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ON THE GEOMETRY OF SPHERES IN L-SPACES

J. J. Schaffer

Abstract

It is shown that any two points on the surface of the unit

ball of L (fi) , where the measure \i is non-atomic, may be

joined in the surface by a curve whose length is equal to the

straight-line distance between its endpoints. This property is

contrasted with the metric properties of the unit sphere in

other L-spaces.

1. Introduction

In [3], Harrell and Karlovitz call a Banach space X flat

if there exists on the surface of the unit ball a curve of length 2

with antipodal endpoints. They observe that L (ji) , where \i

is Lebesgue measure on the unit interval, is flat, and that in

fact such a curve exists for every prescribed pair of antipodal

endpoints. Our first aim is to show, in Theorem 2, that L (fi)

for this and every other non-atomic measure \x is even "flatter"

than this observation alone indicates.

This question belongs to an area of investigation developed

in [5], dealing with certain metric parameters of the unit

spheres of norraed spaces. In Section 3 we discuss the values

of these parameters for all L-spaces.

If X is a normed space, S(X) denotes its unit ball, and

d the boundary of 2(X). A curve in X is a "rectifiable



geometric curve" as defined in [1; pp. 23-26]; for terminological

details see [5; p. 61]. The length of a curve c is l(c) .

We shall consider in what follows a measure space (S,S,fi)

and the corresponding Banach space L = L (fi) of (equivalence

classes of) real-valued functions. The argument \i is omitted

when confusion is unlikely. We assume once and for all that

dim L1 > 1; i.e., that there exist E,E!eS with 0 <

) < oo.

2. Non-atomic measures

1 • Lemma. If \i JLŜ  non-atomic and pe^S (L ) , there

exists a. curve of length || |p |-p|| from p jto |p | ±n d£ (L ) .

Proof. Consider the measure v on S defined by
— — — — — />J

v(E) = I |p |d|Lt, EeS. Then (S,£>,v) is a non-atomic measure space
E

with v(S) = 1. There exists, therefore (see, e.g., [2]), a

function G : [0,1]-* S such that G(0) = 0, G(l) = S, G(S) c G(t)

whenever s <; t, and such that v(G(t)) = t, 0 £ t ^ 1.

We now set f(t) = |p|xG(t) + P*s\G(t)' ° ^
 t ^ 1- T h e n

|f(t) I = |p|, whence ||f(t)|| = 1, for all t. If s ^ t we

have f(t)-f(s) = ( |p |-P)xG(t) \G(S) >
 w h e n c e

(1) ||f(t)-f(s)|| = J (|p|-p)dfi.
JG(t)\G(s)

From (1), ||f (t)-f (s) || ̂  2v(G(t) \G(S)) = 2(t-s), so that

f : [0,13-^L1 is Lipschitzian. Since f(0) = p, f(l) = [p | .

f is a parametrization of a curve from p to |p | in 1

Again from (1), ||f (t)-f (s) || = <p(t)-<p(s) , where <p(t) = \ (|p|-p)dfi.
G(t)

Therefore the length of the curve is



= J

2. Theorem, jjf jLt is non-atomic and p,qeBE(L ), there

exists a. curve of length ||q-p|| from p Jto q ±n S£(L ) .

Proof. The preimage of (-00 ,0) under the function p+q is

an element of S; changing the values of each and every function

in L to their opposites on this set constitutes a congruence

of L onto itself. Modulo this congruence we may assume

without loss that

(2) p+q ̂  0.

Now

(3) q-p = (q-|q|) + (|q|-|p|) + (|p|-p).

It follows from (2) that any two of the three summands in the

second member of (3) are almost nowhere of strictly opposite

signs. Therefore |q-p | == ( |q |-q) + | |q |-|P I I + ( IP |-P) , and

(4 ) | | q - p | | = | | | q | - q | | + | | | q | - | p | | l + I I I P | - P I | .

Now by Lemma 1 there exist curves from p to |p | and from

|q I to q in S2 (L ) with lengths || |p |-p|| and | | |q |-q| | , respectively;

and since | p | , [ q | ^ 0, the s t ra ight - l ine segment from |p | to |q |

(which has length | | | q | - |p | | | ) l i es entirely in ^ ( L 1 ) . Putting

curve, segment, and curve together end-to-end, we obtain a curve

from p to q in SE(L ), and i t s length is ||q-p|| on account

of (4) .



