SETS OF FORMULAS
 VALID IN FINITE STRUCTURES
 by
 Alan L. Selman

Report 70-41

November, 1970
Sets of Formulas Valid in Finite Structures
Report 70-41by
Alan Lo Seltaan
Errata «Sheefc
p* 2_{S} line 15Po6* line 5 replace ${ }^{50}$ chapter" by ${ }^{\text {w }}$ paper ${ }^{\text {w }}$
Abstract, line $\wedge 4$ $d\left\{\left[V_{\ldots} \ldots\right)<d\left(V_{m}\right) v d f V . J\right.$,

SETS OF FORMULAS VALID IN FINITE STRUCTURES

Abstract

A function Ir is defined on the set of all subsets of u) so that for each set K, the value, $\begin{gathered}\text { Ir , is the set of formulas } \\ K\end{gathered}$ valid in all structures of cardinality in K. An analysis is made of the dependence of $\backslash s^{-\quad}$ on K. It is easily seen that ~ K ~~~ ~
for all infinite sets $K, \ldots(K) V 1 £ d(K) \not \sum_{\text {d }} d(K)$! On the other hand, we prove that $\underset{\sim}{d}(\mathrm{U} \underset{\mathrm{KVj}}{ })=\mathrm{d}\left(\mathrm{Ir}_{\mathrm{K}}\right)=\underset{\sim}{d}(\mathrm{U})$, and use this to prove that for any two degrees a and $b, a^{\wedge} 1$, $a<L b<£ a^{1}$, ~ ~ ~ and . b r.e. a, there exists a set K so that $d(K)=a$ and d(V) = b . Various similar results are also included.

SETS OF FORMULAS VALID IN FINITE STRUCTURES ${ }^{1}$

by

2
Alan L. Selman
B. A. Trachtenbrot [8] has shown that the set of formulas of first order logic valid in all finite structures is not recursively enumerable, although it is the complement of such a set. Let us define a function Is on the set of all subsets of a) so that for each set K, the value, If, is the set of formulas valid in all structures of cardinality in K. A. Mostowski has asked (in conversation, 1966) what can be said of If, K
when K is known. In particular, if the Kleene-Post degrees of the tWo seitdentik caarpd J are identical, are the degrees of If

Let \bar{K} denote the complement of the set K. (The universe of discourse is $<$ D throughout.) It is shown that for all infinite sets $K, d(K) V 1 £ d(U) \leq d(K)!$. Nevertheless, in section 3 it is shown that there exist sets K for which $d(V) \wedge<3(V=)$. This solves the above question in the negative. In section 4 we describe the extent to which $d(l f)$ is independent from $d(K)$. ~ K

The principal result in this direction is Theorem 12 . The techniques used to obtain our results involve both the writing of explicit algorithms and the application of standard theorems about the degrees of unsolvability.

It is assumed that we have at our disposal some first order language, $£$, with equality whose grammar contains an infinite list

 is a formula containing among its predicate letters one or more occurrences of the one-place predicates $M_{1}^{l}, \ldots, M_{r}{ }^{\mathbf{n}}$,

Let 91 be an interpretation of the formula (p. 91 is a structure with domain A and k-ary relations $M^{i \mathscr{M}}$ corresponding to predicate letters M. ${ }^{\mathbf{1}}$ occurring in (p. We write $\|A\|$, for the cardinality of a set A. By the cardinality of a structure 91 we mean the cardinality of its domain. A structure 91 is finite, if its domain is. We write $\mathrm{f}={ }^{\mathfrak{N}}<p$, if $<p$ is valid in 91.

Also, we will use the notation "A $\overline{<x} B "$ for "A recursive in B" and "A $\overline{<^{m}} B$ " for $" A$ is many-one reducible to B".
$\overline{\text { Definition }} 1$ Let $K<\dot{£} \rightsquigarrow$.
(i)

$$
\wedge_{K}=\operatorname{CcP}: V\left[\|A\| \in K \rightarrow \hat{V}_{\mathscr{U}} \varphi\right\} ;
$$

(ii) $\quad \backslash=\left\{\left(P i^{\wedge} \Lambda=\% \quad(D \quad \& \quad\|A\| \in K]\right\}\right.$;
(iii) $\quad \mathrm{m}_{\mathrm{K}}=\left\{\left\langle\mathrm{P}: \wedge 91\left[\left({ }^{\wedge}\right.\right.\right.\right.$ co $\&\|\mathrm{~A}\|<$ to $\left.\left.)-\|\mathrm{A}\| \in \mathrm{K}\right]\right\}$.
 to K and rn ${ }^{K}$ defined above have conceptual interest, and, by Lemma 1, for each set $K, d(V)=d(f t \backslash)=d($ to $)$. In fact, we presfer to analyze the function to, since as is easily seen, for all K, to is re. in K.

1. Trachtenbrot ${ }^{1}$ S Theorem,

This section is concerned with certain generalizations of Theorem 1 of [8].

Throughout this paper we equate computable with recursive.
 define $p\left(m_{1} \cdots r_{\mathbf{n}}, j, k\right)$ to be 0 , if $<p$ has a model 21 of cardinality k so that $\|$ M. $\left.\frac{1}{1} \|_{A} \right\rvert\,=m_{\mathbf{i}}$, for $i £ n$, and $\left\|F \frac{1}{2}\right\|=j$, and 1 otherwise. p is recursive.

Definition 2. Let K be a non-empty subset of u). A formula $\left\langle p\left(M_{1}^{1}, \ldots{ }_{1}^{M}, \stackrel{l}{F}, \ldots\right)\right.$ is a K-representation of an n-place function f if

$$
\begin{equation*}
\mathrm{V}_{\mathrm{\perp}}, \ldots, \mathrm{~m} \quad 3 \mathrm{j}^{\wedge} \mathrm{k}\left[\mathrm{p}\left(\underset{\mathrm{~m}}{\mathrm{~m}}, \ldots, \mathrm{~m} \mathbf{n}^{\mathrm{j}, \mathrm{k})}=0 \quad \& \mathrm{k} \in \mathrm{~K}\right],\right. \tag{i}
\end{equation*}
$$

and
(ii)

$$
\begin{aligned}
& \text { Vk, m. з. . } \mathrm{m}, \mathrm{~m}\left[\mathrm{keK} \& \underset{\mathrm{I}}{\mathrm{p}\left(\mathrm{~m}_{1}, \ldots, \mathrm{~m}, \mathrm{j}, \mathrm{k}\right)}=0\right. \\
& \quad \mathrm{In} \\
& \left.\Rightarrow \quad \mathrm{f}\left(\mathrm{~m}_{1}, \ldots, \mathrm{~m}_{\mathrm{n}}\right) \quad * * \mathrm{j}\right] .
\end{aligned}
$$

The proof of the following theorem is immediate. Theorem 1. If $<p\left(M_{1}^{1} . \cdots M_{n}^{l}, F^{1}, \ldots\right)$ is a K-representation of E, then

$$
f\left(m_{1}, \ldots, m_{n}\right)=j<\star 3 k\left[k \in K \& p\left(m_{1}, \ldots m_{n} \circ ; k\right)=0\right] .
$$

Theorem 2. If f has a K-representation, then f is recursive in K. If f has a K-representation and K is r.e. in a set B, then f is recursive in B.

