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SETS O FORMULAS VALID IN FI Nl TE STRUCTURES

Abstract

A function Ir is defined on the set of all subsets of wu)

so that for each set K the value, Ir , is the set of fornul as
K

valid in all structures of cardinality in K An analysis is

made of the dependence of \s on K It is easily seen that

for all infinite sets K_ d(K V1£d(K £d(K'. On the other
hand, we prove that d(U ) =dlr ) =d(U), and use this to
~ Ky N K ~ u

~r P~ ~ i~ ~ ~ P

prove that for any two degrees a and b, a” 1, a<Lb <f£ a',

ot far L Pt

and_ b r.e. a, there exists a set K so that d(K) = a and

d(V) =b . Various simlar results are also included.
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2
Al an L. Sel nan

B. A Trachtenbrot [8 has shown that the set of fornulas
of first order logic valid in all finite structures is not re-
cursively enunerable, although it is the conplenent of such a
set. Let us define a function Is on the set of all subsets

of a) so that for each set K the value, If , is the set of
K

formulas valid in all structures of cardinality in K A Mos-

towski has asked (in conversation, 1966) what can be said of I%l

when K is known. In particular, if the Kl eene-Post degreesKof
thd tuWgQ sedentkKcard J are identical, are the degrees of |If
Let K denote the conpl enent of the set K (The uni verse
of discourse is <D throughout.) It is shown that for all infi-
nite sets K, d(K) V1E£d(U) <d(K'. hbvertheless, in sec-
tion 3 it is shown that there exist sets K for which d(V ) ~ <3(\%.
This solves the above question in the negative. |In section 4 we

descri be the extent to which dIf ) is independent from d(K) .
~ K ~

The principal result in this direction is Theorem 12. The tech-
ni ques used to obtain our results involve both the witing of ex-
plicit algorithms and the application of standard theorens about

the degrees of unsolvability.




It is assuned that we have at our disposal sonme first order

| anguage, £, with equality whose gramar contains an infinite |ist

of k-ary predicate letters MI; F.I;...,i ;> 1, for each k. (p,0,...
shal | denote formul as of this |anguage. (p(M,l...,M,j:,,.l. ), n]>1

1 n

is a formula containing anong its predi cat?_ Iette&s gne or nore
occurrences of the one-place predicates ML .. MRF

Let 91 be an interpretation of the fornula (pp 91 is a
structure with domain A and k-ary relations V= correspondi ng
to predicate letters MY occurring in (p. Ve wite ||A|, for the
cardinality of a set A By the cardinality of a structure 91 we
mean the cardinality of its domain. A structure 91 is finite, if

its domainis. VW wite f:gI

<p, if <p iswvalidin 9L
Also, we will use the notation "A<¥ B' for "A recursive

in B' and "A<™B" for "A is many-one reducible to B".

Definition 1. Let K<E w
Aqliafex = |=u ©};

(i) M = QP Y
(i) \ = {(Pi*[\=, (D & [IAlleK]};
(ii) me = {<P:AOI[(" co & [IAll < to) - j[allek]}.

Lemma 1. <p e W_«<pftli*r, <peV __«->cp £1D .
K K K K

t&and rn¥ defined above have conceptual interest, and, by
Lemma 1, for each set K d(V) =dft\' ) =dto). In fact, we pre-
fer to analyze the function to, since as is easily seen, for all K

tois r.e. in K




1. Trachtenbrot's Theorem

This section is concerned with certain generalizations of
Theorem 1 of [8].

Tﬁroughout this paper we equate conputable with recursive.
As an instance, given a fornula qo(l\hl\ﬁlg') n”n 1,
defi ne p(ml...,l[ln,j,k) tobe 0, if <p has a nodel 21 of
cardinality k so that ||Mhu| =m,, for i £n, and ||Fi| =i,
and 1 otherwise. p s recursive.

Definition 2. Let K be a non-enpty subset of wu). A formula

<p(|\/i,. o rjl\/l ]F ,,-..) 1S a K-representation of an n-place function f
if
(i) V{n ..... m 3j’\k[p(£n ..... m rij’k) = 0 & k€K],
and
(ii) Vk,m.s ..,m ,j [keK & p(m.,... m ,j,k) =0
I'n + n
> f(mgq,...,my) ** j].

