), 581.

## FOOTNOTES

1. This paper is part of the author ${ }^{1}$ s doctoral dissertation directed by Professor Paul Axt and partially supported by NSF Grant GP 7077.
