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SETS OF FORMULAS VALID IN FINITE STRUCTURES

Abstract

A function Ir is defined on the set of all subsets of u)

so that for each set K, the value, Ir , is the set of formulas
K

valid in all structures of cardinality in K. An analysis is

made of the dependence of \s on K. It is easily seen that

K

for all infinite sets K, d(K) V 1 £ d(K) £ d(K)! . On the other
hand, we prove that d(U ) = d(lr ) = d(U ) , and use this to

~ KVj ^ K ~ u

prove that for any two degrees a and b, a ^ 1, a <L b <£ a1 ,

and b r.e. a, there exists a set K so that d(K) = a and

d(V ) = b . Various similar results are also included.
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B. A. Trachtenbrot [8] has shown that the set of formulas

of first order logic valid in all finite structures is not re-

cursively enumerable, although it is the complement of such a

set. Let us define a function Is on the set of all subsets

of a) so that for each set K, the value, If , is the set of
K

formulas valid in all structures of cardinality in K. A. Mos-

towski has asked (in conversation, 1966) what can be said of If,
K

when K is known. In particular, if the Kleene-Post degrees of

the two sets K and J are identical, are the degrees of If

K

and U identical?

Let K denote the complement of the set K. (The universe

of discourse is <D throughout.) It is shown that for all infi-

nite sets K, d(K) V 1 £ d(U ) < d(K)! . Nevertheless, in sec-

tion 3 it is shown that there exist sets K for which d(V ) ^ <3(V—)

This solves the above question in the negative. In section 4 we

describe the extent to which d(lf ) is independent from d(K) .

~ K ~

The principal result in this direction is Theorem 12. The tech-

niques used to obtain our results involve both the writing of ex-

plicit algorithms and the application of standard theorems about

the degrees of unsolvability.
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It is assumed that we have at our disposal some first order

language, £, with equality whose grammar contains an infinite list

k k
of k-ary predicate letters M., F.,...,i ;> 1, for each k. (p,0,...

shall denote formulas of this language. (p(M.,...,M ,,F ,. . .) , n ]>
1 n

is a formula containing among its predicate letters one or more

occurrences of the one-place predicates M ,...,M , F .

Let 91 be an interpretation of the formula (p. 91 is a

structure with domain A and k-ary relations M corresponding

to predicate letters M. occurring in (p. We write ||A||, for the

cardinality of a set A. By the cardinality of a structure 91 we

mean the cardinality of its domain. A structure 91 is finite, if

its domain is. We write f= <p, if <p is valid in 91.

Also, we will use the notation "A <^ B" for "A recursive

in B" and "A < B" for "A is many-one reducible to B" .

Definition 1. Let K <£ u>.

(i) ^K = CcP:V

(ii) \ = {(Pi^[\=% (D & ||A||

(iii) mK = { < P : ^ 9 l [ ( ^ co & | | A | | < to) -

Lemma 1. <p e \^ « <p ft l i ^ . <p e V « -> cp £ ID .
K. K K K

to and rn defined above have conceptual interest, and, by

Lemma 1, for each set K, d(V ) = d(ft\__) = d(to ) . In fact, we pre-

fer to analyze the function to, since as is easily seen, for all K,

to is r.e. in K.
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1. Trachtenbrot1s Theorem,

This section is concerned with certain generalizations of

Theorem 1 of [8].

Throughout this paper we equate computable with recursive.

As an instance, given a formula <p(M ,...,M ,F , . . . ) , n ^ 1,

define p(m , . . . ,m , j,k) to be 0, if <p has a model 21 of

cardinality k so that ||M. || = m. , for i £ n, and ||F || = j,

and 1 otherwise. p is recursive.

Definition 2. Let K be a non-empty subset of u). A formula

<p(M ,. . . ,M ,F ,,...) is a K-representation of an n-place function f

i f

( i ) Vm , . . . , m 3 j ^ k [ p ( m ,...,m , j , k ) = 0 & k€K] ,

and

( i i ) Vk,m. 3. . . ,m , j [keK & p(m , . . . ,m , j , k ) = 0

I n ± n

-> f ( m 1 , . . . ,mn) ** j ] .

The proof of the following theorem is immediate.

Theorem 1. If <p(M 5. . . ,,M ,F ,...) is a K-representation of £,

then

f(m ,...,m ) = j <* 3k[k€K & p(m ,...5m o,k) = 0].

