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Section I: Introduction, basic definitions, and preliminary theorems

As the title states, we are concerned with the extension from a sub-

space to the whole space of continuous functions whose functional values

lie in a linear topological vector space. We relate this concept to that

of extending a continuous pseudometric from the subspace. The latter

concept has been shown to be useful in many spaces, especially collection-

wise normal spaces, normal spaces, and paracompact spaces. (For example,

see [1], [10], and [14].) Recently it has been closely associated with

the concept of a continuous uniformity (see [2]) and with the concept of

a Z-embedded subspace (see [3]). By now relating it to the extension of

linear space-valued functions we are able to give interesting characteri-

zations of normal spaces and collectionwise normal spaces, as well as

characterizations of the Hewitt realcompactification and the Stone-Cech

compactification of a Tichonov space.

Also a negative reply can be given to a problem posed in [5]. A

continuous function from a closed subset of a normal space into a bounded

closed convex subset B of a Banach space cannot necessarily be extended

continuously to the whole space with values still remaining in the subset

B . For uniform subspaces S of a uniform space X , the situation is

different. Every uniformly continuous function from S into a Frechet

space can be extended to a continuous function on X . This improves a

result given in [10].
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Let S be a nonempty subset of a topological space X and let Y

be an infinite cardinal number. A pseudometric d is said to be y-

separable if there is a subset A of X having cardinality not greater

than Y such that A is dense in 0'9 the pseudometric topology gene-

rated by d . The pseudometric d is said to be totally bounded if for

every e > 0 , there is a finite subset F of X such that X is con-

tained in the union of the d-spheres with radius e about the points of

F . The subset S is P-embedded (respectively PY-embedded, T-embedded)
€

in X if every continuous (respectively y~separable continuous, totally

bounded continuous) pseudometric on S can be extended to a continuous (respec-

tively Y-separable continuous, totally bounded continuous) pseudometric on X.

The following relationships concerning these embeddings are known.

(a) The subspace S is P-embedded in X if and only if it is P^-

embedded in X for all infinite cardinal numbers Y * (See Theorem 2.8

of [141.) 0 ) The subspace S is P °-embedded in X if and only if it

is C-embedded in X , (that is, every continuous real-valued function on

S extends to a continuous real-valued function on X ) . (For a proof of

the necessity see Theorem 2.4 of [10] and for the proof of the sufficiency

see Theorem 4.7 of [14]). (Y) The subspace S is T-embedded in X if

and only if it is C -embedded in X , (that is, every bounded real-valued

continuous function on S extends to a continuous function on X). In

[1], Alo and Shapiro showed that if S is T-embedded in X , then it is

C*-embedded in X and that the converse is true if the space in question



3.

is a Tichonov space. In Section 2 we show that this requirement can be

dropped.

A family (S ) of subsets of X is discrete in X if every
GO OCo JL

x e X has a neighborhood meeting at most one member of the family. A

space X is collectionwise normal if for every discrete family (F' ) T

of closed subsets of X , there is a pairwise disjoint family (G ) T

of open subsets of X such that F c G for all a e I . Similarly,
Uu UL

X is y-collectionwise normal if the above condition holds for families

(F ) , Where |l| ̂  y • It is known that Ko-collectionwise normality

is equivalent to normality. C. H. Dowker in [8], (see also [12]) impli-

citly showed the relation between P-embedding and collectionwise normality.

We give this here as follows: (6) A space X is collectionwise normal

if and only if every closed subset of X is P-embedded in X . An

explicit proof of this is given as Theorem 5.2 of [14].

This result considered together with results 0 ) and (y) mentioned

above raises an interesting question. How can P-embedding itself be

intrinsically related to the extension of continuous functions? Our

results will show that linear space-valued functions are the key to answer-

ing this question.

In [14], the following result was shown. (e) If S is a dense

C-embedded subset of a Tichonov space X and if the cardinality of S is

non-measurable, then S is P-embedded in X . Thus we will also obtain

results concerning the Hewitt realcompactification of a completely regular

T- space with non-measurable cardinality.



The terminology and basic results we need concerning open covers are

given in [14]. One of our techniques will be to map the subspace S into

the space C*(S) of all bounded real-valued continuous functions on S .

