```
ON THE GEOMETRY OF SPHERES
                                    IN L-SPACES
                                    J. J. Schäffer*
                                    Research Report 70-51
```

 December, 1970
 * This work was supported in part by NSF Grant GP-19126.
/nlc

Abstract

It is shown that any two points on the surface of the unit ball of $\mathrm{L}^{\mathbf{1}}{ }^{(f i)}$, where the measure $\backslash i$ is non-atomic, may be joined in the surface by a curve whose length is equal to the straight-line distance between its endpoints. This property is contrasted with the metric properties of the unit sphere in other L-spaces.

1. Introduction

In [3], Harrell and Karlovitz call a Banach space X flat if there exists on the surface of the unit ball a curve of length 2 with antipodal endpoints. They observe that $L \mathrm{f}_{\mathrm{j} i}$, where $1 i$ is Lebesgue measure on the unit interval, is flat, and that in fact such a curve exists for every prescribed pair of antipodal endpoints. Our first aim is to show, in Theorem 2, that $L l_{\text {(fi) }}$ for this and every other non-atomic measure $\mid x$ is even "flatter" than this observation alone indicates.

This question belongs to an area of investigation developed in [5], dealing with certain metric parameters of the unit spheres of norraed spaces. In Section 3 we discuss the values of these parameters for all L -spaces.

If X is a normed space, $S(X)$ denotes its unit ball, and $d \Sigma(X)$ the boundary of $2(X)$. A curve in X is a "rectifiable
geometric curve" as defined in [1; pp. 23-26]; for terminological details see [5; p. 61]. The length of a curve c is l(c). We shall consider in what follows a measure space ($\mathrm{S}, \mathrm{S}, \mathrm{fi}$) and the corresponding Banach space $L^{\mathbf{l}}=L^{\mathbf{l}}$ (fi) of (equivalence classes of) real-valued functions. The argument li is omitted when confusion is unlikely. We assume once and for all that $\operatorname{dim} L^{1}>1 ;$ i.e., that there exist $E, E^{!} e \underset{\sim}{S}$ with $0<\mu(E)<$ $\mu\left(E^{\prime}\right)<0 \circ$.

2. Non-atomic measures

1• Lemma. If $1 i$ J S^{\wedge} non-atomic and $p e^{\wedge} S\left(L^{\mathbf{1}}\right)$, there exists a. curve of length $|||p|-p||$ from p jto $|p| \underline{\underline{n}} d £\left(L^{l}\right)$.

Proof. Consider the measure v on S defined by $\mathrm{V}(\mathrm{E}) \stackrel{\boldsymbol{J}_{\mathrm{E}}}{=}|\mathrm{p}| \mathrm{d} \mid \mathrm{It}, \underset{\sim}{\mathrm{E}} \mathrm{S}$. Then $(\mathrm{S}, \mathrm{f}>, \mathrm{v})$ is a non-atomic measure space with $v(S)=1$. There exists, therefore (see, e.g., [2]), a function $G:[0,1]-* S$ such that $G(0)=0, G(1)=S, G(S) \quad C G(t)$ whenever $s \leqq t$, and such that. $v(G(t))=t, 0 £ t \underset{\sim}{£} 1$.
 $|f(t) I=|p|$, whence $||f(t)| \mid=1$, for all t. If $s^{\wedge} t$ we have $f(t)-f(s)=\left.(|p|-P) X_{G(t)}\right|_{G}(S)>$ whence

$$
\begin{equation*}
||f(t)-f(s)||=\underset{J}{J} \quad(|p|-p) d f i . \tag{1}
\end{equation*}
$$

From (1), \|f(t)-f(s)\|^2v(G(t)\G(S))=2(t-s), sothat $\mathrm{f}:\left[0,13-\wedge \mathrm{L}^{1}\right.$ is Lipschitzian. Since $\mathrm{f}(0)=\mathrm{p}, \mathrm{f}(\mathrm{l})=[\mathrm{p} \mid$. f is a parametrization of a curve from p to $|p|$ in
 Therefore the length of the curve is

$$
\varphi(1)-\varphi(0)=J_{S}(|p|-p) d \mu=\||p|-p\| .
$$

2. Theorem, j jif is non-atomic and $p, q \in B E\left(L^{\mathbf{1}}\right)$, there exists a. curve of length $\|q-p\|$ from p Jto q 㿽 $\operatorname{S£}\left(L^{1}\right)$.