The proof of the follow ng theoremis.inmediate.

[heorem 1. |If <p(Mi,,-Lt. : I\I}IIFl) is a K-representation of £,

t hen

f(n&,..wan =] <* 3k[kEK & p(nl,...5nho;k) = 0].
Theorem 2. If f has a K-representation, then f is recursive
in K If f has a K-representation and K is r.e. in a set B,

then f is recursive in B.




Proof. ~If f has a K-representation, then, using Theorem1
the graph of f is r.e. in any set B which K is r.e. in.
SQ f is recursive in K and if K isr.e. in B, then f
IS recu}sive in B
Corollary 1. If f has an <D-representation, then f is re-
cursi ve.

Corollary 1 is due to Trachtenbrot.
Theorem 3. If B is an infinite set and f is recursive, then f
has a B-representation.
Proof. The proof is essentially a repetition of the proof of
Theorem1 in [8]. It is showm in [8 that for each recursive
function f there is an <u-representation <p. To conplete the
proof, it suffices to observe for each GO representation <p, that
if 21 is anodel of <p with domain A and if 31 is extended
to a structure 9' sinply by enlarging the domain A then 2" s
a nodel of <. Since B is an infinite set, each <D representa-
tion <p has a nodel of cardinality in B. .Thus, cp is a B-repre-
sentati on.

Definition 3. The spectrumof a first-order formula <p, S(<p), is

the set of all natural nunbers n for which cp has a nodel of
cardinality n.
It is well-known [1] that each S(cp) is an elenentary set.

Let rng f denote the range of a function f.




Definition 4. The class of spectral functions of n-arguments,

- |
Spro={f:f € 4% gt has an u> representation <p(M"l‘,. M; o)

sothat rngf=s(p(M. 5. . . M¥F 5. ) AVXFR)}.
1 n

2
+emrer 2. (1) The functions 2x, 2x4-1, and x belong to Spr 1.

The function u + x belongs to Spr o

(2) Spr1 is closed under substitution. WMbre generally, if

g e Sprinand f N Sprn, n,m> 0, then the function h

+ m

defined by h(x.,...,x ) =9g(f.(x_,...,x),...,f (x,...,x)) 1is
1 n 11 n m | n

contained in Spr ™

Proof, (1) W againcite [8]. By that paper, the functions

listed in (1) all have oo-represent_ations. It is easy to see that

t hese representati ons have the required property.

(2) Let f and g belonI(.; t]c_) spr ¥ Define h(x) = g(f(x)), f

haslu>-lrepresentation <Pp(M,F ,...) and g has u)-representation
O(M,F ,...), both satlisflying Definit{onl4. By [8], h has
co-representation l<p(I]\_/I ,G,...) AOG,F ,...). Suppose y = h(])_() :
for some x. <p(M,G,...) has anodel 31 of cardinality NG =
f(x). Extend (enlarge the domain) an](_j expand (add additional re-
lations) 8 to anmdel H of ~(G'F ,...) of cardinality || =

g(f(x)) =y. As observed in the proof of Theorem 3, 91 can be ex-
tended to § so that 3 is still a nodel of <p(|\;ld')o

Thus, ye S<p(MiGi...) Ao(ctbFL...) AwFYX) . It is imediate
that if ye S((p(Ml,G]j...) AO(Gl,Fl,...) AVxle), then y e rng h.
Thus h GSprl. |




u'l.

The proof of the second statenment in (2) is identical.

2. _Elenentary Properties of to.

Suppose a Gddel nunbering is given for the set of formulas
of £ so that each nunber is used exactly once. Throughout this
chapter let R(x,k) be the nunber theoretic predicate R(x,k) =
formula with Gidel nunber x has a nodel of cardinality Kk. R
is arecursive predicate. Let 'g" denote the Gotlel nunber of <p,

and let (Xj denote the formula with Gidel nunber x. For each

set K to = {(p3K(R<<r , x) & keK) }. But, in what follows we
wi Il instead denote {x|3k(R(x,k) & keK) } by to. .
Theor em 4. (1) For each set K tor.e. K In fact, VB[Ke EB =

B K i
‘JJK € El 1.
(2) If K is finite, then to 1is recursive.