To this end, for a given bounded continuous pseudometric d on S we

define the partial functions (d ) c associated with d as follows:
X X 6 o
)

X X
d (y) = d(x,y) for all y e S .
x

We first state the major theorem of [14], as it will be frequently

used in what follows.

Theorem 1.1: Let S be a nonempty subspace of a topological j>pace

X and let y be an infinite cardinal number. The following statements

are equivalent!

(1) The subspace S is PY-embedded in X .

(2) Every yseparable bounded contjjiu^^ on S

can be extended to a continuous pseudometric on X .

(3) Every locally finite cozero set cover of S of power at

most Y has a refinement that can be extended to a normal

open cover of X .

A characterization of T-embedding given in [1] will be stated here for

convenience.

Theorem 1.2: If S is a nonempty subspace of a topological space

X , then the following statements are equivalent:

(1) The subspace S is T-embedded in X .

(2) sEve?Y_totally bounded continuous pseudometric on S can be

extended to a continuous pseudometric on X .
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(3) Every finite cozero set cover of S has a refinement that

can be extended to a normal open cover of X .
• • • - — - •

We also need the following result. A proof is given in [15]. For

notation and results on uniform spaces, see [11].

Theorem 1.3: Let S be a nonempty uniform subspace of a uniform

space X . Every uniformly continuous pseudometric on S has an ex-

tension to a continuous pseudometric on _..X. .

Section II: Extension of linear space-valued functions

Definition 2.1: Let S be a subset of X and Y a subset of Z,

where X and Z are topological spaces. If f is a continuous function

from S into Z such that f (S) c: Y, then f extends continuously to X

relative to Y if there is a continuous function f* from X into Z

such that f*|s = f and f*(X) c: y . We emphasize the phrase "relative

to Y" to stress that in the extension process the space Y must not be

enlarged.

For the sake of precision in our theorems we introduce the following

definitions and notation.

Definition 2.2: Let X be a topological space, let Y be an

infinite cardinal, and let f be a function from X to a locally convex

topological vector space (abbreviated LCTV space). We call f a M-valued

function if the image of X under f is contained in a complete convex

metrizable subset M of L (abbreviated CCM subspace). The function

f is a (Y,M)-valued function if it is an M-valued function and if the

image of X under f is a Y~seParable subset of M . Recall that a



FrBchet space is a complete, metrizable LCTV space. The set of all

bounded real-valued continuous functions on X is a Banach space under

the sup norm, i.e., ||f|| = sup|f(x)|, and will be denoted by C*(X) .
xeX

The following theorems will characterize the extendability of M-valued

functions and (y,M)-valued functions. This topic was first studied by

R. Arens in [6]. There he showed the equivalence of (1) and (2) in our

next theorem for closed subsets of a topological space.

Theorem 2.3: Let S be a nonempty subspace of X , let Y be an

infinite cardinal, and let A be a discrete space such that |A| ^ |s| .

The following statements are equivalent*

(1) The subspace S is P^-embedded in X .

(2) Given a CCM subspace M of a LGTV space L , every

continuous (y,M)-valued function on S extends con- .

tinuously to X relative to M .

(3) Given a CCM subspace M of a LCTV space L, every

continuous (y,M)-valued function on S extends to a

continuous function from X to L.,.

(4) Every cpntinuous^jEu^

such that the image of S is Y-separable, extends to

a continuous function on X .

(5) Every continuous function from S into C* (S), such ̂

that the image of S is yseparable, extends to a

continuous function on X .



(6) Every continuous function from S into C*(A), such that

the image of S is Y""sePara^le, extends to a continuous

on X .

Furthermore, the above conditions are also equivalent to the condi-

tions obtained from (2) through (6) by requiring the image of S to

be a bounded subset of the locally convex space in question.

