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of some well-known theorems about the degrees of unsolva-

bility with the jump operator.
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Introduction, It has been remarked by Addison [1] and Hinman [6]

that applications of forcing techniques (Cohen [2]; Feferman [3])

often allow results about recursiveness to be extended to higher

levels of the arithmetical (and hyperarithmetical) hierarchy. In

this paper we present a description of the forcing method, and then

use this technique to obtain generalizations of some well-known

theorems about the degrees of unsolvability. We prove:

(1) a generalized Spector1s theorem [15],

Va3b3c[a(n) = b ( n ) = c ( n ) - b V c], n < CD, •

and

a(tB) =b ( ( U ) == b v ' = a V b = Ox ' ];
/*** rsj r*s /s^ /v^ ^ ^ /N/

(2) a generalized Friedberg1s theorem [4],

VaVb3c[c(n) = c V a ( n ) = b v a ( n ) ] , n < o>; and

(3) a generalized Kleene-Post theorem [11],

B A
3A3B[A/D and B/E and d(A) <n n ~

and d(B) £ 0(n) ]", n < u>.
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Each of these theorems concern the existence of sets (character-

istic functions) of natural numbers. Our proofs will involve the

construction of a total function as the union of a chain of initial

segments. This general approach to degree problems was initiated

by Kleene and Post in [11]. In the original Kleene-Post construc-

tion one is presented with a sequence of recursive conditions, and

then defines a function (or functions) to satisfy these conditions

by successively choosing greater initial segments in order to meet

each condition one by one. In substance, we do the same. Forcing

however, allows us to handle sequences of prescribed arithmetical

conditions that are not necessarily recursive.

1. Preliminaries.

The purpose of this section is to present notation and set

forth some definitions. Much of the contents are standard and re-

fer mainly to [9] and [13].

Prime number factorization. Let the prime numbers in order of

magnitude be Po*P-i * • • • *P • > • • • (Pn -
 2) • L e t a be an arbitrary

natural number. By the fundamental theorem of arithmetic there is

a unique representation of a, if a > 0, of the form

a a a.
(1) a = p Q .P;L . ... -Pi

 1 ... .

As shown by Kleene in [9], the following functions are all primitive

recursive:

p. = the i+l-th prime number;



3.

lh(a) =

the exponent a. of p. in (1) , if a j& 0;

O, if a = O;

the number of non-zero exponents in (1), if a ^ 0?

0, if a = 0.

We can represent any finite sequence a , ..#,a of natural
\J S

a +1 a +1
0 s

numbers by the number a = p • . .. *p ; then lh(a) is the
vJ S

length s + 1 of the sequence represented by a.
a a
0 s

A sequence number is a number a = p • •.• #p so that for
\J S

all i <£ s, a. > 0. For any two sequence numbers a and p, de-

fine a > p if and only if lh(a) ^ lh(P) and (p) . = (a) ., for

all i < lh(p).

Let f be any partial function whose domain includes the set

(0,1,2,. • • ,n}. Define f(n+l) = II p. . f(n+l) is a sequence

number. Moreover, if a is any sequence number, and if a partial

function f is defined by f(i) = (a) . - 1, for all i < lh(cx) ,

then a = "f(lh(a)) .

Arithmetical properties. Let 7 be a one-place function variable

ranging over number theoretic functions.

Definition 1. A predicate -A(r,x ,-. . . ,XL) , k ̂ > 0, is an arith-

metical property if and only if it is expressible in the form
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where j ^ 1, for each i £ j, Q^ is 3yi or Vy^ and

R(w,x ,...,*L,y ,...,y. ^) is a recursive predicate.

Observe that by Definition 1, the negation of an arithmetical

property is an arithmetical property.

Lemma 1. Suppose R(w,x ,. . .,x.) is any recursive predicate.

Define a new predicate R* (w,x ,. • . ,x.) by R* (w,x ,. . . ,x. ) =

3v[lh(v) £ lh(w) & Vi < lh(v) ((v)i = (w)i) & R(v,xx,. . . ,x^) ].

Then,

(i) R*(w,x ,...,x, ) is a recursive predicate;

(ii) 3y R*(T(y),x1,...,xk) = 3y R(r"(y) ̂ x^ • . . ,x^) ; and

(iii) if a and p are two sequence numbers and a < p, then

R* (a,*^ . . . ,x^) implies R̂- (P,x1,. . .

Lemma 2. Suppose R(w,x ,...,x. ) is any recursive predicate.

Define a new predicate R! (w,x ,. . . ,x. ) by R1 (w,x ,. . . ,ai ) =

Vv[lh(v) i lh(w) & Vi < ih(v) ((v)i = (w)i) -> R(v,x1,...,xk)].

Then,

( i) R1 (w,x ,. . . ,x, ) is a recursive predicate;

(ii) Vy Ri (T(y) ,xx,. . . ,x^) = Vy R(T"(y) ,X;L,. . . ,x}j ; and

(iii) if a and p are two sequence numbers and a > (3, then

R! (a,x][,... ,3^) implies R
1 (p,x]L,-.. . ,x^) .

The proofs are immediate. A recursive predicate that satis-

fies clause (iii) of Lemma 1 will be called monotonic increasing,

and a recursive predicate that satisfies clause (iii) of Lemma 2



will be called monotonic decreasing. We will assume, without loss

of generality, that every arithmetical property is expressed in the

form

with R(w5x ,...,XL ,y ,.•.,y. ) monotonic — monotonic increasing

if Q.y. is 3y. and monotonic decreasing if Q.y^ is Vy,.

