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APPLI CATI ONS OF FORCI NG TO DEFI NABI LI TY
PROBLEMS | N THE ARI THVETI CAL HIERARCHJ'

by

- Alan L. Sel man

| ntroduction, It has been remarked by Addison [1] and H nman [6]

that applications of forcing techniques (Cohen [2]; Feferman [3])
often allow results about recursiveness to be extended to higher

| evel s of the arithmetical (and hyperarithmetical) hierarchy. In
this paper we present a description of the forcing nethod, and then
use this technique to obtain generalizations of sone well-known

t heorens about the degrees of unsolvability. W prove:

(1) a generalized Spector's theorem [15],
va3db3c[al™ =p(M =¢c(M - pVec], n<@ -

and

f )
avb=o0 *7:

1N/

Tadb [a(t B AW
[¥* rsj  r*s /s™

(2) a generalized Friedberg's theorem [4],

vavb3cJc!” =c¢ Vv al" =bval™], n<o and

(3) a generalized Kl eene-Post theorem [ 11],
3mB[AD° and BIE " and d(A) < of®

and d(B) £0"]", n<w




Each of these theorems concern the existence of sets (character-
istic functions) of natural numbers. Qur proofs will involve the
construction of a total function as the union of a chain of initial
segnments. This general approach to degree problems was initiated
by Kleene and Post in [11]. In the original Kleene-Post construc-
"tion one is presented with a sequence of recursive conditions, and
then defines a function (or functions) to satisfy these conditions.
by successively choosing greater initial segments in order to neet
each condition one by one. In substance, we do the same. Forcing
however, allows us to handle sequences of prescribed arithmetica

conditions that are not necessarily recursive.

1. Prelimnaries.

The purpose of this section is to present notation and set
forth some definitions. Mich of the contents are standard and re-
fer minly to [9] and [13].

Prime nunber factorization. Let the prime nunbers in order of

magni tude be PP-i ¥ e oo ¥Pe >0 0o (P, - 2y« L® @ be an arbitrary
natural nunber. By the fundanental theoremof arithmetic there is
a unique representation of a, if a >0, of the form

a. a a.
(1) a=poopLt ... -l

As shown by Kl eene in [9], the following functions are all primtive
recursive:

p, = the i+l -th prime number;




t he exponent a., of Py in (1), if aj&o;
(a)i = {
O if a=40
| t he nunber of non-zero exponents in (1), if a ™ 0?
I h(a) =
0, if a=20
W can represent any finite sequence a_, ..#a of natural
\J S
a0+1 as+1
nunbers by the nunber a =p ot *pS ; then Ih(a) is the
length s + 1 of the sequence represented by a.
a a
A sequence nunber is a nunber a = p(_o- ..o "p ° so that for
J s
all i <€£s, a > 0. For any two sequence nunbers a and p, de-

fine a>p if and only if Ih(a) ~1h(P) and (p) .2= (a) 1, for

all i < 1h(p).
Let f be any pért-i al function whose domain includes the set
- £(i)+1 -
(0,1,2,. «+ ,n}. Define f(n+) = 141{ p. . f(n+l) is a sequence
nunber. Moreover, if a 1is any sequence nunber, and if a partial
function f is defined by f(i) = (a) T 1, for all i < Ih(cx) ,

then a = "f(lh(a)) .

Arithnetical properties. Let 7 be a one-place function variable

rangi ng over nunber theoretic functions.

Définiti'on 1. Apredicate -A(r,X ,Xk), k>0, is an arith-

’-1- "
netical property if and only if it is expressible in the form

QIY1! L :ijj R(T(Yj} ’xl’ LR ’x'k"yl’ tr. ’Yj-l) 3




where | ~ 1, for each i £, Q@ is 3y; or Vy” and
. AN . .
R(w, Xqvew o Ij_{,_yl,...,y.:l_ ) is a recursive predicate.
bserve that by Definition 1, the negation of an arithnetical

property is an arithnetical property.

Lemma 1. Suppose R(w, x "Xk) IS any recursive predicate.

1
Define a newpredicate R* (w X SR ,x.} by R* (w X g ’X'x) =
3vilh(v) £1h(w &Vi <Ilh(v) ((Vv)i = (W) &RV, Xy, . . . ,x")].
Then,
(1) R*(w,xl,...,xk) IS a recursive predicate;
(ii) 3y RR(T(y), X1, ..., %K) =73y Rr"(y) AxMe.. x"); and
(iii) if a and p are tw sequence nunbers and a < p, then
. R*(a,*:‘...,xf\)inplies FQ—(P,xl_,_...,rﬁc).
Lemma 2. Suppose R(w, x I""X'x) IS any recursive predicate.

Define a newpredicate R-(wX by - X by R (w, X oo d) =

WLIh(v) i Th(w &Vi <ih(v) ((v)i = (W) -> R(V,Xp,...,X)].
Then,

(i) R(WxXp....%) isarecursive predicate;

(i) WR (T(y) . X, - - ., X") =W RT(Y) . xvL- .., x]; and

(iti) if a and p are tw sequence nunbers and a > (3 then
R (axyg,...,3") inmplies R(pXpL-.. . ,x") .
The proofs are immediate. A recursive predicate that satis-

- fies clause (iii) of Lemma 1 will be called nonotonic increasing,

and a recursive predicate that satisfies clause (iii) of Lemma 2
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will be called nonotoni ¢c decreasing. We-will assune, w thout |oss

of generality, that every arithnetical property is expressed in the
form

Q¥ «-- Q¥4 R(’l’(yj) SOCRRREL WD SPEEETS SNy
with R(mgxlj..., 4% Y "°"¥Ll ) nonotonic — nonotonic increasing

if Qy. is 3y. and nonotonic decreasing if Qy* is W
b ] ) J

In particular we will use the starred and prined versions re-
spectively of T3 and T3 as defined in [D] . Ty as defined in
* * n n ! n

pd enables the normal formand enuneration theorens to be witten

using f instead of f.

