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Introduction

Makai [7], [8] and Polya [10] introduced the method of interior

parallels to construct trial functions for the Rayleigh quotient

of a vibrating membrane. Payne and Weinberger [9] sharpened

these results by using some geometrical inequalities of Sz.-Nagy

[11]. They proved the following theorem: Among all homogeneous

membranes of given area which are fixed along the outer boundary

curve of given length and are free otherwise, the annulus has the

highest first eigenvalue. Hersch [4] considered multiply-connected

membranes which are fixed on one inner curve and are free otherwise.

He showed that for these membranes with an inner boundary of given

length the first eigenvalue is not greater than that for an annulus

of the same area. The aim of the present is to prove similar results

for membranes which are partially free on their outer boundary, and

to generalize them to the case of inhomogeneous membranes. In

the first section we extend the method of interior parallels to

curves which are not closed. It will be that the inequalities of

Sz.-Nagy remain valid in a slightly modified form. These inequalities

will be used in the second part to derive isoperimetric inequalities



for the membrane. The proofs will be similar to those in [9] and

[4]. The principal results of this paper were obtained during a

stay at the Advanced Studies Center of the Battelle Institute,

Geneva.

§1. Inequalities of Sz.-Nagy for parallel sets in sectors.

1*1. Let S be the sector O ^ _ r < a o , 0 <^ 9 <L a (r,9 polar

coordinates). Let G(G 0 S ^ 0) be a bounded simply-connected

domain which contains the origin and which is bounded by two linear

segments an Q = 0 and 0 = a, and by a Jordan arc T . We

assume that r OS consists of only one arc. if B is a domain

such that B 0 F / (6, and if c c B is a rectifiable curve joining
f

a point PcB and r 9 then d (P,1" ) = inf \ ds denotes the

c c B c

distance from P to V with respect to B. The sets

G_t = fP€G; dg(P,rQ) <L t] (0 £ t £ tQ) will be called the interior

parallel sets of V , and r . = (PeG; d-(P,r ) = t} are the

corresponding interior parallels. For domains G lying entirely

in S we also define the exterior parallel sets

G + t = [P€S\G; dg^g(P,ro) { t l (0 £ t < GD) and the exterior parallels

V^ = (PGS\G; d ,ft»(P,r ) = t}. A(B) is the area of B and L(r)

the length of I\ We shall use the abbreviations A(t) = A(G^t) •

A+(t) = A(G + t), L(t) = L(f-t) and L+(t) = L(f+t) .

The following lemma is a generalization of a result obtained by

Sz.-Nagy [11].



Lemma 1: (a) Let G be contained in S. Hien A+(t) - - t

is a continuous and concave function of t(0 <C_ t < oo ) .

(b) For a <^ ir, A(t) + (a/2) t is a continuous and concave function

,of t(0 <_ t <̂_ t , where t is the largest value of t such

that G is not empty) .
o

Proof: 1° Following [11] we consider first a domain G whose

boundary arc r consists of circular arcs which are all convex

with respect to G. We suppose further that their centers

M. i = l,2,...,n are distinct, and that at the point of intersection

of two arcs their tangents do not coincide.
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P ( i ) or p|^ t (i = l,2,...,n+l) are the corners of

including its endpoints. a^ denotes the external angles at P*1J

It follows from the convexity that ai < 0 for i = 2,...,,n.

For the sake of brevity, only the case ou > IT/2 and a
n+i < TT/2

will be considered; it is clear that the results hold also for the

other cases. (3- is the angle of the i circular arc.

The point P_[v i = 2,...,n lies on a hyperbola through P*1'

with the focal points M. and M.. If At is small,
1— i I

^| is close to the tangent to this hyperbola at p ' 1 . Since

this tangent besects the angle between P M. and P M. ,

it follows that
n n

(1) £ (At) - L(0) = At E 0- - At E 2tg (-a,/2) + o(At) +
i=l X i=2

+ At(a1 - i//2) - At tg (u/2 - an+1)

a L+(At)-L(O)
and therefore d = lim exists. Because of the

At\O A t

inequality tg y ^v and the relation

(2) s a. + j Kds = 2rr - (r/ - a) ( K is the curvature of dG, and s

the arc length of S G ) ,

we conclude that

(3) d a <1 a.