In particular we will use the starred and primed versions re-

spectively of T and T as defined in [D] . T as defined in

* * n n l n

pO] enables the normal form and enumeration theorems to be written

using f instead of f.

2. Foreing.

As briefly explained in the introduction of this paper, the

forcing method will be applied to construct functions f as unions

of chains of initial segments f^,f,,...,f ,.•. • We desire rela-
o l n

tivized forms of such constructions. Therefore, at the n-th stage

of a construction, f is chosen from some admissible subset of

the set of all initial segments. Accordingly, forcing is defined

relative to a notion of admissibility.

Definition 2. A characteristic sequence number is a sequence

a.
number a = II p * so that a. €{1,2}, for all i < n + 1.

n+l x x
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Definition 3. Let adm(oc) be a unary relation defined on the set

of all characteristic sequence numbers. For any two characteristic

sequence numbers a and (3, define a > p if and only if
a dm

a > j3, adm(a) , and adm(p). Let n ,...,rL be arbitrary numerals.

Then, the relation a adm-forces A(T,n ,. . . ,n, ) , in symbols

a |[- A(T,n ,...,n ), is defined inductively for arbitrary se-

quence numbers a and arithmetical properties A(T,x , . . . , x ) , as

follows:

(i) a ll-adm 3y R(T"(Y) ,1^,...,!^) , where R(w,x±,...,

is recursive, if adm(a) and R(oc,n , • . • ,i^ ) ;

(ii) a |[- a d m Vy R(T(y) ,1^,. . . ,n^) , where R(w,x]L,. . . ,

is recursive, if adm(a) and for each p > _ a,
a am

(iii) a ||- 3y A(T,n , • . . ,n ,y) , if for some

(iv) a If- a d m
 TY ACr^^^,. . . ,nk,y) , if adm(a) , and for each

3 > _ a and for each neou there is some v > p so
adm adm

that y ||-adm.A(r,n1,...,1^,11).

Lemma 3. If a |f- , A and p > _ a, then P ||- , A.
adm adm n adm

Proof; if a II- a d m 3y R(r"(y) 3n1$.. . .n^) , and R(w,xx,. .. ,xk)

is recursive, then R(cc,n ,. . . ,n ) . Thus p > a implies

R(p,n ,...,n^), because R(w,x ,...,x^ is monotonic increasing.
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If a ||-adm
 VY R(T(y) ,nx,... ̂  and Rfw^,... ,x^) is

recursive, then p >adm a implies R(P,x1,...,3^) by definition.

Since >
a6m is transitive, p II" a d m

 Vv R(T(y) J ^ * • • • J1^) * f o r e a c h

p > a.
adm

Suppose a ll-adm 3y A(T,n1,... ̂ n^y) and A (r, x1,... ̂ x^y)

is an arithmetical property. Then, for some ne o> ,

ex ||- A(T,n.,... ,n. ,n). Assume as induction hypothesis that

p ||- A(T,n ,... ,n. ,n) , for every p > a. Then, by definition,

for each 0 >adm a, p ||- a d m 3y A(r,nr ... ,1^,7) .

Suppose a ||- a d m Vy A(r,nir.. . ̂ n^y) and A(T ,11^ . . . ,x^,y)

is an arithmetical property. For each y > a and n€U> there

is 6 > _ Y so that 6 ||- _ A(r,n.,.. . ,n_ ,n) . Let p > _ a.
adm r adm v ' 1 ' K' adm

> , is a transitive relation, therefore for each y > , p and
aam adm

n€ u) there is a 6 > a d m Y so that 6 ||- A(r,n ^. . . ,n^,n) .

Thus, p ||- a d m Yy A(T,n1,... ̂ ^ y ) .

Lemma 4. For each a so that adm(a), numerals n.,...,n, and

arithmetical property A(T,x , . . . , x ) , there is some P so that

P > a d m a and either P H-admA(T,n1,....,nk) or P !h adn A(r,nr..

Proof; The proof is by induction on the number of quantifiers, j,

under which A(r,x ,...,XL ) is expressible in the form given in

Definition 1.

Case j = 1. For some recursive predicate R(w,x ,...,x^),

A(r,x1,...,xfc) is expressible in the form 3y R(T(y) ,x ,...,
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or Vy R(T(y),x ,...,x. ). It follows from Definition 3 that

either 3p > a d m a P ||- a d m 3y R(r(y) , n r . .. ,1^) or

a ||- a d m Vy T*(T"(y) ,nlf.. . ,1^) . Thus, if A(T ,K±, . . .

3y R(T(y) ,x ,. . . ,x.) , then there is some p ^ d m a S° t h a t

P II" adm
 A<r>nl>"''V °r a ""adm ̂ (r,^,... ,1̂ ) . And, if

R(T(y) ,x][,.. .^x^) , then a ||- ̂ ^ A(T ,X]L,. . . ,

or there is some g > a <3 m
 a so t h a t P "" adm

Case j > 1. Assume as induction hypothesis that Lemma 4 is true

for each arithmetical property expressible in the form given in

Definition 1 with fewer than j quantifiers. Let A(T,x ,...,x. )

be expressible in the form with j quantifiers. Then, there is

an arithmetical property B(T,x.,. . . ,x. ) so that A(T,.x ,. . . ,x, ) =

3y B(T,x1,...,x^,y) or so that A(T,x1,. . . ̂ x^) = Vy ]B(T,x]L,. . . ̂ , y )

and so that B(T,x.,. . . ,.x. ,y) is expressible in the form with fewer

than j quantifiers. Suppose a jf ̂ ^ Vy B(r,n1,. . . ̂ n^y) . Then,

there exists P > , a and n€a> so that for each Y > -.
adm T adm

Y Jf , B(T,n ,. . . ,n,,n) . Therefore, by induction hypothesis

adm B ( T' nr''' ' V n ) * Since Y

' f o r S O m e Y \cM°" Y lhadm B(

>adm

It follows that for some Y >3L^Bi
 a> Y H" a d m

 ay B(T,n ,...,11 ,y).