Proof: We first show that (l)_implies (2). Let f be a continuous

(y,M)-valued function from S to the LCTV space L , and let m be a

complete metric for M . One easily verifies that d = m * ( f X f ) is

a Y~seParable continuous pseudometric on S . Hence by (1) it has an

extension to a continuous pseudometric d* on X . The space (S,d)

is a subspace of the pseudometric space (X,d*) . The function f is

uniformly continuous as a mapping from (S,d) into (M,m) , since

d(x,y) £ e implies m(f(x),f(y)) £ e for all x,y in S and for all

c > 0 . The space (M,m) is a complete Hausdorff uniform space. Hence

f extends to a uniformly continuous function f* from the closure of

(S,d) in (X,d*) to (M,m) . Now we have a continuous function from a

closed subset of a pseudometric space into a LCTV space L .

A theorem of Dugundji's (see [9]) states that a continuous function

from a closed subset of a metric space into a LCTV space can be extended

to a continuous function on the metric space with values in the convex

hull of the image of the subset. It is easily seen that his proof also

applies to pseudometric spaces. Therefore, the function f* extends to

a continuous function g from (X,d*) into M , since M is convex.
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The function g is continuous with respect to the topology generated

by d* , and since this topology is contained in the original topology

of X , the mapping g is the continuous extension of f relative to

M that we seek.

The implications (2) implies (3) implies (4) implies (5) are

immediate.

We now show that (5) iiFpi Igg, (1) • By Theorem 1.1 it is sufficient

to show that every bounded Y""separable continuous pseudometric on S

extends to a continuous pseudometric on X . Let d be a bounded

Y-separable continuous pseudometric on S . Define a function f from

S into C*(S) by f(x) is the partial function d for all x in S.
x

The function f is continuous since if . e > 0 and d(x,y) ̂  e , then for x,y in S

||f(x) - f(y)|| = sup|f(x)(z) - f(y)(z)| = sup|d(x,z) - d(y,z)| = d(x,y) £ e .
zeS zeS

Let (x ) . be a dense subset of power at most Y °^ A • It: *s

easily verified that (f (x ))„.,. is a dense subset of f (S) . Therefore
CC Quo J_

by (5) the function f extends to a continuous function f* mapping X

into C*(S) . Define a function d* on X X X by d*(x,y) = ||f*(x) -

f*(y)li for all x,y in X . It is readily seen that d* is a continuous

pseudometric on X , and it extends the pseudometric d . In fact, if

x and y are in S , then d*(x,y) - ||f(x) - f(y)|| = sup|f(x)(z) -
zeS

f(y)(z)| = sup|d(x,z) - d(y,z)| = d(x,y) . Thus S is PY-embedded in X.
zeS

The implication (1) implies (6) is now clear from the equivalence of

(1) and (4).
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To show that (6) implies (1) let d be a bounded continuous

y-separable pseudometric on S . Let G denote S with the discrete

topology, and since the cardinality of the discrete space A is large

enough, we may identify G with some copy of it in A . Therefore, from

now on we will consider G as a subset of the space A . Define a function

f from S into C*(A) by (f(x))(a) = d(x,a) if a is in G and 0 if

otherwise, for all x in S . Since A is discrete and d is bounded,

f (x) is an element of C*(A) for all x in F . The map f is

continuous; if e > 0 and d(x,y) £ e , then ||f (x) - f (y)|| =

suplf(x)(a) - f(y)(a)| = sup|f(x)(a) - f(y)(a)| = sup|d(x,a) - d(y,a)| =
as A aeG aeS

d(x,y) £ C . Again it is easy to check that the y-separability of d

implies the y-separability of f(S) . Hence by (6) the function f

extends to a continuous function f* on X . Defining d* on X X X

by d*(x,y) = ||f*(x) - f*(y)|| for all x,y in X , we see that d* is

a continuous pseudometric on X . By similar computations as those above,

it is easily verified that d* extends the pseudometric d . Therefore,

S is P^-embedded in X .

To prove the last statement, call (2*) through (6*) the new conditions

resulting from requiring the image of S to be bounded in (2) through (6),

respectively. The implications (1) implies (2*) implies (3*) implies (4*)

implies (5*) hold. The proof of (5*) implies (1) is as that of (5) implies

(1) after one notes the following: By Theorem 1.1, it is sufficient to

show that every bounded, y"Separable, continuous pseudometric on S extends
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to a continuous pseudometric on X . If d is bounded, then f (S)

is a bounded subset of C*(S) . The implication (1) implies (6*) is

clear; (6*) implies (1) is like (6) implies (1), noting that f(S) is

a bounded subset of C*(A) .

