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SOME GEOMETRIC PROPERTIES OF THE UNIT CELL

IN SPACES C(X;B)

by

K. Sundaresan

If X is a compact Hausdorff space and B is a

Banach space then the Banach space of B-valued continuous

functions on X with the usual supremum norm is denoted

by C(X;B). The purpose of the present note is to discuss

certain smoothness properties of the norm in C(X;B) in

terms of the corresponding properties of the norm in B.

Specifically we are concerned here with G-differentiabi-

lity, F-differentiability (more generally n times F-

differentiability) of the norm. The norm in C(X;B) in

general does not have any of these properties globally

and in this note we characterize the functions f in

C(X;B) where the norm has one of the preceding properties.

We quickly recall a few definitions and notations

useful in the subsequent discussion. If (E, || j|) is a

Banach space then the norm is G-differentiable at x e E

if lim Hx +foil ~ !lxl' exists. It is F-differentiable
to

at x if there exists a linear functional I on E such
x
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that ; O as |lh|| O . If such a

IN
linear functional I exists then it is verified that I

is continuous on E. More generally the norm in E is

said to be a K-times F-differentiable at x if there

exist for each integer i^ 1 ^ i ^ K 9 a symmetric i—

multilinear form T continuous on the Cartesian product
x

of i copies of E (denoted by E1 ) such that

Nh)
0

IN1

as ||h|| 0 where h1 is the i-tuple (h,h, . . . ,h) .

For the convenience of presentation if T is a

i-multilinear form on B and p e X then e(T^p) is

the multilinear form on C(X;B) defined by e(T;p)(f,,...f.)

T(f1(p),...,fi(p)) where f;€C(X;B) for 1< j < i . It

is at once verified that if T is continuous (symmetric)

i-form on B then so is e(T;p) on the space C(X;B).

In the rest of the paper we denote the unit cells

of B and of its dual B* by U and U* respectively.

The unit cells of C(X;B) and of its dual by u and U*
X X

respectively. In what follows the norms of various Banach
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spaces involved in the discussion are all denoted by the

same symbol || || as there is no occasion for confusion.

Before proceeding to state the main results of the

paper we restate few known useful results as lemmas.

Lemma 1. A linear functional L e U | is an ex-

treme point of U* if and only if L = e{b,p) where

I is an extreme point of U* and p is a point in X.

Lemma 2. The norm in E is G-differentiable

at x, ||xj| = 1 , if and only if there is a unique

hyperplane of support for the unit cell U at x .

Lemma 3. The norm in E is F-differentiable

at x, |]x|| = 1 , if and only if the diameter {f |f (x) )>

1-6, f e U* } 0 as 6 0.

For a proof of Lemma 1 we refer to Lemma 1 in

Sundaresan [4]. For the proofs of Lemmas 2 and 3,

see Mazur [2] and Smulyan [3] respectively. See also

pages 111-114, Day [1].

In theorem 1 we provide a characterization of the

G-differentiability of the norm in C(X;B) at a function

f. This result is known, Sundaresan [4] and restated here

with proof for the sake of completeness.
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Theorem 1. The norm in C(X;B) is G-differentiable

at f if and only if (1) there exists a point q e X such

that ||f|! = Hf(q)|| > ||f(q!)|! for all qV ̂  q and (2) the

norm in B is G-differentiable at f(q).

Proof. From the homogeneity of the norm it follows

that the norm is G-differentiable at x if and only if

it is G-differentiable at 7\ x , A ̂  0. Hence we can

assume without loss of generality that ||f|| = 1. Suppose

the norm in C(X;B) is G-differentiable at jl f |j = 1 . If

possible let there exist p, q e X such that ||f(p)|| =

l|f(q)J! = 1. Let l^, l2 be two linear functionals in E*,

H^jj = 1 = |U2|| such that ^1(f(p)) = *2(f(q)) = 1. The

existence of such linear functionals is guaranteed by the

Hahn-Banach theorem. From the choice of the functionals

l± and l2 it follows that e(-t1,p)(f) = e(*2,q)(f) = 1.

Further it is verified from the definition of e(£,p) that

for a fixed peX, ||e(-t,p)|l = |!-t|| for all I e E*. Tlius

we conclude that H e ^ p J H = ||e(*2,q)|| = 1 = e(-t ,p)(f) =

e(*2,q)(f) = ||f|| = 1. Hence e(^1,p)~
1(l) and e(^ 2,q)"

1

are supporting hyperplanes of Ux at f . If p ̂  q then

consider a function g e C(X,B) such that g(p) = f(p)

and g(q) = o . It is verified that e(lrp) (g) = 1 ^ o =

e(*2,q)(g). Hence e(^1,p) / e(-t2,q) and Ux has two

distinct hyperplanes of support at f 3 contradicting
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that the norm is G-differentiable at f 9 as seen from

Lemma 2 . Thus f satisfies Condition (1) in the theorem.

