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1. Introduction.

In [2] and [3], C. V. Coffman and the present author

reported on a first attempt at applying to linear differential

equations with delays the methods of functional analysis de-

veloped for linear differential equations by Massera and

Schaffer (see especially [4]) and for linear difference

equations by themselves in [1]. The primary purpose of

these investigations is to relate properties of the non-

homogeneous equation such as "admissibility" ("for every

second member in some given function space there is a

solution in some given function space") and certain forms

of conditional stability behaviour ("dichotomies") of the

solutions of the homogeneous equation. The irreversibility

of the process described by an equation with delays made

it appear advisable to reduce the problem to the simplest

kind of irreversible process, that described by a difference

equation.

In a recent thesis (the substance of which is to

appear in [5]), G. Pecelli has obtained results of this
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nature for certain equations with delays by constructing

a theory parallelling that of differential and difference

equations, without reduction to either.

In this paper we present a simpler and more powerful

attack on the problem along the lines of [3]. Specifically,

we consider on [0, OD) an equation of the form

(1.1) u + Mu = r

and the corresponding homogeneous equation

(1.2) u + Mu = 0

in a Banach space E, ultimately to be assumed finite-

dimensional; r is a continuous vector-valued function;

the "solution" u is defined on [-1, OD) , and M, the

"memory functional", takes a continuous function u

linearly into a continuous function Mu in such a way

that the value of Mu at any given value t of the argu-

ment depends on the values of u on [t-l,t] only.

The assumptions of our main result (Theorem 7.3)

are that M transforms bounded functions "boundedly"

into bounded functions, and that (1.1) has at least one

bounded solution for each bounded r--in the tradition of



[1], [2], [3], [41, "(£,C) is admissible for (1.1)".

The conclusion describes the behaviour of "slices'1 of

length 1 of solutions of (1.2) and its restrictions

to [m, OD) for real m ;> 0 : roughly speaking, the

slices of bounded solutions tend uniformly exponentially

to 0, and there exists a complementary finite-dimensional

manifold of solutions of (1.2) whose slices tend uni-

formly exponentially to infinity and stay away uniformly

from those of bounded solutions: this behaviour is a

kind of "exponential dichotomy", in the sense of [1].

This paper can be read entirely independently of [3J .

This entails some repetition--indeed, the sequence of ideas

follows [3] rather faithfully—but appears justified by

the following remarks.

In [2] and [3] it was assumed that the memory

functional, apart from a term depending on the "present"

value of u, had a gap behind the "present". This per-

mitted an inchwise explicit construction of the solutions

of (1.1) and (1.2) from the theory of ordinary differ-

ential equations. In abandoning the assumption of the

presence of this gap, we have to do without the explicit

construction; however, not only does our present approach

completely subsume the results of [3] (to show this

requires some messy routine computation, plus an obvious
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adjustment of scale), but it also simplifies the technical

aspects considerably, in doing away with overlapping slices

of different lengths and complicated computational verifica-

tions. Although we still rely heavily on [1] , the final

results no longer exalt slices with integral endpoints

above the others.

Reliance on the theory of difference equations allows

us to avoid all consideration of possibly unbounded operators

and all explicit representations of M --say as a Stieltjes

integral—and other, more technical complications of [5J ;

the use of a compactness argument first presented in [61

allows us, for finite-dimensional E, to achieve the descrip-

tion of the behaviour of the solutions of (1.2) with no

extra assumptions.

As in [3], we have dealt here only with a concrete

example of the "continuous case"; however, the same method

is also applicable to the "Caratheodory case", where (1.1),

(1.2) only hold locally in L , and where boundedness is

replaced by membership in translation-invariant spaces of

measurable functions. This and other matters, related to

the present paper as [2] is to [3], will be dealt with

elsewhere.

The author wishes to record his indebtedness to

Professor C. V. Coffman for his valuable suggestions during

our detailed discussion of all aspects of this work.
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2. Spaces.

