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" Cswald Wler

1. Introduction* The two Noether isomorphismtheorems and the Zassenhaus

Lenma for groups or rings can be considered as asserting that certain diagranms
involving kernel s and cokemel s are conmutative. Inthis form the three results
are clearly valid for every abelian category. However, groups and rings do not
formabel i an cétegoriesh and thus the question arises to find a larger class of
categories for which the three theorens, and hence al so the theorems of Jordan-
Hol der and of Schreier, remain valid* Abellanas [|] has recently taken up this
question, but he proves the Zassenhaus Lemnma only for quotient objects of norma
subobj ects of a fixed object* Inthis note (which does not depend on [I]),
we nodify the method of Abellanas [I] to obtain the desired theorens in full
generalityL under assunptions which are actual |y weaker than those of [l]«

The categories to be considered nust be pointed* i.e. have zero norphisns*
and we avoid unnecessary conpficatiqns by assumng that they have kernels and
cokemel s* This is not enough; we must require some vreak exactness conditions
in the sense of [4]* The conditions used in this note are strictly weaker than
those of [4], but not self-dual*

W use in general the notations and termnology of [3] for categories;

exceptions to this rule will be duly noted*




2. Assunptions and exanples. V& assunme throughout this note that & is a

non-enpty category which satisfies the follow ng four conditionse
z0. ¥ is pointed, i.e. *& has zero norphisns.
Z1, " has inverse inages, cokeraels, and cointersections of cokenels.
22, |If em is defined in % for a cokernel e and a kernel m, then

f

em*nl e for a cokernel e and a kernel n

Z3. If em is definedin *& for a cokernel e and a nononorphism m;

Y and a mononorphism ni e

then em=ni ¢ for a cokernel e

These are all the assunptions which we shall need. W note that Z 0.and Z 2
are self-dual; Z1land Z3 arenot. If k: A—Z is a cokernel of an iden-.
tity norphism i.dA of A, then Z is clearly a zero object of If . Thus \f
has a zero object as well as zero nmorphisnms, and the zero norphisns are those
which factor through a zero object Z . By Z|Il; the inverse image of 0 : Z—B
exists for every norphism f : A—B of If . Thus if has kernels as well as
cokemels. W shall denote by tor f the class of all kernels, and by coker f
the class of all cokemels; of a morphism f of if.

For images and coi mages, we shall use the definitions of [2]. Thus an inmage
of f£?, wthrespect toaclass £ of norphisns of £, is apar (em
such that (Ii) f «me in if and me*, and (ii) whenever v f =nl u in A
with m £4; then u«xe and vm=xm in * for aunique X 6",

Coi mages are defined dually. If ~ consists of mononorphisns of 7, -then it
suffices for (ii) tofind x6" such that vme«nl x ; the remainder of (ii)
follows. If y> is the class of all nononorphisns or the class of all kernels
of %, theninverse-inmges in the sense of [2] are inverse images in the

usual sense, i.e. pullbacks of nononorphisins. The follow ng | emma shows that Z 3




furnishes all the images and coimages which we shall need.

Lema 2.1. _If f =m ~ 7~ for_a cokernel e and_ a ponoporphism m,

then (efm) is an image of f for the class of all mononorphisps of. £%, and

also a coimage of f for the class of all cokernels of ¥ e

W shall call (efm a pormal_coimage« or a conorpml jpmge. or shortly a

conim of f inthis situation. The terns pormml image« conormal coinage« and

shortly pipu describe the dual situation.

Proof* |f k £ker f , thenalso k€ ker e, and e£coker f . If we
have M u=vf , then mMuk*0, and uk=0 if nl is nononorphic.
Thus u=xe f.oraunique x£A, and m x *vm follows easilys

Let now f u=ve , where e is acokernel of g in "« W have
fug=ve' g=0, and hence eug&O- Thus e u=x e' for a unique

x £ *2 and v=mx follows easily!

Qorollary 2.2, 1f em=n e [n *£ for akernel m: a_cokernel e,

an_eD morphism e! and a nononor phi sm Mo then nl is_akernel and e

a_cokernel .

Proof. By Z2 em= m, e, for a kernel nu and a cokernel €, . Then
(elfnl) Is animand a conimby 2:1 and its dual. Thus nu = mx, e *x e*‘L ’
and e, =Y e onl o« m,y for morphisns x;y of "€« |t follows easily

that x and y are inverse isonorphisnsB

Exanples. Inall exanples which follow Z0- Z 3 and the dual of Z 1 are
valid. Inall exanples but one, the dual of Z 3 is alsovalid.

G oups, |oops, and groups or loops with a fixed famly of operators are




famliar exanples. In these exanples, epimorphisns are surjective homonor phi sns,
and every epinmorphismis a cokernel. Rings without unit element, with ideals as
normal subobj ects and surjective homonorphisms as cokernels, formanother exanple.

