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ABSTRACT

The parallel connection of networks suggested the concept of

parallel addition of matrices to Anderson and Duffin. The hybrid

connection of networks also suggests a matrix operation. Using

the Kirchhoff current and voltage equations, a new operation,

hybrid addition, is defined for the set of Hermitian semidefinite

matrices. This operation is an Hermitian semidefinite order

preserving semigroup operation. Hybrid addition is closely related

to the work of Anderson on 'shorted operators', and to the gyration

operation of linear programming and network synthesis„
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Hybrid Addition of Matrices -

A Network Theory Concept

1.0 INTRODUCTION Let A and B be the impedance matrices

of n-port passive resistive networks. It is well known that A

and B are Hermitian semidefinite. Figure 1 shows the series

connection of two 2-port networks. More generally, in the series

connection of n-ports, the corresponding ports of each network

are connected in series. The impedance matrix of the series

connection is A + B.
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Figure 1: Series connection of two 2-ports

Figure 2 shows the parallel connection of two 2-ports; the

n-port case is similar. Anderson and Duffin have shown that

the impedance matrix of the parallel connection is given by

A(A+B) B; where A is the Moore-Penrose generalized inverse of

A. Defining A : B = A(A+B) B, the parallel sum of A and B,

Anderson and Duffin have shown that parallel addition is a com-

mutative semigroup operation on the set of Hermitian semidefinite

matrices. Parallel addition also preserves the Hermitian semi-

definite partial ordering, where A ^ B means that A - B is
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Hermitian semidefinite.
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Figure 2: Parallel connection on two 2-ports

Another connection of n-ports used in electrical network

theory is the hybrid connection [5,7]. This connection is a

combination of the series and parallel connections, and contains

each as special cases. Using the Kirchhoff current and voltage

equations associated with the hybrid connection, we define hybrid

addition of Hermitian semidefinite matrices. This new operation

is commutative, associative and preserves the Hermitian semi-

definite partial order. The 'gyration operator' of Duffin,

Hazony, Morrison [7] and Tucker [11,12] is extended to obtain a matrix

expression for the hybrid sum of two Hermitian semidefinite matrices.

Anderson has defined the 'shorted operator' of a matrix and it

is shown that hybrid addition is closely related to the shorted

operator.

2.0 NOTATION AND PRELIMINARY LEMMAS This paper considers

operators on a finite dimensional complex vector space. Matrix

representations are used whenever possible. An operator A is

said to be Hermitian semidefinite when A = A* and (Ax,x) ̂ > 0



for all x. Hermitian semidefinite is abbreviated HSD. If A is

HSD then (Ax,x) = 0 if and only if Ax = 0. The range and

null space of A are denoted R(A) and N(A) respectively.

If A and B are HSD then R(A+B) = R(A)+R(B). The Moore-Penrose

generalized inverse [6,9] of A is denoted A . If A is

Hermitian, then A restricted to R(A) is one to one and therefore

invertible. The generalized inverse is then defined by: A = A~

on R(A) and A+ = 0 on N(A).

Let A =

A12

A21 A22

with A... and A 2 2 square submatrices.

It is clear that if A is HSD then A... and A_2 are HSD and

A., 2
 = A2i* T*le following lemma relates properties of submatrices

to the partitioned matrix; [x,y] denotes vectors partitioned

corresponding to the matrix partition.

Lemma 1; Let A be HSD and partitioned as above, then

Proof; Suppose the vector X€N(A.,), then A,,x = 0. If

y = A21x, then for real a, (A[ax,y] , [ax,y]) = 2a||y|| + (A22y,y) .

Since a is arbitrary, if y ^ 0, the right side can be made

negative, contradicting the fact that A is HSD. This shows that

xeN(A21) . Since A.... is HSD and A 2 1 = A-,2, the other containment

follows by taking complements.

The theory of parallel addition is used throughout this paper.

The following summary of results is included for completeness.

