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SOVE GEOVETRI C PROPERTI ES OF THE UNI T CELL
IN SPACES C(X; B)

by

K. Sundar esan

If X is a conpact Hausdorff space and B is a
Banach space then the Banach space of B-val ued conti nuous
functions on X wth the usual suprenmumnormis denoted
by C(X;B). The purpose of the present note is to discuss
certain snoot hness properties of the normin C(X;B) in
terns of the corresponding properties of the normin B
Specifically we are concerned here with Gdifferentiabi -
lity, F-differentiability (nore generally n times F-
differentiability) of the norm The normin C(X;B) in
general does not have any of these properties globally
and in this note we characterize the functions f in

C(X;B) where the normhas one of the preceding properties.

We quickly recall a few definitions and notations
useful in the subsequent discussion. If (E || j|) is a
Banach space then the normis Gdifferentiable at xekE

if lim k%#*ﬁl;gn—H44- exists. It is F-differentiable
to

at x if there exists a linear functional I on E such
X
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lx+nf ~ Ixl - 2 (h)
that ' O a |JIh O. |If such a
IN
| i near functional | X exists then it is verified that |[|ZX

is continuous on E. Mre generally the normin E is

said to be a K-tines F-differentiable at x if there

exist for each integer i" 1~ ~Kg a symetric i—
R

multilinear form T continuous on the Cartesian product

X
of i copies of E (denoted by E' ) such that
K 1 . .
lwanll - =l -z g7 T Nh)
0]
| N
as ||H] 0 where hloisthe i-tuple (h,h, . . . h).

For the conveni ence of presentation if T is a
i-multilinear formon B and peX then e(T"p) is

the multilinear formon C(X;B) defined by e(T;p)(f,l,...f.l) =

T(fy(p),...,fi(p)) where f;C(X;B) for 1< | <i . It

is at once verified that if T 1is continuous (synmmetric)
i-formon B then so is e(T;p) on the space. C(X;B).
In the rest of the paper we denote the unit cells

of B and of its dual B* by Lia and UE respectively.

The unit cells of C(X;B) and of its dual by u and U
X X
respectively. In what follows the nornms of various Banach
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spaces involved in the discussion are all denoted by the
sane synbol || || as there is no occasion for confusion.
Before proceeding to state the main results of the

paper we restate few known useful results as | emas.

Lenma 1. A linear functional LeU| IS an ex-
treme point of U;( if and only if L = e{b,p) where

I 1s an extrene point of B and p is a point in X

Lemma 2. The normin E is Gdifferentiable
at x, |I¥] =1, if and only if there is a unique

hyper pl ane of support for the unit cell UE at  x .

Lenrma 3. The normin E is F-differentiable
at x, |Id] =1, if andonly if the dianmeter {f|[f(x) )>
1-6, f e LE } 0O as 6 0.

For a proof of Lemma 1 we refer to Lemma 1 in
Sundaresan [4]. For the proofs of Lenmas 2 and 3,
see Mazur [2] and Srmulyan [3] respectively. See also

pages 111-114, Day [1].

In theorem1 we provi de a characterization of the
Gdifferentiability of the normin C(X;B) at a function
f. This result is known, Sundaresan [4] and restated here

with proof for the sake of conpl et eness.
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Theorem 1. The normin C(X;B) 1is Gdifferentiable
at f if and only if (1) there exists a point geX such
that [[f|! = H(q)|| > |[f(q)|! for all qv~ g and (2) the
normin B is Gdifferentiable at f(q).

Proof. Fromthe honpbgeneity of the normit follows
that the normis Gdifferentiable at x if and only if
it is Gdifferentiable at 7\ x, A" 0. Hence we can
assume without |oss of generality that ||f|]|] = 1. Suppose
the normin C(X;B) is Gdifferentiable at jlI f|j =1. If
possible let there exist p, qeX such that ||f(p)|] =
[[f(gd! = 1. Let I~ I, be two linear functionals in E*,
Hjj =1 =[] such that ~,(f(p)) =*2(f(q)) =1. The
exi stence of such linear functionals is guaranteed by the
Hahn- Banach theorem Fromthe choice of the functionals
l. and 1, it follows that e(-ty,p)(f) = e(*,2 q)(f) = 1.

Further it is verified fromthe definition of e(£,p) that

for a fixed peX, ||e-t,p|l = ['-t]] for all | eE*. Tius

we conclude that He”pJH = |]|e(*2q)]| :1:e(-t1,p)(f) =
e(*2,q)(f) =]Ifll = 1. Hence e("1,p)~'(1) and e(", q)"" (1)
are supporting hyperplanes of U, at f . If p”~ g then

consider a function g C(X B) such that g(p) = f(p)
and g(q) = o. It is verified that e(l,p) (g =170 =
e(*2,q)(9). Hence e(”"1,p) / e(-t,,q) and Uy has two