Theorem 2. If f has a K-representation, then f is recursive

in K. If f has a K-representation and K is r.e. in a set

then f is recursive in B.



4.

Proof. If f has a K-representation, then, using Theorem 1,

the graph of f is r.e. in any set B which K is r.e. in.

So f is recursive in K, and if K is r.e. in B, then f

is recursive in B.

Corollary 1. If f has an <D-representation, then f is re-

cursive.

Corollary 1 is due to Trachtenbrot.

Theorem 3. If B is an infinite set and f is recursive, then f

has a B-representation.

Proof. The proof is essentially a repetition of the proof of

Theorem 1 in [8]. It is shown in [8] that for each recursive

function f there is an <u-representation <p. To complete the

proof, it suffices to observe for each GO-representation <p, that

if 21 is a model of <p with domain A, and if 31 is extended

to a structure 9I! simply by enlarging the domain A, then 2Ir is

a model of <p. Since B is an infinite set, each <D-representa-

tion <p has a model of cardinality in B. Thus, cp is a B-repre-

sentation.

Definition 3. The spectrum of a first-order formula <p, S(<p), is

the set of all natural numbers n for which cp has a model of

cardinality n.

It is well-known [1] that each S(cp) is an elementary set.

Let rng f denote the range of a function f.
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Definition 4. The class of spectral functions of n-arguments,

. lit i l l

Spr = { f: f € <u & f has an u>- representation <p(M ,. ..,M , F ,...)

so that rng f = S((p(Mn ,. . . ,M ,F , . . .) A VXF x) } .
1 n

2
Lemma 2. (1) The functions 2x, 2x4-1, and x belong to Spr .

The function u + x belongs to Spr .

(2) Spr is closed under substitution. More generally, if

g e Spr and f _,..., f e Spr , n,m > 0, then the function h
in l m n

defined by h(x.,...,x ) = g(f.(x_,...,x ) , . . . , f (x_,...,x )) is
1 n 1 1 n m l n

contained in Spr •

Proof, (1) We again cite [8]. By that paper, the functions

listed in (1) all have oo-representations. It is easy to see that

these representations have the required property.

(2) Let f and g belong to Spr . Define h(x) = g(f(x)), f

has u>-representation <p(M ,F ,...) and g has u)-representation

0(M ,F , . . . ) , both satisfying Definition 4. By [8], h has

co-representation <p(M ,G ,...) A 0(G ,F , . . . ) . Suppose y = h(x) ,

for some x. <p(M ,G ,...) has a model 31 of cardinality IIG91II
 =

f(x). Extend (enlarge the domain) and expand (add additional re-

lations) 81 to a model 35 of ^(G^F ,...) of cardinality ||F̂ || =

g(f(x)) = y. As observed in the proof of Theorem 3, 91 can be ex-

tended to SJ so that 59 is still a model of <p(M ,G , . . . ) •

Thus, ye S(<p(M ,G ,...) A 0 ( G ,F ,...) A VxF x) . It is immediate

that if ye S((p(M ,G ,...) A 0(G ,F ,...) A VxF x) , then y e rng h.

Thus h G Spr .
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The proof of the second statement in (2) is identical.

2. Elementary Properties of to.

Suppose a Godel numbering is given for the set of formulas

of £ so that each number is used exactly once. Throughout this

chapter let R(x,k) be the number theoretic predicate R(x,k) =

formula with Godel number x has a model of cardinality k. R

is a recursive predicate. Let r<pn denote the Godel number of <p,

and let tXj denote the formula with Godel number x. For each

set K, to = {(p:3k(R(<*</r ,x) & keK) }. But, in what follows we
K

will instead denote {x|3k(R(x,k) & keK) } by to .

Theorem 4. (1) For each set K, to r.e. K. In fact, VB [K e E B

K i

(2) If K is finite, then to is recursive.
K

(3) K £ S n - l » K e E n .

(4) K e n n - ioR e E n + 1 .

(5) For each s e t K, K <i to .
m K

Proof. The proofs of the first four clauses are immediate.

Let E be a first order formula asserting the existence of

exactly n distinct elements. x e K -*rE "• e to • Thus, K <[_ to .

If <p is a formula with one free variable, le t 31 x <p be
n

the formula asserting that there are exactly n distinct elements

which satisfy <p.
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Theorem 5. If every function recursive in K has a K-represen-

tation, then to is a completion of K. Thus, d(to ) = d(K)f.