2. Foreing.

As briefly explained in the introduction of this paper, the
forcing nethod will be applied to construct functions f as unions

of chains of initial segments f~f,,...,f ,.o. ¢ W desire rela-
o | n

tivized fornms of such constructions. Therefore, at the n-th stage

n+l . - -
is chosen from sone adm ssi bl e subset of

of a construction, f
the set of all initial segments. Accordingly, forcing is defined

relative to a notion of admssibility.
Definition 2. A characteristic sequence nunber is a sequence

a
nunber a = 11 p.* so that a. €{1,2}, for all i <n + 1
i<n+l. X X




Definition 3. Let adnfoc) be a unary relation defined on the set

of all characteristic sequence nunbers. For any two characteristic

sequence nunbers a and (3 define a >_. p if and only if
adm
a > j3 adn(a) , and adm(p). Let IJfrJE be arbitrary numeral s.
Then, the relation a admforces A(T,n l . ,n,K), i n synbol s
a -2 A(T,nt,....n%), is defined inductively for arbitrary se-
guence nunmbers a and arithmetical properties A(T,X l C xlj, as
follows:.
- ’ﬁ()
(i) all-ggm3y RTY(Y) ,1n, ..., , where R(W X4, ...,
Isrecursive, if adn(a) and Roc,n,l‘. . ,i"");
- )
(i) a|[-aomW R(T(y) , 1% ... ,n"), where RW Xj,. . . ,xk
Is recursive, if adm(a) and for each p >: a,
R{(B,n,,...,m ) aam
(i) a | adey A(T,n 1t ,nk,y) , if for some new,
& ”‘ adm A(Tsnl:v'--snk,n)?
(iv) a lf-,qm'YACrAMA . ng,Yy), if adn(a), and for each
3 >ad'm a and for each neou there is some Vv >admp SO0
that y ||-aam A(r,ng, ..., 17, 11).
Lemma 3. If a |f- admA and p > 2dm then P |- adm A
Proof; if all-.9gm3y Rr"(y)sn. . . .n"), and R(W, Xy, . .. , Xk)
is recursive, then Rcc,nl,. SRS ) . Thus pgdm a inplies

R(p,nl,...,n"), because R(w,>l< , .., X" s nonotonic increasing.




If a ||-am Y R(T(y) ,ny,... » and Rfwr,...  x") is
recursive, then p >;¢qma inplies R(P, X3, ...,3") by definition.

Since “am is transitive, p " agm™W R(J(y) JA* e e o Jin) x foreach

p >adm a.

Suppose a Il-4m 3y A(T,ng, ... *n?y) and A(r, Xz, ... *xX"y)

is an arithmetical property. Then, for sone ne o>,

eX |lqgm A(T, Ny, ... N ,N). Assume as induction hypothesis that
P Il-agm AT, Ny, ... ;N ,n), for every p Zgm @ Then, by definition,
for eachl 0 >aam@, P |l-aam 3y A(r,ne... , 10 7) .

Suppose a || agm W A( r_l,ni,.'. . Anty) and A(T, 110, .., XM y)
~is an arithnetical property. For each vy >adm a and new t here
is 6 >ade so that 6 “'adm A(r,,nl,.. . ,nKJ,n) . Let pgdm a.
>aam is a transitive relation, therefore for each vy >adm p and |
nEu) thereisa 6 aqmY so that 6 |- ag&(r.n *4...0n%n) .

Thus, p [|-adm Yy A(T, Ny, ... *1y) .

Lemma 4. For each a so that adm(a), nunerals Ny N and
arithmetical property A(T,X 1 - - >§c), there is some P so that
P>adm? andeither p o AT, Ny, ....,n) or P lhan A(r, n,. .

Proof; The proof is by induction on the nunber of quantifiers, j,

under which A(r, x ..,Xk) IS expressible in the formgiven in

1
Definition 1.
l""X/:.)’

~A(r,Xg,...,Xsc) 1S expressible in the form 3y R(T(y) ’Xl""’xk)

Case | = 1. For sone recursive predicate R(w x |,

.,nk).




or Wy R(T"(y),xl,...,xk). It follows fromDefinition 3 that

either 3p >aama P [-aam3y ROF(Y) . n,. .., 1Y) or

all-aagmW (T ,ns.. ., 1" . Thus, if AT,K, ... ,xk) =

3y R(T(y) ... . . x.) ., then there is sone p Adm? Se that

PII" g <" > >ty of @ ""adm"(rw,", ., . And, if
I(‘r,xl,...,xk) = ¥y R(T(y) ., Xy, .. .*x"), then a |- " AT, q - - - ,xk)
or there is some g “a<3,2 SOthat p " gdm "A'(‘r,nl,...,nk).

Case | > 1. Assunme as induction hypothesis that Lemma 4 is true
for each arithnetical property expressible in the formgiven in
Definition 1 with fewer than | quantifiers. Let A(T,X 1...,X.K)

be expressible in the formwith j quantifiers. Then, there is

an arithmetical property B(T,x.,j_ . ,x.K) so that AT, .x g ’X’x) =
3y B(T, X1, ...,x",y) or sothat A(T, Xy, ... =WIBTXL...",Vy)
and so t hat B(T,x.l. ceX ,y) is expressible inthe formw th fewer
than j quantifiers. Suppose a jf ~* W B(r,n.,. .. ~n"y) . Then,
there exists P>, a and néE> so that for each Y~ -. B,

_ adm T adm
Y If o B(T. Ny - - - . R ,n) . Therefore, by induction hypothesis
dy >'adm B Y “—ade(Tl nru oo Vn) x Since Y >adm B, and B >adm &,

Yl>adm Q. Thus, for sSOme Vv \CM" Y |hadm B( ‘r,nls-"snksn)-

It follows that for sonme Y 73%g > Y H' a4m? B(T,n ,.1..,'11 ’}é)'

Thus, if A(r,xI... ,XLk) = 3y B(T,x.l,... ,x,K,y), then there is sone

Y A.dm()l SOthat Y H_adm*«Tl nl LAY of a ll_ad-mx(f’nl"""nkL




And, if A(T,x ,...,3c) =W B(‘T,Xl. .., _,y) , thenthereis

SOme Y>adrna SOthat Y H_adm\lv_l_lvor

a ”'adm A(T,nl,...,nk).