di stinct hyperplanes of support at f 3 contradicting
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that the normis Gdifferentiable at fg as seen from
Lenma 2 . Thus f satisfies Condition (1) in the theorem.
Next et q be the point in X such that ||f(qg)!|] =1.
If the normin B is not Gdifferentiable then there
exi st two distinct functionals ",_ L g BAN || £, |1| =
[[*4] =1 such that ~(fCq)) =4,(f(gq)) =1. Thus
e(f.l. ,qQ) (f) =e(",q)(f) = 1. Let xeB such that
Ik(x) Nla(x) . Then if o Is the function in C(X; B)
wth range {x} then ef ~q) (cx) ™~ e(*»q) (cx) . Thus
once again it is verified that there are two distinct
hyper pl anes of support for the cell U, at fg4 once
again contradicting the normin C(X;B) is Gdifferen-
tiable at f. Thus f is verified to satisfy Condition
(2).

Conversely suppose that a function f in C(X B) of
unit normsatisfies Conditions (1) and (2). W proceed
to show that there is only one hyperplane of support for

Ux at f . Consi der the set

Br = [L] LeU%, [IU] =L(f) =1}

It is verified that B is w -closed convex subset

of Ug . Hence, byAl aoglu's theorem, Bf is w-conpact

convex subset of Uz . Furt her by the Hahn-Banach t heorem




B » co. It is also verified fromthe definition of an
extrene point that Ext By c Ext Uy where Ext C is the
set of extrenme points of the set C. Si nce Bz IS wW-
conpact convex subset of B* it follows by the Krein-

M|l "man theoremthat B = w'-closure of the convex hull

of Ext Bf. Thus if Card Bf J>23 Card Ext Bf 272 e

Let L, L, € EXt B, L, "L, . Since L;, L, e Ext U,

it follows from Lemma 1 that there are functionals |'>1’

12 © Ext ug _%_*a”(S points p, » P2 € X such that L. = e(E. 4P )1' s
i = 1,2 . L (f) =1, it follows that ~;(f(pi)) =1.
Further noting that ||".]|_| =1, ||f|]|] =1, we conclude

t hat ||f(E.)|| =1. Thus fromcondition (1) it follows

t hat P, = P2 =0. Fromthe condition (2), noti-ng tHat

. (f(q =1~ =1, 1 =1,2, it isinferredthat |, =

3 - 3 - JL

[, . Thus L, =Ly and Card B- =1 . Hence there is
only one hyperpl ane of support for the cell U, at f
i.e., thenormin C(X;B) is Gdifferentiable at f .

This conpl etes the proof of the theorem

Renark 1. W note that if the normin C(X;B) IS
Gdifferentiable at f , and if qgeX such that |[f(Q)]|| =
[|f][] then q is a Gji-point, since ||f(-)|| 1is a continuous

function on X. Let for conpletely regul ar T]_ spaces Y

C(Y) be the Banach space of real valued bounded conti nuous
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function on Y wth usual supremumnorm Let /3Y be
the Stone-Cech conpactification of Y. Fromthe defini-
tion of 3Y there is a linear isometry T on C(Y) onto
COY) such that Tf | Y=1f for all feC(Y). Hence the
normin C(Y) is Gdifferentiable at function f eC(Y)
if and only if there is a unique point pe£f£Y such that
Tf(p) = ||T||. Since {p} is a G point of j3Y and
since the cardinality of a nonenpty closed G subset

of £Y ~Y is at least 2 ° it follows that peY.
Thus we obtain a generalization of a theoremstated on
page 170 in Banach [ | ] for conpact netric spaces to com

pletely regul ar 'I'..l spaces.

Theorem 2. The normin C(X B) is F-differentiable
at f if and only if (1) there exists an isolated point
peX. such that [[f[| = [[f(pI] > [If(a)|] for all q? p
and (2) the normin B is F-differentiable at f (p) .
Further the normin C(X;B) is K-tines F-differentiable,
K> 29 at f if and only if f has property (1) stated

above and the normin B is K-tinmes F-differentiable

at f(p).

Proof. As in Theorem 1l without |oss of generality
it could be assuned that ||f|]] = 1. Let the normin C(X; B)

be F-differentiable at f . Thus it is Gdifferentiable
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at f and there exists exactly one point peX such
that ]jf(pll = 1. W verify that p 1is an isolated
point of X  Since the normis Gdifferentiable at f
by the preceding there is only one functional | e B*
such that \\I\\ =1(f(p)) =1. If p is not isolated
then there exists a net [pa | aeD) in X such that

Py P W th Py P for any aeD. For each aeD,

e(I3pC} is a functional in 5{* of unit norm If 6 >0
since e(£, pg)(f) e(l,p) (f) =1 there exist cteD such
that e(£,,ps) (f) 21- 5. Further for aeD if ||eg<,pg -
e(£:>P)!! ~1 for if g is a function in C(X;B) such that
g(p) = f(p) g(pa) =0 and ||d] =1 then |e(*,pgg -
e(t,p) (99 | =1=1ld| . Thus

dianmeter {L | L€U , L(f) 2 1-8)

does not tend to O as 6 0. Hence by Lemma 3 it follows
that the normis not F-differentiable at f , obtaining a
contradiction. Thus f has property (1) of the theorem

Next we prove that the normin B is F-differentiable

at f(p) by showing (A that diam{f£ | | e Ug ,
t(f(p))2 1-8) 0O as 6 0%. If | € Ug* then
e(t,p) € Uy since ||e(-t,p)|| =\\I\\ for all UE*

and for a fixed peX. Thus if (A is false then




diam[L | LeUs , L(f) ~1- 8 O

as 6 0" contradicting that the normin C(X;B) is
F-differentiable at f . This conpl etes the proof of

the necessity of conditions (1) and (2).