Throughout this paper, E will denote a given real

or complex Banach space; in Section 7 we shall assume

that its dimension is finite. The norm in E, as in all

normed spaces for which no other symbol is prescribed, is

denoted by || ||. If X, Y are Banach spaces, [X-*Y] de-

notes the Banach space of operators (bounded linear mappings)

from X to Y, and we set X = [X-*X] .

We shall be dealing with sequences and with functions

defined on intervals of the real line. We denote by to the

set {0,1,...} of all natural numbers, and set tOr •, =

[n e to : n ̂  m} , m = 0,1, ... . The notation for intervals

of the real line is the usual one.

If m, m1 are real numbers [natural numbers] with

m1 2> m , and f is a function defined on [m, OD) [on

tOr i ] , then fr ., shall denote the restriction of f[m] [m1 ]

to [m1 , OD) [to Wjm,, ] •

Assume that X is a Banach space. For each natural

number m we denote by s, , (X) the linear space of all
~[mj

functions f : tor •, -*" X and by I r , (X) the Banach space
imj [mj

of all bounded ones, with the norm | f | = sup{||f(n)]| :

n e COr i ) . For each real m we denote by K, , (X) the

linear space of all continuous functions f:[m, OD) -• X

and by C, ,(X) the Banach space of all bounded ones
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among them, with the norm | f | = sup{||f(t)|| : te [m, OD) } .

In all these notations the subscript is omitted when m = 0.

Finally, we denote by E the Banach space of all

continuous functions f : [-1,0] —» E , with the norm

QfO = max{||f(t)|| : te [-1,0]} .

The following example illustrates some obvious nota-

tional conventions. Suppose that g e £ (E) ; then Qg0

is the element of ^ (R) given by Qgfl (n) = Qg(n) fl ,

n = 0,1, . . . ; and |g| = |OgQI is the norm of g as

an element of I*** (E) .

3. Slicing operations.

Let m ^ 0 be a given real number. For each t >̂ m

we define the linear mapping II (t) : K r , , (E) -* E by

(3.1) (II(t)f) (s) = f(t+s) se[-l,O], feK [ m_ 1 ](E)

Thus II(t) maps f into the "slice" of f between t-1

and t, transplanted to [-1,0] for convenience. (Note

that indication of m is omitted; this will not cause any

confusion.)

When m is an integer and f e Kf _,-• (E), we define

>mt e £[m] (£ } by
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(3.2) (wf)(n) = n(n)f n e W [ m J , f e K[m-i]

•Thus -or i s a l inear injective mapping of £rm-lT (E) into

s , , (E) . We record the obvious description of i t s range.
~lmj ~

3.1 . Lemma. Assume the integer m ^ 0 and g e £r_i (E)

given. Then g = -orf for some f e Kr .., (E) i f and only
_ _ _ _ _ _ _ _ _ _ _ - — — — — ~[m— xj ~ ~ •"""••

if (g(n))(O) = (g(n+l)) (-1) , n=m,m+l, . . . ; i l . __»> then f

i s bounded if and only if g _is bounded, and then | f | = | g |

4. The memory functional.

We now make precise the assumptions on the "memory

functional" M that appears in (1.1). It is linear

and maps continuous functions into continuous functions,

and the value of Mu at t is to depend only on the

slice of u between t - 1 and t . Specifically, we

assume the following:

(M.) :M : Kr ,, (E) —> K(E) is a linear mapping suchj_ r̂ _̂j_j ^> —~—~~ _ _ _ _ _ _ _ _ _____

that if t e [O^OD ) and u, u1 e Kr ,, (E) satisfy II(t)u
~[-l] -

„(-)_• , then (Mu) (t) = (Mu1 ) (t) .