K
(3) K £ Sn'l»Ke E,.
(4) Ke nn_ iORe En+1.
(5) For each set K, K <i to .
m K

Proof. The proofs of the first four clauses are inmmedi ate.

n .
Let E be a first order formula asserting the existence of

x K -m K
exactly n distinct elenments. x e K-*E"s etoes Thus, K4 to.

If <p is a formula with one free variable, let 31 x <p be
n

the fornula asserting that there are exactly n distinct elenents

whi ch satisfy <p.




Theorem 5. If every function recursive in K has a K-represen-
tation, then to is a conpletion of K  Thus, dito) = d(K)".
K * % % "K N
Proof. By Theoremd4, to r.e. K  Suppose P(x) r.e. K P(x) =
, K
K K
3k[f (k) = x], where f Is some function recursive in K By
K 11

assunption f has a K-representation, say cp(M,F .. ).

F Jh 1 .. . 1, .1
Let g(n) be the nunber theoretic functrll on “defined by

g(n) = PMS$F ,...) A3l yF (y)
Then - -

P(n) = 3k[f"(k) =n] = 3k[R(g(n),k) &keK].
That is, P(x) 'fntoK' Thus, ko is a conpletion of K

roltary 2. If f has a K-representation, then rng f MoK
If K is an infinite set, then, by Theorem 3, every recur-
sive function has a K-representation. Hence, the follow ng Corol

lary 3 follows from Corollary 2.

Torottary 3. (1) dito) =1. In fact, to is a conplete E  set
r»* (A *w (1) X

(Theorem2, [8]) .

(2) If K isinfinite, then d(to ) ;> 1
n+l
Suppose Ke TJ . Then k =rng f, where f s recursive
in Zn' That is K isr.e. in a Hn-set. Thus, by Theorem 2,

if g is a function with a K-representation, then g is recur-

sive in a E-set. Thus, if Ke S _ and g has a K-represen-
n n+1 * *
n+.. —_—
tation, then g e A -. Hence, not every function recursive in

has a K-representation.

K




This sanme conclusion follows from Theorem 5, since K e £n
implies 1D € 25,
Theorem6. 3B[A=B'] - d(V,) =d(A) .
B B

Pr oof , AGEr. Thus, tg\e S, , by Theorem4(1). Hence, tg\gr As,

since A=B'. On the other hand, by Theorem4(5) , Axtop
The following corollary follows from Theorem 4 and Corol -
lary 3.
Corallary 4. For all infinite sets K d(K) V L £dtop £ d(K) " .
Corollary 3 and the follow ng exanples show that Corollary 4
gi ves the best possible upper and | ower bounds to ditog). By
example 3, d(K) and d(K)' are not the only possible val ues
for ditog .
Exanples, 1. By Theorem 6 and Friedberg's characterization of

the degrees greater than Q' [2],
vd > 0' 3K[d(K) :'E!,&d,(}oﬁ = d(K) ].

2. Aso by the result in [2], given a >0, choose b so

that a =b =b Vol &bl0'. Choose K so that d(K)

Ll

b.
Then, d(K) VO =<5(") =£(9"-

3. By Theorem4(3) and Corollary 3, if Ke £1 and .K is in-
finite, then Q(toK) =1. By a theoremof Sack's [16, p. 107],

3K(Ke £, &0 < d(K <1 &d(K » = 2] .

Thus, aKTd(K) < d~(uR < d(K)'].




3. Relative Recursiveness

In the introduction to this paper we asked whether d(to_)

is a function of qu). In this section we show that A<_£rB
does not inply to < to g, and, nore strongly, show that d(to.)

A r B MK
is not a function of @(K). We then show (see Corollary 8 and

Theorem 10) that for each degree d there exist sets A and B

so that d{A) = d{B), &to® = a(A) ' and atoP) = dB) V 1.
2 2
Define p(x,y) = (x+ty) +vy. Define t(x) = n, where n I'S
the | argest square less than x. Define s(x) = x - t(x) and u(x)

t(X) - S.(X), x "N 3. Then! u(p(xvy)) =X and S(p(xiy)) =Y.
It follows fromDefinition 4 and Lerth thhlat p(x,y) e Spr

Thus, p(x,y) has an a)-representatlont <gM ,N ,F ,..1)- so that
rng p(x,y) = <p(M,N ,F ,...) A VxFx) .