Thus, if A(r,x ,... ,XL ) = 3y B(T,x ,... ,x, ,y) , then there is some

Y ^dm01 SO that Y H-adm *«T'nl''"'V °r a
adm



9.

And, if A(T,x ,... ,3c) = Vy B(T,X ,. .. ,3C. ,y) , then there is

SOme Y>adma SO that Y H-adm^'V-'-'V or

Definition 4. If f is a number theoretic function, define adm(f)

if for every natural number n, adm(f(n)). If A(T,x ,...,x^) is

an arithmetical property and n ,...,n are numerals, the relation

f Ih a d m A(T,nl5. . . ,3^) is defined by f |f- a d m A f r ^ , . . . ,n^) if

and only if adm(f) and there is some n so that

ad*

Definition 5. A set G of arithmetical properties is closed if:

(i) each arithmetical property in G is expressible without

free number variables (if A is an arithmetical property,

then T is free in A) ;

(ii) for arbitrary numerals n ,.•.,n_ and recursive predi-

cate R(w,x ,...,x. ), if 3y R(T(y),n ,...,n ) belongs

to G, then Vy T^(T(y) ,n , . . . n^) belongs to G, and

conversely;

(iii) for arbitrary numerals n , ...,n. and arithmetical prop-

erty 3y A(T,x1,...,xk,y) , if 3y A(r .n^ . .. .n^y) belongs

to G, where A(T,x.,...,x-,y) is also an arithmetical

property, then Vy A(r,x ,...,x^,y) belongs to G„ and

for each new, A(T,n ,...,n ,n) belongs to G;
1 -K
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(iv) if Vy A(T,n ,. . . ̂ ix^y) belongs to G, where

A(T,x , ...^x. ,y) is also an arithmetical property,

then 3y A(r,n ,...,ii,y) belongs to G, and for

each neci)̂  A(T,n , • . . ,n. ,n) belongs to G.

Lemma 5. Let G be a closed set of arithmetical properties and

let f be a number theoretic function so that adm(f). If for

each AeG, f ||_ A or f |h - A, then for each AeG, A(f)
adm aam

if and only if f ||- _ A.* adm

Proof: Suppose first that R(w,x , , , M J L ) is recursive and

3y R(T"(y) ,n1,. . . ,1^) eG . f |f- a d m 3y R(T"(y) ̂ n ^ . . . ,1^) «-> for

some n, T(n) Ik a d m
 aY R(T(y) ,11^ . . . ,1^) «-> for some n,

R(T(n) ,nl9. . . ̂
n
k)^»

 aY R(f(y) ̂ ^ • • •

Suppose Vy R(T"(y) ̂ n ,. . . ,ru) e& . By Lemma 3, not both

f ll-adm
 VY R(T(y),ni,...,nk) and f ||- a d m 3y R(T(y) ,nv . . .

Therefore, f ||- a d m Vy R(T(y) ̂ ^^ . . . ,1^) ̂  f Jf 3y R(r"(y) ,nl

there is no n so that R("f (n) 5n , • .. ,TL ) f-̂  for each n,

R("f (n) ,11^,. . . ̂ n
k)^->

 VY

Suppose 3y A(T ,11^ . . . ,n^,y) eG . f Ih a d m
 aY A(r,n1,...,nk,y)

for some n, T(n) If-adm
 aY A(T,n., . . . ,n,,y) <-* given n, there is

so that "f(n) ||- A(T,n ,. . . SXL ,m) 4-4 there is m so that

f if- a d m A(r,n ,. . . ,iL,m) . By induction hypothesis this is equiva-

lent to: there is m so that A(f,n ,..,,n,,m). Thus,

f Ih a d m 3Y A(T,nv... 9n^,y)<-^ 3y A(f ,n]L,. . . ̂ n^y) .

m
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Suppose Vy A(r,n1,., . ,nk,y)€G . f If a d m

A(f,n ,.. • ,1^,7) <-> f ]f a d m 3y A(T,n;L,... >
n
k>Y) *-> for all n,

f Jf-adm A(r,n;L,...,nk,n)^ for all n, f |(- a d m A(r ,nv .. .,

by hypothesis, 4-4 for all n, A(f,n ,...,iL,n), by induction hypo-

thesis, «—» Vy A(f ,n ,. . . ,n ,y) .

3. Theorems,

k
For each k > 0, let p be a recursive one-one mapping of

k k k
a) onto a) with recursive inverse functions II , • . . , IL. That is,

k k k
for all z, p (II (z) ,. . . , II (z) ) = z. (Explicit examples are given

in [13, p. 64].) We abbreviate P(x , ...,XL) as <x , ..•,x,>.

For two degrees of unsolvability a and b, aeE will mean
^ ~ ~ n

that there is an A in a and a B in b so that n

References [13] and [14] are cited as standard references to the

fundamental concepts in the study of degrees, < will denote

relative recursiveness. The following Theorem 1 for the case n = 1
a b

without the additional properties b/ iT and a £ XT' is due to
~ 1 ~ 1 _

a b
Spector [16]. The technique used to prove b £ £ and a ̂  tT is

n n
d u e t o S h o e n f i e l d [ 1 5 ] .