Assumption (M1) permits, for each real m _ O ,

the "cutting down" of M to a linear mapping Mf ,:

E a c h u e £[ml] ( E ) s a t i s f i e s



[8]

for some v e£[-l] ( E )' and w e ma^ s e t M[mJu =

(Mv) , ; since t ]> m implies II(t)v = II(t)u, assumption

(M ) shows that Mr ,u thus defined does not depend on

the choice of v . If m1 ^ m ^ 0 , these cut-down memory

functionals then satisfy

= (M[m]u)[m']

It is obvious that (M.) implies the existence, for

every t e [0, <x>), of a linear mapping M(t) : E ->• E such

that

(4.2) (M[m]u) (t) = M(t)n(t)u t ^ m ^ 0, U € £ [ m - 1 ] ( E )

We shall generally impose the following additional

assumption:

(M2): The restriction of M to C,., (E) is a

bounded linear mapping Mo : Cr ., (E) -* C(E) .

1 — — ~ — — —J—*——* c ,̂[-ij ~

If M satisfies (M,) and (JVL) it follows at once

that M(t) is bounded, i.e., in [E-*E] , for each t, with

(4.3) ||MCII = sup (jlM(t)H : t e [0, OD) } .

We note in passing that t w M(t) : [O, OD) —> [E -*• E] is

then continuous in the strong operator topology; t »-*• |JM(t) ||
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is lower semi-continuous, but need not be continuous.

Conversely, given a strong-operator-continuous and uni-

formly bounded function t*-*-M(t) : [0, OD) —*• [E-*E] ,

formula (4.2) with m = 0 defines a linear mapping M

that satisfies (M]L) and (M2) .

5. Solutions.

Henceforth we assume given the space E and the

memory functional M satisfying conditions (M.) and

(M2) .

For every reK(E), a solution of (1.1) is a

function u e Kr .., (E) whose restriction urn, to [0, OD)

is continuously differentiable (the derivative is &.._, e

K(E)) and that satisfies u,_, + Mu = r on [0, OD) .
~ LOJ

More generally, for every real m ;> 0 , a solution of

(1.1) , , is a function u e K . 1T(E) whose restrictionLmj ~ [m- lj

u, , is continuously differentiable and that satisfies

^[m] + M [ m ] u = r[m] i n ^m> ^ ' I n

m' ^ m ^ 0 and u is a solution of (1.1) . , , then

U[m'-ll "̂s a s°l u ti° n o f (1-1) r i-I on account of (4.1)

These definitions and statements of course also apply to

the homogeneous equation (1.2).
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A function u e K , ,T (E) is a solution of (1.1) if

and only if

u(t) = u(m) - J ((Mrrai
u) (s) " r(s))ds,((Mrrai
u) (s) r ( ) ) , £ m .

Existence and uniqueness theorems for the initial value

problem follow as usual from Banach's Contractive Mapping

Principle, and inequalities for the solutions from Gronwall1s

Inequality. The inequality || (M, , u) (t) \\ £ ||ŵ || Q Il(t)uO >

an immediate consequence of (4.2) and (4.3), plays a

basic role here. We omit the details. In view of the

linearity of the equation, the results are summarized as

follows.

5.1. Lemma. For each real m ^ 0 there exist linear

mappings P(m) : E -* K, ,-,(E) and Q (m) : K(E) —*K, ,-,(E)

such that, for every v e E and every reK(E), the function

u = P(m)v + Q(m)r Is the unique solution of (1.1)r , with

Il(m)u = v ; and

||(P(m)v) (t)|| £ Qv[]exp(||MJ|(t-m)) t ̂  m, veE

(5.1)

||(Q(m)r)(t)|| g (J ||r(s)||ds)exp(||Mc||(t-m)) t^m, reK(E)

m ~ ~
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We note the following corollary of Lemma 5.1 and the

preceding discussion on "cutting down" the domain of the

equation.