K *** K ^

Proof. By Theorem 4, to r.e. K. Suppose P(x) r.e. K. P(x) =
K

K K
3k[f (k) = x], where f is some function recursive in K. By

K 1 1

assumption f has a K-representation, say cp(M ,F , . . . ) .

Let g(n) be the number theoretic function defined by

g(n) = <p(M $F ,...) A 31 y F (y)

Then

P(n) = 3k[fK(k) = n] = 3k[R(g(n),k) & keK].
That is, P(x) < to . Thus, to is a completion of K.

"in K K

Corollary 2. If f has a K-representation, then rng f < to .

If K is an infinite set, then, by Theorem 3, every recur-

sive function has a K-representation. Hence, the following Corol-

lary 3 follows from Corollary 2.

Corollary 3. (1) d(to ) = 1. In fact, to is a complete E. set
r»* (A) *w (I) X

(Theorem 2, [8]) .

(2) If K is infinite, then d(to ) ;> 1.

Suppose K e TJ . Then k = rng f, where f is recursive
in Z . That is K is r.e. in a H -set. Thus, by Theorem 2,

n n

if g is a function with a K-representation, then g is recur-

sive in a E -set. Thus, if K e S _ and g has a K-represen-

n n+1 * *

tation, then g e A -,. Hence, not every function recursive in K

has a K-representation.
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This same conclusion follows from Theorem 5, since K e £

implies IDK € 25n.

Theorem 6. 3B [A = B1 ] -• d(U) ) = d(A) .

B B
Proof, A G E . Thus, to e S , by Theorem 4(1). Hence, to < A5l A x A r

since A = B1 . On the other hand, by Theorem 4(5) , A < to

The following corollary follows from Theorem 4 and Corol-

lary 3.

Corollary 4. For all infinite sets K, d(K) V 1 £ d(to ) £ d(K)f .

Corollary 3 and the following examples show that Corollary 4

gives the best possible upper and lower bounds to d(to ). By

example 3, d(K) and d(K)! are not the only possible values

for d(to ).

Examples, 1. By Theorem 6 and Friedberg1s characterization of

the degrees greater than 0T [2],

Vd > 0' 3K[d(K) = d & d(to ) = d(K) ].

2. Also by the result in [2], given a > 0! , choose b so

that a = b! = b V o1 & b101 . Choose K so that d(K) = b.

Then, d(K) V 0' = <5(^K) = £(
K) !-

3. By Theorem 4(3) and Corollary 3, if K e £ and K is in-

finite, then d(to ) = 1 . By a theorem of Sack's [16, p. 107],

3K[K e £x & 0 < d(K) < 1 & d(K) » = 2] .

Thus, aKTd(K) < d(uv) < d(K)'].~ ~ K ~
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3. Relative Recursiveness

In the introduction to this paper we asked whether d(to )

is a function of d(K) . In this section we show that A <£ B

does not imply to < to 9 and, more strongly, show that d(to )
A r B /N</ K

is not a function of d(K). We then show (see Corollary 8 and

Theorem 10) that for each degree d there exist sets A and B

so that d(A) = d(B), d(to ) = d(A) ' and d(to ) = d(B) V 1.

2 2

Define p(x,y) = (x+y) + y. Define t(x) = n, where n is

the largest square less than x. Define s(x) = x - t(x) and u(x)

t(x) - s(x), x ^ 3. Then, u(p(x,y)) = x and s(p(x,y)) = y.

It follows from Definition 4 and Lemma 2 that p(x,y) e Spr .

Thus, p(x,y) has an a)-representation <p(M ,N ,F ,...) so that
rng p(x,y) = S(<p(M ,N ,F ,...) A VxF x) .

Let CJ(X) be the number theoretic function defined by

r i 1 1 1 1 ~i
c> ( n ) = 3 1 x | 4 x A c p ( M j N , F , . • • ) A V x F x .

n

We have now the following lemma,

2
Lemma 3. R(a(n),k) = 3y[k = (n+y) + y].

Theorem 7. VA3B[B £ A & to = A T ] .
r 3

Proof, Let a set A be given. Choose 3yS (x,y) to be a com-

plete A-generable predicate. By Lemma 3 and the definitions pre-

ceding Lemma 3,

3ySA(x,y) = 3y[R(a(x),y) & SA(u(y),s(y))].
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Define B = {y:SA(u(y) , s(y) ) } . B ̂  A. 3ySA(x,y) = 3y[R(a(x),y) &

yeB]. Thus, 3ySA(x,y) < to . to r.e. A follows from Theor-

em 4(1), since B £ A. Thus, to is complete for A.

r 13

C o r o l l a r y 5 . 3A,B[B £ A & to A < ^ .

