SOME GEOMETRIC PROPERTIES OF THE UNIT CELL IN SPACES C(X;B) by

K. Sundaresan



Research Report 70-50

December, 1970 tiniversity Libraries **Carnegie Mellon University Pittsburgh PA 15213-3890** 

> ELB CARNEGIE-MELLON UNIVERSITY

Ē

## SOME GEOMETRIC PROPERTIES OF THE UNIT CELL IN SPACES C(X;B)

by

K. Sundaresan

If X is a compact Hausdorff space and B is a Banach space then the Banach space of B-valued continuous functions on X with the usual supremum norm is denoted by C(X;B). The purpose of the present note is to discuss certain smoothness properties of the norm in C(X;B) in terms of the corresponding properties of the norm in B. Specifically we are concerned here with G-differentiability, F-differentiability (more generally n times Fdifferentiability) of the norm. The norm in C(X;B) in general does not have any of these properties globally and in this note we characterize the functions f in C(X;B) where the norm has one of the preceding properties.

We quickly recall a few definitions and notations useful in the subsequent discussion. If (E, || j|) is a Banach space then the norm is G-differentiable at  $x \in E$ 

if lim  $H^{\underline{x}+fo}$ il.....! $\underline{t}$  exists. It is F-differentiable to

at x if there exists a linear functional *I* on E such x

that  $\|\mathbf{x} + \mathbf{h}\| - \|\mathbf{x}\| - \boldsymbol{\iota}_{\mathbf{x}}(\mathbf{h})$  O as  $\|\mathbf{h}\|$  O. If such a **IN** 

linear functional  $I^{\mathbf{X}}$  exists then it is verified that  $I^{\mathbf{X}}$ is continuous on E. More generally the norm in E is said to be a K-times F-differentiable at x if there exist for each integer i^ 1^ i^ K<sub>9</sub> a symmetric i**i** multilinear form T continuous on the Cartesian product X of i copies of E (denoted by E<sup>1</sup>) such that

$$\frac{\|\mathbf{x} + \mathbf{h}\| - \|\mathbf{x}\| - \sum_{i=1}^{K} \frac{1}{i!} \mathbf{T}_{\mathbf{x}} \mathbf{N} \mathbf{h}^{i}}{\mathbf{I} \mathbf{N}^{1}}$$

$$\mathbf{I} \mathbf{N}^{1}$$

as ||h|| = 0 where  $h^1$  is the i-tuple  $(h,h,\ldots,h)$ .

For the convenience of presentation if T is a i-multilinear form on B and peX then  $e(T^p)$  is the multilinear form on C(X;B) defined by  $e(T;p)(f_{1'}...f_{i}) =$  $T(f_1(p),...,f_i(p))$  where  $f_{i \in C}C(X;B)$  for  $1 \leq j \leq i$ . It is at once verified that if T is continuous (symmetric) i-form on B then so is e(T;p) on the space C(X;B).

In the rest of the paper we denote the unit cells of B and of its dual B\* by  $U_{B}$  and  $U_{B}^{*}$  respectively. The unit cells of C(X;B) and of its dual by  $\mu$  and U\* X X respectively. In what follows the norms of various Banach

[2]

spaces involved in the discussion are all denoted by the same symbol || || as there is no occasion for confusion.

Before proceeding to state the main results of the paper we restate few known useful results as lemmas.

Lemma 1. A linear functional LeU | is an extreme point of  $U_X^*$  if and only if  $L = e\{b, p\}$  where I is an extreme point of  $U_X^*$  and p is a point in X.

<u>Lemma 2</u>. The norm in E is G-differentiable at x, ||xj| = 1, if and only if there is a unique hyperplane of support for the unit cell  $U_{\mathbf{E}}$  at x.

<u>Lemma 3</u>. The norm in E is F-differentiable at x,  $||\mathbf{x}|| = 1$ , if and only if the diameter  $\{f | f(\mathbf{x}) \} \ge 1-6$ ,  $f \in U_{\mathbf{E}}^{*} = 0$  as 6 0.

For a proof of Lemma 1 we refer to Lemma 1 in Sundaresan [4]. For the proofs of Lemmas 2 and 3, see Mazur [2] and Smulyan [3] respectively. See also pages 111-114, Day [1].

In theorem 1 we provide a characterization of the G-differentiability of the norm in C(X;B) at a function f. This result is known, Sundaresan [4] and restated here with proof for the sake of completeness.

[3]

Theorem 1. The norm in C(X;B) is G-differentiable at f if and only if (1) there exists a point qeX such that ||f|! = Hf(q)|| > ||f(q!)|! for all qV ^ q and (2) the norm in B is G-differentiable at f(q).