Pointed sets, i.e. sets with a basepoint and mappi ngs whi ch preserve base-
points, satisfy Z0 - Z 3 and their duals. Mononorphisms are injective maps, and
every nononor phismis a kernel. Epinorphisns are surjective maps, but not every
epi morphismis a cokernel.

Poi nted topol ogi cal spaces and pointed Hausdorff spaces are al so exanpl es.
In both cases, the kernel of amp f : A —»B is the s_ubspace i ncl usi on map
from f~1(efi) to A, where eg is the basepoint of B . Cokernels are the
quotient  maps which shrink a subspace to a point and are injective outside of
that subspace. The dual of Z 3 is satisfied for topological spaces, where every
subspace inclusion Al — A is a kernel, but not for Hausdorff spaces, where
onl'y closed subspaces A of A, and not all closed subspaces if A is not

regul ar, define kernels of maps f with source A .

2¢«_Diagram|emmas. The results of this section are well known for abelian

categories; we state and prove themunder nuch weaker assunptions. W shall
need two pu-I | back | emmas, the Nine Lemma, and two forns of the Six Lenma.

As we pointed out in [4], exactness in non-abelian categories is not self-
dual . For the present note, however, we need only a special, and self-dual,
aspect of exactness. W call a pair (me) _short exact if m£ ker e and
e £coker me It will also be convenient to call a commutative square me

f

«e" nl aconimsquare if two opposite sides e , e are cokernels, and the

other Bides m, nl nononorphi sis.




Lemma_3«1» Lf_the square ip.

is a pullback and m6 ker g then nt s akernel of gf

This is well-known; we omt the straightforward proof.

Lemma 3«2« 1f the rlghthand square jn
m A e' |

| bk

—
ra Ll

is apullback, with f joo fe _ponomorphic._and if m£ ker e, fhep nl with

m=f m exists to conplete the diagrant and m £ ker e' e

Proof,, W have em* f' z for azeromap z , and thus m exists, and
e m «0. If e x»0; then ef x=f e x=0, andthus f x « mx

=fnm x" for aunique x'£\f, and x =nt x* foll ous]

Proposition 3.3. [For a comwtative diagram

M e'
Fa
¢H f ft
W m ~ e ' o
g" g g
v oot W PR 4
> >

in "; the following two statenents are |ogically equivalent.,




(i) A1 _rows and colums are short exact pairs

(ii) The mddle rowand the mddle columm are short exact, the tot) left
SQuare is a pul |l back and the bottomri_ ght square a pushout« f* and m are
mononor phi sns« and e* and o' are epimorphisos,

groof. If (i) is satisfied, let f x=my . Then m g"y«gf x«O,
and thus g" y«0; and y «f" z for aunique z£7"+ It follows easily
that also x =m z . The pushout part of (ii) is proved dually, and the other
parts of (ii) follow inmmediately from (i)«

Conversely, if (ii) is satisfied, then ni is akernel of ef =f' ¢

by 3»It and hence also a kernel of el « ¢

is a cokernel by Z 2 and 2«2;
and thus (m.e') is short exact, (f",g") is short exact for the same reason,
and (f'ig') and (n' e'f) are short exact for the dual reason;jf

V& note that the di agram of 3»3 is determned up to isonorphisnms in the four
corners by the mddle row (me) andthe mddle colum (f,g) . |If these are
short exact, then the pul | back square and the pushout square can be constructed

by Z 1, and the other two squares exist by Z 2.

Proposition 3«4« |n the comutative diagram

m! N el «
~ -~

| T &
m e .
T -~

g g'

N L4
let the top right square be a conimsquare and g¢' £ coker f* , and let (me)

be short exact> Then (nl,e') s short exact, g £coker f , and the top right




sguare ie a wishout.

Proof. The top left square is a pullback. Thus m is akernel of f' e |
Since f' is monomorphic and e a cokernel; (mel!) is short exact*
g is epinorphic, and gf =g f' e «0, If xf =0, then x m«O

f

and x *ye for sane y£ £ with yfl e =xt =0, andhence yfe »0 .

