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Summary

We consider general materials for which the energy density,

entropy density, electric induction, magnetic induction, electric current,

and heat flux are determined when the temperature gradient and the histories

of the electric intensity, magnetic intensity, and temperature are specified.

Assuming that the functionals expressing such dependence on histories have

smoothness properties of the "fading memory" type, we find the restrictions

placed on the functionals by the second law of thermodynamics. We point

out that the general theory has implications for the elementary theory of

isotropic and anisotropic materials without memory. We also discuss

application of the general theory to the problem of finding thermodynamic

restrictions on the kernels occurring in the third-order theory of non-linear

isotropic dielectrics with memory of integral type.
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1. Admissible Processes

We here discuss the restrictions which the second law of

thermodynamics places on the constitutive equations of electromagnetic

theory, emphasizing non-linear materials which have long range, gradually

fading memory. In our theory each process is described by a collection

of nine functions of time t and place x in a region 7uof three-dimensional

Euclidean space C?; these functions are (1) the electric intensity E,

(2) the electric induction D, (3) the magnetic intensity H, (4) the

A
magnetic induction B, (5) the electric current" 1, (6) the heat flux q,

also called the "free current" or "conduction current".

" €, (8) the entropy density5^ TJ,
//////

(7) the energy dens i ty" €, (8) the entropy d e n s i t y 5 ^ TJ, and (9) the

—
""per unit volume.
//////
^""also per unit volume.

temperature 0. When these functions are sufficiently smooth, Faraday's

law, Ampere's law, and the law of balance of energy (i.e. the first law

of thermodynamics), have, respectively, the forms

curl E - -B, (1.1)

curl H = D + j, (1.2)

div(q+EXH) - -€, (1.3)
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and the rate 7 of production of entropy (per unit volume and unit time)

is given by

7 « T| + div(q/9). (1.4)

It follows from (1.1) and (1.2) that

-div(EXH) - H-B + E-D + E-j, (1.5)

and hence the law of balance of energy (1.3) can be written

€ - -div q + H-B + E-D + E-ĵ . (1.6)

Thus, for 7 in (1.4) we have

7 ** *1 + 7\ div q r q-g

~ Q ~ ~

- T| - ip -H-B -E-D-E- jl - 4r q-g, (1.7)

where

g M grad 0(x,t) (1.8)

is the temperature gradient (at x at time t). In terms of the quantity,

£ £§! € - QTJ - g.B - E-D, (1.9)

which we call the free enthalpy density, the rate of production of entropy

can be written

•H + D-E] + ^ E-j - -~ q«g. (1.10)
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Although for most of the systems considered in continuum

physics 9 can be only positive, there are systems which interact with

electromagnetic fields and which exhibit negative temperatures." The

^Purcell & Pound (1951), Ramsey (1956); see also Coleman & Noll (1959).

theory we develop here is independent of assumptions of positivity for 0.

We do assume, however, that 0 is not zero.

Given a process for the region rC and a time interval (-«>,T],

we may take a fixed point x in 7L and consider, for each t in (-«>,T],

the functions Et, H*^ 6t defined by

E^s) = E(x,t-s), gt(s) = H(x,t-s), et(s) = 9(x,t-s), se[0,co)# (1.11)

These functions, which map [0,«>) into sets of finite dimension, are

called histories; e.g. E is the history u£ to t of the electric intensity

at the point x.

The basic constitutive assumption of our theory is the following:

The material at each place x in /£ is specified by listing six functions-

£, D, B, T], j, and q, called "constitutive functionals", which give the

values of £, D, B, TJ, j, and q at x at time t, as functions of the value

of g at (x,t) and the histories up to t of E, H, and Q at x:
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D -

B -
(1.12)

j -

q -

A collection of the nine functionSjE, D, H, B, j, q, €, r\, 9

(each one a function on 7LX(-°°,T])J is here said to be an admissible

process on 7£x(-«>,T]) if it is compatible with both the field equations

(1.1)-(1.3) and the constitutive equations (1.12).

The second law of thermodynamics is rendered precise by laying

down the following postulate:

IS. each admissible process on /lx(-«yl], the

relation

7(x,t) > 0 (1.13)

must hold ajt every point x in 7 L and for every time t in (-°°,T].

