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Oswald Wyler

1. Introduction* The two Noether isomorphism theorems and the Zassenhaus

Lemma for groups or rings can be considered as asserting that certain diagrams

involving kernels and cokemels are commutative. In this form, the three results

are clearly valid for every abelian category. However, groups and rings do not

form abelian categories, and thus the question arises to find a larger class of

categories for which the three theorems. and hence also the theorems of Jordan-

Holder and of Schreier. remain valid* Abellanas [l] has recently taken up this

question, but he proves the Zassenhaus Lemma only for quotient objects of normal

subobjects of a fixed object* In this note (which does not depend on [l]).

we modify the method of Abellanas [l] to obtain the desired theorems in full

generality, under assumptions which are actually weaker than those of [l]«

The categories to be considered must be pointed* i.e. have zero morphisms*

and we avoid unnecessary complications by assuming that they have kernels and

cokemels* This is not enough; we must require some vreak exactness conditions

in the sense of [4]* The conditions used in this note are strictly weaker than

those of [4], but not self-dual*

We use in general the notations and terminology of [3] for categories;

exceptions to this rule will be duly noted*



2. Assumptions and examples. We assume throughout this note that & is a

non-empty category which satisfies the following four conditions•

Z 0. h is pointed, i.e. *& has zero morphisms.

Z 1, ^ has inverse images, cokeraels, and cointersections of cokemels.

Z 2 , If em is defined in % for a cokernel e and a kernel m , then

e m * mf e1 for a cokernel ef and a kernel mf .

Z 3. If em is defined in *& for a cokernel e and a monomorphism m f

then e m = mf ef for a cokernel e1 and a monomorphism mf •

These are all the assumptions which we shall need. We note that Z 0 and Z 2

are self-dual; Z 1 and Z 3 are not. If k : A —> Z is a cokernel of an iden-

tity morphism id A of ^ , then Z is clearly a zero object of If . Thus \f

has a zero object as well as zero morphisms, and the zero morphisms are those

which factor through a zero object Z . By Z lf the inverse image of 0 : Z —> B

exists for every morphism f : A —> B of If . Thus if has kernels as well as

cokemels. We shall denote by tor f the class of all kernels, and by coker f

the class of all cokemels f of a morphism f of if .

For images and coimages, we shall use the definitions of [2]. Thus an image

of f £ ? , with respect to a class £ of morphisms of £ , is a pair (efm)

such that (i) f « m e in if and m e^ , and (ii) whenever v f = mf u in ^

with m1 £^ f then u « x e and v m = x m1 in ^ for a unique x 6 ^ ,

Coimages are defined dually. If ^ consists of monomorphisms of ^, then it

suffices for (ii) to find x 6 ̂  such that v m « mf x ; the remainder of (ii)

follows. If y> is the class of all monomorphisms or the class of all kernels

of % , then inverse f -images in the sense of [2] are inverse images in the

usual sense, i.e. pullbacks of monomorphisins. The following lemma shows that Z 3



furnishes all the images and coimages which we shall need.

Lemma 2.1. If f = me ^ ^ for a cokernel e and a monomorphism m ,

then (efm) is an image of f for the class of all monomorphisms of £*, and

also a coimage of f for the class of all cokernels of *j(f •

We shall call (efm) a normal coimage« or a conormal image, or shortly a

conim. of f in this situation. The terms normal image « conormal coimage« and

shortly ninu describe the dual situation.

* If k £ ker f , then also k €. ker e , and e £ coker f . If we

have mf u = v f , then m1 u k * 0 , and uk = 0 if mf is monomorphic.

Thus u = x e for a unique x £ ^ , and m1 x * v m follows easily •

Let now f u = v ef , where ef is a cokernel of g in ^ • We have

f u g = v e f g = 0 , and hence e u g « 0 • Thus e u = x e1 for a unique

x €. *l?, and v = m x follows easily!

Corollary 2.2, I£ e m = mf ef in *£ for a kernel m f a cokernel e 9

an eDimorphism e1 and a monomorphism mf 9 then mf is a kernel and ef

a cokernel.

Proof. By Z 2f e m = m. e. for a kernel nu and a cokernel ê , . Then

(e. fm.) is a nim and a conim by 2#1 and its dual. Thus nu = mf x , ef * x e*

and e, = y ef t mf « m, y for morphisms x f y of ^€ • It follows easily

that x and y are inverse isomorphismsB

Examples. In all examples which follow, Z 0 - Z 3 and the dual of Z 1 are

valid. In all examples but one, the dual of Z 3 is also valid.

Groups, loops, and groups or loops with a fixed family of operators are



familiar examples. In these examples, epimorphisms are surjective homomorphisms,

and every epimorphism is a cokernel. Rings without unit element, with ideals as

normal subobjects and surjective homomorphisms as cokernels, form another example.