Nw yszg! for some z£% and x =z g+ Thus ¢ <fcoker f o [f wuf
=vel, then um=ve nl «0, end u=ze for aunique zQ¥E (e

sees easily that v=2zf , andthus the top right square i s a pushout |

Proposition 5*5+ In the comufatjve diggramof 3»4, let (me) be short
exact and gf &coker f* | let. f be akerpel, andlet e' be epi nor phi ¢_and
f1 ponomorpit”L* Ihen (mre’) ~nd both columa of 9~ 7flfframfireshort exact;

and the top right sguare is a pullback and a pushout*

Pfroof. Except for the pullback part, eveiything follows from2.2 and 3A
This is a self-dual situation, and the proof of the pullback part is dual to the

proof of the pushout part of 3.4

4__ Operations on_subobjects. e define a subob.iect of an object C of i'f

as a monomorphismwith target G . W put a'”a for subobjects a, a! of G

if al»au for sone uf”, andwe put a'4a if this u is a kernel*

W call a and a' equivalent, insigns af*a’ , if a'“a and a’a® ,
i.e. if a'" «au for an isomorphism u of ~ . The preordered class of sub-
objects of G has finite intersections, by Z1. af)b , for subobjects a, b
of G, is obtained by the usual pullback construction. Like the operations

constructed below, a”b is defined only up to equival ence.




If A—2-70 and B* P >G are subobj ects of G, thenwe nay denote by
AoB the source of af) b, and we shall use simlar notations for other oper-
ations on subobjects. If N—£-£G is akernel, then we denote by GN the
target of a cokernel of n e jects like Ar\ B and GN are defined only up
to an isonorphismof %, and they are constructed from norphisns of $ and not
f romobj ect s*

If G—2->H is acokernel, and if A—=->G is a subobject of G and

B—£->H one of H, then we define subobjects f[a] of H and f"l[b]

of G, wthsources f[A and f" :tB] , by coomutative squares
A >f[A frg >

(4.1) la ‘Lf[a] ad fAlb] b
+ f
G——~Et— H —-£—>H

where the square at left is a conimsquare and the one at right a pul | back.

By Z1 and Z 3, these squares always exist in *€.

Proposition 4, 2. _The mappings af—f[a] _and b] —’\f'][ b] preserve

order and satisfy f[a]™b <> a"f~][b]

In other words, we have a covariant Gal oi s correspondence.

Proof. (onsider a conmutative di agram

If a' asf'l[b] , then the lower quadrangle is a pull back, and u exists if v




existse This shows that b h->f"1[b] preserves order, and that f[a] <b ==
adf "':f‘b] . If b «f[a] , then the outer quadrangle is a conimsquare, and
it follows from2.1 that v exists if u exists. This shows that a V->f][a]
preserves order, and that a” f"l[b] =A> fla] < b |

If N—2-3G is akernel and A—25>G a subobject of G, thenwe put
(4.3) n+ta = f-H U] : V+G*"=C¢ t

for a cokernel f of n . This defines a subobject n+a of G upto equi-
val ence. Ve omt the subscript G in N +gA whenever the circunstances per-

mt it. W note that a”n+a by 4.2 andthat n”,n+a by 3. 2

Proposition 4.4, Let M—M>G and N—20A G be kernels, with cokernels

G—i‘-"GM_gg_d_ GL-"GN. Then m-fnitn+m, and m+n js_akernel

of the cointersectjonof f and g -

Broof. W need the follow ng two comutative diagrans.

MAN—>N_> f [N M >M+ N_>f[»]
- , n £{n] m+n |f{n]
y v v
\M A, \G 4 }‘G/H M n S \é’ f—':‘ m
g
¥ W \J N/ W
dX . =G N—_>Q Q Q

At left, G*">Q is the cointersectionof f and g, andall rows and
colums are short exact by 3.3+ At right, the mddle rowand the right colum
are fromthe diagramat left, and the top righthand square is a pull back. Thus
m+n is akernel by 3.1. f[m+n] rSftfrtfCnlllriffEn] by 4.2, and thus the

top righthand square is also a conimsquare. Now m+n and G—>Q forma
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short exact pair. |f we construct the diagramat right with m and n, and f
and g , interchanged, then we see that n +m and G —Q also forma short

exact pair, n+mEE m+n follows!

Pr oposi ti on 4J);. JMgt N—=2->G be a kernel, and.let A_a"G and.
H—='3>G be subob.iects of G such that a”h. 1f nnh=hn" and

asha , then n is akernel, and n+a/H n+h (n +a')

This neans that the sources satisfy N +g A "N +q ((NnH) +4A)

Proof. W put K= Nr>H and consider the follow ng two diagrans.

A "g[A K+A_>g[A
o |etan) o +a lgra)
K £ A~ 75f | H H A H
n £ h] Jh |f[h]
H_ 56 £>GN G £»GN

At left, the bottomsquares are a pul I back and a conim square, and the top square
is aconimsquare. The mddle row (n', g) is short exact by 3.1+ The rectangle
on the right is a conimsquare, and thus g[A] £if[A] . At right, the top square
is apullback, and g[n" +a']Q g[g~1[g[af]]]£"g[af] by 4.2. Thus the top

square also is a conimsquare, and the rectangle is a conimsquare, -and -

f[K+A] CHgK+A] Cdd>] £L *!>]

-1 / \ m
follows. Applying f on both sides, we obtain N+g (K+; A) Q" N+ A (]

Proposition 4.6. 1f N_"$»G _is akernel and A—2-2G a_subob.iect

of G, _andif a=ha' and n=hn' in ~ for akernel H_*>G, then

f

n" is akernel, n+acCh(n +a') , 83& N+sA~N-fyA .