Definition 4. If f is a nunber theoretic function, define adn(f)
if for every nafural nunber n, admf(n)). |If A(T-,xl,...,x"‘.) i's
an arithnetical property and Ngo-..,n, are nunerals, the relation
f lThagmA(T,ms5. . . ,3") is definedby f |f-aqgmAfr ™, . .. ,n") i f

and only if adm(f) and there is some n so that

ad* A(‘r,nl,.. . ,n.k) .

Definition 5. A set G of arithnetical properties is closed if:

(i) each arithnetical property in G is expressible wthout
free nunber variables (if A is an arithnetical property,
then T is free in A ;

(ii) for arbitrary nunerals n_,.e.,n and recursive predi-

r ®
cate R(vv,xl,...,xk), if 3y R(T(y),nl,...,nk) bel ongs
to G then W T(T(y) Ny n’\) bel ongs to G and
conversel y;

(iii) for arbitrary nunerals g oMy and arithnetical prop-
erty 3y A(T,Xq,...,Xg,Yy), If 3y Alr.n*. .. .n”y) belongs
to G where A(T,x.i,...,x-K,_y) is also an arithnetical
property, then VyTE((r,xl,...,x’_\:y) belongs to G, and
for each new, A(T,n.,...,n.,n) belongs to G

1 -K
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(iv) if VyA(T,nI. . "in"y) belongs to G where

A(T,xl, ..."xk ,y) is also an arithmetical property,
then 3y K(r,nl,...,iik,y) belongs to G and for
each neci)™ A(T,n L ,n) belongs to G

Lemma 5. Let G be a closed set of arithnetical properties and
let f be a nunber theoretic function so that adm(f). If for
each AeG, f |_ . A or f |h - A then for each AeG, A(f)

adm aam
if and only if f |- admA

Proof: Suppose first that R(w, Xpooo wdl) Is recursive and
3y RT'(y) ,ny, ..., 1M eG . f |[Fagm3y RT'{Y) *n”™. .. 1") «>for
some n, T(n) IKagm?Y R(T(y) ,11". . . ,1") «> for sone n,

RT(n) g . AN M fY R(F(y) Moo e umy)

Suppose W RT7(y) "nl,. . ,Jr{u) e& . By Lemma 3, not both
foll-agm™Y ROT(Y) ,nis...,m) and f |- aam 3y RCT(Y) ,ny. . . sy ).
Therefore, f |-agmW R(T(y) "™, .., 1M ~f Jf 3y Rr"(y) , n N R

there is no n so that R“T(T1)5n,l-.. ,TL) f-~ for each n,
R'F(n) , 117, A A->Y R(E(Y) ,np,...,n).
Suppose 3y A(T,117. . . ,nMy) eG . f Thaym®YA(r, N, ..., NkY)

for some n, T(n) If-am® A(T,n., ... ,n,Yy) <*given n, thereis p
so that "f(n) || admA(T’n 1 .SX!E,n) 44 there is m so that

fif- admA(r,nl. . ,ikL,n) . By induction hypothesis this is equiva-
lent to: there is m so that A(f,n 1..,,n,l€m). Thus,

f Thagm 3Y A(T,ny... on",y)<-" 3y A(f,np,. . . *nty) .
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Suppose W A(r,ng, ., . ,n,yY)EG . f If agm
vy A(f,n, .. e 10 7) <>f Jfagm3y AT, nty...>">Y) *=>for all n,
f oJdf-aam A(r,nity ... N, n)™ for all  n, f |- agm A(Fr, Ny .. .,nk,n},
by hypot hesis, 44 for all n, A(f,nl...,ik, n), by induction hypo-
t hesi s, «—»VyA(f,nl...',nk,y).

3. Theorens,

For each k > 0, et pk be a recursive one-one nappi ng of

Kk Kk k
a) onto a) wthrecursive inverse functions 11 "« . .  FL. That is,
for all z, phl kz),. . ,llﬁ (z) ) =z. (Explicit exanples are given
in [13, p. 64].) We abbreviate P(XI""Xk) as_<x1.b.-,xk>.

For two degrees of unsolvability a and b, aeE w |l nmean

N ~ ~

n
that thereis an A in g and a B in b so that Aeﬂﬁu

Poud

References [13] and [14] are cited as standard references to the

fundanental concepts in the study of degrees, jr w || denote

rel ative recursiveness. The followng Theoreml1l for the case n =1

wi t hout the additional properties b/ i'li1 and q£XT1b I's du_ebto

Spector [16]. The technique used to prove b ££§l and a”"tT is
: n n

due to Shoenfield [15].
a

a
Theorem 1. Va3b3c[a™ =b™ = ¢™ =pbV c&b/E~ & c fTT],

Progf. Let h be a function with degr.ee a. Two functions f
and g wll be defined so that:

(i) £~ h(M &g<™ h(M;

(ii) fM ~f vge&gr” ~f Vg
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(iti) h~™~f &h”™ g and
(iv) d(f) differs fromthe degree of every set which is

£n in h, d(g) differs fromthe degree of every set

which is £rl in h.

