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| nt r oducti on

Makai [7], [8] and ﬁolya [10] introduced the nethod of interior
parallels to construct trial functions for the Rayleigh quotient

of a vibrating menbrane. Payne and Wei nberger [9] sharpened

these results by using sonme geonetrical inequalities of Sz.-Nagy
[11]. They proved the following theorem Anobng all honpbgeneous
menbranes of given area which are fixed along the outer boundary
curve of”given length and are free otherw se, the annulus has the

hi ghest first eigenvalue. Hersch [4] considered nultiply-connected
menbranes which are fixed on one inner curve and are free otherw se.
He showed that for these nenbranes with aninner boundary of given
length the first eigenvalue is not greater than that for an annul us
of the same area. The aimof the present is to prove simlar results
for menbranes which are partially free ontheir outer boundary, and

to generalize themto the case of inhonogeneous menbranes. In

the first section we extend the nethod of interior parallels to
curves which are not cl osed. It will be that the inequalities of
Sz.-Nagy remain valid ina slightlynodified form These inequalities

will be used in the second part to derive isoperinetric inequalities




for the nmenbrane. The proofs will be simlar to those in [9 and
[4]. The principal results of this paper were obtained during a
stay at the Advanced Studies Center of the Battelle Institute,

Geneva.

81. Inequalities of Sz.-Nagy for parallel sets in sectors.

1*1. Let S be the sector O _r<ao, 0<~9<La (r,9 polar
coordinates). Let (GO S~ 0) be a bounded sinply-connected

domai n which contains the origin and which is bounded by two |inear

segnents an Q=0 and O = a, and by a Jordan arc TO. W
assune that Mo CS consists of only one arc. if B is a domain
such that B 0 Fo/ (6, and if cc B is arectifiable curve joining
f
a point PcB and rg then d gP,l"_g) = inf \_J ds denotes the
c c B c

di stance from P to Vo with respect to B. The sets

G: = fPEG dg(P,rqg <Lt] (OE£t £tg Wl be called the interior

~

parallel-sets.of V, and r . = (PeG d-(P,r ) =1t} are the

corresponding interior parallels. For domains ‘G lying entirely

in S we also define the exterior parallel sets '

@H = [P€S\§ dy*g(P, ro) {tl. (O£t < @) and the exterior parallels

W = (pes\G d ,ftPr ) =t}. A(B) is the area of B and L(r)
the length of I\ W shall use the abbreviations ATt) = A(G’N) .

A(t) = A(G,), T(t) =L(f..) and [i(t) = L(fu) .

The following lenmma is a generalization of a result obtained by

Sz.-Nagy [11].



Lemma 1: (a) Let G be contained in S. Hien Ai(t) - %‘t

2

is a continuous and concave function of t(0 <_t < o00) .

(b) For a<rir, A(t) + (a/2)%

is a continuous and concave function

, of t(Og_t_é_g , Where 3 is the largest value of t such
that G is not enpty) .

_.to
Proof: 1° Following [11] we consider first a domain G whose

boundary arc N consists of circular arcs which are all convex

with respect to G v suppose further that their centers

Ml i =1,2,...,n are distinct, and that at the point of intersection
of two arcs their tangents do not coincide.
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PC) or pl* (i =1,2,...,n+l) are the corners of TO(T~+ﬁt),

. . FERY
including its endpoints. a” denotes the external angles at P*%
It follows fromthe <convexity that a < 0 for 1 = 2,...,,n °

For the sake of brevity, only the case ou > I1T/2 and & < TT2

will be considered; it is clear that the results hold also for the

ot her cases. (?i is the angle of the itl’1 circular arc.
. "4 . . r-\
The poi nt PJE)- i = 2,...,n lies on a hyperbola through P*"
with the focal points M ., and M. If At is small,
1 I ..
PA[ . is close to the tangent to this hyperbola at p“l). Since
this tangent besects the angle between P{i)M1 and P(i)Ml 1
it follows that
N n n
(1) £+(At) - L(0) =At EO)—( - At E 2tg (-a,-L/2) + o(At) +
i =l I =2
+ Attty - i) - At tg (W2 - ana)
a Lat)-L(o
and therefore d = Iim exi sts. Because of the
At\ O At
inequality tg y2 "\_/" and the relation

n+1 :
(2) s a + | Kds = 2r - (/ - a) ( K is the curvature of dG, and s

the arc length of SG) ,

we conclude that

(3) d?<1 a.