1
Proof, W use the proof of 4.5with Ke N. Snce h is akernel, 3.5
applies, and the common | ower square of the two diagrans is a pul | back. Thus the

rectangle at right is also a pullback, and N+ AEM N+ A fol | owsj

5. | sonor phi smt heor ens

Theorem5.1 1f N—"-»G is & kernel and 4 ——>C g gubobject of G ,
then (nna)4 a aod nO(n+a) . lf KA*"NoA and. SEEN+A, then
AKE? f[Al £ YN _for a cokernel G-2 GN of_n .

Proof. Consider two conmutative diagrans

K >A SHA N > 8 > £{4]
| la If[a] and " n+a |f[a]
N_—2L"G—i->GN N 2~>G-—£->CGI'N

The squares at left are a pullback and a conimsquare, and the top rowis short
exact by 3*1. At right, the righthand square is a pull back, and by 4.2 also a
conimsquare, and the top rowis short exact by 3. 2|

Theorem 5.1 is the first Noether isonorphismtheorem It is well known that
the second Noet her isonorphismtheoremis equivalent to the Six Lenma 3.5. Thus
bot h i sonorphi smtheorens are valid under our assunptions. W turn nowto the

Zassenhaus Lemma.

Proposition 5. 2, Let A_%>G and K_k>G be_subob.iects of G such

that k<3a, Jf H—=>G-2 @GN is_short exact, then f induces a
kernel f [K] -2 f [A] ,_and f [A]/f [K] " AKif n*a"k.

Proof. W consider the followng comutative diagram




NT -——T —$> L K]

HHA —— & —£&, #{a]

[

N—2->6_£>GN

V& have pul | back squares on the left, conimsquares on the right, and f[K e—>
f[A] is akernel by 2,2. If nna”k, then nnkCfnOas and 3.4

applies. Thus q g is a cokernel of K=3>k if g is acokernel of f[K —>
f[A , and AKMNF[A/f[K results(J

Proposition 5.3, let N—S— C—2— G/N be short exact, and let

A—2 7G and K_®r>G he subohjects of G suchthat ké4a. L n+a

f0B2—G and n+k£tL —2>G, _then -/AJb,_aM BLA f[A/f[K .

Proof. W& have a commtative diagram

SR

f[K] ——>£[4] —> ¢/

with pullback squares. f[K] —»£fA] is a kernel by 5.2, and thus L —>B is

akernd by 3.1. We have t[b]£z £[£"Hf Ca]]] " f[a] by 4.2, and sinilarly

tft] £2 f[k] . Snce bnn~ngf
thus also BL ~ fIAJ/[K] |

, we have B/L £f[B]/f[L] by 5.2, and

% consider now subobjects A—2>G and B_®>G of an object G,

and kernels H—23> A and K ~£5 B. Weput C*AnB, ad

F > (HnB) +a (ANK) &2 (AnK) + (EnB) ,
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using 4.4* This is justified since the squares

i"v-0 sl A s\ XT K
jiJ3 o ! A y>>|| A| | ft

h and . J/k
C_____2>A C ——>B

are pullbacks, with kernels at right, and hence with kernels at left by 3#l«
Thus the famliar "butterfly diagram can be constructed fromour data, in the

fol lowi ng form

H+A(AnB) K+B (AOB)

(5.4) H +4 (AOK) K +g (HAB)

< N\\ /
Now we state the Zassenhaus Lenmma as fol | ows.

Theorem 5*5* If A -8 G and B PJ>G are subobiects of an ohiect G
} —————————— —
J2£ %t and H—BAA Mfli K_X"B kernels in *£ then (5«4).is defined>
and_the three vertical |ines_in (5«4) represent kernels* with isonorphi ¢ quoti~fl{
obj ects.

Proof. N—C is akernel by 4.4, and E+.-AN—£>H+.AC I's a kernel
by 5.3, wth H+ QH+ N£ f[c]/f[N for a cokernel A-2 AH of h .
Bt HnC~AHnB"H, andthus f[c]/f[N fe N by 5.2 Nw

H+aN£ H +4 ((HnC) +.(AAK))." H +o (AnK)

HUNT LIBRARY
CKRNEGIE-MELLON  UNIVERSITY
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by 4*5. Thus the left vertical arrowin (5.4) is akernel, and the corresponding
quotient object is isonorphic to ¢/N. Sine? (5.4) is symetric by 4.4, the sane
argunent shows that the right vertical arrowin (5.4) is akernelg with quotient

obj ect isonorphic to CN 8§
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