3. Spheres in L-spaces

We recall some further terminology and notation from [5].

Let X be a normed space with dim X > 1. The inner metric

6 = 6 of SS(X) is defined by 6(p,q) = ±nf[l(c) : c a curve

from p to q in d£(X)} for all p,qed2(X). Using this

inner metric, we define the parameters

m(X) = inf{6(-p,p) :

M(X) = sup{6(-p,p) :

D(X) = sup{6(p,q) : p

2m(X) and 2M(X) are, respectively, the girth and the perimeter

of S(x); D(X) is the inner diameter of SS(X). We note in

passing that it is a conjecture unresolved in general (though

verified for, e.g., dim X ^ 3, or D(X) = 4) that M(X) = D(X)

for all X.

We note an immediate consequence of the work in Section 2.

3. Corollary. If JLI is non-atomic, 6 i(p,q) = |lq-p||
L

for all p^edEfL1) , and DCL1) = MfL1) = m(L1) = 2 .

Proof. Immediate from the definitions and Theorem 2.

What if fx is not non-atomic? We refer to [9] and recall

that, in a normed space X, a point u is a pole of X if

6(-u,u) = 4. Existence of a pole is sufficient but not necessary

(unless dim X < oo ) for D(X) = M(X) = 4.

4. Theorem. If A€S is an atom for jit, then u = (jx(A))~

i£ a pole £f L1, and DfL1) = MfL1) = 4.



r 1
P r o o f . If a ( x ) = I xdjx, x e L , we h a v e x = a ( x ) u +

f o r a l l X G L 1 , a n d | |x | | = | a ( x ) | + H x I I

Now a : L -*R is continuous 9 and afHhu) = ±1. On any

given curve c from -u to u in BS(L ) there must therefore

be a point v with a(v) = 0, whence v = V X S \ A - Since U X S \ A

we find

I = |a(u) | + ||vxsNAll + |a(u) | +
= 2 + 2||v|| = 4.

Therefore 6(-u,u) ^ 4, and the reverse inequality holds by

[5; Theorem 3.5]. Thus u is a pole. The proof could have been

rephrased so as to use part of [9; Theorem 4.1 with Remark].

On the other hand, we record the following observation.

5. Theorem. If \i is not purely atomic, L is flat,

and m(L1) = 2.

Proof. If )LtT is the (non-null) restriction of \i to

the non-atomic part of the measure space, L (ji) contains a

subspace congruent to L (̂tT ) . By Theorem 2, this subspace is

flat, hence so is L (/i) itself.

It remains to consider purely atomic measures. Now if \i

is purely atomic, L {\x) is congruent I (#) , where K is the

cardinal of the set of (equivalence classes of) atoms; and for

every cardinal K, £ (K) is of course itself L dJ>n) , where \i

is the (purely atomic) counting measure on K. We may thus

restrict our attention to the spaces I (N)9 & > 1.



Theorem, For every positive integer n > 1 we have

Proof. 1. Consider the sequence (p. : i=l,...5n) of points

of BS(^1(n)) given by

and set pn = -p • A straightforward verification shows that

the polygon p with consecutive vertices PQJP-I 9 • • • >P i s a

curve from p = -p to pn in bl>(l (n)), and ||pi"P._1|| = 2(n-l)~ ,

i = l,...,n. Therefore m(-t1(n)) ^ l(p) = 2n(n-l)~1. This

argument was pointed out by L. Danzer (private communication,

1967) .

2. To prove the reverse inequality,, we observe that

1
E(I (n)) is a polytope, and apply [6; Lemma 2]; this states that

there exists a simple polygon p in 52(I (n)) with antipodal

endpoints such that <t(p) = m(l (n) ) . Let P0,P-, , • . . ,Pk = -pQ

be the consecutive vertices of this polygon. Now

k k n

(5) -t(p) = 2 ||pi-Pi__1H = X X |p1(J)-p±_1(j) I.

For every fixed j Q , 1 ^ jQ ^ n, we have Pk(jQ) = " P o ^ o ^

so that the Jo
th co-ordinate must vanish at some point of p.

Since no co-ordinate vanishes at an interior point of a face

of the polytope £(£ (n)), it follows at once that, in fact

pi ^ C P = ° f o r s o m e io' •"• ^ i0 ^ k* B u t t h e n ^8^ yields
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On p.7 replace Theorem 7 by:

7. Theorem. If A JLs atn infinite set, then m(£ (A) ) = 2;

but 6(-p,p) >2 for every pe5S(^1(A))J and ^1(A) is a

fortiori not flat.