5.2. Lemma. If u is a solution of (l-2)[mT
 f o r

some m ^ 0, then

OH(t)uO £ QII(t )unexp(!|MJ|(t-t )) ,

6. The associated difference equation.

We construct a certain difference equation in E in

such a way that the values of a solution are the slices of

a solution of (1.1). For this purpose, we define the

linear mappings

A(n) = -II(n)P(n-l) : E-»E

(6.1) n = 1,2,...

B(n) = II(n)Q(n-l): K(E)-*E

and observe t h a t (5.1) imp l i e s

A(n) € E , | |A(n)|| ^ exp||Mc|| n = 1 , 2 , . . .

(6.2)

DB(n)rfl ^ D (mr) (n) Dexp||Mc|| n = 1 , 2 , . . . ,
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We set A = (A(n)) e */?, T (E) and define the linear

mapping B : K(E) —• s M , (E) by (Br) (n) = B(n)r, n = l , 2 ,

With A thus defined, we consider the following

difference equations in E :

(6.3) x(n) + A(n)x(n-1) = f(n) n = 1,2,..

(6.4) x(n) + A(n)x(n-1) = 0 n = l,2,..

and their restrictions (6.3) ,, , (6-4^rmT to n =

m+l,m+2, . . . for m e a) • Here f e sri1(E) .

6.1. Lemma. Let m e to and r e K(E) be given.

A function x e sr , (E) is a solution of (6.3)r . with
— • • ' ~LmJ ~ [m]

f = Br _if and only if x = TU for some solution u £f

(1.1), , . In particular, x is a solution of (6.4)L*"j —— — — — — — — — — — _ _ _ — _ ___

if and only if x = IJJU for some solution u of (1.2)
— — — _ _ _ — — — —— .^———_ ___

Proof. If u is a solution of (1.1) r -i and n > m,

then ur ,, is a solution of (1.1)r ,, ; by Lemma 5.1

we have

(«u) (n) = TI(n)u = n(n)u[n_2] = n(n) (P(n-l) H (n- 1) u [ n_ 2 ]

+ Q(n-l)r) = -A(n)II(n-l)u + B (n) r

= -A(n) (mu) (n-1) + (Br) (n) ,
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and so x = tcru is a solution of (6.3) , , with f = Br .

Conversely, if x is a solution of (6.3) , , with f = Br ,

let u be the solution of (1.1) r ,• with II(ra)u = x(m) .

By the first part of the proof, tnu is a solution of

(6.3) , , ; but (tuu) (m) = II(m)u = x(m) ; therefore tru = x .

It is clear that not every f e s,,, (E) is of the

form f = Br . It is still possible, however, to relate

equation (6.3) with arbitrary f to equation (1.1).

6.2. Theorem. For each f e s,,, (E) there exists

r e K(E) such that

(6.5) Q (nrr) (n) 0 £ k2(Qf(n-2) 0+ flf(n-l) D) n = l,2,

and such that the solution w of

(6.6) w(n) + A(n)w(n-1) = f(n) - (Br) (n) n = l,2,.

with w(o) = O satisfies

(6.7) Qw(n)fl ^k(Df(n-l)0+ Df(n)D), n = l,2,.

where f (-1) = f (0) = 0 and k = - | + ||MC|

HUNT LIBRARY
CARNEGIE-MELLON UNIVERSITY
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Proof. We define gesr.,(E) by~[1] ~

= -6s(l+s) (f(n)) (0) + s(3s+2) (A(n) f (n) ),

-1 £ s£ 0 , n = 1,2,

Obviously,

(6.8) (g(n))(-l) = M(n)f(n) (g(»))(0) = 0

(6.9) J (g(n)) (s)ds = (f(n)) (0)

and, using (4.3),

( 6 . 1 0 ) D g ( n ) D £ f D f ( n ) Q + | | M c | | D f ( n ) D = k D f ( n ) D

n = 1 , 2 , . . . .

We extend f and g by setting f(-l) = f(0) = g(-l) =

g(0) = 0; then (8.8), (6.9), (6.10) remain valid for n=-l,0,

except that the first formula of (6.8) becomes meaning-

less for n = -1 .