Proof. From the homogeneity of the norm it follows that the norm is G-differentiable at x if and only if it is G-differentiable at  $7 \setminus x$ , A ^ 0. Hence we can assume without loss of generality that ||f|| = 1. Suppose the norm in C(X;B) is G-differentiable at jlf|j=1. If possible let there exist p, qeX such that ||f(p)|| =l|f(q)J| = 1. Let  $l^{*}$ ,  $l_{2}$  be two linear functionals in E\*,  $H^{j} = 1 = |U_2|$  such that  $^{1}(f(p)) = ^{*}_{2}(f(q)) = 1$ . The existence of such linear functionals is guaranteed by the Hahn-Banach theorem. From the choice of the functionals  $l_{\pm}$  and  $l_2$  it follows that  $e(-t_1,p)(f) = e(*_2,q)(f) = 1$ . Further it is verified from the definition of e(f,p) that for a fixed peX, ||e(-t,p)|| = |!-t|| for all  $I \in E^*$ . Thus we conclude that  $He^{pJH} = ||e(*_2,q)|| = 1 = e(-t_1,p)(f) = 1$  $e(*_{2},q)(f) = ||f|| = 1$ . Hence  $e(^{1},p)^{-1}(1)$  and  $e(^{2},q)^{-1}(1)$ are supporting hyperplanes of  $U_x$  at f. If p  $\uparrow$  q then consider a function  $g_e C(X,B)$  such that g(p) = f(p)and g(q) = o. It is verified that  $e(l_rp)(g) = 1 \land o =$  $e(*_2,q)(g)$ . Hence  $e(*_1,p) / e(-t_2,q)$  and  $U_x$  has two distinct hyperplanes of support at f<sub>3</sub> contradicting

[4]

that the norm is G-differentiable at  $f_g$  as seen from Lemma 2. Thus f satisfies Condition (1) in the theorem. Next let q be the point in X such that ||f(q)!| = 1. If the norm in B is not G-differentiable then there exist two distinct functionals  $\hat{}_L g B^{\hat{}} ||f_L|| =$  $||*_2|| = 1$  such that  $\hat{}(fCq)) = 4_2(f(q)) = 1$ . Thus  $e(f_1, q)(f) = e(\hat{}_{2J}, q)(f) = 1$ . Let xeB such that  $l_x(x) \hat{}_l_x(x)$ . Then if  $c_x$  is the function in C(X;B)with range  $\{x\}$  then  $ef^q(c_x) \hat{}e(*_2,q)(c_x)$ . Thus once again it is verified that there are two distinct hyperplanes of support for the cell  $U_v$  at  $f_g$  once again contradicting the norm in C(X;B) is G-differentiable at f. Thus f is verified to satisfy Condition (2).

Conversely suppose that a function f in C(X;B) of unit norm satisfies Conditions (1) and (2). We proceed to show that there is only one hyperplane of support for  $U_{\mathbf{x}}$  at f. Consider the set

$$B_f = [L | LeU_{\mathbf{v}}^*, ||L|| = L(f) = 1 \}$$
.

It is verified that  $B_f$  is w\*-closed convex subset of  $U_X^*$ . Hence, byAlaoglu's theorem,,  $B_f$  is w\*-compact convex subset of  $U_X^*$ . Further by the Hahn-Banach theorem

 $B_{\rm f}$  ^ co . It is also verified from the definition of an extreme point that Ext  ${\tt B}_{\rm f}$  c Ext  ${\tt U}_{\boldsymbol{X}}$  where Ext C is the set of extreme points of the set C . Since  ${\tt B}_{\widetilde{{\bf t}}}$  is w\*compact convex subset of B\* it follows by the Krein- $Mil^{r}man$  theorem that  $B_{f} = w^{*}-closure$  of the convex hull of Ext  $B_{\rm f}$  . Thus if Card  $B_{\rm f}$  J  $\geq$   $^2$  3  $\,$  Card Ext  $B_{\rm f}$  2  $^2$   $\bullet$ Let  $L_n$ ,  $L_o \in Ext B^{*}$ ,  $L_n \ ^{*}L_o$ . Since  $L_1$ ,  $L_o \in Ext U_v$ it follows from Lemma 1 that there are functionals  $l \rightarrow 1$  ,  $12^{e \text{ Ext u}}g \xrightarrow{\text{#an(3 points } p, , p_2 \in X \text{ such that } L. = e(f., p.), f.$ i = 1,2 .  $L_{\pm}(f)$  = 1 , it follows that  $\fill (f(p_i))$  = 1 . Further noting that  $||_{\underline{i}}|| = 1$ , ||f|| = 1, we conclude that  $||f(\mathbf{p}.)|| = 1$ . Thus from condition (1) it follows that  $p_1 = p_2 = q$ . From the condition (2), noting that *I*. (f (q) =  $||^{\cdot}|| = 1$ , i = 1,2, it is inferred that  $l_1 = 3 - 3 - 3$  $l_o$  . Thus L, = L<sub>9</sub> and Card B- = 1 . Hence there is only one hyperplane of support for the cell  $\,U_{v}\,$  at  $\,f$ i.e., the norm in C(X;B) is G-differentiable at f. This completes the proof of the theorem.