Next let q be the point in X such that ||f(q)!| = 1 .

If the norm in B is not G-differentiable then there

exist two distinct functionals ^, L e B^^ ||£, || =

||*2|| = 1 such that ^(fCq)) = 42(f(q)) = 1 . Thus

e (£.. ,q) (f) = e(^2J,q)(f) = 1. Let x e B such that

l1 (x) ^ l0 (x) . Then if c is the function in C(X;B)x ^ x

with range {x} then e f ^ q ) (cx) ^ e (*2,q) (cx) . Thus

once again it is verified that there are two distinct

hyperplanes of support for the cell Uv at f 9 once

again contradicting the norm in C(X;B) is G-differen-

tiable at f. Thus f is verified to satisfy Condition

(2).

Conversely suppose that a function f in C(X;B) of

unit norm satisfies Conditions (1) and (2). We proceed

to show that there is only one hyperplane of support for

U at f . Consider the set

Bf = [L | L e U * , ||L|| = L(f) = 1 } .

It is verified that Bf is w* -closed convex subset

of U*; . Hence, byAlaoglu's theorem,, Bf is w*-compact

convex subset of U.* . Further by the Hahn-Banach theorem
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Bf ̂  co . It is also verified from the definition of an

extreme point that Ext Bf c Ext U where Ext C is the

set of extreme points of the set C . Since B~ is w*-

compact convex subset of B* it follows by the Krein-

Milrman theorem that Bf = w*-closure of the convex hull

of Ext Bf . Thus if Card Bf J>
 2 3 Card Ext Bf 2

 2 •

Let Ln, Lo € Ext B ̂ , Ln ^ Lo . Since L1, Lo e Ext Uv

it follows from Lemma 1 that there are functionals l-> ,

12 e E x t ug an(3 points p,, p2 € X such that L. = e(£.,p.)

i = 1,2 . L±(f) = 1 , it follows that ^i(f(pi)) = 1 .

Further noting that ||̂ .|| = 1, ||f|| = 1, we conclude

that || f (p.) || = 1 . Thus from condition (1) it follows

that p, = p2 = q . From the condition (2), noting that

I. (f (q) = ||̂ .|| = 1 , i = 1,2, it is inferred that l1 =
3 - 3 - JL

lo . Thus L, = L9 and Card B- = 1 . Hence there is

only one hyperplane of support for the cell Uv at f

i.e., the norm in C(X;B) is G-differentiable at f .

This completes the proof of the theorem.

Remark 1. We note that if the norm in C(X;B) is

G-differentiable at f , and if qeX such that ||f(q)|| =

||f|| then q is a Gfi-point, since ||f(-)|| is a continuous

function on X . Let for completely regular T- spaces Y

C(Y) be the Banach space of real valued bounded continuous
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function on Y with usual supremum norm. Let /3Y be

the Stone-Cech compactification of Y. From the defini-

tion of 3Y there is a linear isometry T on C(Y) onto

COY) such that Tf | Y= f for all feC(Y). Hence the

norm in C (Y) is G-dif ferentiable at function f eC(Y)

if and only if there is a unique point p e £Y such that

Tf(p) = ||Tf||. Since {p} is a Gfi point of j3Y and

since the cardinality of a nonempty closed GA-subset

of £Y ~ Y is at least 2 ° it follows that p e Y .

Thus we obtain a generalization of a theorem stated on

page 170 in Banach [ l ] for compact metric spaces to com-

pletely regular T.. spaces.

Theorem 2. The norm in C(X,B) is F-differentiable

at f if and only if (1) there exists an isolated point

peX such that ||f|| = ||f(p)|| > ||f(q)|| for all q ? p

and (2) the norm in B is F-dif ferentiable at f (p) .

Further the norm in C(X;B) is K-times F-differentiable,

K >. 2 9 at f if and only if f has property (1) stated

above and the norm in B is K-times F-differentiable

at f(p).