We now define w e s(E) by

r.0

s
(6 .11 ) ( w ( n ) ) ( s ) = ( f ( n ) ) ( s ) + J ( g ( n - l ) ) (<r)dor

s

, n = 0 ,1 , . . . .
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It is obvious that each w(n) is indeed continuous. We

find w(0) = 0, as required, and, from (6.9),

(6.12) n = 0,1, ... ;

(w(n))(0) = (f(n))(0)

further, (6.11) and (6.10) yield

(6.13) Qw(n)-f(n)D £ Qg(n-l)O £kQf(n-l)Q n=0,l, ... ,

and (6.7) follows, since k > 1 .

In order to construct r we define, for each ne cOr, j,

a function z e Kr o, (E) satisfying
n ~ [ n- 2. j

(6.14) II(n-l)z = -w(n-l), II(n)zn = f(n) - w(n) ,

but otherwise arbitrary; it is possible to find such a

continuous function because -(w(n-l)) (0) = -(f(n-l)) (0) =

(f(n))(-l) - (w(n))(-l), by (6.12). We define hesri,(E) by

(6.15) h(n) = g(n-l) + [ n _ 1 ] n

We note that, on account of assumption (M,), h depends
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on z only through its values on [n-2,nj, hence is

determined by (6.14). By (6.15), (6.8), (4.2), (6.14),

we have, for n = 1,2,... ,

h(n)(O) = (g(n-l))(O) + (M[n_ ±] zft) (n)

= M(n)n(n)zn = M(n) (f (n) - w(n) ) ,

(-l) + (M[n] zft+1) (n)

= M(n)f(n) + M(n)n(n)zn+1 = M(n) (f (n) - w(n)) ,

so these elements are equal for each n. By Lemma 3.1

there exists r e K(E) such that

(6.16) -err = h .

For n e Wr^ and n-1 £ t ^ n, (4.2), (4.3), (6.14),

(6.7), (6.13) imply

(6.17) H(M[n-1]zn)(t)|| = ||M(t)n<t)zn|| ̂  ||Mci!nn(t)zno

|Mc||max{ D n (n -1 ) z n D , 0 « ̂ , - n

= | lM c | |max{Qw(n-l) fl, Qf (n ) - w(n) Q}

^ k | | M c | | ( D f ( n - 2 ) Q + O f ( n - l ) D ) •
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Then (6.16) and ( 6 . 1 5 ) , ( 6 . 1 7 ) , (6.10) y i e l d

D' (wr) (n) 0 <, Dg(n-1)B + k||M_||(Df(n-2) Q + Of (n-1) Q)

k 2 (Qf(n-2) fl + Df(n-l) D) ,

i.e., (6.5), since k > 1 + ||MC|| .

It remains to be proved that w and r thus con

structed satisfy (6.6). For this purpose, let n e

be fixed and consider the solution u of (1.1) , ,,

with

(6.18) II(n-l)u = -w(n-l) = II(n-l)zn .

Let t, n - l £ t < n , be given. From (6.14), (6.11), (3.1),

zn(t) = ~ (f(n) - w(n))(t-n) = (g(n-l)) (t-n) ,

and from (6.16), (6.15), (3.1),

r(t) = (h(n))(t-n) = (g (n-1)) (t-n) + ( M ^ ^ zn) (t) ;

thus zn(t) + (M[n_lj2n) (t) = r(t) , n-1 ̂  t < n, so

that z n satisfies (1-1)[-n_ij
 o n [n-l,n); by (6.18)

and uniqueness, z n and u coincide on [n-2,nj. From
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(6.14), Lemma 5.1, (6.18), (6.1) we have

f (n) - w(n) = H(n)zn = Il(n)u = n(n) (P(n-l) n (n-l)u + Q(n-l)r)

= A(n)w(n-1) + B(n)r ,

and (6.6) is satisfied for this arbitrary n e

7. Admissibilitv and the solutions of the homoqeneous

equation.