<u>Remark 1</u>. We note that if the norm in C(X;B) is G-differentiable at f, and if qeX such that ||f(q)|| =||f|| then q is a  $G_{fi}$ -point, since ||f(-)|| is a continuous function on X. Let for completely regular  $T_{\underline{I}}$  spaces Y C(Y) be the Banach space of real valued bounded continuous function on Y with usual supremum norm. Let /3Y be the Stone-Cech compactification of Y. From the definition of 3Y there is a linear isometry T on C(Y) onto COY) such that Tf | Y= f for all feC(Y). Hence the norm in C(Y) is G-differentiable at function feC(Y) if and only if there is a unique point  $p \in fY$  such that Tf(p) = ||Tf||. Since {p} is a G<sub>fi</sub> point of j3Y and since the cardinality of a nonempty closed G<sub>A</sub>-subset of fY ~ Y is at least 2 ° it follows that  $p \in Y$ . Thus we obtain a generalization of a theorem stated on page 170 in Banach [1] for compact metric spaces to completely regular T. spaces.

Theorem 2. The norm in C(X,B) is F-differentiable at f if and only if (1) there exists an isolated point peX such that ||f|| = ||f(p)|| > ||f(q)|| for all q ? p and (2) the norm in B is F-differentiable at f(p). Further the norm in C(X;B) is K-times F-differentiable,  $K \ge 29$  at f if and only if f has property (1) stated above and the norm in B is K-times F-differentiable at f(p).

Proof. As in Theorem 1 without loss of generality it could be assumed that ||f|| = 1. Let the norm in C(X;B) be F-differentiable at f. Thus it is G-differentiable

[7]

at f and there exists exactly one point peX such that ]jf(p)ll = 1. We verify that p is an isolated point of X. Since the norm is G-differentiable at f by the preceding there is only one functional  $I \in B^*$ such that  $\langle |I| \rangle = l(f(p)) = 1$ . If p is not isolated then there exists a net  $[p_{\alpha} \mid aeD)$  in X such that  $p_{\alpha}$  p with  $p_{\alpha}$  p for any aeD. For each aeD,

 $e(l_{3}p_{ct})$  is a functional in  $\underset{X:}{U_{x}^{*}}$  of unit norm. If 6 > 0since  $e(f,p_{\alpha})(f) = (l,p)(f) = 1$  there exist cteD such that  $e(f,p_{\alpha})(f) = 1 = 1$  there exist cteD such that  $e(f,p_{\alpha})(f) = 1 = 1$ . Further for  $a \in D$  if  $||e(<t,p_{\alpha}) = e(f)| = 1$  for if g is a function in C(X;B) such that  $g(p) = f(p) = g(p_{\alpha}) = 0$  and ||g|| = 1 then  $|e(*,p_{\alpha})g = e(t,p)(g)| = 1 = ||g||$ . Thus

diameter {L | 
$$L \in U$$
 , L(f) 2 1-8)

does not tend to 0 as 6 0. Hence by Lemma 3 it follows that the norm is not F-differentiable at f, obtaining a contradiction. Thus f has property (1) of the theorem. Next we prove that the norm in B is F-differentiable at f(p) by showing (A) that diam{f |  $I \in U_{E}^{*}$ ,  $t(f(p)) \ge 1-8$ ) 0 as 6 0<sup>+</sup>. If  $I \in U_{E}^{*}$  then  $e(t,p) \in U_{X}^{*}$  since  $||e(-t,p)|| = \backslash 1 \backslash \backslash$  for all U E \* and for a fixed peX. Thus if (A) is false then

[8]

## diam [L | LeU $_{\mathbf{X}}^{\star}$ , L(f) ^ 1 - 8] 0

as 6  $0^+$  contradicting that the norm in C(X;B) is F-differentiable at f. This completes the proof of the necessity of conditions (1) and (2).