Proof. As in Theorem 1 without loss of generality

it could be assumed that ||f|| = 1 . Let the norm in C(X;B)

be F-differentiable at f . Thus it is G-differentiable
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at f and there exists exactly one point p e X such

that ]jf(p)ll = 1. We verify that p is an isolated

point of X. Since the norm is G-differentiable at f

by the preceding there is only one functional I e B*

such that \\l\\ = l(f(p)) = 1 . If p is not isolated

then there exists a net [p | aeD) in X such that

p p with p ^ p for any a e D. For each aeD,

e(l3p ) is a functional in U* of unit norm. If 6 > 0ct x.

since e(£,p )(f) e(l,p) (f) = 1 there exist cteD such

that e(£,,pa) (f) 2 1 - 5 . Further for aeD if ||e(<t,p ) -

e(£:>P)!! ^ 1 for if g is a function in C(X;B) such that

g(p) = f(p) g(pa) = 0 and ||g|| = 1 then |e(*,pQ)g -

e(t,p) (g) | = 1 = ||g|| . Thus

diameter {L | L € U| , L(f) 2 1-8)

does not tend to O as 6 0 . Hence by Lemma 3 it follows

that the norm is not F-differentiable at f , obtaining a

contradiction. Thus f has property (1) of the theorem.

Next we prove that the norm in B is F-differentiable

at f(p) by showing (A) that diam{£ | I e U* ,

t(f(p))2 1-8) 0 as 6 0+ . If I € UE* then

e(t,p) € U* since ||e(-t,p)|| = \\l\\ for all U E *

and for a fixed peX. Thus if (A) is false then
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diam [L | L e U * , L(f) ^ 1 - 8] 0

as 6 0+ contradicting that the norm in C(X;B) is

F-differentiable at f . This completes the proof of

the necessity of conditions (1) and (2).

Conversely suppose that f has properties (1) and

(2) in the theorem. Let q be the unique point in X

such that ||f(q)|| = ||f|| = 1 . (*) Since q is isolated

there exists a positive number 6^ > 0 such that if

geC(X;B) and ||f - g|| < 6± then ||g(q)|| = ||g|| > ||g(q')|

for all qf j4 q . Thus for heC(X;B) of sufficiently

small norm j|f +h|| = j|f(q) +h(q)|| . Since the norm in B

is F-differentiable at f(q)j, if I is the functional

in B* such that £(f(q)) = |U|| = 1 then I is the

F-differential of the norm in B at f(q) and

|lf+hll - llfll - eU.a) (h) . llf (g) + h ( g ) | | - | |f (q) II - llh(a))
! | | |

Hence from the F-differentiability of the norm in B at

f(q) it follows that the norm in C(X;B) is F-differen-

tiable at f with ef^q) as the F-differential.

Next we proceed to the proof of the final part of

the theorem. For convenience of notation if P is a

polynomial operator on B defined by

n i
P(h) = E T. (h1)
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where T. is a continuous multilinear form on B 1<£ i£ n ,

then if p e X we define a polynomial operator e(P;p) on

C(X;B) by setting

n
e(P,p) (h) = E T. (h1(p)) .

Let now the norm in C(X;B) be K-times F-differentiable

at f , |jf|j = 1 so that there exists a polynomial operator

P, P(h) = I T.Ch1) such that l'f+h" - 'Igl - P<h? o

as j|h|| O . Since K J> 2 9 the norm in C(X;B) is once

F-differentiable. Hence there is a unique point p e X such

that ||f(p)|| = ||f|| = 1 and such a point p is isolated in

X . Further the conclusion (*) of the preceding paragraph

is valid and there exists a 6 > 0 such that ||h|| < 6 implies

||f +h|| = ||f(p) + h(p)|| and it follows that if x e B of suf-

ficiently small norm and C is the constant function on X
x

to B with range {x} then

|! - e(P;p)(x) ||f + c || - ||f|| - P(c )

N ! K l|cx||
K

Hence the K-times F-differentiability of the norm in

C(X;B) at f implies that the norm in B is K-times

F-differentiable at f(p) .
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Conversely suppose a function f eC(X;B)\, j|f|| = 1,

has the property (1) . Further let the norm in B be

K-times F-differentiable at f (p) . Let P be the poly-

nomial operator on B such that II*(P) +*ll - l|f (P) II - P W

Then arguing as in the proof of the preceding part (see

paragraph 2) it is verified that || || is K-times

F-differentiable at f with e(P^p) as the approximating

polynomial. This completes the proof of the theorem.

Remark 2. Noting that the absolute value function

is C on R ~ {o} it follows from the preceding theorem

that if the norm in C(X;R) is once F-differentiable at

a function f in C(X;R) then the norm is K-times

F-differentiable for all K J> 1 •

In conclusion we note that by arguments very similar

to those employed in the proof of Theorem 2 one can obtain

the following characterization of functions f in C(X;B)

such that the norm in C(X;B) is p-times (infinitely)

continuously differentiable at f .

Theorem 3. The norm in C(X;B) is p-times (infinitely)

continuously differentiable in a neighborhood of f if and

only if (1) there exists exactly one point p eX such
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that ||f(p)|| = ||f|| and such a point p is isolated in X

and (2) the norm in B is p-times (infinitely) continu-

ously differentiable in a neighborhood of f(p).
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