Proof, I (A) contains a subspace congruent to t (n) for

n = 2,3,...; therefore, by Theorem 6 and [5; Lemma 5.2 and

Theorem 5.3(a)], 2 £ m(^1(A)) £ m(^1(n)) = 2n(n-l)~1, n = 2,3,...;

whence m(l (A))) = 2. (Since I (A) is not reflexive, this

conclusion also follows from [7].)

On the other hand, let pedSC^ (A)) be given, and choose

aQeA such that P(a
Q) ¥" 0. If c is a curve in 5£(£ (A)) from -p

to p, there is a point q on c with <3(a0) = 0. Then

= 2|p(a )\+l ( | p(a) -q(a) | + | q(a)+p(a)

2 | p ( a ) | + aZi | q ( a ) | = 2 ( | P ( a ) | + | | q | | ) = 2 ( | p ( a
a ^ a

)
a^aQ

Since c was arbitrary, we find 6(-p,p) > 2(|p(a )|+1) > 2.

Remark, This strengthens the result in [3] that ^1(^o) is

not flat.

cs



(6) *<p) -.^IP^V-Pi.^Jo)' = ^ ^'Pi^J-Pi-l^J

IPfcUJ-p, (J) I + [pi (J)-Pn(J) I)

|p (j)

= 2 2 |p ( j ) | = 2 ||p II = 2 .
j=l 0 XO

S i n c e ( 6 ) h o l d s f o r j = l , . . . , n , w e f i n d , u s i n g ( 5 ) ,

n k
n-t(p) ^ 2n + £ S \pAJn)-p.1(Jn)\=2n+l(p).

jo=l i=l x ° x i o

Thus m('t (n)) = 't.(p) ^ 2n(n-l)~ , as was to be shown.

Remark. If n is odd, the inequality m(l (n)) ^ 2n(n-l)~

also follows from [8].

7. Theorem. Ĵ f N j^ an infinite cardinal, m(£ (i<)) = 2,

but -t1^) is not flat.

Proof. I (N) contains a subspace congruent to I (n)

for n = 2,3,...; therefore, by Theorem 6 and [5; Lemma 5.2

and Theorem 5.3(a)], 2 ^ m(^1(«)) £ m(-t1(n)) = 2n(n-l)"1,

n = 2,3,...; whence m(-t (i<)) = 2 . (Since £ (N) is not reflexive,

this conclusion also follows from [7].) On the other hand,

consider a curve in ^2(I (X)) with antipodal endpoints; it lies

in a separable subspace of t (X), and therefore in a subspace

congruent to I (X ); but Harrell and Karlovitz have shown that

t (N ) is not flat [3; Corollary to Theorem 5]; therefore the

length of the curve is not 2, and I (X) itself is not flat.
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We can summarize some of our conclusions by restating

them as a theorem on abstract L-spaces and relying on KakutaniTs

representation theorem [4]9 according to which the L-spaces

are precisely the Banach lattices congruent and lattice-isomorphic

to the spaces L (jit) for all measure spaces (SjSjfi).

8. Theorem, Let X b̂e aji abstract L-space with dim X > 1.

Then one and only one of the following four alternatives holds.

dim X jis infinite infinite infinite n < oo

D(X)=M(X)= 2 4 4 4

does X have

ji pole? no yes yes yes

m(X)= 2 2 2 2 n ( n - l ) ~ 1

is X flat? yes yes no no

X JLS congruent
to L (jx) , where
\i _is non-atomic neither non- purely purely atomic;

atomic nor atomic; n atoms.
purely atomic infinite

set of atoms

4. Some problems

The results of the preceding sections, and especially

Theorem 2, suggest the following questions, given in order of

increasing restrictiveness.



Problems. Characterize those Banach spaces X for which:

(a): M(X) = 2;

(b): D(X) = 2;

( c ) : 6(p ,q) = l|q-p|| for a l l p ,qe^S(X);

(d): there exists, for all P,qec)£(X), a curve of length

||q-p|| from p to q in SS (X) .

The conjecture may be ventured that the only Banach spaces X

that satisfy (d) are precisely those congruent to L (jit) for

some non-atomic measure \i.
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