Since (firc)y = "+‘/t+5W (3) is valid for all exterior parallels.

Under our assumptions on r,_.o,f(t) = IL'+(t) - at is continuous and
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has a right-hand side derivative f!'(t) £0. Since Lﬂ:(t) = Al (t),

we can write f(t) = (A(t) - (a/2)t‘)». The function
F(t) = A’+(t) - (a/2)t~ is concave, because F' (t) = f' (t) <~ 0.
This proves assertion (a) of lemma 1 for this particul ar case.

The proof of (b) is anal ogous. V¢ have

n n
(49 Tat) - T(0) =- At Sp. - A Sa - At'tg(a, - 1T/2) +
i=l X i =2 '

+ M(TH2 - %.1) + O(At) .

Hence df = IimL-(-Aia——'i':—L{—"—)-— exists and satisfies the inequality
At\ O A

(5 d*~ - a
Because of the assunption a<” u', (5 holds for all interior parallels,

in particular for those which consist of different arcs. As before,

we conclude that J(t)= ,&(t) + (a/2)t‘ is a continuous and concave

function of t.

In the general case we approxinate ‘G by donains of the type
described in 1°. The proof is exactly the sane as in [11] and

will therefore be omtted.
From now on, |et To be a Jordan arc containing a finite nunber

2
of arcs of class C . The concavity of F(t) or J(t) guarantees
the exi stence of AT (t) or A”\‘J(t). In [2], [3]1it IS shown that,
except for a finite nunber of corners, and for alnost all t,

t he ’lf',ﬂ.: are of class C. Hence

1The results of Hartman are valid for parall el s on nore general
Ri emanni an mani f ol ds.



dX (t) = f dsdt + o (dt) or dA(t) = f dsdt + o(dt)

~d

L+t -t

It follows therefore that

Pt

(6) A(t) = L.(t) and A (t) = L(t) .

1.2. An oriented arc will be called convex if it |lies everywhere
on the left of its tangent (or hal f-tangent). Let p be an arc
from A to B and let C = {c} be the class of all convex arcs
lying on the right side of P and joining A and B. P* denotes

the arc with the property L(P*) = mn rds. For short, we shall

say that p* is the "right convex hull"” of P. W shall assune

that G is a bounded sinply-connected plane domain with the

positively oriented boundary r = TOU y. To is an arc which,
2

except for a finite nunber of corners, is in the class C.

y* denotes the right convex hull of y, and A and B are the

endpoints, of y. The half-tangents of y* in A and B wll be

L - . . 1

called t, and t”~, i.nd cp is the oriented angle between t..

and t~ If 0<Mu < 7T, wo denote by G the domainwth the
- -

™

boundary rog t",L and t,. Because of the convexity of y* G

is contained in G Let the interior parallels T_t as wel |

as G , be defined the same way as in 1.1. W set r_4 :f_tOG

and G_(= GN_th G and we shall use the notations L(t) = L(T_g :

L=1L(rg, At) =A(G,) and Ao= A(Q .



Lemma 2: If O<icp<IT and a =1T - c¢cp, then

(1) L¥t) :(”fA)2 AL2- 2aAt)

Equality holds only for the circular sector of angle a.

The proof is the sane as in [4,5], Lemma 1(b) and fornula (6)
lead to

(8 L(t) £T(t) £- at +L and

(99 dA/dt = L(t)

and thus,

(10) A(t) 1- (a/2)t? + Lt

(11) (Lla - t)2 "~ (Lla)? - (2/a)A(t).

By (8 and (90 we have L' (t)L(t)dt <* - adA(t), andintegration yields
(12) L%(t) - L% £- 2aA(t) and L? ~ 2aA(t) .

This inequality was obtained by a different method in [1].
Because of (12), (11) yields

(13) L/a - t 1 f (L/a)? - (2/a)A(t)}Y2
In viewof (8) , this proves the assertion.
We now consider the follow ng case: Let G be contained in

the sector S = {0<"9<” g, O<”r<ao}, and let A beon 9 =0

8. r thus divides S into two conponents G

and B on O

0 0
a
and G . W suppose that G belongs to the unbounded conponent
(48]
G . The exterior parallels are defined as

fio = (PeG?; <ic  (Psro) =1t); we set ry = fiy n G
(o))



and L.(t) = L(F4«) . The definition of Gy, and A.(t) is

anal ogous. Following [4] and [5], we have
t

RT * __dt
temma 3 L.(t) £ Le? , where T =] A1)
0

Proof: By lemma | (a), formula (6) and L.(t) <~ L.(t), it
foll ows that

t t L(t)

= d r, _dt L+3t 1 4, %
T jI_WA _—dn y
0 0

Equality holds only for the circular sector

82. Applications: Upper bounds for the first ei genval ue of

nmenbranes with partially free boundari es.