Proof . Choose A so t h a t d(A) = d(to ). Then apply Theorem 7.

C o r o l l a r y 6. 3K[d(to ) = d(K)' & d(to_) = d ( K ) ] .

Proof. Choose 3yVzP(x,y,z) to be a complete S predicate.

3yVzP(x,y,z) = 3y[R(a(x),y) & VzP(u(y),s(y),z)]. Let K=

[y:VzP(u(y),s(y),z)}. Then, 3yVzP(x,y,z) < to But, to e £ .
Thus, d(Lb ) = o! ! . By Theorem 4(3) and Corollary 3(2), since K

~ K ~

is the complement of an r.e. set, d(to—) = 0! .

Thus, to does not induce a function on degrees and to does
K K

not preserve relative recursiveness.

C o r o l l a r y 7. (1) 3K[d(tnK) = d(K) & d(lh^) = d(K) » ] .

(2 ) 3K[d(U ) = d(K)t & d ( U - ) = d ( K ) ] .

Proof. Corollary 6 and Lemma 1.

Thus, the functions ft\ and \s also do not induce functions

on the degrees, and therefore do not preserve relative recursive-

ness.

Definition 5. Let <p be a formula in prenex normal form and M

a one place predicate letter, not occurring in (p. Define tp ,

i M

cp relativized to M , as follows:
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(i) If <p is quantifier free and contains occurrences of

the variables x , ...,x and no others, then <p 1 is

1 1 M

<p A M (XQ) A. . # A M (X^ 1) ;

(ii) If cp is 3y0, <p is 3y [M (y) A 0 ]•
M M

(iii) If (p is Vy^, (p is Vy [M (y) - 0 .,] .
M M

An easy argument proves the following lemma.

Lemma 4. For every formula <p, cp has a model of finite cardin-

ality y if and only if <p . has a model 91 so that IIM̂ II = y.
M

Lemma 5. For every function f belonging to Spr there is a

recursive function g so that

VxVy[R(x,y) - R(g(x),f(y))]

and

VxVz3y[R(g(x),z) - (z = f(y) & R(x,y))].

Proof. Assume f e Spr . By Definition 4, f has an u>-repre-

sentation ^(M1^1,...) so that [^(M1^1,...) &VxF1(x)] has

a model of cardinality z if and only if 3y[z = f(y)].

L e t g ( x ) = r 0 A c p A VxF x n , w h e r e 0 = c xj 9 a n d s u p p o s e
M

R(x,y) . 0 has a model of cardinality y. Thus, by Lemma 4,0

i M

has a model 31 so that ||M || = y. Since f (y) > y, 21 can be

extended and expanded to a model of ^ , A cp(M ,F ,...) A VxF x
M

of cardinality f (y) . Thus R(g(x) , f (y) ) .

Suppose R(g(x),z). Then, 0 A <p(M ,F ,...) A VxF x has
M 1

a model 21 of cardinality z. The restriction to JVL. is a mod-

el of cardinality y of 0, where f (y) = z. Thus R(x,y) .
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Definition 6. A <^s B «* A <^ B by a function f e ^

< is a reducibility. That is, < is a reflexive and

transitive subrelation of £ • In fact, if A £ B by f e Spr ,
r m •>-

and B < C by g e Spr. , then x e A « g(f(x)) e C. Therefore,
m 1

by Lemma 2(2), A < C. Hence < is transitive. Since the
ms ms

identity function belongs to Spr , ^ is reflexive.
1 ms

Theorem 8. If A < B, then to < ID .
^ms A ̂  B

Proof. Suppose A <^ B by f e Sprn . By Lemma 5, there exists
m 1

a recursive function g so that

R(x,y) - R(g(x),

and

Vx,z3y[R(g(x),z) - (z = f(y) & R(x,y) ]

x e to -» 3y [R(x,y) &

- 3y[R(g(x),f(y)) & yeA]

- 3y[R(g(x),f(y)) & f(y)eB]

- 3y[R(g(x),y) & yeB]

g(x) e to
£5

g(x) e \h -* 3z[R(g(x),z) & zeB]

3y[R(g(x),f(y)) & f(y)eB]

- 3y[R(x,y) & yeA] - x e It .
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Thus to < to by g, concluding the proof of Theorem 8.
A —m B

Define the recursive sup. of the two sets A and B by

2x + 1 e A V B « x £ B.