Proof. If f has a K-representation, then, using Theorem 1, the graph of f is r.e. in any set B which K is r.e. in. So f is recursive in K, and if K is r.e. in B, then f is recursive in B.

Corollary 1. If f has an <D-representation, then f is recursive.

Corollary 1 is due to Trachtenbrot.
Theorem 3. If B is an infinite set and f is recursive, then f has a B-representation.

Proof. The proof is essentially a repetition of the proof of Theorem 1 in [8]. It is shown in [8] that for each recursive function f there is an <u-representation $<p$. To complete the proof, it suffices to observe for each GO-representation $<p$, that if 21 is a model of $<p$ with domain A, and if 31 is extended to a structure $9 I^{!}$simply by enlarging the domain A, then $2 I^{r}$ is a model of $<p$. Since B is an infinite set, each <D-representation $<p$ has a model of cardinality in B. Thus, $c p$ is a B-representation.

Definition 3. The spectrum of a first-order formula $<p, S(<p)$, is the set of all natural numbers n for which $c p$ has a model of cardinality n.

It is well-known [1] that each $S(c p)$ is an elementary set. Let rng f denote the range of a function f.

Definition 4. The class of spectral functions of n-arguments,

fermira 2. (1) The functions $2 x, 2 x 4-1$, and x^{2} belong to Spr 1 . The function $u+x$ belongs to $\operatorname{Spr}{ }_{2}$.
(2) $\mathrm{Spr}_{\mathbf{1}}$ is closed under substitution. More generally, if $g e S p r{ }_{\text {in }}$ and $f_{I^{\prime}} \ldots, f_{m} e \operatorname{Spr}_{n}, n, m>0$, then the function h
 contained in Spr ${ }^{\text {n. }}$

Proof, (1) We again cite [8]. By that paper, the functions listed in (1) all have oo-representations. It is easy to see that these representations have the required property.
(2) Let f and g belong to f_{l} ․ Define $\mathrm{h}(\mathrm{x})=\mathrm{g}(\mathrm{f}(\mathrm{x}))$, f has ${ }_{1} u>$-representation $<p(M, F, \ldots)$ and g has u)-representation 0 (M,F,...), both satisfying Definition 4. By [8], h has co-representation $\underset{1}{ } \underset{1}{(M}, G, \ldots)$ A $0(G, F, \therefore)$. Suppose $y=h(x)$, for some $\mathrm{x} .<p(M, G, \ldots)$ has a model 31 of cardinality $\mathrm{II}_{\text {Gy }}^{\mathrm{G}} \mathrm{II}=$ $f(x)$. Extend (enlarge the domain) and expand (add additional relations) 81 to a model 35 of $\wedge\left(G^{\wedge} F, \ldots\right)$ of cardinality $\left\|F^{\wedge}\right\|^{\prime}=$ $g(f(x))=y$. As observed in the proof of Theorem 3, 91 can be extended to SJ so that 59 is still a model of $\left\langle p\left(M^{l}, G^{l}, \ldots\right)\right.$. Thus, ye $S\left(\left\langle\mathrm{p}\left(\mathrm{M}^{\mathbf{l}}, \mathrm{G}^{\mathbf{1}}, \ldots\right)\right.\right.$ A $0\left(\mathrm{G}^{\mathbf{l}}, \mathrm{F}^{\mathbf{1}}, \ldots\right)$ A $\left.\mathrm{VxF}^{\mathbf{l}} \mathrm{x}\right)$. It is immediate that if ye $S\left(\left(P^{1}, \mathrm{G}^{\mathbf{l}}, \ldots\right)\right.$ A $0\left(\mathrm{G}^{\mathbf{1}}, \mathrm{F}^{\mathbf{1}}, \ldots\right)$ A VxF$\left.{ }^{\mathbf{l}} \mathrm{x}\right)$, then y e rng h . Thus h G Spr ${ }_{1}$.

The proof of the second statement in (2) is identical.
2. Elementary Properties of to.

Suppose a Gödel numbering is given for the set of formulas of $£$ so that each number is used exactly once. Throughout this chapter let $R(x, k)$ be the number theoretic predicate $R(x, k) \equiv$ formula with Gödel number x has a model of cardinality $k . \quad R$ is a recursive predicate. Let ${ }^{r}<p^{n}$ denote the Gödel number of $<p$, and let ${ }_{\mathrm{t}} \mathrm{Xj}$ denote the formula with Gödel number x . For each set $K, t_{K}=\{(p: 3 k(R(<*</ r, x) \& k e K)\}$. But, in what follows we will instead denote $\{x \mid 3 k(R(x, k) \& k e K)\}$ by to. .

Theorem 4. (1) For each set K, to r.e. K. In fact, VB $\left[K e E^{B} \rightarrow\right.$ $\left.w_{K} \in \Sigma_{1}^{B}\right]$.
(2) If K is finite, then $\underset{K}{\text { to }}$ is recursive.
(3) K£ $S_{n}-1 »{ }_{k}$ e E_{n}.
(4) $K_{e} \mathrm{n}_{\mathrm{n}}-\mathrm{io}_{\mathrm{R}}$ e $\mathrm{E}_{\mathrm{n}+1}$.
(5) For each set $K, K \leqslant i$ to .

$$
\mathrm{m} \quad \mathrm{~K}
$$

Proof. The proofs of the first four clauses are immediate. n
Let E be a first order formula asserting the existence of exactly n distinct elements. x e $K-*^{r} E$ " $e^{\text {e to }}$ Thus, $K<L$ to . If $<p$ is a formula with one free variable, let $31 \mathrm{x}<\mathrm{p}$ be the formula asserting that there are exactly n distinct elements which satisfy $<p$.