Pointed sets, i.e. sets with a basepoint and mappings which preserve base-

points, satisfy Z 0 - Z 3 and their duals. Monomorphisms are injective maps, and

every monomorphism is a kernel. Epimorphisms are surjective maps, but not every

epimorphism is a cokernel.

Pointed topological spaces and pointed Hausdorff spaces are also examples.

In both cases, the kernel of a map f : A —» B is the subspace inclusion map

from f~ (efi) to A , where eB is the basepoint of B . Cokernels are the

quotient maps which shrink a subspace to a point and are injective outside of

that subspace. The dual of Z 3 is satisfied for topological spaces, where every

subspace inclusion A1 —> A is a kernel, but not for Hausdorff spaces, where

only closed subspaces A* of A , and not all closed subspaces if A is not

regular, define kernels of maps f with source A .

2« Diagram lemmas. The results of this section are well known for abelian

categories; we state and prove them under much weaker assumptions. We shall

need two pullback lemmas, the Nine Lemma, and two forms of the Six Lemma.

As we pointed out in [4], exactness in non-abelian categories is not self-

dual. For the present note, however, we need only a special, and self-dual,

aspect of exactness. We call a pair (mfe) short exact if m £ ker e and

e £ coker m • It will also be convenient to call a commutative square m e

« ef mf a conim square if two opposite sides e , ef are cokernels, and the

other Bides m , mf monomorphisms.



Lemma 3«1» If the square ip.

is a pullback and m 6 ker g f then m1 is a kernel of g f .

This is well-known; we omit the straightforward proof.

Lemma 3«2« If the rlghthand square in

m1 ^

is a pullback. with f jgyod f • monomorphic. and if m £ ker e t then mf with

m — f mf exists to complete the diagram* and mf £ ker e1 •

Proof., We have e m * ff z for a zero map z , and thus m' exists, and

ef mf « 0 . If ef x » 0 f then ef x = f e1 x = 0 , and thus f x « m xf

= f m1 xf for a unique x f £ \f 9 and x = m1 x1 followsj

Proposition 3.3. For a commutative diagram

mf

f H

m

f

ef

in ^ f the following two statements are logically equivalent.



(i) A?.l rows and columns are short exact pairs,

(ii) The middle row and the middle column are short exact, the tot) left

SQuare is a pullback and the bottom right square a pushout« f1 and mM are

monomorphisms« and e1 and gfl are epimorphisms,

groof. If (i) is satisfied, let f x = m y . Then mfl gH y « g f x « 0 ,

and thus g" y « 0 f and y « f" z for a unique z £ ̂  • It follows easily

that also x = mf z . The pushout part of (ii) is proved dually, and the other

parts of (ii) follow immediately from (i)«

Conversely, if (ii) is satisfied, then mf is a kernel of e f = ff ef

by 3»lt and hence also a kernel of e1 • ef is a cokernel by Z 2 and 2«2f

and thus (mf.ef) is short exact, (f",gfl) is short exact for the same reason,

and (ff
fg

f) and (mfl,elf) are short exact for the dual reasonjf

We note that the diagram of 3»3 is determined up to isomorphisms in the four

corners by the middle row (m,e) and the middle column (f ,g) . If these are

short exact, then the pullback square and the pushout square can be constructed

by Z 1, and the other two squares exist by Z 2.

Proposition 3«4« In the commutative diagram

let the top right square be a conim square and gf £ coker ff , and let (m,e)

be short exact> Then (mf,ef) is short exact, g £coker f , and the top right



square ie a wtshout.

Proof. The top left square is a pullback. Thus mf is a kernel of ff ef ,

Since ff is monomorphic and ef a cokernelf (m^e 1) is short exact*

g is epimorphic, and g f = g1 f! e1 « 0 , If xf = 0 , then x m « 0 f

and x * y e for sane y £ £, with y ff ef = x t = 0 , and hence y f • » 0 .

Now y s z g 1 for some z £ %, and x = z g • Thus g <£coker f • If u f

= v e1 , then u m = v ef mf « 0 , end u = z e for a unique z Q &. One

sees easily that v = z f , and thus the top right square is a pushout|

Proposition 5*5 • In the commutative diagram of 3»4, let (m,e) be short

exact and gf & coker f* , let, f be a kernel, and let e1 be epimorphic and

f1 ponomorpit̂ L̂ • Then (mf
fe

f) ^nd both columna of %h^ ĵflffram fire short exactf

and the top right square is a pullback and a pushout*

Pfroof. Except for the pullback part, eveiything follows from 2.2 and 3A.