It is clear that A <A V B, B < A V B, and that d(AVB) is

the least upper bound of d(A) and d(B) .

Lemma 6. For any two sets A and B, to < to
AVB and to < ^ B

Proof. By Lemma 2, the functions 2x and 2x+l belong to Spr.̂ .

The proof follows then from Theorem 8.

Theorem 9. VA3C[d(C) = d(A) & to is complete A-generable].
— — — — — — — — oa rsf C

P r o o f . By T h e o r e m 1, 3B [B <£ A & to is c o m p l e t e f o r A ] .
r B

Let C = A V B. B < A, thus d(C) = d(A). to is r.e. in C
-*-r ~ ~ c

and C £ A, thus to is r.e. in A. By Lemma 7, to < to ;

also to is complete for A. Thus, to is complete for A.
B C

Corollary 8. Vd3A[d(A) = d & d(to ) = d(A) ' = d« ] .

The following theorem (obtained by Thomas Grilliot, in per-

sonal communication) gives a positive solution to a question raised

in [6].

Theorem 10. Vd3A[d(A) = d & d(\n ) = d V 1 ] .

Proof. By Corollary 3, we already have this result for the case

d = 0. Thereforej assume that d > 0, and choose K so that

d(K) = d. Let Ch (n) denote the characteristic function of K, and

C hK ( i )

let Ch (n) ( = II p. 9 see [3, p. 231]) be the course-of-valuesK . ^ l

^ HUNT LIBRARY
CARNEGIE-MELLGN UNIVERSITY
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function for Ch (n). Then, define A to be the complement of
K

{Ch (n):neu)}. K £ A, and A <^ K. Also, it is easy to see
K r r

that 7? is recursive in every infinite subset of 75.

By Corollary 4, it suffices to show that £(1^) £ d(A) V 1.

Let <p be any formula of £. Since d(A) > 0, A is not recur-

sive in S (<£>). Therefore S(<p) cannot be an infinite subset

of 75. Hence, either S(<p) is finite, or rcp̂  e to . That is, eith-

er 3yVz > y R(rcp~',y) or 3yfR(r<PSy) & Y^A]. The function

f(x) = fly[[R(x,y) & yGA] V Vz > y R(x,z)] is recursive in A

and 0T , and

V e 1J3
A ° ay 1 f C ^ ) [RCo^y) & ye A ] .

Hence, d(to ) ^_ d(A) V 1.

4. Values of d(to ) , for K of a given degree
K

Are d(K) V oT or d(K)! the only possible values for d(to)

for any K? In this section we describe the extent to which d(to )
^ K

is independent from d(K), within the bounds given by Theorem 4

and Corollary 4.

Lemma 7. There is a recursive function f so that R(x,2y) •*

R(f(x),y).

Proof, Let x ,x ,..., be a complete list of the individual varia-

bles in <£. Let S be a binary predicate letter and let a and b

be individual constant letters. Given a formula <p in £, let x.
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be the highest index variable which occurs in <p. Let u^ de-

note the variable x_ .. Then, none of the variables u ,u^,...,

occurs in (p. Also, we may suppose without loss of generality

that (p contains no occurrences of S, a and b. (Otherwise, <p^

can be found uniformly, where (p contains no occurrences of S, a

and b, and R(r<pn,2y) «• R( r(£O , 2y) .) We define a new formula <p

as follows:

(1) ( x ^ x ^ ) * is x± = x A u± = u ;

(2) P n ( x i , . . . , x ± ) i s P n ( x i ,ui , . . . , x i , u i ) ;
i n l i n n

* -* -̂ f
(3) (ip1 A lb2) i s ib1 A 0 2 •

(4) (-.0)* is - r (<M;

(5) (3x i 0) ' f i s 3 x i a u i [ S ( x i , u i ) A 0* ] .

Define

T(<p) = <p* A a ^ b A [VxS(x,a) A VxS(x,b)

A VxVy(S(x,y) -• y=a V y=b) A s ( x . , u . )
X l X l

A . . . A S(x . ,U. ) ] ,
n n

where x. ,...,x. is a list of the free variables occurring in (p.
1 n

Claim, <p is satisfiable in a structure of cardinality 2y if

and only if T(<p) is satisfiable in a structure of cardinality y.