Theorem 5. If every function recursive in K has a K-representation, then to is a completion of K. Thus, $d(t o)=d(K)^{f}$. K

Proof. By Theorem 4, to re. K. Suppose $P(x)$ re. K. $P(x) \equiv$ K
K K
$3 k[f(k)=x]$, where f is some function recursive in K. By $\mathrm{K} \quad 11$
assumption f has a K-representation, say $C p$ (F, \ldots,...).
Let $g(n)$ be the number theoretic function defined by

$$
g(n)=<p(M \$ F, \ldots) \text { A } 31 \text { y } F \text { (y) }
$$

Then

That is, $P(x) \underset{\text { "in }}{\text { to }}{ }_{K}$. Thus, $\underset{K}{\text { to }}$ is a completion of K.
Corollary 2. If f has a K-representation, then ring $f<\mathbb{R}_{\mathrm{to}} K$.
If K is an infinite set, then, by Theorem 3, every recursive function has a K-representation. Hence, the following Corollay 3 follows from Corollary 2.

(Theorem 2, [8]) .
(2) If K is infinite, then $d($ to) ;> 1.
$\mathrm{n}+1$
Suppose $K e T J$. Then $k=r n g f$, where f is recursive in Z_{n}. That is K is re. in a H_{n}-set. Thus, by Theorem 2,
if g is a function with a K-representation, then g is recursive in a E-set. Thus, if $K e S \quad$ and g has a K-represen$\mathrm{n} \quad \mathrm{n}+1$ * *
$\mathrm{n}+$.
tation, then g eA -.. Hence, not every function recursive in K has a K-representation.

This same conclusion follows from Theorem 5, since K e $£_{n}$ implies $\quad \mathrm{ID}_{\mathrm{K}} € 25_{\mathrm{n}}$.

Theorem 6. $\left.3 \mathrm{~B}\left[\mathrm{~A}=\mathrm{B}^{1}\right]-\mathrm{d}_{\sim}(\mathrm{U})_{\mathrm{A}}\right)=\underset{\sim}{d}(\mathrm{~A})$.
Proof, $A E_{1}{ }^{B}$. Thus, ${ }_{\AA} e^{\prime} S_{\bar{x}}{ }^{B}$, by Theorem 4 (1). Hence, $t_{\AA} \leq_{r} A_{5}$

The following corollary follows from Theorem 4 and Corollay 3.

Corollary 3 and the following examples show that Corollary 4 gives the best possible upper and lower bounds to $d\left(t O_{K}\right)$. By example 3, $\underset{\sim}{d}(K)$ and $\underset{\sim}{d}(K)!$ are not the only possible values for $d^{d}\left(\mathrm{to}_{\mathrm{K}}\right)$.

Examples, 1. By Theorem 6 and Friedberg ${ }^{1}$ s characterization of the degrees greater than 0_{\sim}^{T} [2],

$$
\mathrm{Vd} \geq \underset{\sim}{0} \underset{\sim}{\prime} 3 \mathrm{~K}[\underset{\sim}{d}(\mathrm{~K})=\underset{\sim}{d} \& \underset{\sim}{d}(\mathrm{to} \underset{\mathrm{~K}}{\underset{\sim}{d}}=\underset{\sim}{d}(\mathrm{~K})] .
$$

2. Also by the result in [2], given $\underset{\sim}{a}>\underset{\sim}{0}$!, choose $\underset{\sim}{b}$ so that $\underset{\sim}{a}=\underset{\sim}{b}!=\underset{\sim}{b} V \underset{\sim}{O_{\sim}^{1}} \& \underset{\sim}{b} 1{\underset{\sim}{1}}_{1}^{1}$. Choose K so that $\underset{\sim}{d}(\mathrm{~K})=\underset{\sim}{b}$. Then, $\underset{\sim}{d}(K) V{\underset{\sim}{\sim}}^{\prime}=<\underset{\sim}{5}\left(\wedge_{K}\right)=£\left({ }^{K}\right)!-$
3. By Theorem 4(3) and Corollary 3, if K e f_{1} and K is infinite, then $\underset{\sim}{d}\left(\mathrm{to}_{\mathrm{K}}\right)=\underset{\sim}{1} . \quad$ By a theorem of Sack's [16, p. 107],

$$
3 \mathrm{~K}\left[\mathrm{~K} e £_{\mathrm{x}} \&{\underset{\sim}{\sim}}^{0} \mathrm{~d}_{\sim}(\mathrm{K})<1_{\sim} \& \mathrm{~d}(\mathrm{~K}) \geqslant=2\right] .
$$

Thus, $\operatorname{aKT} \underset{\sim}{d}(K)<\underset{\sim}{d}\left(u_{K}\right)<\underset{\sim}{d}(K)$ '].

3. Relative Recursiveness

is not a function of $\tilde{d}(K)$. We then show (see Corollary 8 and Theorem 10) that for each degree d there exist sets A and B so that $\tilde{d}(A)=\tilde{d}(B), \quad \tilde{d}\left(t o^{A}\right)=\tilde{d}(A)^{\prime}$ and $\tilde{d}\left(t 0^{B}\right)=\tilde{d}(B) \quad V 1$. 2 2

Define $p(x, y)=(x+y)+y$. Define $t(x)=n$, where n is =
the largest square less than x. Define $s(x)=x-t(x)$ and $u(x)$
$t(x)-s(x), x^{\wedge}$ 3. Then, $u(p(x, y))=x$ and $s(p(x, y))=y$.
It follows from Definition 4 and Lemma 2^{1} that $p(x, y)$ e Spr.
Thus, $p(x, y)$ has an a)-representationl $<p \mathbb{1}(M, N, F, \ldots l)$ so that rng $p(x, y)=S(<p(M, N, F, \ldots) A \operatorname{VxF} x)$.

Let $C J(X)$ be the number theoretic function defined by

We have now the following lemma,

$$
2
$$

Eentrra 3. $R(a(n), k)=3 y[k=(n+y)+y]$.
Theorem 7. VA3B[B $\underset{r}{ } \mathrm{~A} \& \underset{3}{ }$ to $\left.=\mathrm{A}^{\mathrm{T}}\right]$.

A

Proof, Let a set A be given. Choose $3 y S(x, y)$ to be a complete A-generable predicate. By Lemma 3 and the definitions preceding Lemma 3,

$$
3 y S^{A}(x, y) \equiv 3 y\left[R(a(x), y) \& S^{A}(u(y), s(y))\right]
$$

Define $B=\left\{y: S^{A}(u(y), s(y))\right\} . B \wedge A .3 y S^{A}(x, y) \equiv 3 y[R(a(x), y) \&$ ye]. Thus, $3 y S^{A}(x, y)<_{m} \mathrm{t}_{B}$. t_{B} re. A follows from Theorem 4(1), since $B £ A$. Thus, to is complete for A.
r
13

Proof. Choose A so that $d(A)=d(t o)$. Then apply Theorem 7.
Corollary 6. $3 K\left[d(t o)=d(K)^{\prime} \quad \& d\left(t o_{-}\right)=d(K)\right]$.
—— 2
Proof. Choose $3 y \operatorname{VzP}(x, y, z)$ to be a complete S predicate.
$3 y \operatorname{VzP}(x, y, z)=3 y[R(a(x), y) \& \operatorname{VzP}(u(y), s(y), z)]$. Let $K=$
 is the complement of an re. set, $d\left(\right.$ to $\left._{-}\right)=0^{\text {! }}$.