T h e o r e m 1 . V a 3 b 3 c [ a ( n ) = b ( n ) = c ( n ) = b V C & b / £ ~ & c ftTT],
r*J rsj r*J f>J / N / ^J r>u rsj r^ Yi ~ Yl

Proof; Let h be a function with degree a. Two functions f

and g will be defined so that:

(i) f ̂  h ( n ) & g < ^ h ( n );

(ii) f(n) ^ f V g & g^n) ^ f V g;
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(iii) h ^ f & h ̂  g; and

(iv) d(f) differs from the degree of every set which is

£ in h, d(g) differs from the degree of every set
n ~

which is £ in h.
n

Define adm(a) f-> Vx[2x < lh(a) ~» ( a) 2 x ~
 x = M x ) ] . (iii)

will be satisfied if f and g are defined so that adm(f) and

adm(g) — for in that case, for each x, h(x) = f(2x) = g(2x).

Let C denote the characteristic function of the e-th set
n,e

£ in h. Let <p , for any function f, denote the z-th function
n z

recursive in f. (iv) will be satisfied if f and g are defined

so that:
Q

( iv ) ' Vx[Vz f y <p n>X V Vy c / <pf] andV ' l ' "z * n,x *y
C

Vx[Vz g fi <p n'X V Vy c ji Q3].
1 * z * n,x y

Let Bn(r"(xn) ,e,e,x1,...,xnl) denote
 T

n(
T( x

n) ̂ e ^ , • • • »x
n_1) >

if n is odd, and denote T fr(x ) ,e,e,x., •.. ,x . ) , if n is

even. Let Qx. denote ax., if i is odd, and denote Vx., if i

is even. Let n be fixed. Let e,x ,...,x be constants,

where 1 £ k £ n, and let m = <e,x ,...,x ^>. To the arithmetical
JL n*~ Km

property Qxn_ (k_1} .. .Qxn B^(T(xn) ,e,e,xr ... ,x^fc,xn_ (fc-1) ,.. . .x^)

we associate the index number n»m + k. Define [n*m + k] to be

the arithmetical property with index number n*m + k. Clearly, to

each integer I, I ^ 1, there exist unique m and k = l,...,n so

that I = n*m + k. Thus with n fixed this indexing is unambiguous.
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For ease of notation, we will write -i [I] for the negation of the

arithmetical property [t], rather than [I]. The set of all arith-

metical properties of the form [1] and -i[£], I > 1 is a closed

set of arithmetical properties.

Construction of f and g:

Stage 0. Define f = g = 1. Since lh(f ) = lh(g ) = 0, adm(f )

and adm(g ).

Stage 41 + 1. By induction hypothesis £., and g . are defined;

4^ 4 ^ ) , and 4^ ^

Case 1. 3m, k[I + 1 = n*m + k & 0 < k < n ] . By Lemma 4, there

is an a so that a > _ f. f and either a It- , [I + 1] or
adm 41 M adm l

^ + 1-'# Define f
4i+1

 to be t h e least such a. Define

Case 2. 3m [^ + 1 = n*m + n].

If 3a ^adm fAl a l̂ -adm [l + 1] > t h e n l e t P = " a < a ^ d m f 4 ^ &

lh(a) is odd &a |^adm [l + 1]). Define f^ + 1 = P-pJh(p) , and

define

Otherwise, let 3 = ua (a > , f A „ & lh(ot) is odd &
aam 4-C

HUNT LIBRARY
CARNEGIE-MELLON UNIVERSITY
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In this case, define ^At.i - *̂P-iv,fflW a n d define

i 2

Stage 4£ + 2. f . and g . are to be defined as in

stage 41 + 1, but with f and g interchanged.

Stage 41 + 3. By induction hypothesis f 9 and gA are
4/L/-f~2 4£+2

already defined," adm(f 4 4 + 2), adm(g4^+2) , and lh(f4^+2) =
 lh(

Let I = <x,y,z>. fA9 o shall be constructed at this stage so
TJl

that for all admissible extensions F of f., _ either, <p / C
C

C„ . Cn,x T . -0 _
or F f- <p . Let f = f

z

I f

and

f =

Case 1. There do not exist characteristic sequence numbers a and

p so that adm(a), fAf,~ < . a, 3 < ̂ pa, and f° <^ . In this
4^+2 aam y z

case define f . = f .

Case 2. There do exist characteristic sequence numbers a and p

satisfying the hypotheses of case 1, but there do not exist charac-

teristic sequence numbers a and p so that fA 0 _ < . a,
4£-f2 adma i R 1

3 < <P and f < cp . In this case define f A 9 o = f .y z 4<+3
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Case 3. There exist characteristic sequence numbers a ,p ,a ,

1 O 1 0 CL 1 OC
and p so t h a t f ^ oc fp "*̂  o c , p - < < p , p " < < p

f < tp , and f < <p . Choose such a p ,a , and P . Since f
z z

and f differ for some argument, p and p must disagree for

some argument. Hence, either p or p , disagrees with C for
n, x

that argument. If p disagrees, define f . = a ; otherwise

define f^ + 3 = a
1.

Define

Stage 41 + 4. f and SN/.L4 a r e to •be ^efined as in stage

4-6 + 3, but with f and g interchanged.