2.1. Let G be a sinply-connected domai n whose boundary

F = Fo Uv is subject to the conditions of 81.2. W consider
t he honbgeneous nenbrane

Me: Au+ Au=0 in G ™+ k(s)u=0 on T0 (n the outer

-~

normal , k(s) ;> 0, s the arc length) , -~ =0 on VY.

The first eigenvalue is characterized by

ftw) 4 k(s)wds
r
(14) 7\ = Min R[W] = M|n—FF~*22—I wliere
JIw dxdy
G

rr. 2
& (W) =éa grad wdxdy #




Theoreml|: Let a=1T- cp where cp is the angle forned by the

hal f-tangents t and ?, of y* in A and B (see 81.2).

1

If O<acx<iir, then

Aq
J (L? - 2aAf'?(A)dA + KF?(O
(15) Al S-M..n N=N. A = !_\I_:..
r i0 *
j T (AdA
A=0

where K = jn k(s)ds is the total elasticity and Aq = A(GQ

Fo

the total area. f ranges over all real functions of class
Equality holds if and only if G is the domain 0 <% 9 <\ a,

Ro<rf£R (R=La, (a2 (R* - R¥) =Ay and

”~
/K/IL on r =R

9 (see fig. 2). A is the first
V_0 el sewhere

of the equation

B (RIQN (1 ARy - 3 [xbRTRAN T (FRR D)+

+ KT (JTTRONL/X'R) - ~(ATRAAM/ A7) ) =o,

D" [0, A -

r oot

wher e ‘]o is the Bessel function and NO is the Neumann function

of order zero.

Proof: W introduce in (14) trial functions wWP) whi ch are

constant along the interior parallels T ., i.e. WP) = v(t)

* Xi

if Per,- It then follows that




10

A A
£ dw, 2 _t%av, 2, _ % av,2da 2
@6) .(.)-f] ShZamas - [ Gpar = | G Go o
r o o
-t
and by lemma 2 (81.2)
| 2,
17) *(w) <L\ 2 _ 2eANTA)dA
o]
Since
A
r-e p p® 2
(18) jw'dxdy = " v dA and
G o
(19) ;| Kk(s)wrds = Kv4(0) ,
it follows that
AO
| (L% - 2aA)V?dA + Kv(0)
A, < 2 . Since this
1l — A
" e
o
is true for all v~ inequality (15), is proved. Because of the
symmetry of the extremal domain, the level lines of the first
ei genfunction coincide with the interior parallels. In this

case equality holds in (17).
This nethod can al so be used to construct upper bounds for the

first eigenvalue of the irihonogeneous nmenbrane Me': Au + Apu = 0

in G(p”™0) wth the sane boundary conditions as Me. The




. . . | 2 "N 2
Rayl ei gh quotient is RW = [&(W + 5 k(s)wds]/‘[Jpw dxdy.

r o G
Choosing again wP) =v(t) for Per_.t as a trial function,
| to to
denomi nat or becomes ' Lpwdxdy = I v ¢pdsdt = L v g(t)L(t)dty
G (@) r t @)

If p is bounded (0 £ p(x,y) <H , then 0 £g(t) "H W

consider the first eigenfunction VO(A) of the problem

[(L2 -20A)V]' +gv =0 in (OQMH , V' (0) - Kv(0) = Os

*
vi(MH =0, where M= _%_;.pdxdy. VO(A) i S non-decreasi nge
G

AT in (OH/H)
We set vV A =< ° . It than follows
° {iimM/B) in  [MHA_]

t he

11

A MM
re 9 2
that ' g(A) Vo A dA ~ H: ' & dA. This establishes the following
o s}
generalization of theoremlI|, which is simlar to a result obtained
by Krein [6] .
Theorem|': Let G and V satisfy the conditions of theorem]|.