See Anderson and Duffin [2] for proofs.



Lemma _2: Let A,B,C,D be HSD and A : B = A(A+B)+B then

a) A : B _is HSD.

b) A : B = B : A.

c) A : (B : C) = (A : B) : c.

d) A : B = (P(A+ + B +)P) +, where P is the projection

onto R(A) 0 R(B).

e) (A : Bz,z) £ (Ax,x) + (By,y) for .all x + y = z.

Moreover, _if_ x = (A+B)+Bz and y = (A+B)+Az then

equality holds.

f) (A+B) : (C+D) c + B : D Series Parallel Inequality.

g) R(A : B) = R(A) D R(B)

3.0 ALGEBRA OF HYBRID ADDITION Figure 3 illustrates the

hybrid connection of two 2-ports. More generally in the hybrid

connection of n-ports, the first r ports are connected in parallel

and the remaining n - r ports are connected in series. Ideal

isolation transformers are assumed present at each port to insure

proper current flow.

Figure 3: Hybrid Connection of Two 2-ports
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Let [x,,x2] represent current, [y,,y2l voltage, and A and

B the impedance matrices of the networks. Then the Kirchhoff

current and voltage equations take the form:

M et cl 3- S , r lO JD-i r ID b -

x i 9xo-I "" L y p YoJ 9 oL A - 92^ryj — ty-i j y o j y

x = xa + x b x = xa = xb

xl xi + x±> X2 2 2J

vl = yl = yl> y2 = y2 + y 2 *

When written with the partitioned A and B, these equations

become:

) _ d ct \ a t yj

11 1 12 2 "l ; 1 1 1

•u. \ A *r -L. A V — \ r "f ̂ v — V — V

(1) b b b a b
c) B, ,x, + B i ox o = yn g) y. = y, = y.

,v B x + B x = v h) v = v + v

The next theorem shows that equations (1) can be solved for

[y-ijYo] ^n t^le f° r m [y-î yol = H[x,,x2]. The matrix H is called

the hybrid sum of A and B. If all the ports of the network

are connected in series, then H = A+B, the ordinary series sum.

If all ports are connected in parallel, then H = A : B the

parallel sum of A and B [1,2].

Theorem 3; If A and B are HSD then equations (1) can be

solved for a matrix H so that [y,,yo] = H[x,,xo], where H is

given by:



H =

D(A11A12

B21B1+1)D

with D = A... : B,,, the parallel sum of A ^ and B ^ and

Proof; From b),d),f) and h) in (1) it follows that:

From a),c),e),f) and g) in (1) we have:

a
a)

(3) b)

c)

-B,

A12X2

B12X2

4 X

Equations (2) and (3) are a linear system for y, and y2

in terms of x. and x2. To show uniqueness, suppose x., = x2 = 0,

then (3) can be rewritten:

..av =Yl
b xa = -xb

l' xl 1*

Therefore (A,,+ B,,)x. = 0. Since A . and B^ are HSD, it follows

that y, = Ainx^ = Biixi = Oo Since A and B are HSD,

N(AO1) => N(Anl) and N(BO, £ N(B,,). Therefore, Aonx
a = Bolx? = 0,

/> ±. ~~ X X £ X XX ^X X ^1 X

and then y2 = 0 from (2). This completes the uniqueness argument.

To show existence and to solve for H, x, and x~ are considered

separately,,
Let x2 = 0. Then, since xa + x.. = x,, (3) can be written:

Yl " A11X1 = °̂ yl + B11X1 " B11X1*

Therefore (A,,+ B,,)xa = B,,x . Since R(B,,) c R(AI;.+ B-,) ,

x, = (B,,+ A,,) B,,x. is a solution. Substituting this solution
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for xa into (3a) and (2), we have:

a) yx = A1]L(A11+ B ^ + B ^

(4)

b ) y2 = A 21 ( A 11 + B11 )+B11X1 + B 2 1 ( I ~ ( A 1 1 + B 11 ) + B 11 ) X 1*

L e t D = A i i ( A i i + B n ^ B l l * D •"•s t ^ i e P a r a H e l s u m o f A.., a n d B . , .