Let CJ(X) be the number theoretic function defined by
e (n) =r3ZrL]X|4|xAcp(M1j|\JI Eooooyavdd

We have now the follow ng | emms,

_ 2 '
termma 3. R(a(n),k) = 3y[k = (nty) +vy].
Theorem 7. VA3B[B £ A & to = AT].

3

r
A

Proof, Let a set A be given. Choose 3yS (x,y) to be a com
pl ete A-generable predicate. By Lemma 3 and the definitions pre-

ceding Lemma 3,

3ySi(x,y) = 3y[R(a(x),y) & SNu(y),s(y))].




10.

Define B = {y:SNu(y) ,s(y))}. B~A 3ySix,y) = 3y[Ra(x),y) &

A -
yeB]. Thus, 3yS%(x,y) _;ntoB tg r.e. A follows from Theor
em4(1l), since B£ A Thus, to is conplete for A

r 3

- Y Fr
Corollary 5. BAB[B £ A & top <. "

Proof. Choose A so that d(A) = d(to ). Then apply Theorem 7.

—

Corollary 6. 3K[d(to ) = d(K)' & d(to) = d(K)].

2
Proof. Choose 3yVzP(x,y,z) to be a conplete S predicate.

3yVzP(x,y,z) = 3y[R(a(x),y) & VzP(u(y),s(y),z)]. Let K=

-m X K 2
ﬁ'%ugzp_{j“_@é)} S=(yg) : Z.)}'By ¥n88fer%y4\fzﬁ( *and Zeﬁor<ol Ita?y EEE) ,t%iec% "K
is the conplement of an r.e. set, d(tor =0'.

Thus, t'g does not induce a function on degrees and tR does

not preserve relative recursiveness.

Corollary 7. (1) 3K[d@nk) = d(K) & d(hr) = d(K)»].
(2) 3K[d(U-) = d(K)t & d(U~) = d(K)].

Proof. Corollary 6 and Lemma 1.

Thus, the functions ft\ and \s also do not induce functions
on the degrees, and therefore do not preserve relative recursive-
ness. |
Defipition 5. Let <p be a formula in prenex nornmal form and N%

a one place predicate letter, not occurring in (p. Define tp q,
H M
[

cp —retativized to M, as follows:




11.

(i) " If <p is quantifier free and contains occurrences of

the vari abl es xo, cea X and no others, then <p; is

1 1 M

(ii) If cp is 3y0, 9. is 3y[M(y) A0 ]-
7l y:

(iii) 1f (pis W2, (p, is W[Mly) - 0.].
M M

An easy argunent proves the follow ng | ema.

emwre 4. For every formula <p, cp has a nodel of finite cardin-
1
ality y if andonly if 9 4 has anodel 9 so that 1mi1 =y.
M

Lemma 5. For every function f belonging to Sprl there is a
recursive function g so that
VXWIR(x,y) - R(g(x),f(y))]

and
VxVz3y[R(g(x),z) - (z =f(y) &R(x,y))].

Proof. Assume f e Sprl. By Definition 4, f has an u>repre-
sentation ~(MA~Y ...) so that [~AMM,...) &VxF'(x)] has
a nodel of cardinality z if and only if 3y[z = f(y)].

Let g(x) = ’OM:L AcpA Vxle”, where 0 = Xjo and suppose

R(x,y) . 0 has a nodel of cardinality y. Thus, by Lemma 4,0 1
M

[
has a nodel 31 so that |[|[MY|] =y. Since f(y) >y, 21 can be
extended and expanded to a nodel of ~ , A cp(Ml, Fl, D Vxle

of cardinality f(y). Thus R(g(x), f(y)) .

Suppose R(g(x),z). Then, 0l A<p(N1‘,F1,.._.) AVxle has

M 1
a nodel 21 of cardinality z. The restriction to M is a nod-

el of cardinality y of O, where f(y) = z. Thus R(X,y) .
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Definition 6. A<"y B«* A<" B by a function f eSpr.2A

< is areducibility. That is, < - is a reflexive and

transitive subrelation of £ + In fact, if AE£ B by f e Spr,,

r m >

and B<_mC by g e Spr.l, then x e A« g(f(x)) e C Therefore,

by Lemma 2(2), A< C  Hence < is transitive. Since the
s s
identity function belongs to Spr., * is reflexive.
1 ns
Theorem8. If Agng, t hen tOAf/\IDB'

Proof. Suppose A< B by f e Spr,. By Lemma 5, there exists
m 1
a recursive function g so that

R(x,y) - R(g(x), £(y))

and N
Vx, z3y[R(g(x),z) - (z = f(y) &R(x,y)].