Proof. The preimage of $(-00,0)$ under the function $p+q$ is an element of $\underset{\sim}{S} ;$ changing the values of each and every function in $L^{\mathbf{l}}$ to their opposites on this set constitutes a congruence of $L^{\mathbf{l}}$ onto itself. Modulo this congruence we may assume without loss that

$$
\begin{equation*}
p+q \wedge 0 \tag{2}
\end{equation*}
$$

Now

$$
\begin{equation*}
q-p=(q-|q|)+(|q|-|p|)+(|p|-p) . \tag{3}
\end{equation*}
$$

It follows from (2) that any two of the three summands in the second member of (3) are almost nowhere of strictly opposite signs. Therefore $|q-p|==(|q|-q)+||q|-| P I I+(I P \mid-P)$, and

$$
\begin{equation*}
\|q-p\|=\|||q|-q\|+\|||q|-|p||1+\operatorname{IIIP}|-\mathrm{PI} \mid . \tag{4}
\end{equation*}
$$

Now by Lemma 1 there exist curves from p to $|\mathrm{p}|$ and from |q I to q in $S 2\left(L^{1}\right)$ with lengths $|||p|-p \|$ and $|||q|-q \|$, respectively; and since $|\mathrm{p}|,[\mathrm{q} \mid \wedge$ _ 0 , the straight-line segment from $|\mathrm{p}|$ to $|\mathrm{q}|$ (which has length $\||q|-|p|\|)$ lies entirely in $\wedge\left(L^{1}\right)$. Putting curve, segment, and curve together end-to-end, we obtain a curve from p to q in $S E\left(L^{\mathbf{l}}\right)$, and its length is $\|q-p\|$ on account of (4).

3. Spheres in L -spaces

We recall some further terminology and notation from [5]. Let X be a normed space with dim $X>1$. The inner metric $6=6 \mathbf{v}$ of $S S(X)$ is defined by $6(p, q)= \pm n f[1(c): c$ a curve from p to q in $d £(X)\}$ for all p,qed2(X). Using this inner metric, we define the parameters

$$
\begin{aligned}
& m(X)=\inf \{6(-p, p): p \in \partial \Sigma(X)\} \\
& M(X)=\sup \{6(-p, p): p \in \partial \Sigma(X)\} \\
& D(X)=\sup \{6(p, q): p, q \in \partial \Sigma(X)\} .
\end{aligned}
$$

$2 m(X)$ and $2 M(X)$ are, respectively, the girth and the perimeter of $S(x) ; D(X)$ is the inner diameter of $S S(X)$. We note in passing that it is a conjecture unresolved in general (though verified for, e.g., $\operatorname{dim} X \wedge 3$, or $D(X)=4)$ that $M(X)=D(X)$ for all X.

We note an immediate consequence of the work in Section 2 .
3. Corollary. If Π is non-atomic, 6 i $(p, q)=|l q-p| \mid$ for al. $\left.\mathrm{p}^{\wedge} e d E f L^{1}\right)$, and $\left.\left.\mathrm{DCL}^{1}\right)=\mathrm{MfL}^{1}\right)=m\left(\mathrm{~L}^{1}\right)=2$.

Proof. Immediate from the definitions and Theorem 2.
What if $f x$ is not non-atomic? We refer to [9] and recall
that, in a normed space X, a point u is a pole of X if $6(-u, u)=4$. Existence of a pole is sufficient but not necessary (unless $\operatorname{dim} X<\infty$) for $D(X)=M(X)=4$.
4. Theorem. If $A € S$ is an atom for ${ }_{\sim}$ 化, then $u=(j x(A)) \sim^{1} X_{A}$ $\underline{i} £ \underline{a}$ pole $£ \underline{f} L^{1}$, and $\left.\left.\mathrm{DfL}^{1}\right)=M f \mathrm{~L}^{1}\right)=4$.
 for all $X_{G L}{ }^{1}$, and $\|x\|=|a(x)|+\operatorname{HX}_{S} \backslash_{A} I$.