Since A ^ A ^ ^ ^ A ^ , B
2 l B i + l B i l = B21 a n d

B11^+A11+^A11+ B l l ^ + B l l ^ = B 2 1 ' w e m a y r e w r i t e (4) as follows;

a) y^ =

(5)

Equation (5) gives the first column of the matrix H. For the second

column suppose x. = 0.

If x, = 0, then since xa + x. = 0 equation (3) can be

rewritten:

3 1 \T U V Ẑ M ^F

a.) y^- " ^ 1 / ^ ~ **]_2 2'

(6)

Therefore (B,^ A,,)x^ = (B12- A12)x2. Since

xZ L£ "-* LZ LZ. —~ LX. J-l J.J. 11

X, = (B,,+ A-̂ .) (B,2- A-2)x2 is a solution. Substitution of this

value for x, into (6a) yields:

Since A i i ^ A n + B n ^ A i2 = A i2~ B11^B11+ A l l ^ A12* w e m a y w r : * - t e :

(7) Y l = DfA^A^-H B l
+

l B l 2 ) x 2 .



Replace x, given above in (2) and we have:

y2 = [(A21- B21)(A11+ B U )
 + (B12- A 1 2) +

Letting E = (A21- B
2 i ^ A n + BH^ + (Bl2~ A12^ + A22+ B22' W e C a n

rewrite the above as:

(8) y2 = Ex2

Equations (7) and (8) give the second column of H and this

completes the proof, QED

The matrix H, called the hybrid sum of A and B is denoted

A * B. The generalized inverse is used in the definition of H.

Since RCA.,) => R(A12) and R(B.,.,) z> R(B12)j the generalized inverse

is only a convenient notation, and is really not needed.

The following notation is used throughout the remainder of the

paper. Let
F = A1;LA12 + B1;LB12,

q = A - A A A
faA A22 A21 11A12J

S B = B22" B21B11B12*

S, and S_ are related to the shorted operator of Anderson which

is considered in Section 5.0»

From the matrix expression for A * B, we see that the upper

right and lower left blocks are given by DF and F D

respectively. The next Lemma simplifies the lower right block

of A * B.

Lemma 4: Let D,F,SA and S_ be as above, then:

A 2 2 + B22 " (A21" B21 ) ( A11 + Bll ) (A12" B12 )

= SA+ S B + F*DF.
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Proof; The terms S A and S B contain A 2 2 and B 2 2

respectively, therefore it is sufficient to show that:

-A21AtlA12 - B21BtlB12 +

(A21Atl+ B21 Btl ) D ( Atl A12 + BtlB12> =

Expansion of the left hand side, using, D = A,,(A1.+
 B n ^ B n

A21A11A11 = A21'A11A11A12 = A12 a n d similarly for B,2 and

yields:

"A21A11A12" B21B11B12 + A21 ( A11 + Bll ) B12

Simplifying this we have:

A21 ( A11 + Bll ) B12 + B21 ( A11 + Bll ) A12*

Since (A1;L+ B1;L) B^ + (&n+ Bii) A n = p^ where P is the

projection onto RfÂ ,,) fl R(B,,), the above becomes:

" A21 ( A11 + Bll ) Al2" B21 ( All + Bll ) B12 +

A21 ( A11 + Bll ) B12 + B21 ( A11 + Bll ) A12*

But this may be rewritten as:

QED
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Lemma 4 allows us to abbreviate the hybrid matrix as follows:

D DF

(9) A * B =

F D F*DF

If A and B are HSD, it is clear that S and g are Hermitian.

Since D is also Hermitian by Lemma 2, equation (9) shows A * B

is Hermitian. Lemma 2 also states that

A11 ( A11 + Bll)+Bll = B11 ( B11 + All ) + All' t h e r e f o r e A * B = B * A.