Thus, $\mathrm{t}_{\mathrm{K}} \mathrm{o}$ does not induce a function on degrees and t_{K} does not preserve relative recursiveness.

Corollary 7. (1) $3 K\left[d\left(f n_{K}\right)=d(K) \& d\left(l h^{\wedge}\right)=d(K) »\right]$.
(2) $3 K\left[d(U-)=\mathbf{d}(K) t \& d\left(U_{-}\right)=d(K)\right]$.

Prof. Corollary 6 and Lemma 1.
Thus, the functions ft \backslash and $\backslash s$ also do not induce functions on the degrees, and therefore do not preserve relative recursiveness.
Definition 5. Let $<p$ be a formula in prenex normal form and M^{1} a one place predicate letter, not occurring in (p. Define to $\mathbf{m}^{\prime}{ }^{\prime}$
cp relativized to M, as follows:
(i) If $<p$ is quantifier free and contains occurrences of the variables $x^{\prime}, \ldots, x_{n-1}$ and no others, then $<p_{1}$ is 1

1
$\varphi A M\left(X_{Q}\right) A \cdot \cdot \# A\left(X^{\wedge_{1}}\right)$;

(iii) If (p is $V Y^{\wedge},{\underset{M}{1}}_{\left(p_{1}\right.}$ is $V y\left[M^{l}(y)-0 \quad r_{1}\right]$.

An easy argument proves the following lemma.
4. For every formula $<p, c p$ has a model of finite cardin1 ality y if and only if $\underset{M}{P} 1$ has a model 91 so that \quad IIM^II $=Y$.
 recursive function g so that

$$
\operatorname{VxVy}[R(x, y)-R(g(x), f(y))]
$$

and

$$
\operatorname{VxVz3y[R(g(x),z)-(z=f(y)\quad \& R(x,y))]..~}
$$

Proof. Assume fe Spry ${ }_{1}$. By Definition 4, f has an u>-representation $\wedge\left(M^{1} \wedge^{1}, \ldots.\right)$ so that $\left[\wedge\left(M^{1 \wedge 1}, \ldots\right) \& V x F^{1}(x)\right]$ has a model of cardinality z if and only if $3 y[z=f(y)]$.

Let $g(x)={ }^{r} 0{ }_{M^{1}}$ AcpA $\operatorname{VxF}^{\mathbf{I}}{ }_{x}{ }^{n}$, where $0={ }_{c} x j 9$ and suppose $R(x, y)$. 0 has a model of cardinality y. Thus, by Lemma 4, 0 m 1 i has a model 31 so that $||M \mathfrak{M}||=y$. Since $f(y)>y, 21$ can be extended and expanded to a model of $\wedge_{M^{\prime} \perp} A \mathrm{CP}^{\left(M^{1}, F^{1}, \ldots\right)} A V x F_{x}^{1}$ of cardinality $f(y)$. Thus $R(g(x), f(y))$.

Suppose $R(g(x), z)$. Then, $0 M_{M^{1}} A<p\left(M^{I}, F^{1}, \ldots\right) \quad A V_{1}^{1} x$ has a model 21 of cardinality z. The restriction to $\mathrm{JLI}^{2 d}$ is a model of cardinality y of 0 , where $f(y)=z$. Thus $R(x, y)$.

Definition 6. $A \leq \wedge_{s} B «^{*} A_{\sim}<^{\wedge} B$ by a function f eSpr.
< is a reducibility. That is, < is a reflexive and
 and $B \leq L_{m}$ by g e Spr..$_{1}$ then $x \in A<g(f(x))$ e C. Therefore,
 ms ms
identity function belongs to Spr., ^ is reflexive.
Theorem 8. If $A<\wedge_{m}{ }_{S}$, then to ${ }_{A}^{<} \wedge{ }^{I D} D_{B}$.
Proof. Suppose $A \leq{ }_{\mathbf{M}} \mathrm{B}$ by f e $\mathrm{Spr}_{\mathrm{n}}$. By Lemma 5, there exists a recursive function g so that

$$
R(x, y)-R(g(x), f(y))
$$

and

$$
\mathrm{Vx}, \mathrm{z} 3 \mathrm{y}[\mathrm{R}(\mathrm{~g}(\mathrm{x}), \mathrm{z})-(\mathrm{z}=\mathrm{f}(\mathrm{y}) \quad \& \mathrm{R}(\mathrm{x}, \mathrm{y})] .
$$

x e tg $A^{->} 3 y[R(x, y) \& y \in A]$

- $3 y[R(g(x), f(y)) \quad \& \quad y e A]$
$-3 y[R(g(x), f(y)) \quad \& \quad f(y) e B]$
$-3 y[R(g(x), y) \quad \& \quad y e B]$
$\rightarrow \mathrm{g}(\mathrm{x}) \quad e \mathrm{to}_{\dot{\mathrm{F}}} \cdot$
$\mathrm{g}(\mathrm{x}) \mathrm{e} \backslash \boldsymbol{h}_{\mathbf{n}}-* 3 \mathrm{z}[\mathrm{R}(\mathrm{g}(\mathrm{x}), \mathrm{z}) \& \boldsymbol{z e B}]$
$\rightarrow 3 y[R(g(x), f(y)) \quad \& f(y) e B]$
- $3 y[R(x, y) \& \quad y e A]-x$ e $I t$. .

Thus to ${\underset{A}{A}}^{\leq} \mathrm{to}_{\mathrm{B}}$ by. g, concluding the proof of Theorem 8 . Define the recursive sup. of the two sets A and B by
$2 \mathbf{x} \in \mathrm{~A} \vee \mathrm{~B} \rightarrow \mathbf{x} \in \mathrm{~A}$

$$
2 x+1 \text { e } A V B<x £ B
$$

It is clear that $A \underset{m}{<A} V B, B<A V B$, and that $d(A V B)$ is the least upper bound of $d(A)$ and $d(B)$.

Lemma 6. For any two sets A and $B, t_{A} \leq_{m}{ }^{\text {to }}{ }_{\text {AVB }}$ and $t_{B} \leq_{m} \wedge_{A V B}$. Proof. By Lemma 2, the functions 2 x and $2 \mathrm{x}+\mathrm{l}$ belong to Spr.^.

The proof follows then from Theorem 8.
Theorem 9. VA3C[d(C) $=d(A) \&$ to is complete A-generable]. Proof. By Theorem $1,3 B\left[B \leq \sum_{r} A \&{ }_{B} \quad\right.$ to is complete for $\left.A\right]$. Let $C=A V B . \quad B<A$, thus $d(C)=d(A)$. to is r.e. in C
 also to is complete for A. Thus, t_{C} is complete for A.