Conversely suppose that f has properties (1) and
(20 in the theorem Let g be the unique point in X
such that ||f(g)]|] = |If]| = 1. (*) Since q is isolated
there exists a positive nunber 67 > 0 such that if
geC(X;B) and ||f - d| < 6. then [|g(a)]] = [ldl > [lg(a")[]
for all q' j4q. Thus for heC(X; B) of sufficiently

small norm j|f +h|| =j|[f(q9 +h(qg)|]| . Since the normin B
is F-differentiable at f(qj, if | is the functional
in B* such that £(f(q)) =|U|] =1 then I is the

F-differential of the normin B at f(qgq) and

Jfthll - fl - eU.a) (h) < Hf (@) +h(a)ll -_lUf () Il - lIh(a))
fInli TH(4n)]

Hence fromthe F-differentiability of the normin B at
f(q) it follows that the normin C(X;B) 1is F-differen-.

tiable at f with ef~rq) as the F-differential.

Next we proceed to the proof of the final part of
the theorem For conveni ence of notation if P is a

pol ynom al operator on B defined by

P(hy = E T. (HY

i=1
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wher e T.l is a continuous nultilinear formon B 1E€ i£ n,
then if peX we define a polynom al operator e(P;p) on

C(X;B) by setting

n .
e(P,p) (h) =i_51 T. (h'(p))

Let nowthe normin C(X;B) be K-tines F-differentiable

at f, |jfj =1 so that there exists a polynom al operator

P Ph) = | T.ChY) suchthat F-—g—2<t2 o
i=1 In|

as j|n| 0. Since KJ> 29 the normin C(X;B) is once
F-differentiable. Hence there is a unique point peX such
that ||f(p)||] =1If]] =1 and such a point p is isolated in

X . Further the conclusion (*¥) of the precedi ng paragraph
is valid and there exists a 6 >0 such that ||H|] <6 inplies
[[f +h|| = |If(p) + h(p)||] and it follows that if xeB of suf-

ficiently small normand C is the constant function on X

X
to B with range {x} then

l£(p) +x|| - €)' - e(P;p)(X) I+ - ifll - P(c)

NI K lc|*

Hence the K-tinmes F-differentiability of the normin
C(X;B) at f inplies that the normin B is K-tines
F-differentiable at f(p)
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Conversely suppose a function f eC(X;B)\, j|[f]|] = 1,
has the property (1) . Further let the normin B be
K-times F-differentiable at f (p). Let P be the poly-
nom al operator on B such that [P . £l iLP)J4e>PW 0.

I
Then arguing as in the proof of the preceding part (see
paragraph 2) it is verified that || || 1is K-tines
F-differentiable at f wth e(P*p) as the approximating

polynomi al. This conpletes the proof of the theorem

Remark 2. Noting that the absol ute val ue function
is ¢c® on R~ {o} it follows fromthe preceding theorem
that if the normin C(X;R) is once F-differentiable at
a function f in C(X R then the normis K-tines

F-differentiable for all KJ> 1

In conclusion we note that by argunents very simlar
to those enployed in the proof of Theorem 2 one can obtain
the follow ng characterization of functions f in C(X B)
such that the normin C(X;B) is p-tines (infinitely)

continuously differentiable at f .

Theorem 3. The normin C(X;B) is p-times (infinitely)
conti nuously differentiable in a neighborhood of f if and

only if (1) there exists exactly one point peX such
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that ||f(p)|| = ||f|]| and such a point p is isolated in X
and (2) the normin B is p-tines (infinitely) continu-

ously differentiable in a neighborhood of f(p).




[13]

Bi bl i ogr aphy

Banach, S., Theorie des operations linearies,
War saw, 1932.

Day, M M, Norned Linear Spaces, Springer-Verl ag,
Berlin, 1958.

Mazur, S., "Ueber Konvexe Mengen In Linearen Norm er-
ten Rammen", Studia Math. = (1933), 70-84.

Smul yan, V. L., 'Y"'Sur La Structure De La Sphere
Unitaire Dans L'e space De Banach', Mat. Sb. (N.S.),
J51(9) (1941), 545-561.

Sundaresan, K., "Spaces of Continuous Functions into
a Banach Space", Carnegie-Mellon University, Depart-
ment of Mathematics, R R 70-19, (1970).

HUNT  LIBRARY
CARNEGIE-MELLON -~ UNIVERSITY