This principle places restrictions upon the constitutive
/S /S /\ /\ /\ /\

functionals £, D. B, TJ, j. and q in (1.12). and our problem is that of

finding these restrictions.
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Thus, we take the point of view of Coleman & Noll (1963) and

interpret the second law of thermodynamics to be the assertion that

constitutive equations must be so chosen that the rate of production of

entropy is everywhere and always positive in all processes compatible

with those equations.
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2« Principle of Fading Memory

The nature of the restrictions which the dissipation principle

places on constitutive functionals depends on the properties of smoothness

assumed for those functionals. We here use the principle of fading memory

as formulated by Coleman and Noll (I960, 1961, 1962) and modified by

Coleman (1964). To state the principle in our present context, we let h

be an influence function, i.e. a positive, monotone-decreasing, Lebesgue

_ .

"Coleman 6c Mizel (1966) have shown that conditions on h weaker than

monotonicity suffice for most of the theory of fading memory.

measurable function on (0,«>) decaying to zero fast enough to be integrable

over (0,oo), and we define the norm ||F || of the triplet of histories

T* = (E t,H t,6 t) by

^ O ) 2 + H ^ O ) 2 + St(0)2 + r Et(s)2h(s)ds +
0

r Ht(s)2h(s)ds + I" et(s)2h(s)ds, (2.1)
0

t 2 t t /\ /v /\

with E (s) « E (s)-E (s), etc. We let the common domain of £,D,...,q

in (1.12) be the set S • E X ^ v , where £ is the set of all triplets

I* - (E^g*,^) with 0t(s) ̂  ° and llrtil < °°> while 2^3\ is a vector

space of dimension 3 (i.e. S^^yoO* llfj a s ^s usually the case, the

material is such that negative temperatures are not possible, then we
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take E to be the set of all triplets F* - (Et,^t,Gt) with ^(s) > 0 and

||Ft|| < ».] Clearly, regardless of whether we have 9 > 0 or the weaker

restriction 0 ^ 0 , E is a cone in a Hilbert space & formed from functions

mapping [0,«>) into 1̂ -v » ^ 3 ) X 7 3 ) X 7 1 V a n d S spans 6.

We assume that all the constitutive functionals £, D, B, T), j,

and q are continuous o n S s Ex 1/T.v. In addition, we assume that, for

each fixed value of g, the functionals in (1.12), . are continuously

Frechet-differentiable on E in the sense that if we let f stand for £, D,

B, or T], then, for each Ff" in E, T has a Frechet differential df (F^g) • ) ;

this differential is a bounded linear form on & with the property that

for functions $ in S with F t+ $ in E,

UrVfcjg) « KF ^ g ) + df (F^gld)) + o(||*||). (2.2)
f* O* f*

The functional df(*;«|-) is assumed to be jointly continuous in all its

arguments. We further assume that £ is continuously differentiable on 3),

considered a cone in S^T^^x; in other words, there exists a continuous

-valued function d £ on 3) » E X ? ^ . , such that, for each (F ;g) in

S, if (F +0; g+v) is in S, then

(2.3)

The functions E , g , 9 have for their domain the interval

[0,<»); the restrictions E , H , 9 of these functions to the open interval

(0,oo) are called past histories. We write F*1 for the triplet (Et,Ht,et).
r «̂ r *̂ r r
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Since a knowledge of the triplet rfc = (E^H*,©*) is equivalent to knowledge

of rj| and the present values E^O) - E(t), H^O) - H(t), 9t(0) - 0(t),

each function f of T and g(t) can be regarded as a function of r11, E(t),

H(t), 0(t), and g(t):

TCrSgCt)) - T^gSeSgCt)) = T(r*;E(t),g(t),e(t),g(t)). (2.4)

Thus, if we put simply E for E(t), H for H(t), etc., we can write the

constitutive equations (1.12), , in the forms

I = £(r|;;E,H,e,g),

D

B
(2.5)

Among the implications of the smoothness assumption (2.2) is the existence

of linear differential operators, D , D , D^, and 6, which, in the case

= t^y are defined by the formulae#

#,See Coleman (1964).