Define f(y) = ltm{y<lh(fj, )y - 1, and define

Claim i. f <^ h ( n ) and g

Proof; It is only necessary to see that the conditions used

to define f and g are at most £ in h. First, consider

cases 1 and 2 of stage 4£ + 1. if I + 1 = n#m + k, 0 < k < n,

then [I + 1] has fewer than n alternating quantifiers. Thus,

by Definition 3 of the forcing relation, a ||- [I + 1] is S. in h,

for some i < n. Thus, 3a > , f.,(a ||- . [I + 1] v a |(- n n [£ + 1])

* adm 41v " adm L Ir adm ' l

is at most S in h. If t + 1 = n*m + n, then by Definition 3
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of the forcing relation, a Ih a d m I
1 + 1] is %n in h. Thus

3a > fA 9 (a |[- [I + 1]) is £ in h. Similarly, the hypo-
adm 4v aam n

theses in stage 41 + 2 are £ in h. It is easy to observe

that the hypotheses of cases 1, 2, and 3 of stages 41 -f 3 and

41+4 are £ in h. Therefore, both f and g are recursive
n

in predicates which are £ in h. That is, f <; h^ and

Claim ii. f(n) <^ f V g and g ( n ) ^ f V g.

Proof; We prove f <^ f V g# g* < f V g is proved mutatis

mutandis» For each m and k = l,2,...,n, f ||- [n«m + k] or
• . adm

f ||- —j[n*m -f k]. Therefore, by Lemma 5, f |f- [n*m + k] if

and only if [n*m + k] (f) • In particular, since

3x,. . .Qxn
 B
n(

T( x
n) ,e,e,x]L,. .. *x ) is [n.e + n],

2
3x,. . .Qx B (f (x ) ,e,e,x ,. • #,x ) if and only if f ||- [n*e + n].

n n • n J- n-1 aam
We show that for each e,

f l^ [n*e + nJ « 3a >ad» f4( (n-e+n)-1) a »" adm ^e + n]'

in fact, suppose 3a ^ f4( ( n. e + n )_ 1 } a ||- ̂  [n-e + n]. Then,

f4( fn*e+n)-l) -fl is an a d m i s s i t ) l e extension of such an a. There-

fore, by Lemma 3, f 4 ( (n. e + n ) - ] L ) + 1 II- a d m fn-e + n]. Thus, for some m,

f(m) II-adm fn*e + n], that is, f Ih a d m [n*e + n]. Now, suppose

there exists an m so that T(m) ||- _ [n-e + n]. For such an m,
aam

i f I ( m ) ^ d m f4((n-e+n)-l)'
 t h e n b^ L e m m a

>ad» f4((n.e+n)-l)+l
 a "" adm
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I f f< m ) >adn f4((n.e+n)-l)'
 t h e n ° f

f4((n-e+n)-l) *
 lh adm

Therefore,

f ||- , [n- e + n] f-> 3<x > , tAti x - x a ||- [n* e + n].11 adm l adm 4((n*e+n)-l) adm L

D e f i n e a f u n c t i o n K by

K(o) = / i x [ f ( x ) ^ g ( x ) ] ,

K(x + 1) = Atyfy > K(x) & f ( y ) ^ g ( y ) j .

f and g have been constructed so that

aa > * f-Att \ ix a II- * [n-e + n]adm 4((n*e+n)-l) adm l J

if and only if f(K(2e)) = 1. Hence,

B

if and only if f(K(2e)) = 1. Thus f(n) < f V g.

Claim iii. h < f and h < g, since adm(f) and adm(g).

Claim ivf . Vx[Vz f ^ <P n'X V Vy c ^ Vf] and

z J n,x y
C

Vx[Vz g * <Pz
n>* V Vy C ^ x ^ ^] .

Proof: It will be shown for every x,y, and z, that either

C
C / <pr or f ̂  if) n>X.
n,x y z

For any x,y, and z, let I = <x,y,z>. If f . is con-

structed according to case 1 or case 2 of stage 41 + 3, and if
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C C
C = <P , t h e n f . . _ / < p " ' X . H e n c e , f 7? <p n ' X . If f . , , , is

n , x y 4-0+2 z z 4-o+J

c o n s t r u c t e d a c c o r d i n g t o c a s e 3 o f s t a g e 41+3, t h e n

C ^ <0 . H e n c e , C ^ <p .
n , x r v y n , x ^ ^ y

To complete the proof of Theorem 1, let b = d(f) and let

c = d(g) . By (i) , (ii) , and (iii) , a(n) £ b ( n ) £ b V c £ a(n)

and a(n) £ c(n) <^ b V c ̂  a(n). By(iv),b/E^ and c i jT.

In Theorem 1 an arbitrary number n is given, and then re-

mains fixed throughout the entire proof. The idea of the following

theorem is to force the set of all arithmetical properties and ne-

gations of arithmetical properties of the form [n*m + k], for all

n,m5 and k = l,2,...,n. (Of course, our indexing must be altered

since it is ambiguous if n is not fixed.) Also, the theorem

will not be presented in a relativized form, so every sequence

number a is admissible, and we will write \\- , rather than \\- adm

(U>) f(D) ((I))
Theorem 2. 3a3b[av ' = bv ' = Ov = a V b].

Proof; Two functions f and g will be defined so that:

(i) d(f) 1 0 W , d(g) < 0(U)) and

(ii) f(u)) 1 f v g and g(u)) < f v g.

As before, let B (T"(X ) ,e,e,x_,. . . ,X ) denote
n n I n

T (T(x ) ,e,e,x.,. . . ,X . ) , if n is odd, and denoten n l n-1

T (T"(X ) ,e,e,x_,. . . ,X n ) , if n is even. Let Qx. denote 3x.n n 1 n-1 I i

if i is odd, and denote Vx., if i is even. For each natural
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number I = <n,m>, n ]> 1, and m ̂ > 1, define [I] to be the

arithmetical property

n-(k-l) n nv v n ' 9 V ' n-k' n-(k-l)* ' n-1 '

where m = n-q + k, 1 ^ k ̂  n, and q = <e,x , ..#,x ^>. The set
1 n~* yc

of all arithmetical properties [I] and T [ £ ] , for -t = <n,m>,

n ̂  1, and m ̂  1, is a closed set of arithmetical properties.