The following theorem (obtained by Thomas Grilliot, in personal communication) gives a positive solution to a question raised in [6].

Proof. By Corollary 3, we already have this result for the case $\mathscr{d}=\mathbb{Q} . \quad$ Thereforej assume that $\underset{\sim}{\mathcal{D}}>\underset{\sim}{\mathcal{Z}}$, and choose K so that $d(K)=d . \quad$ Let $C h_{K}(n)$ denote the characteristic function of K, and

function for $C_{K}(n)$. Then, define A to be the complement of
 that 7.? is recursive in every infinite subset of 75 . By Corollary 4, it suffices to show that $£\left(1^{\wedge}\right) £ \tilde{d}(A) V \tilde{1}$. Let $<p$ be any formula of $£$. Since $d(A)>0, A$ is not recursive in $S(\langle £\rangle)$. Therefore $S(\langle p)$ cannot be an infinite subset of 75. Hence, either $S(<p)$ is finite, or ${ }^{r} \mathrm{Cp}^{\wedge} e$ to ". That is, either $3 y V z>y R\left({ }^{r} C P \sim^{\prime}, y\right)$ or $\left.3 y f R\left({ }^{r<} P S Y\right){ }^{\star} Y^{\wedge} A\right]$. The function $f(x)=f l_{y}\left[\left[R(x, y) \& y_{G} A\right] \quad V \operatorname{Vz}>y R(x, z)\right]$ is recursive in A and 0^{T}, and

$$
\left.\left.V^{\mathrm{e}}{ }_{\mathrm{A}}^{13}{ }^{\circ}{ }^{\mathrm{a}} \mathrm{y} 1 \mathrm{fC}^{\wedge}\right) \quad\left[\mathrm{RCo}^{\wedge} \mathrm{y}\right) \quad \& \mathrm{yeA}\right]
$$

Hence, d(to _) ^_d(A) V 1.
4. Values of d (to), for K of a given degree Are $d(K) V o^{T}$ or $d(K)$ the only possible values for $d(t o)$ for any K ? In this section we describe the extent to which d(to) is independent from $\tilde{d}(K)$, within the bounds given by Theorem 4 and Corollary 4.

Lemma 7. There is a recursive function f so that $R(x, 2 y) ~ \bullet * ~$ $R(f(x), y)$.
$\overline{\text { Proof, }}$ Let $\mathrm{x}^{\mathrm{O}}, \mathrm{x}^{\mathbf{l}}, \ldots$, be a complete list of the individual variables in $£$. Let S be a binary predicate letter and let a and b be individual constant letters. Given a formula $<p$ in $£$, let x^{k}
be the highest index variable which occurs in \lessdot. Let u^{\wedge} de-
 occurs in (p. Also, we may suppose without loss of generality that (p contains no occurrences of S, a and b. (Otherwise, $<p^{\wedge}$ can be found uniformly, where $\left(p_{1}\right.$ contains no occurrences of $S, ~ a$ and b, and $R\left({ }^{r}<p^{n}, 2 y\right)<\bullet R\left({ }^{r}\left(£ O_{1}, 2 y\right).\right)$ We define a new formula $<p$ as follows:

$$
\begin{equation*}
\left(\mathrm{x}^{\wedge} \mathrm{x}^{\wedge}\right)^{*} \quad \text { is } \quad \mathrm{x}_{ \pm}=\mathrm{x}_{j} \quad \mathrm{~A}_{\mathrm{u} \pm}=\mathrm{u}_{j} \tag{1}
\end{equation*}
$$

$\left(\begin{array}{lll}i p_{1} & \mathrm{~A} & l b_{2}\end{array}\right)^{*}$ is $i b_{1}{ }^{-*} \mathrm{~A} \quad \mathrm{O}_{2}{ }^{\boldsymbol{\wedge} \mathrm{f}}$ 。

$$
\begin{equation*}
(-.0)^{*} \quad \text { is } \quad-\mathrm{r}(\stackrel{*}{<} \mathrm{M} \text {; } \tag{3}
\end{equation*}
$$

$$
\left(3 x_{i} 0\right)^{\prime f} \quad \text { is } \quad 3 x_{i} \mathrm{au}_{\mathrm{i}}\left[S\left(\mathrm{x}_{\mathrm{i}}, \mathrm{u}_{\mathrm{i}}\right) \quad \mathrm{A} 0^{*}\right] .
$$

Define

$$
T(<p)=<p^{*} A a \wedge b A[V x S(x, a) \quad A \operatorname{VxS}(x, b)
$$

A $\left.\operatorname{VxVy}(S(x, y)-\bullet y=a \quad V y=b) \quad A \underset{x_{1}}{ }, u_{x_{1}}\right)$
$\left.A \ldots A S\left(X_{\mathbf{i}_{n}}, U_{\mathbf{i}_{n}}\right)\right]$,
where x_{i}, \ldots, x_{1} is a list of the free variables occurring in (p.
Claim, <p is satisfiable in a structure of cardinality $2 y$ if and only if $T(<p)$ is satisfiable in a structure of cardinality y. Proof. We first show that if $<p$ is satisfiable in a structure of cardinality $2 y$, then $T(<p)$ is satisfiable in a structure of cardinality y.

If a formula $<p$ holds in a structure of cardinality $2 y$, then let

$$
\left.\left.\left.\left.A=\langle 1,1\rangle,\langle 2,1\rangle, \ldots,<y, 1>_{J}<1.2\right\rangle,<2,2\right\rangle, \ldots X y, 2\right\rangle\right\}
$$

be the domain of such a structure, 21. Define a structure 39 with domain $B=\{1,2, \ldots, y\}$ as follows:
(1) If $\mathrm{R}_{\mathrm{l}}^{\wedge}$, is a k-ary relation on A , then R^{\wedge}. is a 2 k -any relation on B defined by

$$
R_{9}\left(i_{1}, j_{1}, \ldots, i_{k}, j_{k}\right) \leftrightarrow R_{2}\left(\left\langle i_{1}, j_{1}\right\rangle, \ldots,\left\langle i_{k}, j_{k}\right\rangle\right)
$$

for $i_{15} \ldots, i_{k} €\{1,2, \ldots, y)$, and $J^{\wedge}--\wedge^{*}$ e $\left.t^{1} \star^{2}\right\}-$
(2) $S_{m}=\{\langle i, j\rangle: i=1, \ldots, y \&(j=1$ or $j=2)\}$.
(3) a is $1, b$ is 2 .