Since a subspace S of a topological space X is P-embedded in

X iff it is P^-embedded in X for all infinite cardinal numbers Y *

it is clear that from Theorem 2.3 we obtain characterizations of

P-embedding by removing all mention of cardinality. In particular, we

obtain the following.

Corollary 2.4: Let S be a subspace of a topological space X .

Then S is P-embedded i n X iffevery^cpntinupus function f^g^ S

into a bounded, closed, convex subset of^a Banach space extends fro a

continuous function on X .

Thus Corollary 2.4 gives an interesting characterization of collection-

wise normal spaces when considered in conjunction with statement (6). In

particular, we can now characterize collectfonwise normal spaces in terms

of the extension from closed subsets of a particular class of continuous

functions just as in the case of the Tietze Extension Theorem for normal

spaces.

Corollary 2.5: A topological space X is collectionwis^ ̂ oym^l if

and only if for every closed subset F of X , every continuous function

from F into a bounded closed^convex subset B of a Banach space can_be

gy^ended, continuously to X relative to B .
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Corollary 2.5 answers in the negative a question of Arens (see

p. 19 of [5]). Arens asked whether a continuous function from a closed

subset of a normal space into a bounded closed convex subset of a Banach

space could be extended continuously to the whole space with values still

in the subset. But Corollary 2.5 shows that this is equivalent to the

collectionwise normality of the space. Bing has given an example of a

space that is normal but not collectionwise normal.

As mentioned in result (P), P °-embedding and C-embedding are

equivalent. Therefore, Theorem 2*3 with y = Ko gives characterizations

of C-embedding. In particular we can improve the Tietze Extension

Theorem by stating as a corollary the following slightly stronger version

of a result of Arens given in [5].

Corollary 2.6: For any nonempty t^ojLogical space X ^ the following

are equivalent:,

(1) The space X is normal

(2) For every closed subset F of X , any continuous (̂ o >M)-

valued function from F into a CCM ^^seX_iL«.9f^^3J&VLj$£&£G

L _can be continuously extended to X relative to M .

We also obtain the following result about the Hewitt realcompactifica-

tion orX of a completely regular T- space X . (See Theorem 8.7 of [11]).

Corollary 2.7: The Hewitt realcompactification \rX of a Tichonoy

space ^X ^is^that unique realcompactification of^JX for which every

continuous function f from X to a Frechet space, such that f(X) is

^.agparable, can be extended tc^ a continuous function on vX .
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Moreover, if X has non-measurable cardinality, then iTX is that

unique realcompactification of X such that every continuous function

from X into a Frechet space extends to a continuous function on irX .

Proof: The result follows from characterizations of u*X given in,

for example [11], and from Theorem 2.3 and 0 ) and (e) of Section 1 .

We now show, as promised in the introduction, that T-embedding and

C*-embedding are equivalent with no hypothesis on the space in question.

Theorem 2.8: If S is a subspace of a topological space X , then

S is T-embedded in X ±f_ and &&±y if S is_jC*-embedded in X .

Proof: From the introduction we know that if S is T-embedded in

X , then it is C*-embedded in X . It remains to prove the converse.

Let 'H.88 (U.) i = 1, ..., n be a finite cozero set cover of S . By

Theorem 1.2 it is sufficient to find a normal open cover y of X such

that W |S refines °LL.

Since \L is normal, there exists a; cozero set cover °W = (W.)

i = 1, ..., n of S such that W. is completely separated from S - U.

for i * 1, ..., n . (See [13]) . Hence there are continuous functions

(f±) on S , i = 1, ..., n , such that ^ 0 ^ ) . s 0 and ^(CIK) = 1 ,

and 0 ̂  f. (x) £ 1 for all x € S . By assumption these functions extend

to continuous functions (f*) i - 1, ..., n on X . For each i , let

V± = {x e X|f*(x) < #} . Each V is a cozero set of X as is

V = X - U Z(f J) .
U i=l X

It is easy to verify that °\/ = (VQ) U (V.) i = 1, ..., n is a

(locally) finite cozero set cover of X (and hence normal) and that °V | S

refines
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The following theorem characterizes T and C*-embedding in terms of

the extension of totally bounded linear space-valued functions•

Theorem 2»9: Let S be a nonempty^ subspace^ of X ,,jnd let A^be

a discrete space such that |A| ̂  |s| . The following statements are

equivalent:

(1) The subspace S is C*-embedded in X .