Define adn(a) f-> Wx[2x < I h(a) ~» (*)2x =~ =Mx)]. (iii)
will be satisfied if f and g are defined so that adn(f) and
adn(g) — for in that case, for each x, h(x) = f(2x) = g(2x).

Let C o denote the characteristic function of the e-th set

£n in h Let <p§, for any function f, denote the z-th function
recursive in f. (iv) will be satisfied if f and g are defined
so that:

vy Vxlvz fy <.p?”>x V Vyc,,/ ﬁgﬁ] and

C
Vx[Vz g fi <p ™* V Vy ¢ ji Q.
Lox z * X y
1~ - 1
Let By(r"(Xn) ,€,€, X1, ..., Xn) denote T,( (%) » e N, eeenX 1)>
—_—
if n is odd, and denote T {f(X Jp.€, €, X.4°.. ,Xpuy) ,» If n is
even. Let X, denote ax,, if i is odd, and denote Vx,, if i
is even. Let n be fixed. Let e,X3,...,%._x be constants,
where 1 £KkE£n, and let m=<e,x-,...,x "> To the arithnetical
: JL n* ~Km
property Xn_(k_1} - - QXn BM(T(Xn) , €, €, Xy ooo , Xc, Xn_(fc-1) »-- - - XN)

we associate the index nunber n»m+ k. Define [n*m+ k] to be
the arithnetical property with index nunber n*m + k. Clearly, to
each integer I, | ~ 1, there exist unique m and k =1,...,n so

that | = n*m+ k. Thus with n fixed this indexing is unanbi guous.
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For ease of notation, we wll wite -i [I] for the negation of the
arithmetical property [t], rather than [1]. The set of all arith-
nmetical properties of the form [1] and -i[£], | > 1 1is a closed

set of arithnetical properties.
Construction of f and g:

St age O. De_flne fO:gO: 1. Since Ih(fa = Ih(gg =0, adn(fo)

and adrr(go).

Stage 41 + 1. By induction hypothesis £.4,_ and g4.{’ are defi ned;

adm(£,7), adm(g~ ) , andlh(f ,) = lh(g").

LCase 1. 3m K[l +1 =nmm+k&0<k<n] . By Lemm 4, there

isan a sothat a> _ f.; and either a It- , [I + 1] or
_ adm 41 M adm '
@ A a7 Y Define T4 0P '"e jeast such a.  Define
_ (£ ) .
44+1" i
arer = Yar N Py .
1h(f4b)g_1<lh(f4{_+l)
Case 2. 3m[® +1 =n*m+ n].
| f 3a /\admfAl a |/\_adm[l +1]>thenlet P=ua<a /\dmf4/\&

lh(a) is odd & |"agm [| + 1]). Define f~,; = P-pJn, . and

defi ne
(8);

Yar41 = Far” 0 P, P .
4443 41 1h(£, ,)<i<1h(B) i 1h(B)

O herwise, let 3 =ya(a>, fa, &lIh(ot) is odd &
' aam 4C

a |- adm_'[{' + 17).

HUNT LIBRARY
CARNEGIE-MELLON  UNIVERSITY
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1
In this case, define "At.i = ’\*P-*i‘v,ffIWa”d defi ne

+ v

(B},

2
o Py Pih(e)”

g9 = 94"
44 +1 44 1h(f4&)gi<lh{B)

Stage 4£ + 2. f4&+2 and g,, ., are to be defined as in

stage 41 + 1, but with f and g i nterchanged.
Stage 41 + 3. By induction hypothesis f.o - and ga. . are
4L£~2 4£+2

al ready defined," adm(f ss:2), adm g4 s2) , and | h(f, ) ="' g4iz,+2) ’

Let | = <x,y,z> fa o, shall be constructed at this stage so
I
that for erl]l adni ssi bl e extensions F of f.%v*3 either, <¥ / ¥
or Pf: <§p’X T ret P o= oph(x)ﬂ 'Pl
. 4442 lh(f4&+2) lh(f4b+2)+l and
1 h(x) +1 2 . .
£ = £ °p p , 1f 1h(f ) is even., i
4442 lh(f4L+2) lh(f4L+2)+l 4442
1h(£,, .) is odd, then let £° = £,, _.p-
al+2" ’ 4L +2 T1h(f ) and
44 +2
1 2
f = f .P -
4442 lh(f4&+2)

Case 1. There do not exist characteristic sequence nunbers a and

p so that adm(a), fa,~< . a, 3 <”p? and f° <"B. In this
. 43+2  aam y z
case define f41:,+3 =f"

Case 2. There do exist characteristic sequence nunbers a and p
satisfying the hypot heses of case 1, but there do not exist charac-
teristic sequence nunbers a and p so that fao _ < . a,

% i [5 . . 4£-'f21 adm
3<_<y and f <cz. In this case define fﬁ9<¥3—f
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Case 3. There exist characteristic sequence nunbers ao, po, al,
1 o) 1 o P 1 ocl
and p so that f4442 "adm oc’ #2+2 ™ adm OC,p-<<p,p" <<py,
0 1
9 < tpg , and i < <|§Z . Choose such ao,po,al, and Pl. Since f°
and f]_' differ for sone argument, p0 and p:L nmust di sagree for
sone argument. Hence, either po or pl , disagrees with C for
0 0 n X
that argunent. |[If p disagrees, define f 443 - 5 ; otherw se

define f~,; = al.

Define oo Fareds

Jar43 = " Py » (£, o) £ 3 Ih(E, o).

Stage 41 +4. f,, ., and SY.l4 2T°1° P ~°fined as in stage

46 + 3, but wwth f and g interchanged.