This proves the following theorem:

and

Theorem 5: If A and B are HSD then A * B is Hermitian

A * B = B * A.

Duffin, Hazony and Morrison have used the hybrid connection in

network synthesis problems. In their synthesis they consider the

gyrator, which is a non-reciprocal network element first used by

Tellegen. Their study of the gyrator led them to the concept of

matrix gyration. The gyration is a partial inverse defined for

partitioned matrices. If A is partitioned as before, then the

gyration of A, denoted by F(A), is given by:

T(A) =

A11

A21Atl

"A11A12

A22" A21A11A12

Tucker has also studied the gyration operator in connection with

linear programming [11,12].

The submatrix A,, is termed the 'pivot', and these authors

do not define gyration unless A _ is invertibleo So actually
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the above definition is a generalized gyration. The following

lemma justifies the term partial inverse.

Lemma 6: If A . _is invert ible then A[x. ,x2] = [y,,y2l

implies ^ ^ ^ ^

Proof: In partitioned form A[x-.,x2] = [y,,y2] becomes:

A21X1 + A 2 2 X
2 ~

 y2

Since A .. is invertible, we can solve these equations for x, and

y~ and we have:

x l = A l l y l " A l l A 1 2 X 2

-i —'
.- — A A \7 -t- f A - A A '

Rewritten these are:

= T(A)

QED

Using the notation S, = A22~
 A21A11A12 introduced previously,

we may write the gyration as:

A11 "A11A12

A A c;
21 AH bA

The next lemma shows that gyration is an idempotent operation

when restricted to Hermitian semidefinite matrices.

Lemma 7: H A _is HSD then r(T(A)) = A.

Proof; From the definition of gyration we see that:

r(T(A) =
A A A A

11A11 A11A12
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S i n c e A i s HSD,A n 1 = A n , A A
n l A 1 9 = A.. 9 a n d A-..A.. ..A.. .. = A , . . ,

XX . XX XX IX 16 X« £ X X X X X ^ X

the terms of F(F(A)) simplify to those of A. QED

Whenever A,, and B,, are nonsingular,the hybrid connection

A * B is given by F(F(A) + F(B)), see Duffin, Hazony and Morrison

[7] or Belevitch [5]. However if A,, or B,, is singular

F(F(A) + F(B)) exists but is not A * B. The following theorem

gives a formula for A * B in terms of F and the projection

onto R(AI;L) n R(BI;L) .

Theorem 8: Let A and B b_e HSD, P b_e the projection onto

R(A,,) D R(B.,), and
XI XX —"-"•"

P 0

Q =

—9 "L_

then A * B = F(Q(F(A) + F(B))Q).

Proof: From the definition of gyration, we see F(A) + F(B)

can be written:

(A,, -H B,,) -F

F* SA + SB

where, as before, F = A-.A^ + ^11^12* Multiplication on the right

and left by Q yields:

+ B,,)P -PF

*
F P S A + SB

HUNT LIBRARY
£AfiN£6IE-M£U0N UNIVERSITY
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Since (P(A^1+ B^ 1)P)
+ = A.^: B-^ by Lemma 2, taking the gyration

of Q(T(A) + T(B))Q gives A * B. QED

This new expression for the hybrid sum is used to show that

hybrid addition is associative. First we need a preliminary lemma.

Lemma 9; Let A and B be HSD, and Q be as in Theorem 8,

then T(A * B) = Q(T(A) + T(B))Q.

