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ON THE GEOMETRY OF SPHERES IN L- SPACES

J. J. Schaffer

Abstract

It is shown that any two points on the surface of the unit
bal | of L_an , Where the measure \i 1is non-atomc, may be
joined in the surface by a curve whose length is equal to the
straight-line distance between its endpoints. This property is
contrasted with the nmetric properties of the unit sphere in

ot her L-spaces.

1. | nt r oducti on

In [3], Harrell and Karlovitz call a Banach space X flat
if there exists on the surface of the unit ball a curve of length 2
wi t h anti podal endpoints. They observe that L 6i) , Where \i
I's Lebesgue neasure on the unit interval, is flat, and that in
fact such a curve exists for every prescribed pair of antipodal
endpoints. Qur first aimis to show, in Theorem2, that L %fi)
for this and every other non-atomc neasure \x 1is even "flatter”
than this observation al one indicates.

This question belongs to an area of investigation devel oped

in [5], dealing with certain netric paraneters of the unit

spheres of norraed spaces. In Section 3 we discuss the val ues
of these paraneters for all L-spaces.
If X is a normed space, S(X) denotes its unit ball, and

dX (X} the boundary of 2(X). A curve in X is a "rectifiable




geonetric curve" as defined in [1;, pp. 23-26]; for term nol ogical
details see [5; p. 61]. The length of a curve ¢ is I(c).

Ve shall consider in what follows a measure space (S $fi)
and the correspondi ng Banach space L1= Ll(fi) of (equival ence
cl asses of) real-valued functions. The argunent \i is omtted
when confusion is unlikely. W assume once and for all that
dimL" > 1; i.e., that there exist E EeS with 0 < p(E) <

p(E') < oo.

2. Non-atom c neasures

1 Lemma. If \i JLS" non-atonic and -pe"S(Ll), t here

exi sts a. curve of length || |[p]|-pl|_from p jto |p]| £n d£(L5.

Proof. Consider the nmeasure v on S defined by
v(E) ;_I_E_I pldl, EeS. Then (S£>v) is a n/:n- atom c neasure space
with v(S) = 1. There exists, therefore (see, e.g., [2]), a
function G: [0,1]-* S such that G(Q) =0, l) =S5 S cqt)
whenever s < t, and such that v(Et)) =t, 0 £t " 1

Ve now set f(t) = |p|xgr) + Ps\gy)' ° AU AL Then
|f(t) I = |p|, whence |[f(t)]] =1, for all t. If s "™t we
have f(t)-f(s) = (|pl-P)xgu)\els >""e"ce

(1) [T(E)-T(s)|] =] (Ipl-p)dfi.
'G(t)\ §(s)

From (1), [If (t)-f(s)|] "2v(Gt)\ES)) =2(t-s), sothat

f : [0,13-~L' is Lipschitzian. Since f(0) =p, (1) =[p] .

L(LT).
f 1s a paranetrization of a curve from p to [p]| in (L)
Again from (1), [|f (t)-f(s) || = <p(t)-<p(s) , where <p(t) .=G\( ) (Ipl-p)dfi..
"Gt

Therefore the length of the curve is




©(1)-¢(0) - JS(!pI—p)dn = || |p|-pll.

2. Theorem jjf jit s non-atomic and p, quE(Ll), t here

exists a. curve of length |[|opl|_from p Jdo q zn S£(L3.

Proof. The preimage of (-00,0) under the function p+q is
an element of S changing the values of each and every function
in L1 to their opposites on this set constitutes a congruence
of L' onto itself. Mdulo this congruence we may assume

wi t hout | oss that

(2) p+qgq ~ O.
Now
(3) d-p = (g-[ql) + (la-lpl) + (Ipl-p).

It follows from (2) that any two of the three sunmands in the
second nenber of (3) are alnobst nowhere of strictly opposite

signs. Therefore |g-p| ==(|ql|-9) + ]| |q]-|PI'l +(IP|]-P), and

(4) la-pll = Illal-all + [llql-Ipl{l"+ trepi-pPif.

Nov by Lemmma 1 there exist curves from p to |p| and from
gl to g Iin S2 (Ll) with lengths || |p |-pll and |||g]-q||, respectively;
and since |pl|,[g] ~ O, the straight-line segment from |p| to |q |
(which has length |||gl-|p]l]) lies entirely in ~(L?'). Putting
curve, segment, and curve together end-to-end, we obtain a curve
from p to q In SE(L1 ), and its length is ||g-p|| on account
of (4).