Define f(y) = Iltwyanii, )y - 1, and define
g(y) = (gum(y<lh(fm)))y + 1,
Caimi. f <~ h(™ and g g_rh(n).
Proof; It is only necessary to see that the conditions used

to define f .and g are at npst £n in h. First, consider
cases 1 and 2 of stage 4£ + 1. if | + 1 =n"m+k, 0<k < n,

then [I + 1] has fewer than n alternating quantifiers. Thus,

by Definition 3 of the forcing relation, a||-adm[l + 1] is S.l in h,
for some i <n. Thus, 3a>, f.,(a|l- . [l +1] val(- nn[E + 1])
* adm 41 " adm?" '" adm '

is at most Sy in h. If t + 1 =n*m+n, then by Definition 3
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of the forcing relation, a lhagm It + 1] is % in h. Thus

3a > fap(a |-, [1 +1]) is £ in h Sinilarly, the hypo-

theses in stage 41 + 2 are £, in h. It is easy to observe

t hat the hypot heses of cases 1, 2, and 3 of stages 41 -f 3 and

41+4 are £ nin h. Therefore, both f and g are recursive

in predicates which are £_ in h. That i-s, f < h"n) and
n -
n
s n™,
daimii. f(M <~ f Vvg and g™ ~ f Vg,

: {(n) _, +n) - -
Proof; W prove f 51 f Vgs 0 5:: f \(g I's proved nutatis
mut andis» For each m and k =1,2,...,n, f |- . [n«am+ K] or
. . ~adm

f ||'-adm—j-[n*m-f k]. Therefore, by Lemma 5, f [fadm [nptrm+ k] if

and only if [n*m+ K] (f) « |In particular, since

3%, . .. B(T(%) Le e xgn . .. *%L) is [ne +n],
2 i oL | o
3X""Q(h I%.Cf(xn),e,e,é,.-#,%(_l) if and only if f||-aam[ne+n].

We show that for each e,

I | "adm [nxe +nJ « 3a >ad» f4( (n_e+n)_1) a o adm A€ + nl

in fact, suppose 3a ™ fai(n.-e+ny_1; @ |- [n-e + n]. Then,
'4( fn*e+n)-1) -fI s anadmssiole extension of such an a. There-
fore, by Lemma 3, f4((n.e+n).“)+1 lI- 3¢m fn-e + n]. Thus, for sone m
?(n) I'l-a4gm fN*e + n], that is, f lhyggm [n*e + n]. Now, suppose
there exists an m so that T(m |- . [n-e +n]. For such an m
aam

if 1 (m) /\dmf4((n_e+n)_|)u thenba Lemma 3,

qa .

ad» T4((n.e.n)-1).l & "" adm f»°e *+ nl.
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- course
It fm >adn.f4((n.e+n)-|)' then of

o ”adm f4((n-ewn)-1) * 'Madm [n-e + n}.

Ther ef or e,
Pl ggmin- e +nl 1->3% 7, Ca(fhie+ny -1y @ - ggfc € +nl-
Define a function K by
- K(o) = /ix[f(x) ™ g(x)],
K(x + 1) = Atyfy. > K(x) & f(y) " g(y)i.
f and g have been constructed so that:
7 Yadh A nre+t) 1% ° - dgmlin-e + 0]
if and only if f(K(2e)) = 1. Hence,
Ix QX Bl(_t'(x ),e,e,x x )
1°° n n M Ay , PO |

if and only if f(K(2e)) = 1. Thus f(" <. f Vg

Claimiii. hgrf and h<__rg, since adn(f) and admg).
C

aimivi . W[Vz f ~"<P™XVWwWc A~ V] and
z bon,x y

C
W[Vz g * <P,">* V Vy ¢, N "] .
Proof: It will be shown for every x,y, and z, that either
C

r- A nyX
Cn,x/<py or f |f)Z>.

For any x,y, and z, let | =<x,y,z> If f,, .5 is con-

structed according to case 1 or case 2 of stage 41 + 3, and if
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C
-— f n
Cn,x = ;P , then 4_6+2_ /<£)

constructed according to case 3 of stage 41+3, then

C
1 X 5) ni: X H
Hence, f 77 <£o ) | f z{-'o+';r is

f4& +2

: £
C N <0 . Hence, C N<p .
nx "'y n,x A Ay

To conpl ete the proof of Theorem1l, let b = d(f) and |et
c=d(g). By (i), (ii), and (iii), a'™ £b(") £bVc £ all
and a™ £c¢™ <rpvVvecral™, By(iv),b/E* and cijT.

In Theorem1 an arbitrary nunber n is given, and then re-
mai ns fixed throughout the entire proof. The idea of the follow ng
theoremis to force the set of all arithnetical properties and ne-
gations of arithmetical properties of the form [n*m+ k], for all
nnm and k = 1,2,...,n. (G course, our indexing nmust be altered
since it is anbiguous if n is not fixed.) Al so, the theorem
w Il not be presented in a relativized form so every sequence
nunber a is admssible, andwewl!l|l wite \\- , rather than \\-

(&) (D (1))
Theorem?2. 3a3b[a’ ' =b"Y"' =0 =aVb].

Proof; Two functions f and g wll be defined so that:

adm

(i) d(f) 1 0%, d(g) <0V and
i (u) (u))
(ii) f 1 f vg and ¢ grfvg.

iy
As before, |et B(]T"'(X) ,€,6,X_,...,X) denote
1 n n . | n
Tn(‘l'(xrq,e,e,x.l,...,)rg_l) , if n is odd, and denote
T#‘I’"()ﬁ),e,e,xa__,. .. ,%(_,1) , If n is even. Let Q(I denot e 3x.i

if 1 1s odd, and denote Vx.l, if I is even. For each natural
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nunber | =<n,nP, n]>1 and m”> 1, define [I] to be the

arithmetical property

1l.—
- - L= N
n-(k-1) nn'n'"?® -V ' nk n-(k-1)* ''n-1"
where m=n-qg +k, 1 k”n, and q =<e,X. ..# X "> The set
' 1 n*yc

of all arithnetical properties [I] and T[ £], for -t =<n, np,
n”~ 1 and m” 1, is a closed set of arithmetical properties.
Construction of f and g:

Stage 0. . Define fo = go

Stage 2b + 1. By induction hypothesis f.s and g, are defined

and have the sane |ength.
Case 0. There do not exist n”>1 and m” 1 so that | = <n,np.