(2) Given a CCM subspace ^j^^^LCTV_space^ L « every cqntinupus

M-valued f unction _ f on Sji such that £ (S) is totally,

bounded, extends_c^nyji^ujs^^ »

^3^ Given a CCM subspace M of a LCTV space L , every continuous

M-valued function f on S , such that f(S) is totally bounded,

^ctendL^p a ̂̂  c ...,L .

(4) Every continuous function _f jEjpm S^to a

such that f(S) is totally bounded, extends^to a continuous

function on X .

(5) Every continuous function f from S Jgto. C*(S), such

f(S) is totallyJbounded, extends to a continuous function ont

X .

(6) Every continuous^ f^^ .P*£4lĵ SM.C.h.. that

f (S) is totally b^und^^^extends^jto a continuous function on

X .

Proof: We first show that (1) implies (2). Let f be a continuous

M-valued function on S such that f (S) is totally bounded. Let m be

a complete metric for M . Then d = m ° (f X f) is a continuous

HUHT UBttH
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pseudometric on S which is also totally bounded. To see this, let

e > 0 and let F be a finite subset of S such that f (S) is

contained in the union of the m-spheres with radius e about the points

f (x), where x e F̂  . Then S itself is the union of d-spheres of

radius e centered about the points of F . By Theorem 2.8 and (1)

there exists a continuous pseudometric d* on X that extends d .

The proof now proceeds exactly as the proof of (1) implies (2) of

Theorem 2.3.

The implications (2) implies (3) foplies_(4) jlmplies (5) are immediate.

To show that (5) implies (1) it is sufficient to show, by Theorems 2.8

and 1.2 that every totally bounded continuous pseudometric on S extends

to a continuous pseudometric on X . Let d be a totally bounded contin-

uous pseudometric on S and define a function f from S into C*(S)

by sending x into the partial function d for all x in S . As we
x

saw in the proof of (5) implies (1) of Theorem 2.3, the function f is

continuous. The image of S under f is totally bounded. In fact if

S is the union of the d-spheres of radius e centered about the points

of F , then f(S) c (J S(f(x)), where S(f(x)) = {z e C*(S):
e

|jz - f (x)|| < c} . The proof now proceeds in a similar fashion as (5)

implies (1) of Theorem 2.3.

If S is C*-embedded in X , it is now clear that (6) holds.

Conversely, if (6) holds the proof of (6) implies (1) of Theorem 2.3 and

the remarks above pertaining to C*(S) applied to C*(A) will give the
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result that S is C*-embedded in X .

Since any completely regular T- space is C*-embedded in its

Stone-Cech compactification we obtain the following corollary to

Theorem 2.9. (See Theorem 6.5 of [11]).

Corollary 2.10: The Stone-Cech compactifjLcatig^^^

regular Tn space X is that unique compactification j3X of X for

which every continuous #funct.ipn_f_..frpm.._X_.to a_Fre£het space,, such that

f(X) is totally bounded, can be extended to a continuous function on 3X .

We now obtain easily the following result on the extension of uniform-

ly continuous functions with values in a Frechet space. This improves a

result in [10].

Theorem 2.11: If S is a nonempty subspace of a uniform space X

and if L is any Frechet ̂ sj^ce^^^e^^yj^ry^unifprmly continuous^:unction

from S into L can be extended to a continuous function on _X^ .

Proof: Let f be a uniformly continuous function from S to a

Fjrechet space L with complete metric m . Then d = m ° ( f X f ) is a

uniformly continuous pseudometric on S . Hence by Theorem 1.3, d extends

to a continuous pseudometric d* on X . The proof now proceeds as in

(1) implies (2) of Theorem 2.3.

In [10], an example is given which shows that we cannot request that

the extended function also be uniformly continuous. In fact for the case

in which the range space is the real line, the boundedness of the function

is needed to insure uniform continuity of the extended function.
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