v=0

v=0

v=0

v=0

(2.6)
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These equations hold for each pair (F ;g) in 3), each vector v in ^^\>

and each function ¥ which is the restriction to (0,°°) of some function

¥ in & with the property that Tt+ Y is in E. We call D__£, ]}„£, and D n£
/\

instantaneous derivatives of £, for they are derivatives with respect to

present values keeping past histories fixed. The functionals D £ and

D £ are vector-valued, while D^£ is scalar-valued. Of course, D , D ,

and D^ can operate not only on £ but also on D, B, and TJ. A S examples,
#we may consider the tensor-valued" functional D_B and the vector-valued

"Here tensor means "second-order tensor"; i.e. an element of Lin( v,^\y

the set of linear transformations of 1^^\ into ^

As

functional D^B:

v=0
(2.7)

v=0

We say that a process is regular at x at time t if (1) the

time-derivatives E, H, 0, and g exist at x at time t, (2) the triplet of

histories up to t, T = (E ,H ,0 ), is, at x, an absolutely continuous

function in S, and (3) & contains the function 1^ = (Et,Et/9t)} defined

by the equation
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which gives a value to P (s) at s « 0 and for almost all se(0,<»). A

function P with the properties (2) and (3) is called a regular total

history. The function P in (2.8) may be called the time-derivative of

the history P . We write P*1 for the restriction of f1*" to (0,oo).

Arguments given by Coleman 6c Mizel here yield"

also Coleman (1964) and Mizel & Wang (1966).

Remark 1 (Chain Rule). It follows from our assumption of smoothness for

£ that in each admissible process that is regular at a point x at time t,

the time-derivative of £ exists at that point at time t and obeys the

formula

+ DH?(r
t;g(t)).g(t) +

e<t)+dj<rtjg<t)).g<t). (2.9)
© *** ***
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3. Consequences of the Dissipation Principle

If we substitute the constitutive equations (1.12) into the

field equations (1,1)-(1.3), we obtain a system of seven functional-differential

equations for the seven independent, real-valued, components of E, H, and

9, regarded as time-dependent fields over a region. It therefore appears

reasonable to assert that one can independently choose E , H , 0 , g, and

g at a given material point and rest assured that there exists at least

one" admissible process corresponding to this choice. The following

_

''Actually, we expect that there should be many.

assumption renders this assertion precise.

As^imgtion of £2,lXSfeiii£X- ^et a P°^ n t £ and an instant t be given. For

each pair of vectors v and w in 1/,r>\ a^d each regular total
~ ~ (3;

history Y, there exists a T > t, a region 7l containing x, and an

admissible process on 7LX(-<»,T] which is regular at (x, t) and such that

g(x,t) - v, g(x,t) = w, r* - Y, (3.1)

where T* is the history up to t of the triplet (E,H,0).

It follows from (1.10) and (2.9) that in any process that is

regular at (x,t),
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g

Ife-jO^ig) - 1 g-qcr^g) - 6C<rt;g|r*)), 0.2)

where 7 - 7(x,t), 9- 0(x,t), E - E(x,t), etc.

Arguments completely analogous to those employed by Coleman

(1964)^ here yield
_
FSee also Coleman 6e Mizel (1967).

Theorem 1. jDt follows from the Dissipation Principle (1.13) that

(i) £, D, B, and x\ are given b^ functions of E y H , and 6

alone; i.e. (1.12).-(1.12), must reduce to

^ t- t" ^ *- r t r *

t, = U E ,Hc,ec), D = D(Ec,Hc,ecv
3 3 V^, 7 f^ 7 ' 7 f^, ^ ^f^ 7^7 '7

B = BCE'.H'.e6), n - n(Et,Ht.et),
o# />* v*%# 7 rs, 7 ' 7 * • >^^ 7 r+t 7 ' 7

(3.3)

(ii) the functional ^ must determine the functionals D, B, and

T through the relations,

D - -D f, . B - -DHL tl = -DQL (3.4)

which hold throughout E, and

(iii) when T* - (Et,Et,et) is a regular total history, the

inequality

? ! ! ; Sg ^ g ) (3.5)

must hold for all g.
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Remark 2. It follows from (3.3) and (3.4) that (3.2) reduces to

&y - E-j(rt;g) -ig-qcr'ig) - 6tcrfc|r^). (3.6)

Hence, the conditions (i), (ii), and (iii), taken together, are not only

necessary, but are also sufficient to have 7(x,t) > 0 in each admissible

process that is regular at the point x and time t.