Construction of f and g:

Stage 0. Define f = g = 1.

Stage 2b + 1. By induction hypothesis f f and g , are defined

and have the same length.

Case 0. There do not exist n ̂ > 1 and m ̂  1 so that I = <n,m>.

D e f i n e f 2l+l = f2l

Case 1. There exist integers n,m,q, and k so that n ^ l , m ;> 1,

I = <n,m>, m = n^q + k, and 0 < k < n.

Define

f2l+l = V* > f2l [a If- [I] or a

Define

lh(f

Case 2. There exist integers n,m, and q so that n J> 1, m ̂  1,

-t = <n,m>, and m = n*q + n.
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If 3a > £ t a ||- [I], then l e t 0 = jua > f ^ f a ||- [*]) . Define

n

Otherwise , l e t p = jLtoc > f (a | |—1[^]). In t h i s c a se , de f ine

i 2
P, -p

Stage 2 ^ + 2 , f and g . are to be defined as in stage

2 4 + 1 , but with f and g interchanged.

Define f(y) = (f ^ ^ ^ ,,) - 1, and define g(y) =
m

(gjum(y<lh(gm))
)y " 1'

Claim i. d(f) < 0(U)) and d(g)<0 ( t 0 ).

Proof; The definitions of f . from f and of f . o from

f , . are recursive in predicates which are recursive in £ ,

where the n can be found effectively from I. Therefore f is

recursive in 0 • Similarly, g is recursive in 0 .

Claim ii. fv } < f V g and gv ; < f V g.

P r o o f : W e p r o v e f x < f V g . 9 < f v g i s p r o v e d m u t a t i s

m u t a n d i s .

For each I, f \\- [I] or f ||--?[£]. Therefore, by Lemma 5,

f ||- [I] if and only if [I] (f) . In particular, since for each n,
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3 x , . . . Q x B 1 ( T ( x ) , e , e , x , . . . , x ) i s [<n,n«e +
1 n n n i n

3 x . . . . Q x B 1 (" f (x ) , e , e , x , . . . , x ) i f and o n l y i f f ||- [ < n , n - e + n>]
l xi n n i **— i

For each n and e, f |f- [<n,n-e + n>] if and only if

3a > f_ ^ a ||- [<n,n-e + n>].

2*<n5n*e+n> ir

The proof of this statement is identical to the proof presented for

the similar statement in claim ( i i ) of Theorem 1.

Define a function K by

K(l) = /ix 3n ;> 1 3m [x = 2*<n,n*m + n> + 1 or x = 2*<n,n*m + n>+2],

K(y+1) = JLIX 3n ^ 1 3m[x > K(y) & (x = 2*<n,n-m + 1> + 1

or x = 2*<n̂ n«m + n>+2)].

The y argument x for which f(x) ^ g(x) is introduced at

stage K(y) of the construction of f and g.

Define p(n,m) = My[K(y) = 2«<n5n»m + n> + 1]. At stage

2«<n,n»m + n> + 1, the p(n^m)-th argument x for which f(x) j4 g(x)

is introduced.

Define h(l) = )Ltx[f(x)^ g(x)], h(y+l) = jLtx[x > h(y) & f(x) ^

f and g have been constructed so that

3a > f2.<n,n-e+n>
 a l^< n' n* e +

if and only if f(h(p(n,e))) = 1. Thus, for each n and each e,

3x]L...Qxn Bn(f (xn) ,e,e,x1,. . •>xn_1) if and only if f (h(p(n,e))); = 1.
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Therefore f' is uniformly recursive in f V g. By definition

<x,y> e f (a))f-* X€ f(y) . But, x ef ( y ) <—> f(h(p(y,x))) = 1. There-

fore, f < f V g.

To complete the proof of Theorem 2, let a = d(f) and let

((to) f(l)) ((A))
b = d(g) • By (i) and (ii) , 0v ' £ av 1 a V b £ 0/ , and

The following Theorem 3 for the case n = 1 is a relativized

version of Friedberg1s characterization of the complete degrees [4].

Theorem 3. VaVb3c[c(n) = c V a ( n ) = b V a ( n ) ] .

Proof; Let h be a characteristic function with degree a.

Let g be a characteristic function with degree b. A function f

will be defined so that:

(i) f(n) < h ( n ) V g;

(ii) g ^ f V h ( n ); and

(iii) h < f.

As in the proof of Theorem 1, define

adm(a) <—» Vx[2x < lh(a)—4 (a) 2 x - 1 = h(x)]. (iii) will be satisfied

if f is defined so that adm(f).

Also let n be fixed, and let the arithmetical properties

Qx N...Qx B (T*(x ) ,e,e,x. , • . . ,x _) be defined and indexed
n- ( K- i) n n n 1 n-1

as in the proof of Theorem 1. Then, [n*m + k], k = l,2,...,n, is

the arithmetical property Qx ,_ _%...Qx B (T"(X ) ,e,e,x, , ,x . ) ,
n- (K-1; n n n 1 n-1

where m = <e,x , ...,x >.
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Construction of f:

Stage 0. Define f Q = 2
h ( 0 ) + 1 . adm(fQ) and lh(fQ) is odd.