Since (f + f c) + = ^ + / t + r w (3) is valid for all exterior parallels.

Under our assumptions on r. f(t) = L (t) - at is continuous and



has a right-hand side derivative f1 (t) £ 0. Since L+(t) = A|(t),

we can write f(t) = (A+(t) - (a/2)t )». The function

F(t) = A (t) - (a/2)t is concave, because F! ! (t) = f! (t) <^ 0.

This proves assertion (a) of lemma 1 for this particular case.

The proof of (b) is analogous. We have
n n

(4) L(At) - L(0) = - At S p. - At S a. - At'tg(an - IT/2) +
i=l x i=2 X J

+ At(Tf/2 - % + 1 ) + o(At) .

Hence d1 = lim L(At)"L(°) exists and satisfies the inequality
At\O A

(5) d1 ^ - a

Because of the assumption a <^_ u', (5) holds for all interior parallels,

in particular for those which consist of different arcs. As before,

we conclude that J(t)= A(t) + (a/2)t is a continuous and concave

function of t.

2 In the general case we approximate G by domains of the type

described in 1°. The proof is exactly the same as in [11] and

will therefore be omitted.

From now on, let T be a Jordan arc containing a finite number

2
of arcs of class C . The concavity of F(t) or J(t) guarantees

the existence of A1 (t) or A^(t). In [2], [3] it is shown that,

except for a finite number of corners, and for almost all t,

the F, ... are of class C . Hence

The results of Hartman are valid for parallels on more general
Riemannian manifolds.



dA (t) = f dsdt + o (dt) or dA(t) = f dsdt + o(dt)

L+t -t

It follows therefore that

(6) A|(t) = L+(t) and A> (t) = L(t) .

1.2. An oriented arc will be called convex if it lies everywhere

on the left of its tangent (or half-tangent). Let p be an arc

from A to B and let C = {c} be the class of all convex arcs

lying on the right side of P and joining A and B. P* denotes

the arc with the property L(P*) = min ds. For short, we shall

say that p* is the "right convex hull" of P. We shall assume

that G is a bounded simply-connected plane domain with the

positively oriented boundary r = T U y. T is an arc which,

2

except for a finite number of corners, is in the class C .

y* denotes the right convex hull of y, and A and B are the

endpoints of y. The half-tangents of y* in A and B will be

called t, and t^, i.nd cp is the oriented angle between t..

and t^. If 0 <^ u: < 7T, wo denote by G the domain with the

boundary r 9 t̂ , and t2. Because of the convexity of y*, G

is contained in G. Let the interior parallels T as well

as G . be defined the same way as in 1.1. We set r . = f 0 G'
^ — t — t

and G = G fl G, and we shall use the notations L(t) = L(T ) ,

L = L(rQ), A(t) = A(G_t) and A Q = A(G) .



Lemma 2: If 0 <i cp < IT and a = IT - cp, then

(7) L2(t) = ( i l f ^ ) ^ L 2 - 2aA(t)

Equality holds only for the circular sector of angle a.

The proof is the same as in [4,5], Lemma 1(b) and formula (6)

lead to

(8) L(t) £ L(t) £ - at + L and

(9) dA/dt = L(t)

and thus,

(10) A(t) 1 - (a/2)t2 + Lt

(11) (L/a - t ) 2 ^ (L/a)2 - (2/a)A(t).

By (8) and (9) we have L! (t)L(t)dt <^ - adA(t), and integration yields

(12) L2(t) - L2 £ - 2aA(t) and L2 ^ 2aA(t) .

This inequality was obtained by a different method in [1].

Because of (12), (11) yields

(13) L/a - t 1 f (L/a)2 - (2/a)A(t)}1/2.

In view of (8) , this proves the assertion.