Now a : $L^{\mathbf{1}}{ }^{-*}$ R is continuous, and afHhu) $= \pm 1$. On any given curve c from $-u$ to u in $B S\left(L^{1}\right)$ there must therefore be a point v with $a(v)=0$, whence $v={ }^{v} X_{s} \backslash \underset{R}{A}-$ Since ${ }^{v} X_{s} \backslash A_{\mu}=\mathbf{O}$, we find

$$
\begin{gathered}
\ell(\mathrm{c}) \mathrm{I}\|\mathbf{u}-\mathbf{v}\|+\|\mathbf{v}+\mathbf{u}\| \\
=|a(\mathrm{u})|+\left\|\mathbf{v x}_{\mathbf{S N A}} I l+|a(\mathrm{u})|+\right\| \mathbf{v} \chi_{\mathbf{S} \backslash \mathbf{A}} \| \\
=2+2\|\mathrm{v}\|=4 .
\end{gathered}
$$

Therefore $6(-u, u) \hat{\wedge} 4$, and the reverse inequality holds by [5; Theorem 3.5]. Thus u is a pole. The proof could have been rephrased so as to use part of [9; Theorem 4.1 with Remark].

On the other hand, we record the following observation.
5. Theorem. If $1 i$ is not purely atomic, $L^{\mathbf{l}}$ is flat, and $m\left(L^{1}\right)=2$.

Proof. If $)$ it ${ }^{T}$ is the (non-null) restriction of $l i$ to the non-atomic part of the measure space, $L^{\mathbf{l}}$ (ii) contains a subspace congruent to $L^{\mathbf{1}_{(}}\left(\mathrm{t}^{\mathrm{T}}\right)$. By Theorem 2, this subspace is flat, hence so is $L^{\mathbf{l}}$ (i) itself.

It remains to consider purely atomic measures. Now if $1 i$ is purely atomic, $L^{\mathbf{l}}\left\{(x)\right.$ is congruent $I^{\mathbf{l}}(\#)$, where K is the cardinal of the set of (equivalence classes of) atoms; and for every cardinal $K, £^{1_{(}}(K)$ is of course itself $\left.L d^{l}\right\rangle_{n}$, , where i_{0} is the (purely atomic) counting measure on K. We may thus

6. Theorem, For every positive integer $n>1$ we have $m\left(\ell^{1}(n)\right)=2 n(n-1)^{-1}$.

Proof. 1. Consider the sequence ($p_{\mathbf{1}}: i=1, \ldots 5 n$) of points of $B S\left(\wedge^{1}(n)\right)$ given by

$$
p_{i}(j)=(n-1)^{-1} \operatorname{sgn}(j-i) \quad i, j=1, \ldots, n
$$

and set $\mathrm{p}_{\mathrm{n}}=-\mathrm{p}_{\mathbf{n}}$ • A straightforward verification shows that the polygon p with consecutive vertices PQJP-I 9••• ${ }_{\mathbf{n}}$ is a
 $i=l, \ldots, n$. Therefore $m\left(-t^{1}(n)\right) \wedge l(p)=2 n(n-l) \sim^{1}$. This argument was pointed out by L. Danzer (private communication, 1967).
2. To prove the reverse inequality, , we observe that E($\left.I^{1}(n)\right)$ is a polytope, and apply [6; Lemma 2]; this states that there exists a simple polygon p in $52\left(I^{\mathbf{1}}(\mathrm{n})\right)$ with antipodal endpoints such that $<t(p)=m\left(1 \frac{1}{(n)}\right)$. Let $P_{0}, P_{-}, \mathbf{I}_{\mathbf{1}} . \ldots, P_{k}=-\underline{p}_{\underline{Q}}$ be the consecutive vertices of this polygon. Now

$$
\begin{equation*}
-t(p)={ }_{i=1}^{2}| | p_{i}-P_{i-1} H={\underset{i=1}{X}{\underset{j}{x}}_{X}^{X} \mid p_{1}(J)-p_{ \pm-1}(j) I . ~ . ~}_{n} \tag{5}
\end{equation*}
$$