X e tg - 3y[R(xy) & yeal

- BYy[R(9(X).f(y)) & yeA]

- 3y[R(9(x%).f(y)) & f(y)eB]

- 3y[R@@().Y) & yeB]

= g(x) etoz,s.
g(x) e \h, -* 3z[R(g9(x),z) & zeB]

= 3y[R(9(x).f(y)) & f(y)eB]

- 3y[R(X,y) & yeA] - x e It_.




1,

Thus tOAimt% by g, concluding the proof of Theorem 8.

Define the recursive sup. of the two sets A and B by
2x e AVB® xc A
2x + 1 e AVB « x £ B

It is clear that A<AV B, B<_AVB, and that d(AVB) is

—m —m
t he | east upper bound of d(A) and d(B) .

to

Lenmma 6. For any two sets A and B, t£_§m as and toﬂsm AA\B
Proof. By Lemma 2, the functions 2x and 2x+l belong to Spr.” .
The proof follows then from Theorem 8.
Theorem 9. VA3(d(C) = d(A) & to is conplete A-generable].

_— oa rsf

Proof. By Theorem 1, 3B[B <€ A & to is complete for A].
r B

Let C=AVB B< A thus d(C =d(A). to isr.e. in C

*.

- ~ (:
r
r ' C I I y ’ % "l c’

al so t% is conplete for A Thus, t(? is conplete for A
Lorollary 8. VA3A[d(A) = d&dto o = d(&) ' =dg] .

The follow ng theorem (obtained by Thormas Grill i ot, in per-
sonal communication) gives a positive solution to a question raised
in[6].

Theorem10. VA3Ald(A) =d &dQnpy =d.V1].
Proof. By Corollary 3, we already have this result for the case
d=0Q Thereforej assune that g > 0, and choose K so that

d(K) =d. Let Chg(n) denote the characteristic function of K, and

Chip (i)
| et C%K(n) ( = Il R- 9 See [3, p. 231]) be the course-of-val ues
1<n

N HUNT  LIBRARY
CARNEGIE-MELLGN  UNIVERSITY
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function for ChK( n). Then, define A to be the conplenent of

{€h (n):neu)}. K£ A and A< K Also, it is easy to see
K r r

that 7?2 1is recursive in every infinite subset of 75

By Corollary 4, it suffices to showthat £(1%) £ d(A V T
Let <p be any formula of £. Since d(A) >0, A is not recur-
sive in S(&). Therefore g<p) cannot be an infinite subset
of 75. Hence, either §<p) is finite, or GCf‘etO‘. That is, eith-‘
er 3yVz >y &rcp~',y) or 3ny(r<PSy) &yrAl.  The function
f(x) =Tfly[[RX,y) & YGA] VVz >y _R(.X,z)] IS recursive in A
and 0", and

ve B ° a2 1 fCA)  [RCo%y) * yeA].

Hence, d(to_) A_d(A) VL
4. Values of d(to ), for K of a given degree

K
Are d(K) Vo' or d(K)' the only possible values for d(to)

for any K? In this section we describe the extent to which d(to )
N K

is independent from @(K), within the bounds given by Theorem 4
and Corollary 4. |

Temma 7. There is a recursive function f so that R(x,2y) e*
R(T(x).y).