Define f 2l +] ~ f2| and gz{l-'_l = gz'{:'
Case 1. There exist integers n,mq, and k so'that n”~l, m;> 1,
| =<n,m», m=n*q +k, and 0 < k < n.

Defi ne

A4 = v >y a it [1] o alk .

D_efine

( )

£ ,
1 2L+1° i ]

g = g -
b+l T | h(f 5, )<i<IR(E

) i
24 +1

Case 2. There exist integers n,m and g so that nJ> 1 m" 1,

-t =<n,np, and m= n*q + n.
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If 3a > £2t a |- [l], thenlet 0 = jua > fAfa | [*]). Define

2 e
f24b+1 = B'Plh(B)’ and define

(),

g =49g n P.
24 2 ,
*l 1h(f,,)<i<1h(B)

Otherwise, let p = jmx > £, (a [[—1[*]). In this case, define
1

f24+1 = ‘Plh(B)’ and define
(8).
I 2
g = G a .
P T e, cicnePe P
Stage 2"+2, f.. . and g.. . are to be defined as in stage

24+1, but wwith f and g interchanged.

AaA ) -t 1, and define g(y) =

Define f(y) = (f
m Yy

pm

jumy<ih(gm)’y " *
Claimi. d(f) <0 and d(g)<0('%,

Pt The definitions of f-7 - from f-- and of f-. 5, from
f~, . —are recursive in predicates which are recursive in £,
where the n can be found effectively from I. Therefore f is

recursive in 0- e Simlarly, g is recursive in 0 -

. .. V} VA
daimii. f 5erg and ¢ <_erg.
Proof: We prove f-*<fVvyg. 9 < _f V' g I's proved mutatis
-r -1 -_—
mutandis.
For each I, f \\- [I] or f ||--?[£]. Therefore, by Lenma 5,

f |- [1] if and only if [I] (f) . Inparticular, since for each n,
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. 1,%7 .
3%y.--Qx Bn(T(xn),e,e,x.,...,x”} is [<n,n«e + n>],

3XI""QXxi Brl]("_f(xn),e,e,xT ..... X +) if and only if f |- [<n,n-e + n>].

For eeach n and e f F [<n,n-e + n>] if and only if

3a>f ~» a |- [<n,n-e + n>].
2*<ngn*e+rn> '

The proof of this statement is identical fo the proof presented for

the similar statement in claim (ii) of Theorem 1.

Define a function K by
K{) = /ix 3n ;; 13m[x = 2*<nn*m +n> + 1 or X = 2*<nn*m + n>+2],
Kiy+l) = 1ax 3n™ 1 3m[x > Ky) & (X = 2Z*<n,n-m + 1> + 1

or X = Z2*<n*ndm + n>+2)].

The 'yth argunment x for which f(x) ”~ g(x) isintroduced at
stage K(y) of the construction of f and g.

Define p(n,mM = M[K(y) = 2«<nsn»m + n> + i]. At stage
2«<n,n»m+ n> + 1, the p(n*n)-th argunment x for which f(x) j4 g(x)
I's introduced.

Define h(l) = )Ltx[f(x)" g(x)], h(y+l) =juxx >h(y) &f(x) »
g(x)].

f and g have been constructed so that

> 12 <n n-ewn> @ | Agh nxe ¢ B

if and only if f(h(p(n,e))) = 1. Thus, for each n and each e,

3XjL. . . XKn Bg'(f_(xn) ,€,€e,X1,. .*>Xy_q) ifandonly if f(h(p(n,e))); = 1.
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Theref ore f".n) is uniformy recursive in f V g. By definition
<x,y>ef@f.x xef(¥)  But, xef) <> f(h(p(y,x))) = 1. There-
fore, f(w) < f Vag.

—Xr

To conplete the proof of Theorem 2, let a = d(f) and let
)

((to) f(1)) ((A
h=d(g)» By (i) and (ii),~0" "' £ 14 VbEQ , and

g(w)s I,?,(w (w)

)giv‘bgg .
The followi ng Theorem 3 for the case n =1 1is a relativized

version of Friedberg’s characterization of the conplete degrees [4].

Theorem 3. VaVb3c[c(™ =c¢c Va'™ =pvalM].
Proof; Let h be a characteristic functionWith degree a.
Let g be a characteristic function with degr.ee- b, A function f
wi |l be defined so that:

(i) f(m _<_rh(n) V g

(ii) g~ f Vvh(™:; and

(iii) h_§_rf.

As in the proof of Theorem 1, define
adn(a) <» Wx[2x < lh(a)—4 (a)a.x* 1 =h(x)]. (iii) will be satisfied
if f is defined so that adm(f).

Also et n be fixed, and let the arithnetical properties

Q(n_ TRy X Bn('il*lg'i ) .€, e, X. " X 1_) be defined and i ndexed

n

as in the proof of Theorem1. Then, [n*fm+ k], k=1,2,...,n, is

the arithnmetical property X , = o .. B (ll'"‘(X) L6, 6 X, L X L),
n- (K-1; n n n 1 n-1

= < >
where m SR S URERER SRS
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Construction of f:

Stage 0. Define fqo=2"(9*1 adn(fg and Ih(fg is odd.

Stage | + 1. By induction hypothesis f*

is defined, adn{f?),
and |A\(f,-u) is Odd«

Case 1. 3m k|_X+1:n'm+k&0<k<n]. Def i ne

g{t) +1

fL+l=#°-“>dmfabplh(f)

& 1h(a) is odd & (o - adm + 1]

or a w-agm T Y 1])]
By Letmas 3 and 4, such an a exists.