We now consider the following case: Let G be contained in

the sector S = {0<^9<^_g, O < ^ r < a o } , and let A be on 9 = 0

and B on 0 = 8. r thus divides S into two components G

o o

and G . We suppose that G belongs to the unbounded component

G . The exterior parallels are defined as

ff+t = ( P e G ^ ; <iG (P,rQ) = t ) ; we s e t r + t = f+t n G
QD
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and L +(t) = L(F + t) . The definition of G+fc and A +(t) is

analogous. Following [4] and [5], we have

t
R T ** dt

Lemma 3: L+(t) £ Le
p , where T = j A, (t) .

o

Proof: By lemma l(a), formula (6) and L+(t) <^L+(t), it

follows that
t t

T F dt r dt __ 1 L+3tT = J T ^ ln

o o

Equality holds only for the circular sector.

§2. Applications: Upper bounds for the first eigenvalue of

membranes with partially free boundaries.

2.1. Let G be a simply-connected domain whose boundary

F = F U v is subject to the conditions of §1.2. We consider

the homogeneous membrane

Me: Au + Au = 0 in G, ^ + k(s)u = 0 on T (n the outer

normal, k(s) ;>_ 0, s the arc length) , -^ = 0 on y.

The first eigenvalue is characterized by

. ft (w) + k(s ) w ds

r
(14) 7\^ = Min R[w] = Min FF~*2 ' w l i e r e

IJ w dxdy
G

r r 2
& (w) = J grad wdxdy #



Theorem I: Let a = IT - cp, where cp is the angle formed by the

half-tangents t and ?2 of y* in A and B (see §1.2).

If 0 < a <i ir, then

AQ

J (L2 - 2aA)f'2(A)dA + Kf2(O)

(15) A. < Min ̂ =^-
A T-'

r fo >

j f (A)dA

A=0

where K = j k(s)ds is the total elasticity and AQ = A(G)

Fo

the total area. f ranges over all real functions of class D [0,AQ]

Equality holds if and only if G is the domain 0 <^ 9 <^ a,

Ro < r £ R± (R± = L/a , (a/2) (R^ - RQ
2) = AQ) and

/K/L on r = R̂
k(s) = J '" (see fig. 2). A^ is the first root

V_ 0 elsewhere

of the equation

ON '(/ARJ - J f xw .., 7 ~o o 1 o l o

Q
T (/7TRO)NO(/X"R1) - ^ ( ^ T R ^ ^ M / A ^ ) ) = o,

where J is the Bessel function and N is the Neumann functiono o

of order zero.

Proof: We introduce in (14) trial functions w(P) which are

constant along the interior parallels T . , i.e. w(P) = v(t)
•••* xi

if Per t- It then follows that
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fj(16) .( .) - fj
r - t

and by lemma 2 (§1.2)

\(17) *(w) <L \ ( L2 _ 2oA)v'2
_ 2oA)v2(A)dA

Since
A

r- e p p 2
(18) |jw'dxdy = ' v dA and

j k(s)w^ds = Kv (0) ,

it follows that

(L2 - 2aA)vt2dA + Kv2(0)

< — . Since t h i s
A

r° 2

is true for all v^ inequality (15), is proved. Because of the

symmetry of the extremal domain, the level lines of the first

eigenfunction coincide with the interior parallels. In this

case equality holds in (17).

This method can also be used to construct upper bounds for the

first eigenvalue of the irihomogeneous membrane Me!: Au + Apu = 0

in G (p ^ 0) with the same boundary conditions as Me. The
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r 2 n ̂  2
Rayleigh quotient is R[w] = [& (w) + J k(s)w ds]/|Jpw dxdy.

ro G

Choosing again w(P) = v(t) for Per. as a trial function, the

t t

denominator becomes ! I pw dxdy = ! v .pdsdt = ! v g(t)L(t)dt#

G o r__t o

If p is bounded (0 £ p(x,y) <^ H) , then 0 £ g(t) ^ H. We

consider the first eigenfunction v (A) of the problem

[(L2 -2oA)V] ! + ĝv = 0 in (O,M/H) , v! (0) - Kv(0) = 05

r **
v1(M/H) = 0, where M = -;pdxdy. v (A) is non-decreasing•

•j -.' o

AT in (0,H/H)
We se t V (A) = < . It than follows

° {jv{M./B) in [M/H,A ]

A M/H
r° 9 " 2

tha t ' g(A) V (A) dA ^_ H ! v dA. This es tabl ishes the following

generalization of theorem I, which is similar to a result obtained

by Krein [6] .