Proof. We first show that if <p is satisfiable in a structure of

cardinality 2y, then T(<p) is satisfiable in a structure of car-

dinality y.
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If a formula <p holds in a structure of cardinality 2y,

then let

A = «l,l>,<2,l>,...,<y,l>J<1.2>,<2,2>,...Xy,2>}

be the domain of such a structure, 21. Define a structure 39

with domain B = {l,2,...,y} as follows:

(1) If R̂ , is a k-ary relation on A, then R^ is a 2k-ary

relation on B defined by

for il5...,ik € {l,2,...,y), and J^---*^ e t1*2}-

(2) Sm = {<i,j>:i = l,...,y & (j=l or j=2)}.

(3) a is 1, b is 2.

It is clear that [VxS(x,a) A VxS(x,b) A VxVy(S(x,y) - y = a

v y = b)] holds in ».

We prove by induction that cp is satis fiable in 31 (by an

assignment a) if and only if T(<p) is satisfiable in 99 (by an

assingment p). Moreover, a(x.) = <p(x.),p(u.)>.

Case <p is x. =x.. If a satisfies <p in 81, then for some
— i 3

<s,t> e h, a(x.) = a(x.) = <s,t>. Define p by p(x.) = p(x.) = s

and P(u.) = p(u.) = t. Then p satisfies <p in a. Since t = 1

or t = 2, p satisfies T((p) in 5.
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<p* is x. = x. A u. = u . . If p s a t i s f i e s T(<p) in SB,
1 3 1 3

t h e n P ( x i ) = P(x . ) = s and p(u ± ) = p ( u . ) = t, fo r s , t e B.

A l s o , s ^ l s ^ t ) . Thus, < s , t > e A. Def ine a by a ( x . ) = a ( x ) =

< s , t > . a s a t i s f i e s <p in 31.

Case <p is P ( x n , ,x ) . If t h e r e is an a s s ignmen t a so t h a t
l n

P0T(a(x) . ,. . . ,<x(x )), define p(x.) and p(u,), i = l,...,n, so
" J i n 1 1

that a(x.) = <p(x.) ,p(u.)>. Then, by definition of P ,
1 1 1 V

PgjO(x1),P(u1),...,p(xn),e(un)). That is, p satisfies <p*

in 39. Therefore, p satisfies T(cp) in S3.

Suppose p satisfies T(<p) in 35. <p is P(x ,u ,. . . ,x ,u ).

Pa(p(x1) ,P(u1) ,. . . ,P(xn) ,P(un)) , and S^( p (x^ , p (u^ ) , i=l,...,n.

Thus <p(x.) ,P(u.)> € A, i = l,...,n. Define a(x.) = <p(x.) , p(u. )>.

a satisfies <p in 91.

Case <p j^ tj) A ^ . if a satisfies both ib and 0 in ^,

then by induction hypothesis p satisfies ij) in SS and p
•*

satisfies 09 in 35, where p is defined so that oc(x.) =

* * *
<p (x.) , p(u. )>, for each i. Thus p satisfies <p = 0 A i

in 99. Thus, p satisfies T(<p) in 8̂.

The other direction is identical. The case cp is •» 0 is

straightforward.

Case cp is 3x.il). If £x.0 is satisfied in 31, then some as-
1' 1

signment a satisfies 0(x.) in 91. Thus p defined by

a(x.) = <p(x.) , p(u .)>, for all j, satisfies ib (x.,u.) in a.
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A l s o , S ' O ( x . ) , p ( u . ) ) . H e n c e p s a t i s f i e s 3 x . , u . [ S ( x . , u . ) A $ ]
JO 1 1 1 1 1 J-

in <g. Thus, g satisfies T(<p) in $.

The other direction is similar.

We have shown that if tp is satisfiable in a structure of

cardinality 2y, then T(co) is satisfiable in a structure of car-

dinality y. We show now that if T(<p) is satisfiable in a struc-

ture of cardinality y, then <p is satisfiable in a structure of

cardinality 2y.

If T(<p) is satisfiable in a structure S of cardinality y,

we may assume that C = (l,2,...,y} is the domain, a is 1, b is 2,

and S£(i,j) * j = 1 or j = 2.

Define a structure 5 from •£ as follows:

(1) B = [ l , . . . , y } , the domain of $;

(2) S^ = S s;

(3) a is 1, b is 2;

(4) P58(i1,jr...,in,jn) -

P£(irj1,...,in,jn) A S^li^jj) A.-.A S,(in,jn).