It is clear that $[\operatorname{VxS}(x, a) A \operatorname{VxS}(x, b) A \operatorname{VxVy}(S(x, y)-y=a$ $\mathrm{v} \mathrm{y}=\mathrm{b})]$ holds in ".

We prove by induction that $c p$ is satisfiable in 31 (by an assignment a) if and only if $T(<\mathrm{p})$ is satisfiable in 99 (by an assingment p). Moreover, $a\left(x_{1}\right)=\left\langle p\left(x_{1}\right), p\left(u_{1}\right)\right\rangle$. Case $<\mathrm{p}$ is $\underset{i}{\mathrm{x}} . \mathrm{X}_{\mathbf{3}}$. If a satisfies $<\mathrm{p}$ in 81 , then for some $\langle s, t\rangle e h, a\left(x_{\mathbf{1}}\right)=a\left(x_{\mathfrak{y}}\right)=\langle s, t\rangle$. Define p by $p\left(x_{\mathfrak{I}}\right)=p\left(x_{\mathfrak{g}}\right)=s$ and $P\left(u_{\mathbf{I}}\right)=p\left(u_{\mathrm{g}}\right)=t$. Then p satisfies $<p^{*}$ in a. Since $t=1$ or $t=2, p$ satisfies $T(p)$ in 5 .
$\left\langle p^{*}\right.$ is $x_{i}=\underset{3}{x} . A_{1} u . \underset{3}{=} u .$. If p satisfies $T(<p)$ in $S B$, then $P\left(x_{i}\right)=P\left(x_{\mathbf{J}}\right)=s$ and $p\left(u_{ \pm}\right)=p(u)=$.$t , for s, t e B$. Also, $\left.\mathrm{s}^{\wedge} 1 \mathrm{~s}^{\wedge} \mathrm{t}\right)$. Thus, $\langle\mathrm{s}, \mathrm{t}\rangle e \mathrm{~A}$. Define a by $\mathrm{a}\left(\mathrm{x}^{\bullet}\right)=\mathrm{a}\left(\mathrm{x}^{\dot{+}}\right)=$ $\langle\mathrm{s}, \mathrm{t}\rangle$. a satisfies <p in 31.

Case $<\mathrm{p}$ is $P\left(x_{n}, \ldots, x\right)$. If there is an assignment a so that

 $\left.P_{g j} O\left(x_{1}\right), P\left(u_{1}\right), \ldots, p\left(x_{n}\right), e\left(u_{n}\right)\right)$. That is, p satisfies $<p^{*}$ in 39. Therefore, p satisfies $T(c p)$ in $S 3$.

Suppose p satisfies $T(<p)$ in 35. $<p$ is $P(x, 1 u$, 1. . ., xn, un). $P_{a}\left(p\left(x_{1}\right), P\left(u_{1}\right), \ldots, P\left(x_{n}\right), P\left(u_{n}\right)\right)$, and $S^{\wedge}\left(p\left(x^{\wedge}, p\left(u^{\wedge}\right), i=1, \ldots, n\right.\right.$.
 a satisfies <p in 91.

Case <p j^ ti) A2 . if a satisfies both ib and © in ^, then by induction hypothesis p satisfies ijll in $S S$ and p satisfies $0_{\text {g. }}{ }^{\text {ot }}$ in 35 , where p is defined so that $\mathrm{oc}\left(\mathrm{x}_{\mathbf{1}}\right)=$ $<\mathrm{p}\left(\mathrm{x}_{\mathrm{i}}\right), \mathrm{p}\left(\mathrm{u}_{\mathbf{1}}.\right)>$, for each i. Thus p satisfies $\stackrel{*}{\mathrm{p}}=0_{1}^{*} \mathrm{~A}, \frac{i_{2}^{2}}{}{ }^{*}$ in 99. Thus, p satisfies $\mathrm{T}(<\mathrm{p})$ in \wedge^{8}.

The other direction is identical. The case cp is •»0 is straightforward.

Case cp is $3 x . i l$. If $£ x .0$ is satisfied in 31 , then some as$1{ }^{1} \quad 1$ signment a satisfies $0\left(x^{.1}\right)$ in 91 . Thus $p{ }_{*}^{\text {defined by }}$

 in <g. Thus, g satisfies $T(<p)$ in $\$$.

The other direction is similar.
We have shown that if $t p$ is satisfiable in a structure of cardinality $2 y$, then $T(c o)$ is satisfiable in a structure of cardinality y. We show now that if $T(<p)$ is satisfiable in a structure of cardinality y, then $<p$ is satisfiable in a structure of cardinality $2 y$.

If $T(<p)$ is satisfiable in a structure S of cardinality y, we may assume that $C=(1,2, \ldots, y\}$ is the domain, a is $1, b$ is 2 , and $S_{£}(i, j) * j=1$ or $j=2$. Define a structure 5 from •£ as follows:
(1) $B=[1, \ldots, y\}$, the domain of $\$$;
(2) $S^{\wedge}=S_{s}$;
(3) a is 1, b is 2;
(4) $P_{58}\left(i_{1}, j r \ldots, i_{n}, j_{n}\right)$ -
$\left.P_{\varepsilon}\left(i_{r} j_{1}, \ldots, i_{n}, j_{n}\right) A S^{\wedge} l^{\wedge} j_{j}\right) A .-A S,\left(i_{n}, j_{n}\right)$.
(Note that only 2 k -ary relations appear in $\mathrm{T}(\mathrm{cp})$. .)
We show by induction that every assignment y which satisfies $T(C p)$ in $£$ also satisfies $T(C p)$ in S, and every assignment p which satisfies $T((p)$ in $S B$ also satisfies $T(<p)$ in S.

Our result follows easily from this, because $\$$ is obtainable from a structure 31 of cardinality $2 y$ as in the previous part of
the proof, and we know that $T((p)$ is satisfiable in 35 iff and only if $<p$ is satisfiable in 91.

If cp is $\mathbf{x}_{\mathbf{i}}=\mathbf{x}_{\mathbf{j}}$, there is nothing to show, since 33 and E have the same domain.

Case (p is $P\left(x_{n}, \ldots, x_{n}\right)$. Assume $T(\langle p)$ is satisfiable in \notin.
Then there is a 2 -ary relation $P r$ on $\{1, \ldots, y\}$ and an assignment y to $£$ so that $\left.\left.\mathrm{P}_{\mathrm{g}}\left(\mathrm{yi}^{i} \mathrm{X}_{\mathrm{A}}\right), \mathrm{Y}^{\wedge}\right), \ldots, \mathrm{Y}\left(\mathrm{x}_{\mathrm{n}}\right), \mathrm{Y}\left(\mathrm{u}_{\mathrm{n}}\right)\right)>$ and so that $S \underline{-}(Y(x),. Y(u)),. i=1, \ldots, n . \quad$ Thus

- 11

$$
P_{g}\left(Y\left(x_{1}\right), Y\left(u_{1}\right), \ldots, Y\left(x_{n}\right), \gamma\left(u_{n}\right)\right) .
$$

That is, y satisfies $T(<p)$ in 33.