For every fixed $j_{Q}, 1 \wedge j_{\ell} \wedge n$, we have $P_{k}\left(j_{Q}\right)=" P \rho^{\wedge} \rho^{\wedge}$ so that the $J_{0}^{\text {th }}$ co-ordinate must vanish at some point of p. Since no co-ordinate vanishes at an interior point of a face of the polytope $£\left(£^{\mathbf{l}}(\mathrm{n})\right)$, it follows at once that, in fact

Department of Mathematics
Carnegie-Mellon University
January 4, 1971
J. J. Schäffer, On the Geometry of Spheres in L-spaces.

On p. 7 replace Theorem 7 by:
7. Theorem. If A Js_atn infinite set, then $m\left(£ \quad{ }^{\prime}(A)\right)=2$; but $6(-p, p)>2$ for every penS $\left(\wedge^{1}(A)\right)$ J. and $\wedge^{1}(A)$ is a fortiori not flat.

Proof, $I^{\boldsymbol{I}}(\mathrm{A})$ contains a subspace congruent to $t^{\boldsymbol{I}}(\mathrm{n})$ for $\mathrm{n}=2,3, \ldots$; therefore, by Theorem 6 and [5; Lemma 5.2 and
 whence $\left.m^{\mathbf{l}}(A)\right)$) $=2$. (Since $I^{\mathbf{l}}(A)$ is not reflexive, this conclusion also follows from [7].)

On the other hand, let $\left.\operatorname{pedSC}^{\wedge}(\mathrm{A})\right)$ be given, and choose $a_{\underline{Q}}$ eA such that $P\binom{a}{\ell} ¥^{\prime \prime} 0$. If c is a curve in $5 £\left(£^{\text {l }}(A)\right)$ from $-p$ to p, there is a point q on c with $<3\left({ }^{a}{ }_{0}\right)=0$. Then $\ell(c) \geq\|p-q\|+\|q+p\|=2 \mid p\left(a \underset{a}{ } \underset{a_{0}}{ } a_{0}(|p(a)-q(a)|+|q(a)+p(a)|) \geq\right.$

$$
\geqq 2\left|p\left(a_{o}\right)\right|+\underset{a^{\wedge} a_{a_{Q}}}{\Gamma}|q(a)|=2\left(\left|p_{p}\left(a_{o}\right)\right|+||q||\right)=2\left(\left|p\left(a_{O}\right)\right|+1\right) .
$$

Since c was arbitrary, we find $6(-p, p) \geq 2\left(\left|p\left(a_{0}\right)\right|+1\right)>2$.
Remark, This strengthens the result in [3] that $\wedge^{1}\left(\wedge_{0}\right)$ is not flat.

$$
\begin{aligned}
& \geqq \sum_{j \neq j_{0}}\left(I P f c U J-p, \quad(J) I+\left[p_{i} \quad(J)-P_{n}(J) I\right)\right. \\
& =\sum_{j \neq j_{0}}\left(\left|p_{i_{0}}(j)+p_{0}(j)\right|+\left|p_{i_{0}}(j)-p_{0}(j)\right|\right) \geqq 2 \sum_{j \neq j_{0}}\left|p_{0}(j)\right| \\
& =2 \underset{\mathbf{j}=\mathbf{l}}{\mathbf{2}}\left|\mathbf{p}_{\mathbf{i}_{0}}(\mathbf{j})\right|=2 \| \mathbf{p}_{\dot{X}_{O}} I I=2 .
\end{aligned}
$$

Since (6) holds for $j_{0}=1, \ldots, n$, we find, using (5),

Thus $m\left({ }^{\prime} t^{1}(n)\right)=' t$. $(0) \wedge 2 n(n-1) \sim^{1}$, as was to be shown.
Remark. If n is odd, the inequality $m\left(1^{1}(n)\right) ~ \wedge n(n-1) \sim^{1}$ also follows from [8].
7. Theorem. J J $N j^{\wedge}$ an infinite cardinal, $\left.m^{(f)}(i<)\right)=2$, but $-t^{1 \wedge}$) is not flat.