3. Spheres in L-spaces

W recall sone further term nology and notation from [5].

Let X be a nornmed space with dimX > 1. The inner netric

6=6, of SS(X) is defined by 6(p,q) = #nf[l(c) : c a curve
from p to qgq in dE(X)} for all p,qged2(X). Using this

inner netric, we define the paraneters

mX) =inf{6(-p,p) . pedt(X)}
M X) = sup{6(-p,p) : pedE(X)]
D(X) = sup{6(p,q) . p,qedE(X)}.

2m(X) and 2MX) are, respectively, the girth and the perineter
of S(x); DX) is the inner dianeter of SS(X). W note in

passing that it is a conjecture unresolved in general (though
verified for, e.g., dimX”" 3, or DX) =4) that MX) = DX
for all X

W note an imedi ate consequence of the work in Section 2.

3. Corollary. If Il is non-atomc, 6i(p,q) = |lop]
L
for all. p~redEfL') , and DCL') = MLY) =mLY) =2.
Pr oof . Imedi ate from the definitions and Theorem 2.

VWhat if fx 1is not non-atomc? W refer to [9] and recall
that, in a norned space X, a point u is a pole of X if
6(-u,u) = 4. Existence of a pole is sufficient but not necessary

(unless dimX < o00) for D(X) = MX = 4.

4. Theorem If A€S is an atomfor jit, then u = (jx(A))~1XA

ot

iLf a pole £f L', and DfL') = ML') = 4.




r 1 Xy
roor. If a(x) = faxdjx, xeL , we have x = a(x)u + S\A
for all XGL?', and ||x|]] = |a(x) | + Hegg ! -

Now a : L1 +R is continuousg and afthu) = +1. On any
given curve ¢ from -u to u in BS(Ll) there nmust therefore
be a point v with a(v) =0, whence v = sz\é- Since YXs\ A}ﬂ = 0,

we find

tie) | le-vil + llveuk Ja(u) | + ||vxed | + [a(U) | + lvxgaall
=2+ M| =4

Therefore 6(-u,u) " 4, and the reverse inequality holds by
[5; Theorem3.5]. Thus u is a pole. The proof could have been
rephrased so as to use part of [9; Theorem4.1 with Remark].

On the other hand, we record the follow ng observation.

1

5. Theorem 1f \i _is not purely atomc, L~ is flat,
and m(LY) = 2.
Proof. If )it" is the (non-null) restriction of \i to

the non-atomc part of the nmeasure space, Ll(ji) contains a
subspace congruent to Ll(’tT) . By Theorem 2, this subspace is
flat, hence so is Ll(/i) itself.

It remains to consider purely atomc nmeasures. Now if \i
is purely atom c, Ll{\x) I S congruent Il(#) , Where K is the
cardinal of the set of (equivalence classes of) atonms; and for
every cardinal K, £ %K) is of course itself L d5>n) , Where \i0
is the (purely atom c) counting neasure on K W may thus

restrict our attention to the spaces | 1(N)g & > 1.




6. Theorem For every positive integer n > 1 we have

m(tl(n)) = 2n(n-1)"L.
Proof. 1. Consider the sequence (p.1 : i=l,...sn) of points

of BS(~Y(n)) given by
p,(3) = (n-1) 'sgn(j-1) 1, = 1,...,n,

and set Pn = -P,° A straightforward verification shows that
the polygon p with consecutive vertices PQP-1 9e ¢ ¢ >p Is a
curve from po:-pnto pn in bl>(l (ln)), and ||pi"P.tl|| :2(n-|)~1,
i =1,...,n. Therefore n(-t(n)) ~1(p) =2n(n-1)~% This
argunent was pointed out by L. Danzer (private conmmunicati on,
1967) .
2. To prove the reverse inequality,, we observe that
E(I 1(n)) is a polytope, and apply [6; Lemma 2] ; this states that

there exists a sinple polygon p in 52(l 1(n)) wi th anti podal

endpoi nts such that <t(p) = n(! (]n) ) . Let Py P-, T , P« = - po
be the consecutive vertices of this polygon. Now
k k n
(5) m) = 2P = Xy X 1pa()-pei(]) 1.
For every fixed j o, 1~ jo”™ n, we have Py(jg ="Pos"0"

so that the J,'" co-ordinate nust vanish at sone point of p.
Since no co-ordinate vani shes at an interior point of a face

of the pol ytope £(£1(n)), it follows at once that, in fact

pio,\CP:o for some iO' ;;'/\io/\k* But then A8a yields
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O p.7 replace Theorem 7 by:
7. Theorem If A Js an infinite set, then n(£ E‘A) ) =2;
I S

but 6(-p,p) >2 for every pe5S(*'(A)), and "'(A) a

fortiori not flat.