It is obvious that an assignment satisfying $T(c p)$ in 33 also satisfies $T(C p)$ in (S. This direction is clear in the following cases too.

Case <p_i^ 1 A 2. Suppose an assignment Y satisfies $T\left(p_{1}\right)$ in S. $S^{\wedge}(Y(X),. Y(U)$.$) for all free variables x$. occurring in $<p$. Thus Y satisfies $i . b_{1}$ and 0_{2} in 33 , and Y satisfies $T(c p)$ in 93.

Case <p j^ ^ 0. Suppose $T(->0)$ is satisfied by an assignment Y in $\left.\notin \mathrm{S}^{\wedge} \underset{-}{ } Y\left(\mathrm{X}_{\mathbf{I}}\right), Y\left(\mathrm{U}_{\mathbf{I}}.\right)\right)$ for all free variables $\mathrm{X}_{\mathbf{I}}$. occurring in 0. Thus, as above, Y is an assignment to $S . \quad Y$ satisfies ** (0) in E. Thus, Y does not satisfy 0 in E. By induction hypothesis, Y does not satisfy 0 in 53. Thus y satisfies $" *(0)=\left({ }^{7} 0\right)$ in 33. That is, $T(<p)$ is satisfied by $y i^{n} \circledR^{\circledR}$

Case $<p$ is $3 x .0$. If $T(<p)$ is satisfied in E, then 0 is satisfied by some y in $<\in . S\left(X_{i}, u_{i}\right)$. Thus y is an assignment to $S 3$ and $\wedge\left(\mathrm{x}_{\mathbf{i}}{ }^{\wedge} \mathrm{u}_{\mathbf{i}}\right)$ is satisfied by y in S 3 . Thus $\mathrm{T}(\mathrm{Lp})$ is satisfied by y in 33.

The proof of the claim is complete. Let $d((p)$ denote the universal closure of $c p . \quad c p$ is valid in a structure 91 of cardinality $2 y$ if and only if $C l\{(p)$ is satisfiable in 31 if and only if $T(d(p))$ is satisfiable in a structure $S 3$ of cardinality y if and only if $T(d\{(p))$ is valid in $S 3$ (since $T(C l(<p))$ is closed). Define $f(x)={ }^{r} T\left(O t(<p) r\right.$, for $x={ }^{r}\left(p^{\wedge}\right.$. Then, $R(x, 2 y)-R(f(x), y)$. Lemma 8. There is a recursive function g so that $R\left(x_{5} 2 y+1\right)^{H}$ $R(g(x), y)$.

Proof. As in the proof of Lemma 7, given $<p$ in $S L$, let x^{\wedge} be the highest index variable which occurs in $<p$ and let u_{i} denote the variable $\mathrm{XL}_{\mathbf{k}+\mathbf{l}+\mathbf{i}}$, all i. Again as in the proof of Lemma 7, we can suppose without loss of generality that $<\mathrm{p}$ contains no occurrences of the binary predicate letter S and (p contains no occurrences of the individual constant letters a, b, and c. The formula $<p$ is defined for (p as in the previous proof. Define

$$
T(\varphi)=\varphi^{*} \wedge a \neq b \wedge a \neq c \wedge b \neq c
$$

A $[\operatorname{VxS}(x, a)$ A $\operatorname{VxS}(x, b)$ A $S(c, c) A \operatorname{VxVy}(S(x, y) \rightarrow(y=a$
where x. ,...,x. is a l'ist of the distinct free variables occurring in $<p$.

Claim, $<\mathrm{p}$ is satisfiable in a structure of cardinality $2 \mathrm{y}+\mathrm{l}$. if and only if $T(<p)$ is satisfiable in a structure of cardinality y. If $<$ p holds in a structure of cardinality $2 y+l$, then let $A=\{\langle 1, l\rangle, \ldots,\langle y, l\rangle .\langle 1,2\rangle, \ldots,\langle y, 2\rangle,\langle 3,3\rangle$ be the domain of such a structure, 91. Define a structure 99 with domain $B=$ \{l,...5y\} as follows:
(1) If R_{g} is a k-ary relation on A, then R_{99} is a $2 k$-ary relation on B defined by

$$
R_{9}\left(i_{1}, j_{1}, \ldots, i_{k}, j_{k}\right) \leftrightarrow R_{\mathfrak{M}}\left(\left\langle i_{1}, j_{1}\right\rangle, \ldots,\left\langle i_{k}, j_{k}\right\rangle\right),
$$

for ${ }^{i}{ }_{i}>->i^{e}\{1 j--->y) ? 3_{i}{ }^{\wedge}---O_{k}{ }^{`} €\{1,2,3\}$.
(2) S_{m} is a binary relation defined by $S_{m}(i, l)$ and $S_{M}(i, 2)$ for all $i=1,2, \ldots, y$, and $8^{\wedge}(3,3)$.
(3) a is $1, \mathrm{~b}$ is 2 , and c is 3.

An induction argument shows that $<p$ is satisfied in 91 (by an assignment a) if and only if $T(<p)$ is satisfied in $S B$ (by an assignment p). Moreover, for all i, $a(x)=.<p(x), P(u)$.$\rangle . It$ i i i follows that if co is satisfiable in a structure of cardinality $2 \mathrm{y}+\mathrm{l}$, then $\mathrm{T}(<\mathrm{p})$ is satisfiable in a structure of cardinality y . Conversely, if $T(c p)$ is satisfiable in a structure \wedge of cardinality y, we may assume that $C=£ l, \ldots, y\}$ is the domain, a is $1, b$ is $2, C$ is 3 , and $S^{\text {© }}(i, j) * *(j=1$ or $j=2$ or $(i=3 \&$ j=3)). Define a structure $\$$ from E as follows:
(1) $\quad \mathrm{B} \cdot=\mathbf{~}(1, \ldots, \mathrm{y})$;
(2)
(3) a is 1, b is 2, c is 3;
(4) VV゙^i-'VV"

$$
P_{\mathbb{G}}\left(i_{1}, j_{1}, \ldots, i_{n}, j_{n}\right) \wedge s_{\mathbb{S}}\left(i_{1}, j_{1}\right) \wedge \ldots \wedge S_{\mathbb{S}}\left(i_{n}, j_{n}\right)
$$