Conversely suppose that f has properties (1) and (2) in the theorem. Let q be the unique point in X such that ||f(q)|| = ||f|| = 1. (\*) Since q is isolated there exists a positive number  $6^{+} > 0$  such that if geC(X;B) and  $||f - g|| < 6_{\pm}$  then ||g(q)|| = ||g|| > ||g(q')||for all  $q^{f} j4 q$ . Thus for heC(X;B) of sufficiently small norm j|f + h|| = j|f(q) + h(q)||. Since the norm in B is F-differentiable at f(q)j, if I is the functional in B\* such that f(f(q)) = |U|| = 1 then I is the F-differential of the norm in B at f(q) and

## $\frac{||\mathbf{f}+\mathbf{h}|| - ||\mathbf{f}|| - eU.a|(\mathbf{h})|}{\||\mathbf{h}||} \leq \frac{||\mathbf{f}(\mathbf{g})| + \mathbf{h}(\mathbf{g})|| - ||\mathbf{f}(\mathbf{g})|\mathbf{I}| - llh(a)|}{||\mathbf{h}||(\mathbf{g})|}$

Hence from the F-differentiability of the norm in B at f(q) it follows that the norm in C(X;B) is F-differential.

Next we proceed to the proof of the final part of the theorem. For convenience of notation if P is a polynomial operator on B defined by

$$P(h) = \stackrel{n}{E} T. (h^{\frac{1}{4}})$$
  
**i=1**

where  $T_i$  is a continuous multilinear form on B 14 if n, then if peX we define a polynomial operator e(P;p) on C(X;B) by setting

$$e(P,p)(h) = \mathop{\mathbb{E}}_{i=1}^{n} T.(h^{1}(p))$$
.

Let now the norm in C(X;B) be K-times F-differentiable at f, |jf|j = 1 so that there exists a polynomial operator P,  $P(h) = I T Ch^{1}$  such that  $\frac{1 + f + h_{\parallel}}{\|h\|} - \frac{1}{\|h\|} 0$ 

as j|h|| = 0. Since  $K J \ge 2_9$  the norm in C(X;B) is once F-differentiable. Hence there is a unique point  $p \in X$  such that ||f(p)|| = ||f|| = 1 and such a point p is isolated in X. Further the conclusion (\*) of the preceding paragraph is valid and there exists a 6 > 0 such that ||h|| < 6 implies ||f + h|| = ||f(p) + h(p)|| and it follows that if  $x \in B$  of sufficiently small norm and C is the constant function on X X to B with range {x} then

$$\frac{\|\mathbf{f}(\mathbf{p}) + \mathbf{x}\| - \|\mathbf{f}(\mathbf{p})\| - \mathbf{e}(\mathbf{P};\mathbf{p})(\mathbf{x})}{\mathbf{N} \cdot \mathbf{x}} = \frac{\|\mathbf{f} + \mathbf{c}_{\mathbf{x}}\| - \|\mathbf{f}\| - \mathbf{P}(\mathbf{c}_{\mathbf{x}})}{\mathbf{1} |\mathbf{c}_{\mathbf{x}}| |^{K}}$$

Hence the K-times F-differentiability of the norm in C(X;B) at f implies that the norm in B is K-times F-differentiable at f(p).

Conversely suppose a function  $f eC(X;B)\setminus, ||f|| = 1$ , has the property (1). Further let the norm in B be K-times F-differentiable at f(p). Let P be the polynomial operator on B such that II\*(P) + \*II - 1|f(P) - II - PW. O.  $||x||^{K}$ 

Then arguing as in the proof of the preceding part (see paragraph 2) it is verified that || || is K-times F-differentiable at f with  $e(P^p)$  as the approximating polynomial. This completes the proof of the theorem.

Remark 2. Noting that the absolute value function is  $C^{(0)}$  on  $R \sim \{0\}$  it follows from the preceding theorem that if the norm in C(X;R) is once F-differentiable at a function f in C(X;R) then the norm is K-times F-differentiable for all  $K J \ge 1$ .

In conclusion we note that by arguments very similar to those employed in the proof of Theorem 2 one can obtain the following characterization of functions f in C(X;B)such that the norm in C(X;B) is p-times (infinitely) continuously differentiable at f.

Theorem 3. The norm in C(X;B) is p-times (infinitely) continuously differentiable in a neighborhood of f if and only if (1) there exists exactly one point p eX such

[11]

that ||f(p)|| = ||f|| and such a point p is isolated in X and (2) the norm in B is p-times (infinitely) continuously differentiable in a neighborhood of f(p).

## Bibliography

- 1. Banach, S., <u>Theorie des operations linearies</u>, Warsaw, 1932.
- Day, M. M., <u>Normed Linear Spaces</u>, Springer-Verlag, Berlin, 1958.
- 3. Mazur, S., "Ueber Konvexe Mengen In Linearen Normierten Rammen", Studia Math. ± (1933), 70-84.
- 4. Smulyan, V. L., <sup>tf</sup>Sur La Structure De La Sphere Unitaire Dans L<sup>f</sup>e space De Banach<sup>11</sup>, Mat. Sb. (N.S.), J<u>51</u>(9) (1941), 545-561.
- 5. Sundaresan, K., "Spaces of Continuous Functions into a Banach Space", Carnegie-Mellon University, Department of Mathematics, R. R. 70-19, (1970).