Proof; The hybrid sum is given by:

D -DF

B =

F * D S.+ S_+ F*DF
A 13

Therefore T(A * B) is:

D+ -D+DF

F*DD F*DF - F*DDDF

P, D+DF = F and F*DD+ = F* the terms

__ A B
J- J. J.

Since D =

of T(A * B) simplify to those of Q(T(A) + T(B))Q. Q E D

Theorem 10: If, A,B and C are HSD then A * (B * C) = (A * B) *C,

and if P is the projection onto R(A,,) 0 R(B,,) D R(C,,) and
1 * ' —̂ """" ~"—— ' ""•"• • XX XX XX ' ' '

P 0Q =
0

, then A * B * C = r(Q(T(A) + T(B) + r(C))Q).

Proof: Since R(B,,: Ĉ ^̂ )̂ = RfB,,) f\ R(C-1) by Lemma 2,

we may write P = R(A11) fl R(B1;L) n R(C1;L) = R(A1;L) 0

With Q as above, Theorem 8 yields:

A * (B * C) = r(Q(T(A) + r(B * C))Q).

By Lemma 9, T(B * C) = Q1(r(B) + r(C))Q1 where Q 1 =

with P1 = R(B1;L) 0 R(C1:L) . Therefore A * (B * C) can be

written:

0
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r(Q(T(A) + Q^HB) + r(C))Q1)Q).

From the definition of P and P^ we see PPX = Pj_P and

therefore QQX = 0 ^ = 0- A * (B * C) can then be written:

r(Q(T(A) + r(B) + T(C))Q).

A similar computation holds for (A * B) * C.

QED

Using equations (1),(2) and (3), we can complete the proof that

hybrid addition is a commutative semigroup operation. The following

lemma shows that A * B is semidefinite*

Lemma 11. If [xa,xa] and [xr,x£] are determined in (2)

and (3) from [x^x^ then (A* B[x1,x2], [x-^x^ ) = (A[x
a,xa], [xa,xa] )

+ (B[x*,x*]Ax*,x*]).

Proof: (A* B[x1,x2]s[x1>x2]) = ([y1,y2] A^,^^

= (ya,xa) + (y^x^) + (ya,xa) + (y^x

using le,lf,lg,lh

= (A[xa,xa],[xa,xa]) + (B[x*,x*],[x*,x*])

QED

Theorem 12; If A and B are HSD then A * B _is HSD.

Proof; Theorem 5 guarantees that A * B is Hermitian, and

Lemma 11 assures that A * B is semidefinite. QED

Theorems 5,10 and 12 complete the proof that hybrid addition is



16

a commutative semigroup operation. The next section develops the

matrix inequalities necessary to prove that hybrid addition preserves

the Hermitian semidefinite partial order.

4.0 HYBRID INEQUALITIES Theorem 12 states that the network

is 'passive1. If the currents xa and x satisfy the constraints

le) and If) but are not necessarily solutions of (2) then the power

equality of Lemma 11 becomes the inequality of the following lemma.

Lemma 13; Let xa,x be solutions of (2) and (3) determined

from x = [x,,x2] . Let za,z be vectors such that z, + z.. = x,

and za = z2 = x2 then

(A * Bx,x) £ (Aza
jZ

a) + (Bzb,zb).

Proof; Since x, + x. = x, = z.. + z.., there is a t such

that za = xa + t, z.= x1 - t, therefore we have;

(Aza,za) + (Bzb,zb) =

(A[xa + t,xa],[xj + t,xa]) + (B[xb - t,xb],[xb - t,xb])

= (A * Bx,x) + (Aut,t) + (Bi;Lt,t) +

2 Re {(A11x
a,t) + (A12x

a,t) - (B1;Lx
b,t) - (B12x^t)]

= (A * Bx,x) + (Ai;Lt,t) + (Bi;Lt,t) by la),lb),lg)

^> (A * Bx,x) Since A-, and B-, are HSD

QED

When (Ax,x) _£ (Bx,x) for all x, we will write A ̂  B. It

is clear that this is a partial order on the set of Hermitian

semidefinite matrices.