As in the proof of Lemma 7, an induction argument shows that if $T(C p)$ is satisfied in E by an assignment y, then $T(<p)$ is satisfied in $S S$ by Y and conversely.
S is obtainable from a structure 91 of cardinality $2 y+l$ as in the previous part of the proof; and we know that $T(<p)$ is satisfiable in $\$ 8$ if and only if $<p$ is satisfiable in M. Thus, if $T(<p)$ is satisfiable in a structure of cardinality y, then • <p is satisfiable in a structure of cardinality $2 y+1$. This completes the proof of the claim.

$$
\begin{gathered}
\text { Define } g(x)={ }^{r} T\left(C^{\wedge}(c p)\right)^{n} \text {, for } x={ }^{r}\left(p^{n}\right. \text {. Then } \\
R(x, 2 y+1)<R(g(x, y) .
\end{gathered}
$$

Proof. By Lemma 6, d(to) v d('Jb) ^d(to...).

$$
\begin{aligned}
& \sim A \quad \sim B \quad \sim \text { AVB } \\
& 3 y[R(x, y) \& y e A V B] \quad \bullet * 3 y[R(x, 2 y) \& 2 y \text { e AVB] } \\
& \text { V } 3 \mathrm{y}[\mathrm{R}(\mathrm{x}, 2 \mathrm{y}+\mathrm{l}) \& 2 \mathrm{y}+\mathrm{l} € \mathrm{AVB}] \\
& \text { • } 3 y[R(x, 2 y) \& y e A] \quad V 3 y[R(x, 2 y+l) \& y e B] .
\end{aligned}
$$

Bẏ Lemmas 7 and 8, let f satisfy $R(x, 2 y) \bullet * R(f(x), y)$ and let g satisfy $R(x, 2 y+1) ~ \bullet * R(g(x), y)$. Then,

$$
3 y[R(x, 2 y) \& y e A] \quad " 3 y[R(f(x), y) \& y e A] ;
$$

and

$$
3 y[R(x, 2 y+1) \quad \& y e B] * 3 y[R(g(x), y) \& y e B]
$$

We are now ready to prove our main results.
 $\left.\left.\& d\left(\mathrm{tO}_{\tau}\right)=\mathrm{b}\right)\right]$.

Proof. (see Eigure) Let $\underset{\sim}{a}$ and b_{\sim} satisfy $a_{\sim}^{\wedge} 0^{\prime} \sim_{\sim}^{\prime} a_{\sim} \wedge^{b_{\sim}} \hat{\sim}^{\wedge} \cdot a_{\sim}^{\prime}$, and $\underset{\sim}{b}$ r.e. $\underset{\sim}{a}$. By Friedberg ${ }^{1}$ s characterization [2], $\underset{\sim}{c} \underset{\sim}{a}={\underset{\sim}{c}}^{1}$.

By Theorem 6, choose A so that $\underset{\sim}{d}(A)=\underset{\sim}{a}\left(1>_{A}\right)=\underset{\sim}{a} . \quad$ By Corol-
 Let $K=A V B . \quad \underset{\sim}{d}(K)=\underset{\sim}{d}(A)=\underset{\sim}{a}$. By Theorem 11, $\underset{\sim}{d}\left(1 »_{K}\right)=£\left({ }_{\text {AVB }}\right)=$ $\underset{\sim}{d}\left(\mathcal{I J}_{A}\right) \vee \underset{\sim}{d}(\underset{B}{\operatorname{lb}})=\underset{\sim}{a} \vee \underset{\sim}{b}=\underset{\sim}{b}$.
$K=A V B$

Figure

Proof, By Corollary 8 and Theorem 10, choose sets A and B so

$K=A \quad$ B. Then, $\underset{\sim}{d}(K)=\underset{d}{ }(\mathbf{A} V B)=\boldsymbol{d}(B)=\mathbf{b} . \quad$ By Theorem 11,

Theorem 14. Va $>0^{T} \operatorname{Vb3K}\left[\left(a \leq b \wedge a^{!} \& b\right.\right.$ re. a) -

$$
\left.\left(\underset{\sim}{\mathbf{d}}(\mathbf{K}) \notin \underset{\sim}{\mathbf{a}} \& \underset{\sim}{\mathbf{d}}\left(\mathbf{t o}_{\mathrm{K}}\right)=\underset{\sim}{\mathbf{a}} \& \underset{\sim}{\mathbf{d}}(\mathbf{K})^{1}=\underset{\sim}{\mathbf{b}}\right)\right] .
$$

Proof, Using [2] and [7], as in the first paragraph of the proof
 and Theorem 10, choose A and B so that $\underset{\sim}{d}(A)=\underset{\sim}{d} \underset{\sim}{d}(B)=\underset{\sim}{C}$,

$$
\begin{aligned}
& \underset{\sim}{d}(\mathrm{~A} V \mathrm{~B})=\underset{\sim}{d} \mathrm{~V} \underset{\sim}{c}=\underset{\sim}{d} \underset{\sim}{\underset{\sim}{a}} \underset{\sim}{\text {. }} \\
& d(A V B)^{1}=d^{\prime}=b .
\end{aligned}
$$

Take $K=A$ V.

Bibliography

[1] Asser, B., "Das Repres̈antantenproblem in Prädikatenkalkiil der ersten Stufe mit Identita't," Zeitschr. f. Math. Logic und Grundlagen d. Math. 0, (1955) , 252-263.
[2] Friedberg, Richard, ${ }^{\mathrm{ft}}$ A Criterion for Cbmpleteness of Degrees of Unsolvability," J.S.L. 22(1957), 159.
[3] Kleene,S., Introduction to Metamathematics, 5th ed., D. Van Nostrand, Princeton, New Jersey, 1950.
[4] Sacks, Gerald E., "Degrees of Unsolvability," Annals of Mathematics Studies,^55^ Princeton University Press, Princeton, New Jersey, 1963.
[5] Selman, A. L., "First Order Formulas True in Structures of Arbitrary Finite Cardinality," Abstract 672-202, Notices of the A.M.S.17(1970), 140.
[6] \qquad , "Arithmetical Reducibilities and Sets of Formulas Valid in Finite Structures," Ph.D Thesis, Pennsylvania State University, 1970.
[7] Shoenfield, J. R., "On Degrees of Unsolvability," Ann. of Math. 6*9 (1959) , 644-653.
[8] Trachtenbrot, B. A., "Impossibility of An Algorithm for the Decision Problem in Finite Classes," Dokl. Akad. Nauk SSR 70(1950),569-572.

Footnotes

AMS Subject Classifications:
 Primary 0270;
 Secondary 2204

Key Phrases: first order formulas, finite structures, K-representation, spectrum, spectral functions

1. This paper is part of the author's doctoral dissertation directed by Professor Paul Axt and partially supported by NSF Grant GP7077. The results in this paper were first announced in [5].
2. The author is presently a postdoctoral research fellow at Carnegie-Mellon University.