Case 2. 3mt +1=n-m+n]. |If

g{t)+l - Lo+ 11| .
Cle A adm fL Plh(fL) [U. I adm [ ]

t hen defi ne

A 1 & [L + 111 .
B e A ML CEELLCELY A ]

G herw se, define

Y+3 [h_ay is odd &a A v + 1]y -
£ = P|* Taam P lgb <> adm ~ )

Note that for all x, x <Ih(f ). Define f(x) = (f ) * 1.
X XX

Define a function K by K(x) =f_,. As inthe proof of claimi of

Theorem 1 and 2,

)
it is easy to see that K<, h(m V gz Thus, it

Is proved that f = h(n) V g. W need to prove the stronger

stat enent:
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Caimi. fM A~ p(M vg,
Proof; Again, as in the proof of Theorem1,

3y QK Bln(l(xn),e,e,x_r...,x

)Xif and only if f |(- za.l,Jm[n-e+n].

Suppose fn* e+|nh adm [n*e + n]. Then of course, for sone m

f(m) l'kadm [n»e + n]. Conversely, suppose that for some m

. ol (needn)-1) +1
Fm) - gqm e + . I T > {n..e+n)-'-l ‘l'\lh(f 2

_ {n.e+n)-1
then by definition, f lh , [n*e + n]. If.
n»>e+n adm
- A * g( (n.e+n)-1)+1 .
£ (m) adm  (n.e+n)-1 h(f y? then still, by Lemma 3,
(n-e+n)-1

fn e+n N I tn_ e + n] - Therefore,

f ”'adm[ n-e +n]f—léll*fe+,n \\é,dnLln—e +n]j .

Thus,

3X’1‘ ,.Q(nB]&T(x )n,e,e,x_l. C . )f'l--l) f-» K(n»e +n))- ”édm [n*e + n].

h(n)

The right hand side is recursive in and g. Thus,

t(n) ~a(n) vg<

daimii. g< fvn™,

_— -r

Proof; g(x) = f(lh(K(x)), for all x. Using the definition

of K, substitute f(lh(K(x))) for g(x) in the definition of K
to obtain K<M f Vh(”). Then, use g(x) = f(lh(K(x)V), to obtain

g<, | Vh(m
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daimiii. hg_rf, since adn{(f).
To conpl ete the proof of Theorem3, let c =d(f). By (i),

(ii), and (iii), c¢™ £a<” vbecVva® £c™.

Qorollary 1. Yavb[a™® <b-* 3¢c[c¢™ »b &c | al"]].

The proof is imrediate.

corollary 2. YaYbrc[c(™ =¢(™ val"™) =p valr ],

e e Lad

Pr oof ;

cmb Acval™b < cM vy an™ = (¢ val"m) v (M 1 clnt),

Corresponding to the original K eene-Post construction [11]
of £1-i nconpar abl e sets in &2, we can now prove the existence of

£ -inconparable sets in An In the foll ow ng theoremwe i ncor por-

n +1’

ate ideas fromTheorem 3 to get a stronger result. Peter Hnman [7]

has proved, corresponding to the Friedberg-Michnik theorem ([5] and

[12]), that there exist A ,-inconparable sets in S
n+l nH-|
Theorem 4. 3A3B[AIE® & Bi J* & dA) ™ = 0™ = (@) (M].
n n A ~ A

Proof; Two functions f and g will be defined so that

(i) d(fM)y £0(") and d(g™) 10(M; and
(i1) 1120 and ol

X ),

l/\
L et Bné (x ) ,e,u,x X

PSR ) denote tnTT"(x ),€e,U,Xi:..,
-1 -

if n isodd, and denote "T (T"X).euxjie...,%), if n is even.

Let x, denote 3x,, if i is odd, and denote Vx,, if i 1is

even. Let € Xq, - - be constants, where 1 <k < n, and let

.,Xn_.K-
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m = <e,x.|,.--,r>]<*,, i'c>' To the arithnetical property
1
- X( T ) :
Q(n_(k_|)v---QXn BT (Xn)e, U, X ’Xn-i') wi th one free nunber

variable wu, we associate the index nunber n.m + k. Define
[n"*m + k] (u) to be the arithnetical property with index nunber
n«cm+ k. Wth n fixed this indexing is unambi guous.

bserve that [n*e + n](e) is the arithnetical property

1
3x|...Q<n Bn(T(er,e,e,x.l,...,x n'—f . (I't may be assuned that

<x> » x, for all x.)

Construction of f and g

Stage 0. fg = gg « 1.
Stage 64 +1. By induction hypothesis fg,, and Jet are defi ned.

Lase-1. 3x,a,mk[4 =<x,a> &X « n»m-f k & 0 < k < n].

In this case define f-, ., « jua > f . .[a |- [x](a) or a |- -[x](a)],
S0 R 157

and define Fer+1 = J6u°
GCase 2. W,a,mk[(4 « <x,a> & X = n*m+ k)~> (k =0 or k =n)].

Define f...... = fé\f} and Jete1 ™ 96&'

Stage 64 + 2. f-4,, and 0ritow are to be defined as in stage
ov+2 0-0+2
64+1, but with f and g interchanged.