The discussion in the preceding section enables us

to reduce the consideration of equations (1.1) and (1.2)

to analysis of the difference equations (6.3) and (6.4)

by means of the theory in [1]. We shall indeed have to

rely heavily on that paper for the crucial steps in the

proof of Theorem 7.3. M is still assumed to satisfy (M.)

and (M2), and A, B are defined by (6.1).

We begin with the non-homogeneous equations. We say

that (C,C) is admissible with respect to M--more loosely,

with respect to (1.1) — if for every r e C(E) there is a

bounded solution u of (1.1). We recall ([1; p. 154])

that, similarly, (1°° ,1°° ) is admissible with respect

to A—or with respect to (6.3)--if for every f e £*? . (E)

there is a bounded solution x of (6.3).
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7.1. Theorem. (C,C) is admissible with respect

to M if and only if (^° , i?° ) .is admissible with

respect to A.

Proof. 1. Assume that (C,C) is admissible with

respect to M. Let f e l*fi, (E) be given, and choose r

and w as provided by Theorem 6.2. Now (6.5) and (6.7)
2

imply that r and w are bounded (with | r|£ 2k | f | ,

|w| <, 2k|f|). There exists, by assumption, a bounded

solution u of (1.1). Then -aju is bounded, and satis-

fies (tru) (n) + A (n) (t»u) (n - 1) = (Br) (n) , n = 1, 2, . . . ;

since w is a bounded solution of (6.6), we conclude

that f u + w is a bounded solution of (6.3). Thus

(•I ,1 ) is admissible with respect to A .

2. Assume, conversely, that (I, ,t ) is

admissible with respect to A, and let r e C(E) be given.

By (6.2), Br e ^ , ( E ) (with |Br| £ | r | expliM^I) ; by

the assumption, there exists a bounded solution x of

(6.3) with f = Br . By Lemma 6.1, x = aru for some

solution u of (1.1); and this u is bounded. Thus

(C,C) is admissible with respect to M .

The admissibility of (-t00 ,1^ ) with respect to A

implies, under certain additional conditions, an exponential

dichotomy of the solutions of the homogeneous equations (6.4)
[ml



[20]

(see [1; Section 7]): roughly speaking, the bounded

solutions tend uniformly exponentially to 0, there exists

a "complementary" manifold of solutions of (6.4) tending

uniformly exponentially to infinity, the two kinds of

solutions remain uniformly apart, and together they span

all solutions. Since Lemma 6.1 provides a bijective

correspondence between solutions of (1.2). , and (6.4), ,

(for integral m), Theorem 7.1 will allow us to translate

that result into an analogous implication for differential

equations with delays. We shall restrict ourselves here

to finite-dimensional E; this will allow us to make use

of the following compactness result.

7.2. Lemma. If E is finite-dimensional, then A(n)

is a. compact operator for n = 1,2, ... .

Proof. Let n e cOrn-i and v e E be given. Then

u = P(n-l)v is the unique solution of (1.2). . with

n(n-l)u = v (Lemma 5.1). By (6.1), A(n)v = -II(n)u.

Therefore

(7.1) (A(n)v)(s) = -u(n+s) =-u(n-l) + J ( M , ^ u) (ff)da ,
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By (4.2), (4.3), and Lemma 5.2,

(7.2) H (M. ,,!!)(<,)!! i 1|MJ|Qn(a)uQ £ ||̂,|| D n(n-l)ufl exp||.Mc|

= l!Mc||DvQexp!lMc|| , n-1 ̂ a ̂  n .

Combining (7.1) and (7.2), we find

»n+s'
(7.3) ||(A(n)v) (s«) - (A(n)v) (s)|! ̂  J 11 (M^.^u) (ff)||de

^ (s'-s)||Mc||Dv0exp|lMcll ,

-1<S ^ S' ^ 0 .