Parallel addition is a special case of hybrid addition. The

following theorem gives a generalization of the series-parallel
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inequality given by Anderson and Duffin [2]. We term this new

result the series-hybrid inequality,,

Theorem 14: If A,B,C, and D are HSD then

(A+B) * ( C + D ) J > A * C + B * D

and

Proof: There are x? ,x° such that x̂^ = x^ + x^

((A+B) * (C + D)[x1,x2],[x1x2]) =

((A + B)[xJb,x2],[xJ
b,x2]) + ((C +

^ (A *C [x1,x2] J[x1,x2]) + (B * D [x1,x2],[x1,x2])

by Lemma 13.

QED

Letting D = 0 in Theorem 14, we have (A + B) * C J> A * C

for all A,B,C that are HSD. Since A + B J> A for all B,

we have the following corollary:

Corollary 15: If A,B and C are HSD, and A ̂  B, then

AU^B* C.

Corollary 15 shows that hybrid addition preserves the Hermitian

semidefinite partial order. There is a duality between the series

operation (+) and the parallel operation (:). Thus Theorem 14 has

the following dual theorem.

Theorem 16: If A,B,C, and D are HSD then

(A : B) * (C : D) £ (A * C) : (B * D) .

We term this new result the parallel-hybrid inequality.

The proof is omitted.
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5.0 SHORTED OPERATORS The shorted matrix has been defined

and studied by Anderson [3]. Let A be partitioned as before,

then the shorted matrix of A, denote S(A), is defined by:

0 0

S(A) =

0 A22 A21A11A12

If A is the impedance matrix of a passive resistive network,

then S(A) is the impedance matrix resulting from shorting out

the first r ports (A., is r X r).

From the definition of A * B, it is easily seen that:

D DF

A * B = S(A) + S(B) +

F*D F*DF

Let P and P1 be the orthogonal projections onto the

complementary subspaces corresponding to the partitioning of A and

B.

Theorem 17: S(A * B) = S(A) + S(B).

Proof: It is sufficient to consider P'S(A * B)P'.

P'S(A * B)P' = P'[S(A) + S(B)]P' + F*DF - F*DD+DF

= P1[S(A) + S(B)]P»
QED

Using Theorem 17, Lemma 4 may be rewritten as:

P'[S(A) + S(B)]P» + F*DF = A22+ B 2 2- (^l^l* ( A11

The right hand side of the above is P'S(A+B)p'.

(A12"B12)

is B

with B 1 2 and B 2 1 replaced by -B,2 and -B2l» The above
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formula gives:

Theorem 18:

S(A+B) = S(A) + S(B)

0 F*DF

Since S(I3) = S(B), and B is arbitrary, Theorem 18 gives

an Hermitian semidefinite bound for S(A+B) - S(A) - S(B). This

bound is guaranteed by Anderson [3] but is not explicitly determined.

It should also be noted that since A * 0 = S(A), the inequality

S(A) + S(B) £ S(A+B) follows directly from Theorem 14.

6.0 GENERALIZATIONS AND RELATED WORK The ideas used in

developing hybrid addition can be used in more general situations.

It would seem that any electrical interconnection of n-ports

will give rise to a corresponding Hermitian semidefinite matrix

operation. For example, the cascade connection of two n-ports

is a very common connection in electrical engineering [4,5,10].

Figure 4 shows the cascade connection of two 2-ports. The basic

ideas of hybrid addition can also be used to define an Hermitian

semidefinite matrix operation, cascade addition. This will not be

considered here.

IN

e-

OUT

-e

Figure 4: Cascade connection of two 2-ports
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Anderson [1] and Lewis and Newman [8] have considered 'almost

positive definite1 matrices. Hybrid addition can be extended to

almost positive definite matrices but the power inequality of

Lemma 13 is not necessarily true and the succeeding matrix

inequalities need not hold.

CARNEGIE-MELLON UNIVERSITY
PITTSBURGH, PENNSYLVANIA 15213

WEST VIRGINIA UNIVERSITY
MORGANTOWN, WEST VIRGINIA 26506
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