(Note that only 2k-ary relations appear in T(cp).)

We show by induction that every assignment y which satisfies

T(cp) in £ also satisfies T(cp) in S, and every assignment p

which satisfies T((p) in SB also satisfies T(<p) in S.

Our result follows easily from this, because $ is obtainable

from a structure 31 of cardinality 2y as in the previous part of



19.

the proof, and we know that T((p) is satisfiable in 35 iff and

only if <p is satisfiable in 91.

If cp is x. = x., there is nothing to show, since 33 and

E have the same domain.

Case (p is P(xn,...,x ). Assume T(<p) is satisfiable in <£.
— 1 n

Then there is a 2n-ary relation P on {l,...,y} and an assign-

ment y to £ so that pg(yix^),Y^),...,Y(xn),Y(un))> and so

that S_(Y(x.),Y(u.)), i = l,...,n. Thus
^ 1 1

That is, y satisfies T(<p) in 33.

It is obvious that an assignment satisfying T(cp) in 33 also

satisfies T(cp) in (S. This direction is clear in the following

cases too.

Case <p _i^ 0 A 0 Suppose an assignment Y satisfies T((p) in

S. S^(Y(X. ) , Y(U. ) ) 9 for all free variables x. occurring in <p.

Thus Y satisfies ib and 02 in 33, and Y satisfies T(cp)

in 93.

Case <p j^ ^ 0. Suppose T(->0) is satisfied by an assignment Y

in <£. Ŝ f Y(x.) , Y(U. ) ) for all free variables x. occurring in 0.

Thus, as above, Y is an assignment to S. Y satisfies ** (0 ) in E.

Thus, Y does not satisfy 0 in E. By induction hypothesis, Y

does not satisfy 0 in 53. Thus y satisfies ""* (0 ) = ("70)

in 33. That is, T(<p) is satisfied by y in ®*
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Case <p is 3x.0. If T(<p) is satisfied in E, then 0 is

satisfied by some y in <£. S(x.,ui). Thus y is an assign-

ment to S3 and ^ (x.^u.) is satisfied by y in S3. Thus T(<p)

is satisfied by y in 33.

The proof of the claim is complete. Let d((p) denote the

universal closure of cp. cp is valid in a structure 91 of car-

dinality 2y if and only if Cl{(p) is satisfiable in 31 if and

only if T(d((p)) is satisfiable in a structure S3 of cardinality y

if and only if T(d{(p)) is valid in S3 (since T(Cl(<p)) is closed) .

Define f(x) = rT(Ot(<p)r, for x= r(p^ . Then, R(x,2y) - R(f(x),y).

Lemma 8. There is a recursive function g so that R(x52y+1)
 H

R(g(x),y).

Proof. As in the proof of Lemma 7, given <p in SL, let x^

be the highest index variable which occurs in <p and let u.

denote the variable XL . , all i. Again as in the proof of

Lemma 7, we can suppose without loss of generality that <p con-

tains no occurrences of the binary predicate letter S and (p

contains no occurrences of the individual constant letters a, b,

and c. The formula <p is defined for (p as in the previous

proof. Define

A [VxS(x,a) A VxS(x,b) A S(c,c) A VxVy(S(x,y) -> ( y = a

Vy = bV ( x = c A y = c ) ) A S(x. ,u. ) A,#.A S(x. ,u: )
1 X ^ \



21.

where x. ,...,x. is a list of the distinct free variables

occurring in <p.

Claim, <p is satisfiable in a structure of cardinality 2y+l if

and only if T(<p) is satisfiable in a structure of cardinality y.

If <p holds in a structure of cardinality 2y+l, then let

A = {<l,l>,...,<y,l>.<l,2>,...,<y,2>,<3,3» be the domain of

such a structure, 91. Define a structure 99 with domain B =

{l,...5y} as follows:

(1) If R9 is a k-ary relation on A, then R is a 2k-ary re-

lation on B defined by

for ii> — ->\ e {lj--->y)? 31^---Ok € {1,2,3}.

(2) Sm is a binary relation defined by Sm(i,l) and SM(i,2)

for all i = l,2,...,y, and 8^(3,3).

(3) a is 1, b is 2, and c is 3.

An induction argument shows that <p is satisfied in 91 (by

an assignment a) if and only if T(<p) is satisfied in SB (by an

assignment p). Moreover, for all i, a(x.) = <p(x ),P(u.)>. It
i i i

follows that if co is satisfiable in a structure of cardinality

2y+l, then T(<p) is satisfiable in a structure of cardinality y.