Formulae (6.2) and (7.3) show that A(n) maps the unit

ball of E into a bounded equicontinuous set of continuous

functions [0,1] —*• E; when E is finite-dimensional, it

follows from the Arzela-Ascoli Theorem that the closure

in E of the image under A(n) of that unit ball is

compact. Hence A(n) is a compact operator in that case.

We now state our main result, to the effect that ad-

missibility of (C,C) with respect to M implies a kind

of "exponential dichotomy" of the solutions of (1.2), , .
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7.3. Theorem. Assume that E is finite-dimensional.

and that (£,C) .is admissible with respect to M . Then

there exist numbers y,N > 0 such that, for every real n£ 0,

every bounded solution v of, (1.2) , , satisfies

(i) On(t)vD^ Ne ° Dn(tQ)vD for all t>t^ > m ;

There further exist a finite-dimensional linear manifold W

of solutions of (1.2), and numbers i/1 ,N' > 0, A > 1 such
—_— _ _ _ _ _ _ _ _ _ _ _ _ _____ _ _ _ _ _ Q

that, for every real m _ 0, every solution u c_f (1-2) r •.

is of the form u = v + wr .., , where v is a bounded— ___ —__ _____ im-xj __—_—

solution and w e W , and such that every solution w e W
_ _ » _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ — _ _ _ _ * / s < / _ _ _ _ _ _ • _ _ — _ _ — _ _ > _ — _ — _ _ _ — • _ _ — _ * _ _ — • i i i • ~~""• • ————————————————" ^ ^

satisfies

(ii) : nn(t)wQ _ N'" e ° Q n(tQ)wD for a l l t>t^_> 0 .

(iii) : fln(t)wO ^ A^QII(t)w - n(t)vQ for a l l t>m> 0

and all bounded solutions v of (1.2)
—

Proof. 1. By Theorem 7.1, (1°° ,1°° ) is admissible

with respect to A. We now refer to [1] and [6] in order

to deal with equations (6.3), (6.4). Specifically,

condition (c) of [6; Lemma 4.2] is satisfied with

b = d = I ; since every A(n) is compact by Lemma 7.2

(one would be enough), we conclude from [6; Theorem 4.3,(b)]



[23]

that the covariant sequence E is regular and that its

terms (which are the sets of initial values of the bounded

solutions of (6'4\n]>
 n = 0,1,...) have constant finite

co-dimension in E . We can therefore apply the fundamental

"direct" result [1; Theorem 10.2] and find that this covari-

ant sequence induces an exponential dichotomy for A .

2. To make this result manageable, we use the

description of an exponential dichotomy given by [1; Theo-

rem 7.1,(c)]. We observe from the proof of that theorem

that we are free to choose the splitting q ; and since

E (0) has finite co-dimension in E , we choose q to be

a (linear) projection along E onto a finite-dimensional

complementary subspace, say Z. This choice of Z and

the regularity of E^ imply that the values at any given n

of the solutions of (6.4) starting on Z constitute a

complementary subspace to E (n); in other words, if x is

any solution of (6.4). , , there exists a solution z of

(6.4) with z(0) e Z such that y = x - z, , --another

solution of (6.4) - -i--is bounded.

The combination of [1; Theorem 10.2] and [1; Theorem

7.1] as applied to our case then yields: there exist

numbers v, v' , B^, N^ > 0, ~k± > 1, such that for any

integers nQ, n with n ^ n Q ^ 0 , any bounded solution y

of (6.4). , and any solution z of (6.4) with z (0) eZ
Ln_J ~
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we have

(7.4) Dy(n)ff ^ Nxe " ° Dy(nQ) Q

- 1 *>' ( n ~ n o )

(7.5) Dz(n) fl ^ N^ x e ° Dz(nQ) Q

(7.6) Dz(nQ)O £ A1Q z(nQ) - y(nQ) D .