Remark 3. On setting g • 0 in (3.5) we obtain the relation.

^ ' l j S ^ (3.7)

which we call the internal dissipation inequality« For materials which

do not conduct electricity, i.e. for materials which have j s 0, this

reduces to

^Irj;) < o. (3.8)

For materials which do conduct electricity, we have, instead, merely the

implication.

E = o => edU^lrl) < o. (3.9)

Of course, in (3.5)-(3.9), rfc = (^,^,9^, and we have written

E for E^O) and G for ̂ ( 0 ) .

Since we have assumed that D, B, and ^ are Frechet-differentiable

on E, it follows from (3.4) that the second instantaneous derivatives of

ma WAIT
CAWKf-ffUIN
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exist and obey symmetry relations of the type IXJ)_£ - 2E2H£>
 h e n c e>

etc., and Theorem 1 has the following important corollary.

Theorem 2. The Dissipation Principle implies that

(i) the "cross relations"

hold throughout <£, and

^ /\
(ii) the values of D-D and DJB are symmetric tensors; i.e. at

_ — _ —|yv/ — &8Ĵ« — " " • — — —
/si /s*

each rfc = (Et,Ht,et) in (£,

t * ! 1 , (3.11)

y l ] 1 , (3.i2)
is*

where denotes the transpose^.

#i.e., if A e L i n ( ^ 3 ) , ^ 3 ) ) , then v-Au = u-ATv for all

T The hypotheses of smoothness we have employed here for

~ constitutive functionals are direct analogues of those used by Coleman 'T

(1964) in his theory of the thermodynamics of deformable materials with I
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memory. Theorems 1 and 2 remain valid, however, under the axiomatic, and

more general, approach to the theory of fading memory developed by Coleman

& Mizel (1967) (1968). Theorem 1 is provable also if one uses the

appropriate analogues for £, D, etc. of the general postulates of

regularity recently explored by Coleman & Owen (1970). In an essay to

appear soon in the Archive for Rational Mechanics & Analysis, we discuss

the thermodynamics of electromagnetic phenomena from a point of view

closer to that taken by Coleman & Owen. There we derive analogues of

Colemanfs "integrated dissipation inequalities" and explore at length |

A£ the relation of equilibrium properties to dynamical properties. ;

Note: It is evident from Coleman & Gurtinfs essay on the

principle of equipresence (1967) that Theorem 2 and the conclusions (ii)

and (iii) of Theorem 1 remain valid if one puts Y s s ( E , H , 9 , g ) , that

/\ /\ /\

is, if one includes in (1.12) a dependence of £, D, B, etc. on the past

history g of the temperature gradient g, adds to the right side of (2.1)

a corresponding term |g (0)| + / g (s) h(s)ds, and replaces d £ by
J0 8

D £. In such a case, however, Remark 3 no longer holds in its present
~ #
form, and the conclusion (i) of Theorem 1 should be modified to read:

"Cf. Coleman & Gurtin (1967, Thm. 6, p. 205).

r

(i) £, D, B, and TJ are given by functions o£ E , H , 0 , and \

g alone; i.e. i

~ r ^ '
D t = O , D D = 0. D B = O, and D T) = 0.
=gb ~' =g~ ~' =g~ ~' =g ' ~ j
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4. Materials Without Memory as a Special Case

A physically important, albeit mathematically elementary,

special case of the present theory is obtained by considering materials

for which the present values of e, D, B, r\, j, and q are given by

functions of the present values of E, H, 9, and g and are independent of

the past histories E , H , and 9 . Such Materials without memory" obey

constitutive equations of the form

"Of course, if e, D, B, and T) are functions of E, H, 9, and g, then so

also is t.