Proof, Il(A) contai ns a subspace congruent to tl(n) for
n=223,...; therefore, by Theorem6 and [5; Lemma 5.2 and
Theorem5.3(a)], 2 £m " (A) £ nm(~(n)) = 2n(n-1)~Y n=2,3,...;
whence n(ll(A))) = 2. (Snce Il(A) Is not reflexive, this
conclusion also follows from[7].)

O the other hand, et pedSC’\l(A)) be gi ven, and choose
ageA such that P(%) ¥" 0. If c is acurvein 5£(£1(A)) from-p

to p, there is apoint g on ¢ with <3(%) = 0. Then

Lo

L(c) 2llp-all+]la+pll = 2| IO(;’:1 b+l (1 p(a)-q(a) | +] a(a)+p(a) |) >

a a,
AN
2 2lplagl + _%i“aaQIQ(a)l = 2(le(ag) Itllall) = 2(Ip(ag) {+1).
Since ¢ was arbitrary, we find 6(-p,p) _>_2(|p(a0)|+1) > 2.
Remark, This strengthens the result in [3] that ~Y(",) is

not flat.

CS




k k
(6) *<p) :."IPAV-Pi.AJo)' =A A PiAJ-Pi-|A]]
0

2z & CIPcW-p, (J) 1 +[p (J)-P(J) 1)
SN P

= I (|p, (3)+p03) ! + |p. (3)-pPo(3)Y D) > 2L p. (j) |
i#ig O © ig ° = ifi, ©
n
= 22 lp: ()] =2]|p. I = 2.
i= *o X0

Since (6) holds for = 1,...,n, we find, using (5),

j0
n k

n-t(p) No2n 4 £ S \pAJy)-p.a(In)\=2n+l(p).

- J0:| i=l X7 (@]

Thus nf't 1(n)) ='t.(p " 2n(n-|)~1, as was to be shown.

Remark. If n is odd, the inequality n(l %(n)) ~ 2n(n-1)~*

also follows from[8].

7. Theorem Y N j” an infinite cardinal, n(£1(i<)) = 2,

but -t'*) is not flat.

Proof. Il(l\D contai ns a subspace congruent to Il(n)
for n=2,3,...; therefore, by Theorem6 and [5; Lenma 5.2
and Theorem5.3(a)], 2 » m(*(«)) £ n(-t*(n)) =2n(n-1)""%
n=23,...; whence n@-tl(i<)) =2. (Since £1(|\b Is not reflexive,
this conclusion also follows from [7].) On the other hand,
consider a curve in "2(l 1()()) wi th antipodal endpoints; it lies
in a separabl e subspace of tl(X), and therefore in a subspace
congruent to Il(XO); but Harrell and Karlovitz have shown that
tl(l\b) is not flat [3; Corollary to Theorem5]; therefore the

| ength of the curve is not 2, and Il(X) itself is not flat.




We can summarize some of our conclusions by restating
themas a theorem on abstract L-spaces and relying on Kakutani's
representation theorem [4] ¢ according to which the L-spaces
are precisely the Banach lattices congruent and lattice-isonorphic

to the spaces Ll(jit) for all measure spaces (3 §fi).

8. Theorem Let X "pe gi abstract L-space with dimX > 1.

Then one and only one of the following four alternatives holds.

dimXjis infinite infinite infinite n < oo

D( %) =M ) = 2 4 4 4

does X have

ji pole? no yes yes yes

m( X) = 2 2 2 2n(n-1)~*

s X flat? yes yes no no
——

X JLS congrient .

to+ (jx) , where . _ - —

\i s non-atom ¢ -nerther—mon-  ptrety purety—&tom c;

atom—c not atemc=—— n atoms.

purely atomc —nfinrte—
set of atoms

4. Some probl ems

The results of the preceding sections, and especially
Theorem 2, suggest the following questions, given in order of

Increasing restrictiveness.




Probl ens. Characterize those Banach spaces X for which:
(a): MX) =2;

(b): D(X) =2;

(c):  6(p,a) = llo-pl| for all p,qe"S(X);

(d): there exists, for all P,gec)£(X), a curve of length

llpl| from p to g in SS(X) .

The conjecture may be ventured that the only Banach spaces X
~that satisfy (d) are precisely those congruent to L %ﬂb for

some non-atom ¢ neasure \i.
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