3. It now remains to translate this information

on (6.4) by means of Lemma 6.1 into the conclusion

of the theorem. We define W to be the finite-dimen-

sional linear manifold of solutions w of (1.2) with

II(O)weZ. In the rest of this proof, whenever w e W ,

we set z = taw and observe that, by Lemma 6.1, z is

a solution of (6.4) with z (0) = II(O)weZ , and that

all solutions of (6.4) starting from Z are of this

form.

Let w e W and t , t be given, with t ;> t ^ 0 .

Let n be the greatest integer ^ t and n the

least integer ^ t . Combining (7.5) and Lemma 5.2

we f ind

n v1 (n-n )
[III(t)wOexp||Mc|| £ D n(n)wQ = Dz(n)Q 1 Dz(no)DN^ " e

- 1 v1 (n-n )
N' e °

v' ( t - t )
° exp(-| |Mc | |) ,
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i.e., (ii) with N' = N| exp(2||Mc|j) .

Let now m ^ 0 be given and fixed in the sequel.

If u is a solution of (1.2). ., we choose an arbitrary

integer n ^ m and find that ur n_n
 i s a solution of

(1.2) . j . By Lenuna 6.1, ^rurn_i]
 i s a solution of (6-

by Part 2 of this proof, there exists a solution z of

(6.4) with z(0) e Z , i.e., z = *ccrw with w e W, such

that f u [ f r l ] - z [ n ] =-SJ(u[n_13 - z[n-1]) =tD(u- z ^ ^ ^ u

is bounded. Then (u - w, ^ j rn_n
 i s bounded, and

v = u - w r ., is a bounded solution of (1.2), , .[m-1] imj

Let v be a given bounded solution of (1.2) , , .

Let t , t be given, with t ^ t ;> m . If there is no
O — O ~"

integer in the interval [t ,t], Lemma 5.2 implies

-i/(t-t -1)
(7.7) Qn(t)vD ^ Dn(to)vDexp|!Mc|| £ Dn(to)vQe ° exp!JMc||;

otherwise, let n be the least integer ^ t and n the

greatest integer ^ t , so that n ^ n ^ m . By Lemma 6.1,

y = *0Dvrn _i] is a bounded solution of (6.4) , , . Com-

bining (7.4) with Lemma 5.2, we find
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(7.8) nn(t)vQexp(-lJMc||) £ Dn(n)vQ = Qy(n)U

IIy(no)

- 2)
exp||Mc!l

Since N., ̂  1 (by (7.4) for n = n ), we conclude from

(7.7), (7.8) that (i) holds with N = N1e
2i;exp(2|!Mc|!) .

Finally, with v as before and with w e W, t ̂  m

given, let n be the least integer ^ t ; again y =

icvr ,, is a bounded solution of (6.4) , , . Applying

(i i) to w, (7.6) to y and z = vw, and Lemma 5.2

to w. ,, - v , we find[m-1]

Dn(t)wQ ^ N1 Dn(no)wQ - N» Qz(no) fl ̂ A ^
1 |z(nQ) - y(nQ) Q

n(nQ)vQ = A^ 1 Q n(nQ) (w[nHl] -v) fl

- v)Dexp||Mc|

= y On(t)w - II(t)vQexp||Mc|| ,

i . e . , ( i i i ) with \Q = ~K^ expj|Mc||.
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Remark. Conversely, the conclusion of Theorem 7.3

implies, via Lemma 6.1, that E is a regular covariant

sequence and induces an exponential dichotomy for A. From

the "converse" theorem for difference equations, i.e.,

[1; Theorem 10.3], it follows that (-6°° ,-laD ) is admissi-

ble with respect to A; and hence, by Theorem 7.1, that

(C,C) is admissible with respect to M. Thus the converse

of Theorem 7.3 is valid. Since the proof, as outlined,

is straightforward and requires no fresh insight, we omit

it here.
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