S
(4.1)

When (4.1) is regarded as a special case of (1.12), the functions £,

B^ j, and q are continuous on a cone"'' C in

i.e. either the cone corresponding to 9 > 0 or that corresponding to 9 ^ 0,
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£(*>•>•>§)> 2(*>*>*>g)> a n d B(«,',',g) are differentiable (i.e. have

gradients in the ordinary sense) on the corresponding set in

-]h m 7t,v©^©2£ v* and X is differentiable on C We write d £ for

the 7^ON-valued gradient of the function £O,H,0,g), d.X for the
(3) ** ~ "

scalar-valued gradient of ^(E,H^^g)^ 5 D for the Lin( Tv^xX^Clv)-valued

gradient of D(E,*,Q,g), Theorem 1 has the following corollary.

Theorem 3. The Dissipation Principle places the following restrictions

on the functions t>} D, B, r\, j, and q in (4.1):

r>* *̂ *

(i) £, D^ and B must be constant in g; i.e. (4.1)1-(4.1),

reduce to

'i = C(E,H,9), D = DCJE,JH,©), ̂
) (4.2)

B = B(E,H,9), T] = ?f(E,H,0); J

(ii) £ must determine D, B, and T] through the relations,

D = -3J, B = -bEl, n = -Z9%; (4.3)

(iii) q and j must obey the inequality

8-q^S/^8) < 0E.J(E,H,9,g) (4.4)
throughout C.
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Remark 4. It follows from (4.4) that, for g « 0,

9E-j(E,H,e,0) > 0, (4.5)

and, for E = 0,

An argument given by Coleman & Noll (1963, pp. 175-176) may here be used

to show that if J(*,H,e,O) and q(O,H,0, •) have gradients at 0 in 1^ON,

then (4.5) yields

3/&S,e,0) - 0 , (4.7)

and (4.6) yields

qCO,H,0,O) = 0, (4.8)

i.e. in a material without memory, whenever both the electric intensity

and the temperature gradient are zero, neither heat nor current flows.

_

"In a forthcoming work, we show that for the materials with memory discussed

in Sections 1-3 one can make only the following weaker assertion: neither

heat nor current flows in a steady state with zero electric intensity and

zero temperature gradient.
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The analogue of Theorem 2 here is

Remark 5, It follows from (4,3) that the functions D, B, T) in (4.2)

must be such that

(i) the cross relations

hold, and

*\. fsJ >v ' v /

(ii) the values of o D and o B are symmetric tensors.

Frequently^ in works on electromagnetic theory, one ignores

thermodynamic variables and, if only "weak fields" are involved, employs

linear constitutive equations of the form

where /c, JLI, and a are constant tensors (i.e. fixed elements of Lin(7^v, 7%r>\)) I

ic is called the dielectric tensor, |j. the (tensorial) magnetic permeability,

and a the conductivity tensor. The equations (4.10) are occasionally

referred to as the "classical constitutive equations of electromagnetic

theory". For many materials, including isotropic solids and several

crystal classes, it follows from material symmetry that /C, |j., and a must

be symmetric tensors; however, for some materials, including the triclinic
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crystals, arguments based on material symmetry alone place no restrictions

on these tensors. Nonetheless, there are thermodynamic restrictions, and,

as the following remark asserts, K and \x must be symmetric tensors, even

if such symmetry does not follow from a consideration of isotropy groups.

Remark 6. For materials which obey (4.10),

5 /c, d H| = JI, (4.11)

and item (ii) of Remark 5 reduces to the assertion that K and p. are

symmetric tensors; i.e.

T T
K • K , LI » |i .

Furthermore, when 9 is positive (4.5) implies that a is positive semi-definite,
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5. An Application to £ Third-Order Theory of

Isotropic, Non-linear, Dielectrics with Memory

G. Pettini (1970) has recently proven a uniqueness theorem for

solutions of Maxwell's equations (1.1) and (1.2) in bounded regions of

isotropic materials without thermodynamic influences but with fading

memory. She employs constitutive assumptions of the form

with

B(t) = n.H(t), Ho > 0,

j = o,

poo

8(0)E(t) +J g/(s)Et(s)ds, g(0)

(5.1)

01(s)E
t(s)ds E(t) *(s)Et'f 0*(s)Et(s)ds E(t>,

02(s1,s2)E
t(s1).E

t(s2)ds|E(t)

0 0

J J [*3(s1,s2,s3)E
t(s1).E

t(S2)]E
t(s3)ds1ds2dS

0 0 0

•(5.2)
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Here Q is a material constant, g, 0-, 0-, 0 , 0~, and 0^ are real-valued,