Stage 64+3. By induction hypothesis f'&-u+2 and 96'c+2 are de-

fined.

case 1. 3x[a > {270 &a |- [n.4 +nl(lh(g,, )]
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Define

£ « |- [n-4 + nl(lh(gg, o))-

6L+3 ~ M7 fepyo
Define

_ 1
6143 - J6t42 Plh(g& o)

Case 2. Vala > fgp->a F [n<t + n] (Ih(gst+2))]. By Lemma 4,

3a > fg™io a ll- i[n.<t + n](lh(g&_l_z))-
Define
forq3 = M0 > £gy 0 @ [F n- + nl(Ih(gg, o).
Define
g =9 ‘P2
64+3 64+2 “1h(g., .}
Stage S +4. f,. . and ¢4, . are to be defined as in st age

DM +4 Dv44
6t + 3, but wth f ~and g interchanged.
Stage 6t + 5. By induction hypothesis 'e#. 4 2"% 9%>t+4 2'¢
def i ned.
If 3a > fg.rA a |- [n*€ + n] (*) , then define

£ g = MO > £, , 0 IF (n:4 + n](4), and define Ier45 = Jor4a

Otherwise, define (g5 = M* 7 Ter+4 @ H 1 t"™ '+ n](4)

and define o145 = Feled’

Stage 61 + 6. f-, - and g7, g. are to be defined as in stage
Di +D Do/ +O

6t + 5 but with f and g interchanged.
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Define f(x) = ( f ~~f ,,>* ™ and define
m

96 = 9 (ympacin(g ) x *

Define A= (x|f(x) =1}, and B = (x| g(x) =1).

Qaimi. d(f(m)y~o0™ and d(g'™).£0(M/

Proof: For each e, the set G of all arithmetical properties and

negations of arithnetical properties [n«m+ k] (e), 1 £k £ n,

where m=<e,x_,. ..,X ,>1is a closed set of arithmetical proper-
1 n—K
ties. Let e and x.,... ,x , be arbitrary constants, and |et
I n-" K
m=<e, xi ..., Xn"k> At stage 6-<n.m+k,e> + 1, fg. cnsmks+1
is chosen so that f |- [n®n + k] (e) or f ||~-, ["m+ K](e). A

stage 6e + 5 fr®¥*2 is chosen so that f |} [n"e + n] (e) or
f |- -|[n*e + n] (e) . Thus, given e, for each arithmetical property

A in G f1||-A or f |[-A By Lemma 5,

3axl, .. Q& BYT(x® ,e e xt ... 8L) if andonly if f |- [n-e +n] (e).
f |- [n-e + nJ(e) if and only if f ~'%|- [n-e +n] (e) . (This is
: CcTd *

easy to see, and has been argued pr{eyi ously.) Define a function K

by K(x) =f for all x. d( £0 . (The argunent is sinilar to
the proof oft claimi of Theorems 1 and 2) . It follows that
3x.|...Q(nBr4T(x %,e,e,x.l,. - ,>r<]_1.) if and only if

K(6e + 5) |- [n*e.+ n] (e) . The right hand side is recursive in VO(n).

‘Shilarly it may be proved that - d(g ™ <¢ o™,

Qaimii. ALip & Bg'zﬁ.
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Proof: W will showthat Bi th. The proof that A"J'II" is

n n
simlar,

Belr’.l?" if and only if there is sone e so that for all a,
g(a) =1 if andonly if ax”™-.Qx" Bn(%(xj €, a, X, . .. M) e
For each e, it will be shown t hat 9('"(gse+2)) =0 if and only
If 3Xr..Qxpn BMT(Xn), e, h(ge2+2), Xi5...,%Xp"1) -- fromwhich it

follows that BME'A.
n

For each e, the set Q of all arithnetical properties and
negations of arithnetical properties [n«m+ K] (I h(gse+2)) .,

1 £k £n, where m-= <e,>% .. R As isatTosed set of grjth.

metical properties. Gven nunerals e and X.,...,X

1 n- J. n—s. '
O<k<n let m=<ex", ..., X >and let | =<n-m+ Kk, |h(0gge+2)><
At stage 6t + 1, fgh.; is chosen so that f |- [n-m+"1(lh(g,,,,))
or f ||- -i[n-e + K] (I h(gees2)) . At stage 6e + 35 fgerz iS chosen
so that f |- [n-e + n] (I h(gee+2)) or f ||-n[n.e + n] (I h(gee+2)) -
Thus, for each arithnetical property A in Q f |- A or f ||-1A

1
3X1. .. Xn Ba(T(Xn),e, 1 h(Qee+2),--.) is [n-e +n](lh(gse+2)). * By

Lemma 5, 3x.1. ..Q(nB :QT(X )ngegl Yl{q"be+02 ) Xy ""’Xn-'l) if and only if

f |t [ne +n](lh(g,. J)). (It may be remarked that the necessity
oe+2 _

of stages 6£ + 1 is that for each e, A(g"e_l:]) is not known in

advance,) Again f ||- [n*e + n](Ih(gGe+2)) if and only if
3a[a > fge+2 &a II- [n*e + n] (1 h(Qgee+2)) 1. On the other hand, by

definition of 9gess, 3a[a > fges2®l - [n-e +n] (I h(gees2)) ] if
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and only if g(Ih(g%e$£) =0. This conpletes the proof of claim
i,

The Proof of Theorem4 is now conplete: AE£ XT, B £ TT,
and by (i), (A ™ =q" =d(B) M. n n
Remark. Let fi Dbe the set of all degrees. For each n ;> 1, let
«  be the structure <«, g™ e is the structure <« <, > It

has been shown in this chapter that certain sentences which hold

in &.I nhoId in $ for all n. Is fﬁ el enentarily equival ent

to &, for n,m~” 1? This question has been answered in the neg-
ative by C G Jockusch, Jr., in private comunication

Let G be the set of all degrees of arithnetical sets. The
proof given by Jockusch uses the fact that G can be sinultaneous-
ly first-order defined in & and &, (A corollary to this fact, is
Jockusch!s result, announced in [8], that the Structures $<£, >
and <G<*, "> are not elenentarily equivalent.)

The et hod of proof |eaves open two interesting questions.
It is not known whether fi, is elementarily equivalent to $_,
for n and m both greater than one; and it is not known whet her
the structures <G,£,(n)> and <G,£,(m)> are elenmentarily equival ent,

for n,miz 1
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