Stage I + 1. By induction hypothesis f^ is defined, adm(f^),

^(f.) is odd«

+ 1 = n-m + k & 0 < k < n]. Define

and l^(f.) is

Case 1. 3m, k|X

o r a "

By Lemmas 3 and 4, such an a exists.

Case 2. 3m[t + 1 = n-m + n]. If

then define

^L+J" & lh(a) is odd & a ||- .) v admadm ^ ^

Otherwise, define

£) 4 lh<a> is odd & a ^ adm

Note that for all x, x < lh(f ). Define f(x) = (f ) * 1.
X XX

Define a function K by K(x) = f . As in the proof of claim i of

Theorem 1 and 2, it is easy to see that K < h V g# Thus, it

is proved that f < h V g. We need to prove the stronger

statement:
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Claim i. f(n) ^ h ( n ) V g.

Proof; Again, as in the proof of Theorem 1,

3x,...Qx B1(I(x ),e,e,x_,...,x ) if and only if f |(- [n-e + n].
1 n n n l n- x <aum

Suppose f Ih -, [n*e + n]. Then of course, for some m,
n* e+n adm

|k [n»e + n]. Conversely, suppose that for some m,
adm

|l- Fn*e + nl. If T(m) > f *^9
adm adm (n

then by definition, f |h , [n*e + n] . If.
n» e+n adm

^ * g( (n.e+n)-1)+1

fn.e+n ^ adm t n - e + n] •

f II- . [n-e + n]f-4 f , \V A [n-e + n].adm n* e+n adm

Thus,

3xn.,.Qx B (T(x ) ,e,e,x_ ,. . . ,x _) f-» K(n»e + n)) ||- _ [n*e + n]
1 n n n 1 n-1 adm

The right hand side is recursive in h and g. Thus,

f(n) ^ h(n) v g<

Claim ii. g < f v

Proof; g(x) = f(lh(K(x)), for all x. Using the definition

of K, substitute f(lh(K:(x))) for g(x) in the definition of K,

to obtain K <^ f V h ( n . Then, use g(x) = f(lh(K(x)V), to obtain

f V h ( n ) .
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Claim iii. h < f, since adm(f).

To complete the proof of Theorem 3, let c = d(f). By (i),

(ii), and (iii), c(n) £ a<n) V b £ c V a(n) £ c(n) .

Corollary 1. YaVb[a(n) < b -* 3c[c(n) » b & c | a<n) ] ].

The proof is immediate.

corollary 2. YaYb^c[c(n+1) = c(n) V a(n+1) = b V a ( n + 1 ) ] .

Proof;

c(n+1) ̂  c V a(n+1) <: c(n) v a^n+1) = (c V a(n+1)) v c
( n ) 1 c(n+1)

Corresponding to the original Kleene-Post construction [11]

of £ -incomparable sets in & , we can now prove the existence of

£ -incomparable sets in A ,. In the following theorem we incorpor-

ate ideas from Theorem 3 to get a stronger result. Peter Hinman [7]

has proved, corresponding to the Friedberg-Muchnik theorem ([5] and

[12]), that there exist A ,-incomparable sets in S ..

n+l n-f-l
Theorem 4. 3A3B [A i EB & B i J^ & d(A) ( n ) = 0 ( n ) = d(B) ( n ) ].

n n ^ ~ ^

Proof; Two functions f and g will be defined so that

(i) d(f(n)) £ 0 ( n ) and d(g(n)) 1 0(n); and

(ii) f/2^ and ĝ »f'.
n g

L e t B (^ (x ) , e , u , x . , . • . , x ) d e n o t e T (T"(x ) , e , u , x i ; . . , , x ) ,
nn ± n nn i n

if n is odd, and denote "T (T^X ) ,e,u,x , • .. ,x ) , if n is even.

Let Qx. denote 3x., if i is odd, and denote Vx., if i is

even. Let e,x ,...,x be constants, where 1 < k < n, and let
1 n-K
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<e,x.,...,x .>. To the arithmetical property
l n*" icm

Qx ,. -v...Qx BX(T'(X )e,u,x-,... ,x .) with one free number
n-(k-l) n n n 1 n-i

variable u, we associate the index number n.m + k. Define

[n*m + k](u) to be the arithmetical property with index number

n«m + k. With n fixed this indexing is unambiguous.

Observe that [n*e + n](e) is the arithmetical property

3x....Qx B (T(x ),e,e,x.,...,x . ) . (It may be assumed that
l n n n l n-1

<x> » x, for all x.)

Construction of f and g:

Stage 0. f = g « 1.

Stage 64 + 1 . By induction hypothesis f&, and g . are defined.

Case 1. 3x,a,m,k[4 = <x,a> & x « n»m -f k & 0 < k < n].

In t h i s c a s e d e f i n e f- , . « jLta > f [a ||- [ x ] ( a ) or a ||- n [ x ] ( a ) ] ,
O ^ "T*JL \ 5 ^

and define

Case 2. Vx,a,m,k[(4 « <x,a> & x - n*m + k)~> (k = 0 or k = n) ].

Define f...... = f^a and

Stage 64 + 2. f-# ,o and qri t0% are to be defined as in stage
ov+2 0-0+2

6 4 + 1 , but with f and g interchanged.

Stage 6 4 + 3 . By induction hypothesis f-, and g . are de-

fined.

3<x [a > f^.^o & a |(- [n.4 + n
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Define

Define

Case 2. Va [a > f6l+2 -> a Jf- [n.<t + n] ( l h ( g 6 t + 2 ) ) ]. By Lemma 4,

3a > f6^+2 a II- i [n.<t + n]

Define

Define

Stage Si + 4. f.. and g^. . are to be defined as in stage
D^+4 Dv44

6t + 3, but with f and g interchanged.