Theorem I!: Let G and V satisfy the conditions of theorem I.

For given M5L,a,H and K we have

M/H

(L2 - 2aA) f!2dA + Kf2(O)

A, <^ Min
1 ^ M/H

H ' i

o
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i.e., the membrane with the largest possible first eigenvalue

is that covering the domain 0 £_ 9 <L a, RQ <L r £_ R1

[R1 = I/a, ^ (R-ĵ
2 - RQ

2) = M] , and elastically supported

along r = R, [k(s) = K/L] and free on the rest of the boundary

__ ro
A ' -• - r

fN
\

Figure 2 Figure 3

Remarks: 1) This theorem holds also for multiply-

connected membranes which are free along- the interior

boundaries.

2) It is always possible to extend k(s) and r in

a way that the conditions of theorem I are satisfied.

3) For the homogeneous membrane fixed along T , we

L 2
have A- < 3-r—. This inequality is similar to that of Makai [7]

1 o

and is obtained immediately by setting v(t) = t.
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4) If k(s) = GO and a = 0, then A1 <^ (̂ ) .

Equality holds if and only if G is a rectangle and p is

constant. This result was obtained by Polya [10] for a

fixed, homogeneous membrane.

2.2 Let G be a simply-connected domain with the boundary

X" = T y y (see §1.2) subject to the following conditions:

G is contained in the sector S O ^ 9 i ^ O { _ r < o o . A and B

1 ie on 9 = 0 and 9 = B. We assume further that T divides S
K o

into a bounded component G containing the origin, and an

unbounded component G^. Let G be in G^. In this case r + t

(see §1.2) and T = G fl V are defined. The following result

holds for the membrane Me.

Theorem II: The first eigenvalue satisfies the inequality

A
*o
r , 2 , ! 2 2
| (L + 2pA+) f (A+)dA+ + Kf (0)

(20) A 1 Min
X f

J f2 (A+) dA+
o

Equality holds if and only if G is the domain 0 <^ 9

P ( R 2 2 ' R l 2 ) = 2 Ao } a n d

on F
Ms) = ) n . ° (see fig. 3).' O elsewhere

Mil LS3RARY
CMW6IE-MEU0N UWVERSITT
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The proof is the same as in [4], [5]. We introduce in the

Raleigh principle functions w(P) with the level times F

i.e. w(P) = v(t) if Per+t. It follows that

^ o , 2 2

j d̂t̂  dA+ + K v (°)
(21) A. <̂  r

O

t
dt

If we set T(t) = ; 7^, , and p(t) = [A ! (t) ] , (21) takes the

form

1 (~̂) dT + Kv (0)

(22) A £ = , where

Tl 2
I pv (T)dT

o
Ti

T^ is determined by the equation | p (T) dT = A . Let T9 be

T2 fL2e2pT if T <^ T
such that ! L e p dT = A . We define £(T) =1 ^ n .

o ^v ' 0 elsewhere

Because of lemma 3, we have T2 <^ T,. Let u(T) be the first

eigenfunction of the extremal domain, and set

j G(T) if 0 ̂  T <: T
v(T) = U(T) =1 . u(T) is a non-decreasing

( ) if T ^ T2

function. It then follows that
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\ fa«5 / 1 P *-̂  \ — / S I JT ~ j

o o o

By (22) and (23) we have

T2

, which is

o

equivalent to (20).

The same argument as in Theorem I! shows that this result can be

generalized. For the inhomogeneous membrane Mef with bounded

mass distribution 0 <^ p(x,y) <^ H we have

Theorem IIT : Let G and T satisfy the conditions of Theorem II,

For given M,L,p,H and K we have

M/H

j (L2 + 2gA+) f
?2(A+)dA+ + Kf

2(O)

Min
f€D1(O,H/H)

H i f dA+

o

i.e., the membrane with the largest possible first eigenvalue is

that covering the domain O<^9<_|3, R-, <_^<_R9 [R-i = 1/(3,

^— (R2 - R1 ) = M], and elastically supported along r = R1

[k(s) = K/L] and free on the rest of the boundary.

The remarks (1) and (4) under Theorem I* remain also valid in

this case.
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