#
differentiable material functions, JyUrv^>^) exists, g'(s) » dg(s)/ds.

"Pettini does not exhibit the term in g/ but does remark (1970, p. 2,

footnote 2) that "per brevitk di esposizione, si e tralasciato un termine

eredetario lineare, pero la nostra demostrazione [of uniqueness] rimane

valida anche in presenza di questo termine,..."

t 2
and, of course, E(t) = E (0), E(t) « E(t)-E(t). It is clear that if one

adds to 0^(8,^8^) a function p with P(s.,s^) = -PCs^s^), then the value

of D^(E ) is not changed; hence, without loss of generality, one can take

02(si>82^ t o ^ e

02(s2,s1) - *2 ( 81' 82^ (

as was observed by Pettini. She found, however, that her method of

proving uniqueness required that she assume, further, that

0*(s) = 201(s) (5-4)

and

for all s, s-, and s.«.



23.

Now, direct calculation shows that (5.2) yields

D_D.(E 8(0)1,

QE(t) 1 + 2OE(t)<8>E(t),

- 2 01(s)E (s)ds

- 0

<g)E(t) + E(t)<g>

. 0

(s)ds

0*(s)Et(s)ds

L O O

1 +

0

[0*(s1,s2)E
t(s2)(8)E

t(s1)]ds1ds2,
0 0

\ (5.6)

where ® denotes the tensor product of two vectors, and 1̂  is the unit

tensor. As it is evident from (5.6) that EyB^E*1), D^CjE11), and I^D (E*)

are symmetric tensors for each history E , we can assert that D D has all

its values in the space of symmetric tensors if, and only if, D D (E )
—E^l /x/

^ t ^ t
and D Do(E ) are always symmetric tensors. But, D_D-(E ) is a symmetric
tensor for each history E if, and only if, (5.4) holds, while D D9(E )
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has this property if, and only if, (5.5) holds. This proves"

_

"D. Graffi and M. Fabrizio told one of us, Coleman, about Pettini's

uniqueness theorem in a conversation held in Bologna in October, 1969.

As we had already proven Theorems 1 & 2, Coleman was able to point out,

in that conversation, the relation of (5.4) and (5.5) to our results.

We understand that Fabrizio has recently employed the present Theorem 2

to obtain a broad generalization of Pettini's theorem-

Remark 7. The relations (5.4) and (5.5) follow from equation (3.11) of

Theorem 2.

The following remark may be proven using the relations (3.4)-

and (3.5) of Theorem 1 and an argument employed by Coleman (1964, pp. 249-251),

but in the interest of brevity we omit details.

Remark 8. It follows from the Dissipation Principle that, for each material

of the type (5.1), (5O2), the function g is such that

We discuss generalizations of this result in a forthcoming

paper.
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Thermodynamic Restrictions on the Constitutive

Equations of Electromagnetic Theory

Bernard D. Coleman and Ellis H. Dill

Zusammenfassung

Die Autoren betrachten allgemeine Stoffe, fur die die Energiedichte,

die Entropiedichte, die elektrische Induktion, die magnetische Induktion

und der Warmefluss durch den Temperatur-Gradienten und die Geschichten

der elektrischen Intensitat, der magnetischen Intensitat und der Temperatur

bestimmt sind. Unter der Annahme, dass die Funktionale, die diese

Abhangigkeit von Geschichten beschreiben, Glattheitsbedingungen vom

"schwindendem Gedachtnisfl—Typ erfullen, leiten die Autoren die

Einschrankungen ab, die der zweite Hauptsatz der Thermodynamik den

Funktionalen auferlegt. Es wird darauf hingewiesen, dass die allgemeine

Theorie Konsequensen fur die elementare Theorie der isotropen und

anisotropen Stoffe ohne Gedachtnis hat. Ausserdem werden die Anwendungen

der allgemeinen Theorie auf das Problem diskutiert, wie man die

thermodynamischen Einschrankungen fur die Kerne findet, die in der Theorie

dritter Ordnung fur isotrope Dielektrika mit Gedachtnis vom Integral-Typ

vorkommen.