This is a self-dual situation, and the proof of the pullback part is dual to the

proof of the pushout part of 3.4|

4. Operations on subobjects. We define a subob.iect of an object C of if

as a monomorphism with target G . We put a1 ̂  a for subobjects a , a1 of G

if a1 » a u for some u £ ^ , and we put a ' 4 a if this u is a kernel*

We call a and a1 equivalent, in signs a£^a f , if a1 ̂  a and a ̂ a 1 ,

i.e. if af « a u for an isomorphism u of ^ . The preordered class of sub-

objects of G has finite intersections, by Z 1. af)b , for subobjects a , b

of G , is obtained by the usual pullback construction. Like the operations

constructed below, a ^ b is defined only up to equivalence.
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If A —^-^ 0 and B * > G are subobjects of G , then we may denote by

A o B the source of a f) b , and we shall use similar notations for other oper-

ations on subobjects. If N—£-£ G is a kernel, then we denote by G/N the

target of a cokernel of n • Objects like A r\ B and G/N are defined only up

to an isomorphism of % , and they are constructed from morphisms of $ and not

from objects*

If G —^-> H is a cokernel, and if A —=-> G is a subobject of G and

B —£-> H one of H , then we define subobjects f[a] of H and f" [b]

of G , with sources f[A] and f" [B] , by commutative squares

A > f[A] f^O] >B

(4.1) la If [a] and f^[b] Jb ,

G £—a> H G — - £ — > H

where the square at left is a conim square and the one at right a pullback.

By Z 1 and Z 3, these squares always exist in *€ .

Proposition 4,2. The mappings af—>f[a] and b|—^f [b] preserve

order and satisfy f[a]^'b <£=!> a ̂  f~ [b] .

In other words, we have a covariant Galois correspondence.

Proof. Consider a commutative diagram

A-

If a1 as f" [b] , then the lower quadrangle is a pullback, and u exists if v



exists• This shows that b h-> f" [b] preserves order, and that f[a] <b

a 4 f [b] . If bf « f[a] , then the outer quadrangle is a conim square, and

it follows from 2.1 that v exists if u exists. This shows that a V-> f[a]

preserves order, and that a ̂  f" [b] =^> f[a] <! b |

If N 'G is a kernel and A —5>G a subobject of G , then we put

(4.3) n + a = f-HfU]] : N +G A —> G t

for a cokernel f of n . This defines a subobject n + a of G up to equi-

valence. We omit the subscript G in N +G A whenever the circumstances per-

mit it. We note that a ̂  n + a by 4.2, and that n ̂ .n + a by 3.2.

m nProposition 4.4. Let M > G and N —^-^ G be kernels, with cokernels

G — i - ^ G/M and G —^-^ G/N . Then m -f nit n + m , and m + n is a kernel

of the cointersection of f and g •

Pjroof. We need the following two commutative diagrams.

N > f [N] M >M + N >f[»]

n

M. m •» G

dX|.—>G/N >Q

At left, G * ^>Q is the cointersection of f and g , and all rows and

columns are short exact by 3.3• At right, the middle row and the right column

are from the diagram at left, and the top righthand square is a pullback. Thus

m + n is a kernel by 3.1. f[m + n] rSftf^tfCnlllriffEn] by 4.2, and thus the

top righthand square is also a conim square. Now m + n and G — > Q form a
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short exact pair. If we construct the diagram at right with m and n , and f

and g , interchanged, then we see that n + m and G — > Q also form a short

exact pair, n + m ££ m + n follows!

Proposition 4J). Ĵ gt N — 2 - > G be a kernel, and let A ^ G and

H — = - > G be subob.iects of G such that a ^ h . If n n h = h nf and

a s h af , then nf is a kernel, and n + a /H. n + h (nf + a1) .

This means that the sources satisfy N +G A ^N +Q ((Nn H) +H A) .

Proof. We put K = Nr>H and consider the following two diagrams.

A ^g[A] K + A > g[A]

n' + af g[a'

H ^->f[H]K £-^H-—*->f|Hl H

f[h] Jh |f[h]
H- 5—>G £->G/N G £-»G/N

At left, the bottom squares are a pullback and a conim square, and the top square

is a conim square. The middle row (n1,g) is short exact by 3.1• The rectangle

on the right is a conim square, and thus g[A] £if[A] . At right, the top square

is a pullback, and g[nf + af]Qig[g~ [g[af ]]]£^g[af ] by 4.2. Thus the top

square also is a conim square, and the rectangle is a conim square, and

f[K + A] CH g[K + A] Cd d>] £L *!>]

- 1 / \ m
follows. Applying f on both sides, we obtain N +G (K +fl A) Q! N +G A (]

Proposition 4.6. If N $» G is a kernel and A —^-^ G a subob.iect

of G , and if a = h a1 and n = h nf in ^ for a kernel H > G , then

nf is a kernel, n + a C^ h (nf + af) , 8g& N +G A ^ N -fH A .
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Proof, We use the proof of 4.5 with K • N . Since h is a kernel, 3.5

applies, and the common lower square of the two diagrams is a pullback. Thus the

rectangle at right is also a pullback, and N + A £ ^ N +fi A followsj

5. Isomorphism theorems

Theorem 5.1. If N — — ;

then ( n n a ) 4 a and n O (n + a) . I£ K ^ N o A and S ££ N + A , then

A/K £? f[A] £ S/N for a cokernel G —^ G/N of n .