Proof. $I^{1}(N)$ contains a subspace congruent to $I^{1}(n)$ for $n=2,3, \ldots ;$ therefore, by Theorem 6 and [5; Lemma 5.2
 $\mathrm{n}=2,3, \ldots$; whence $\mathrm{m}\left(-\mathrm{t}^{1}(\mathrm{i}<)\right)=2$. (Since $\mathrm{f}^{1}(\mathrm{~N})$ is not reflexive, this conclusion also follows from [7].) On the other hand, consider a curve in $\wedge^{\wedge}\left(I^{1}(X)\right)$ with antipodal endpoints; it lies in a separable subspace of $t^{1}(X)$, and therefore in a subspace congruent to $I^{1}\left(X_{o}\right)$; but Harrell and Karlovitz have shown that $t^{1}\left(N_{0}\right)$ is not flat [3; Corollary to Theorem 5]; therefore the length of the curve is not 2 , and $I^{1}(X)$ itself is not flat.

We can summarize some of our conclusions by restating them as a theorem on abstract L-spaces and relying on Kakutani ${ }^{\mathrm{T}}$ S representation theorem [4]g according to which the L-spaces are precisely the Banach lattices congruent and lattice-isomorphic to the spaces $L^{\mathbf{l}_{(j i t)}}$ for all measure spaces (SjSjjfi).
8. Theorem, Let X ’be aji abstract L-space with $\operatorname{dim} X>1$. Then one and only one of the following four alternatives holds.

$\operatorname{dim} \mathrm{X}$ 自	infinite	infinite	infinite	$\mathrm{n}<\infty$
$\mathrm{D}(\mathrm{X})=\mathrm{M}(\mathrm{X})=$	2	4	4	4

does X have

4. Some problems

The results of the preceding sections, and especially Theorem 2, suggest the following questions, given in order of increasing restrictiveness.

Problems. Characterize those Banach spaces X for which:
(a): $M(X)=2$;
(b) : $D(X)=2$;
$(\mathrm{c}): \quad 6(\mathrm{p}, \mathrm{q})=1 \mid \mathrm{q}-\mathrm{p} \|$ for all $\mathrm{p}, \mathrm{qe}{ }^{\wedge} \mathrm{S}(\mathrm{X})$;
(d): there exists, for all $P, q e c) £(X)$, a curve of length $||q-p||$ from p to q in $S S(X)$.

The conjecture may be ventured that the only Banach spaces X that satisfy (d) are precisely those congruent to $L^{\mathbf{1}_{\text {(券) }}}$ for some non-atomic measure $\backslash i$.

References

[1] H. Busemann, The Geometry of Geodesies, New York, Academic Press, 1955.
[2] P.R. Halmos, "The range of a vector measure", Bull. Amer. Math. Soc. 54 (1948), 416-421.
[3] R.E. Harrell and L.A. Karlovitz, "Girths and flat Banach spaces", Bull. Amer. Math. Soc. (to appear).
[4] S. Kakutani, "Concrete representation of abstract (L)-spaces and the mean ergodic theorem", Ann. of Math. 42 (1941), 523-537.
[5] J.J. Schäffer, "Inner diameter, perimeter, and girth of spheres", Math. Ann. 173(1967), 59-79.
[6] J.J.SchUffer, "Addendum: Inner diameter, perimeter, and girth of spheres", Math. Ann. 173(1967), 79-82.
[7] J.J. Schäffer and K. Sundaresan, "Reflexivity and the girth of spheres", Math. Ann. 184(1970), 163-168.
[8] J.J. Schäffer, "Minimum girth of spheres", Math. Ann. 184(1970), 169-171.
[9] J.J. Schäaffer, "Spheres with maximum inner diameter", Math. Ann. (to appear).