Conversely, if T(cp) is satisfiable in a structure ^ of

cardinality y, we may assume that C = £l,...,y} is the domain,

a is 1, b is 2, c is 3, and S (i,j) ** (j=l or j=2 or (i=3 &

j=3)). Define a structure $ from E as follows:
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(1) B •=• { l , . . . , y ) ;

(3) a is 1, b is 2, c is 3;

(4) VV^i-'VV "

As in the proof of Lemma 7, an induction argument shows that

if T(cp) is satisfied in E by an assignment y, then T(<p) is

satisfied in SS by Y and conversely.

S is obtainable from a structure 91 of cardinality 2y+l as

in the previous part of the proof; and we know that T(<p) is satis-

fiable in $8 if and only if <p is satisfiable in M. Thus, if

T(<p) is satisfiable in a structure of cardinality y, then • <p is

satisfiable in a structure of cardinality 2y+l. This completes

the proof of the claim.

Define g(x) = rT(C^(cp))n, for x = r(pn. Then

R(x,2y+1) « R(g(x,y).

Theorem 11. d(to . ) = d(te ) V d(to ).

Proof. By Lemma 6, d(to ) v d('Jb ) ^ d(to ) .

~ A ~ B ~ AVB

3y[R(x,y) & y e AVB] •* 3y[R(x,2y) & 2y e AVB]

V 3y[R(x,2y+l) & 2y+l € AVB]

•• 3y[R(x,2y) & yeA] V 3y[R(x,2y+l) & yeB].
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By Lemmas 7 and 8, let f satisfy R(x,2y) •* R(f(x),y) and

let g satisfy R(x,2y+1) •* R(g(x),y). Then,

3y[R(x,2y) & yeA] " 3y[R(f(x),y) & yeA];

and

3y[R(x,2y+l) & yeB] * 3y[R(g(x),y) & yeB].

Thus, x e to - f(x) e ID V g(x) e to Thus, to <; to V to .

We are now ready to prove our main results.

Theorem 12. Va ;> 0* Vb3K[(a ̂  b ̂  a! & b r.e. a) -* (d(K) = a

& d(to ) = b) ].

Proof. (see Eigure) Let a and b satisfy a ̂  0' , a ̂  b ̂ . a' ,

and b r.e. a. By Friedberg1s characterization [2], 3c a = c1.

b r.e. c' , thus by Shoenfield [7], 3d[b = d' & c ̂  d £ c' ].

By Theorem 6, choose A so that d(A) = a(l»A) = a. By Corol-

lary 8, choose B so that d(B) = d and ^(^-J = ^' = ^ B -̂r A'

Let K = A V B. d(K) = d(A) = a. By Theorem 11, d(l»K) = £(
to

AVB)
 =

d(lJ3 ) v d(lb ) = a v b = b.

a'

d(iu ) = b = d« = d(lb )
~ K ^ ^ ~ B

d(K) = a = c! = d(A) = d(tô )

K = A V B
d = d(B)

Figure
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Theorem 13. VaVb3K [a < b £ a' - (d(K) = b & d ( t o ) = a' ) ].
— — — — — — — — — r*s r^J <~/ r*s n~t r-*J r^J r*-J ] \ ***>

Proof, By Corollary 8 and Theorem 10, choose sets A and B so

that d(A) = a, d(B) = b, d(to ) = a ' , and d(U) ) = b V 1. Let
~ /v. r^J rsJ rsj ] \ ^ / ^ B r>s r*s

K = A V B. Then, d(K) = d(A V B) = d(B) = b. By Theorem 1 1 ,

d(U> ) = d(to , J = d(to ) V d(lb ) = a' V b V 1 =

Theorem 14. Va > 0T Vb3K[(a < b ^ a! & b r . e . a) -

(d(K) £ a & d(to ) = a & d(K)1 = b ) ] .

Proof, Using [2] and [7], as in the first paragraph of the proof

of Theorem 12, 3c,d[c £ d <£ dT = a <£ d! = b ̂  a! ]. By Corollary 8

and Theorem 10, choose A and B so that d(A) = d, d(B) = c,

d(to ) = d V l, and d(lb ) = cT = a.

d(A V B) = d V c = d £ a.

d(A V B ) 1 = d' = b.

d ( U b ) = c3l ( I b ) v d ( t o ) = d V l V a = a .

T a k e K = A V B .
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