Stage 6-t + 5. By induction hypothesis f
6#.4

 a n d g6>t+4 a r e

defined.

If 3a > fg._^ a |f- [n*£ + n] (*) , then define

Otherwise, def ine f
6i+5 = M0" > fe^+4 a H 1 tn#<t +

and define

Stage 61 + 6. f-, - and g^, §/. are to be defined as in stage
Di+D D0/+O

6t + 5, but with f and g interchanged.
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Define f(x) = ( f ^ ^ f ,,>x * ^ and define
m

Define A = (x|f(x) = 1}, and B = (x|g(x) = 1).

Claim i. d(f ( n ))^O ( n ) and d(g(n)) .£ 0 ( n ) /

Proof: For each e, the set G of all arithmetical properties and

negations of arithmetical properties [n«m + k] (e) , 1 £ k £ n,

where m = <e,x ,. ..,x ,> is a closed set of arithmetical proper-
1 n—K

ties. Let e and x ,... ,x , be arbitrary constants, and let
l n-" Ki

m = <e,X]L,...,xn^k>. At stage 6-<n.m + k,e> + 1, f 6. < n # m + k > + 1

is chosen so that f ||- [n^n + k] (e) or f ||~ -, [n*m + k](e). At

stage 6e + 5, ffi - is chosen so that f |J- [n#e + n] (e) or

f ||- -|[n*e + n] (e) . Thus, given e, for each arithmetical property

A in G, f ||-A or f |[-A. By Lemma 5,

3x . ..Qx B (T(x ) ,e,e,x ,.. . ,x ) if and only if f |(- [n-e +n](e).

f ||- [n-e + n](e) if and only if f ||- [n-e + n] (e) . (This is
OcTJ

easy to see, and has been argued previously.) Define a function K

by K(x) = f for all x. d(K) £ 0 . (The argument is similar to

the proof of claim i of Theorems 1 and 2) . It follows that
3x....Qx B (T(x ) ,e,e,x. ,. . . ,x .) if and only if

I n n n 1 n-1

K(6e + 5) ||- [n*e .+ n] (e) . The right hand side is recursive in 0 .
*%•

Similarly it may be proved that d(g ) <£ 0

Claim ii. A £ iP & B £ .
n n
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Proof: We will show that B i th. The proof that A^JT is
n n

similar,

B e I?" if and only if there is some e so that for all a,
n

g(a) = 1 if and only if ax^-.Qx^ Bn(f (xj ,e,a,x;L,. . . ̂
x
n - 1) •

For each e, it will be shown that 9(lh(g6e+2)) = 0 if and only

if 3x r..Qx n B^(T(xn),e,lh(g62+2),xl5...,xn^1) -- from which it

follows that B^E7^.
n

For each e, the set Q of all arithmetical properties and

negations of arithmetical properties [n«m + k](lh(g6e+2)),

1 £ k £ n, where m = <e,x ,...,x ^> is a c l o s e d s e t of arith-

metical properties. Given numerals e and x.,...,x ,,
J. n— is.

0 < k < n, let m = <e,x , ...,x k> and let I = <n-m + k, lh(g6e+2)><
At stage 6-t + 1, fg^+1 is chosen so that f ||- [n-m + k

or f ||- -i[n-e + k] (lh(g6e+2)) . At stage 6e + 35 f 6 e + 3 is chosen

so that f ||- [n-e + n] (lh(g6e+2)) or f ||-n[n.e + n] (lh(g6e+2)) .

Thus, for each arithmetical property A in Q, f ||- A or f || 1 A.

1 __
3x1...Qxn Bn(T(xn),e,lh(g6e+2),...) is [n-e + n](lh(g6e+2)). • By

Lemma 5, 3x....Qx B (T(x ) 9e9lYi{q^. o) ,x, ,...,x .) if and only if
1 n n n be+z l n-l

f |1- [n.e + n](lh(g/. J)) . (It may be remarked that the necessity
oe+2

of stages 6£ + 1 is that for each e, ^(g^ J) is not known in

advance,) Again f ||- [n*e + n](lh(g )) if and only if

3a [a > f 6 e + 2 & a II- [n*e + n] (lh(g6e+2)) ]. On the other hand, by

definition of 96e+3, 3a [a > fge+2
&all- [n-e + n] (lh(g6e+2)) ] if
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and only if g(lh(gA 0)) = 0 . This completes the proof of claim
'6e+2

ii.

The proof of Theorem 4 is now complete: A £ XT, B £ TT,
c n n

and by (i), d(A) (n) = 0 ( n ) = d(B) (n) .

Remark. Let fi be the set of all degrees. For each n ;> 1, let

« be the structure < « , £ , > . &1 is the structure <«,<l,f>. It

has been shown in this chapter that certain sentences which hold

in &. hold in $ for all n. Is fi elementarily equivalent
I n n

to & , for n,m ̂  1? This question has been answered in the neg-

ative by C. G. Jockusch, Jr., in private communication.

Let G be the set of all degrees of arithmetical sets. The

proof given by Jockusch uses the fact that G can be simultaneous-

ly first-order defined in & and & (A corollary to this fact, is

Jockusch1 s result, announced in [8], that the structures <$,<£., f>

and <G,<^, f> are not elementarily equivalent.)

The method of proof leaves open two interesting questions.

It is not known whether fi is elementarily equivalent to $ ,

for n and m both greater than one; and it is not known whether

the structures <G,£, > and <G,£, > are elementarily equivalent,

for n,m i> 1.
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