For given ML,a,H and K we have
M H
. (L? - 2aA) f'2dA + Kf2(0O)

A <M Mn S s
1 feD A0, M/H) MH 5
H ' i£aa

(0]
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i.e., the membrane with the |argest possible first eigenvalue

is that covering the domin 0£ 9<La Ry<Lr £ R

[R = 1/a, ~ (Rj™® - R’ =M, and elastically supported

r= R,l [k(s) = K/L] and free on the rest of the boundary

al ong

- - -‘?"‘) / \\\ 5 N

N // . \

; / .

N ’/J/V /“\‘\ E '\. - J'
fcf“)//}" 7%, J@#:;/,,g“;;
" - ‘ _
rel/ 2

Figure 2 Figure 3

Remarks: 1) This theorem holds also for multiply-

connected menmbranes which are free along- the interior

boundari es.

2) It is always possible to extend k(s) and Mo in

suen @ way that the conditions of theorem | are satisfied.

3) For the homogeneous menmbrane fixed al ong To, we

2
L
have AE < 3g67 This inequality is simlar to that of Makai [7]

and is obtained i mmediately by setting v(t) =t.
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4) If Kk(s) =CO and a =0, then A < (% 2

Equality holds if and only if G is a rectangle and p is
constant. This result was obtained by Po1ya [10] for a

fi xed, honobgeneous nenbrane.

2.2 Let G be a sinply-connected domain with the boundary

X' = '(I; yy (see 81.2) subject to the follow ng conditions:

Gis contained in the sector S O"9i "O{ _r<oo. A and B

lieon9 =0 and 9 = B. W assune further that T divides S
K
0
o]
into a bounded conmponent G containing the origin, and an

unbounded conponent G™. Let G be in G". In this case r 4
+t -+t
(see 81.2) and T =G fl V are defined. The follow ng result

hol ds for the menbrane Me.

Theorem I 1: The first eigenvalue satisfies the inequality

A
) ) 2

4 (L +2pA) f (A)dA, + K (0)
(200 A 1 Mn :

J f2(A)dA.
0]

Equality holds if and only if G is the domain 0 <* 9 ¢ 8,

ngrng (Rl = L/8, P(Rg2 + Ry 2) = 2A

and

ol
I’K/L on F _
Ms) = { "0 el sewher e (see fig. 3).

Mil™ LSIRARY
CMWBIE-MEUON UWVERSTT




The proof is the sane as in [4], [5]. W introduce in the

Ral ei gh principle functions WP) wth the level tines F_ ..

i.e. WP) =v(t) if Per,. It follows that
No L2 2
j! %gt/\ dA++KV (o)
(22) A 5}0 »
Jvsz+
0]

t
If we set T(t) = —AA'— and p(t) = [A' (1) ] 2 (21) takes the

form
T, .
1 B9 “dT + K (0)
(22 A £ ° = ,  Where
Tl 5
1 pv (T)dT
0

T.
" o -
T" is determned by the equation pb p(T) dT =A. Let Ty be

2 fL?*PT if T<N T,
such that | L ePdT=A. W define £(T) =1 " N
o 0 AV -0 el sewher e

Because of lemma 3, we have T, < Tl. Let O(T) be the first

ei genfunction of the extrenal donain, and set

_ Jamn if 0TS T, _ _
v(T) —O(T) _{G(T% goTAT, L{(T) I S a non-decreasi ng

functi on. It then foll ows that
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Ty Ty 2.,

- ¢

tany b R?(mar y | Affar = | 1%e®PTR%ar
0] 0] 0]

By (22) and (23) we have

T2‘

4" 2ar + kB2 (0)

& . :
Ay £ T ,  Wwhich is
? LzeZBTﬁsz

o

equi val ent to (20).

The sane argunent as in Theorem|' shows that this result can be
generalized. For the inhonogeneous nenbrane Me' with bounded

mass distribution 0 <" p(x,y) <~ H we have

Theorem117: Let G and T satisfy the conditions of Theorem I,

For given ML,p,H and K we have

M H
i (L% + 2gA.) f?2(A) dA, + KF?(O
A S.Mn ©. 7 »
1 “7H
fEDY(O H :
( H) Hi f-dA,
(0]

i.e., the menbrane with the |argest possible first eigenvalue is

that covering the domain O<29< 13, R, <_/\<_-|5{-9 [Ri = 1/(3

’:H—(ﬁzz- Rlz) = M, and elastically supported along r = R,
[k(s) = K/L] and free on the rest of the boundary.

The remarks (1) and (4) under Theorem I* renmain also valid in

this case.
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