Proof. Consider two commutative diagrams

K >A >f[A] N

[a] and n + a f[a] .

N 2 L ^ G i-> G/N N 2~> G -—£->G/N

The squares at left are a pullback and a conim square, and the top row is short

exact by 3*1. At right, the righthand square is a pullback, and by 4.2 also a

conim square, and the top row is short exact by 3.2|

Theorem 5.1 is the first Noether isomorphism theorem. It is well known that

the second Noether isomorphism theorem is equivalent to the Six Lemma 3.5. Thus

both isomorphism theorems are valid under our assumptions. We turn now to the

Zassenhaus Lemma.

a kProposition 5.2, Let A > G and K > G be subob.iects of G such

that k < 3 a , If H n > G —^ G/N is short exact, then f induces a

kernel f [K] —^ f [A] , and f [A]/f [K] ^ A/K if n ^ a ^ k .

We consider the following commutative diagram.
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N K $> f[K]

I I 1
HHA

N —?-> 6 £-> G/N

We have pullback squares on the left, conim squares on the right, and f[K] •

f[A] is a kernel by 2,2. If n n a ^ k , then n n k C f n O a f and 3.4

applies. Thus q g is a cokernel of K—3>k if q is a cokernel of f[K]

f[A] , and A/K ̂  f[A]/f[K] results (J

A — 2 _ ^ G and K ^> G be subobjects of G such that k 4 a . If_ n + a

fo B —^— G and n + k £± L ^ > G , then -/̂ J b , aM B/L ̂  f[A]/f[K]

Proof. We have a commutative diagram

f

f[K]

with pullback squares. f[K] —

a kernel by 3.1. We have t[b]£z

t[t] £z f[k] . Since b n n ^ n

thus also B/L ^ f[A]/f[K] |J

is a kernel by 5.2, and thus L — > B is

HfCa]]] ^ f[a] by 4.2, and similarly

, we have B/L £ f[B]/f[L] by 5.2, and

We consider now subobjects A — — > G and B -> G of an object G ,

and kernels H A and K B . We put C ^ and



using 4.4* This is justified since the squares

H i^v-o 5s^tl A s \ XT

j ] J3 • ŷ> XI At I ft

h and

C 2>A C —

k
v/

are pullbacks, with kernels at right, and hence with kernels at left by 3#1«

Thus the familiar "butterfly diagram" can be constructed from our data, in the

following form.

H +A (A n B)

C *

K +B (A O B)

(5.4) H +A (A O K)

H N

K +B (HAB)

HOB

Now we state the Zassenhaus Lemma as follows.

A n K

Theorem 5*5* If A — — ^ G and B J> G are subobjects of an object G

J2£ % t and H — — ^ A f̂fli K ^B kernels in *£ f then (5«4) is defined >

and the three vertical lines in (5«4) represent kernels* with isomorphic quoti^flt

objects.

Proof. N — ^ C is a kernel by 4.4, and E +. N —£>H +. C is a kernel

by 5.3, with H + C/H + N £ f[c]/f[N] for a cokernel A —^ A/H of h .

But H n C ^ H n B ^ H , and thus f[c]/f[N] fe C/N by 5.2. Now

H +A N £ H +A ((HnC)+ c(AAK)).^ H +A (AnK)

HUNT LIBRARY
CKRNEGIE-MELLON UNIVERSITY
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by 4*5. Thus the left vertical arrow in (5.4) is a kernel, and the corresponding

quotient object is isomorphic to c/N . Sine? (5.4) is symmetric by 4.4, the same

argument shows that the right vertical arrow in (5.4) is a kernel9 with quotient

object isomorphic to C/N §

R e f e r e n c e s

[l] P. Abellanas, Categorias de Zassenhaus. Consejo Sup. Investigacion. Ci.,

Pac. Ci, Zaragoza, 1969•

^•J H. Ehrbar and 0. Wyler, On subobjects and images in categories* To appear.

[3] B» Mitchell, Theory of Categories. New York, Academic Ptess, 1965.

[4] 0. Wyler, Weakly exact categories. Archiv der Math. 11, 9 - 19 (1966).

Anschrift des Autors:

Prof. Oswald Wyler
Department of Mathematics
Carnegie-Mellon University
Pittsburgh, PA 15213 (U.S.A.)