Proof, Let x@ ,x1,..., be a conplete list of the individual varia-
bles in <€ Let S be a binary predicate letter and let a and b

be individual constant letters. Gven a fornula <p in £ let xX
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be the highest index variable which occurs in < Let u® de-

note the variable x .. Then, none of the vari abl es

un, ...
K+1l+1

Ug
occurs in (p. Also, we may suppose without |oss of generality

that (p contains no occurrences of S, a and b. (Qherw se, <p*
can be found uniformy, where (pl contains no occurrences of S, a

and b, and R('<p", 2y) «e R(’(£q, 2y) .) W define a newformula <p

as foll ows:

(1) (XAXN)*  is Xy = xj Ay = uj;
(2 P"(x; ,...,xi§ is 2'P”(xi UL, X0 Uy );
i n I i n n
* % _/\f
(3) (lpl A |b2) is |b1 A 0O, »
*
(4) (-.0)* is -r(<M;
(5) (3x;0)'" is 3x;aui[S(xi,u;j) A 0*].
Define

T(<p) =< A a”b A [VxS(x,a) A VxS(x,b)

A VXVy(S(x,y) - y=a V y=b) A s(x. ,u. )

10X

A ... A S(x]._ ’Ui)]’
n n

wher e X e Xy is alist of the free variables occurring in (p.
1 n

Caim <p is satisfiable in a structure of cardinality 2y if
and only if T(<p) is satisfiable in a structure of cardinality .
Proof. W first showthat if <p 1is satisfiable in a structure of

cardinality 2y, then T(<p) is satisfiable in a structure of car-

dinality .




16..

If -a formula <p holds in a structure of cardinality 2y,
then | et

A= «l,1><2 1> ...,<y,|><1.2><2,2> ...Xy, 2>}

be the domain of such a structure, 2. Define a structure 39
with domin B = {l1,2,...,y} as follows:
(1) If F\"‘Iz is a k-ary relation on A then R is a 2k-ary

relation on B defined by

RiB(il’jl’“"ik’jk) o4 Rﬂ(<i1’j1>"“’<ik’jk>)’
for iys...,ix € {1,2,...,y), and Jr---*n¢e th2.
(2) Spm={<i,j>i =1,...,y & (j=I or j=2)}.
(3) a is 1l b is 2

It is clear that [WS(x,a) A WxS(x,b) A WW(S(x,y) -y =a
vy=~"b)] holds in ».

W prove by induction that cp is satisfiable in 31 (by an
assignnment a) if and only if T(<p) is satisfiable in 99 (by an
assi ngrfent p). Mreover, a(x,) =<p(xy),p(uy)>.

Case <p is X =X . If a satisfies <p in 81, then for sone

<s,t>e h, a(xa) = a(xy) =<s,t> Define p by p(xy = p(xq =S5
*

and P(u.p = p(uj) =t. Then p satisfies <p in a Sincet =1

or t =2, p satisfies T((p in 5.
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g is X. = x. Au =u.. If p satisfies T(p in B
1 3 1

then P(xij) = P(x3) = s and p(us) = p(w) =1, for s,t e B.
Also, s™ls™t). Thus, <s,t> e A. Define a by a(x.) = a(x”) =

<s,t>. a satisfies <p in 3L

Sase <p +s P(X,,___ ,x ). If there is an assignment a so that
PQT(a(Jx).i,..n. ,<x|(x)), cri]efine p(x.) alnd p(ljl_,), i =1,...,n, so
that a(x.) = <p(x.) ,p(u.)> Then, by definition of P,

1 1 1 %
Pgj O(x1), P(uy), ..., p(Xn),e(uy)). That is, p satisfies <

in 3 Therefore, p satisfies Tcp in K

Suppose p satisfies T(<p) in & <p is P(x lu L ..  xn un),
Pa(p(xy1) ,P(uy) ,. .. ,P(xy) ,P(uy)), and S*(p(x™, p(ur), i=l,...,n.
Thus <p(x. ,P(ui)> € A i = I,...,-n. Define a(x.kr = <p(x.n, p(u.r)>’

a satisfies <p in 9L
€xse <p j~ tp)) A2 . if a satisfies both ib and @ in *,

t hen by induction hypothesis p satisfies ij)l in SS and p
o*

satisfies Og_ in 35 where p is defined so that oc(x.l) =

* * *

<p(xi) , p(l:JL. )> for each i. Thus p satisfies <p = ](_) Alz

in 9 Thus, p satisfies T(<) in "8
The other direction is identical. The case cp ise*»0 is

strai ghtforward.

Case cp 1is 3xil). If £x.0 is satisfied in 31, then sone as-
1 1

signment a satisfies 0(x.% in 9L Thus p Eefined by

a(xd) =<p(xI) , p(W#.)> for all j, satisfies ib (x*,ud) in a.
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Also, S_'O(x.),p(u.)). Hence p satisfies 3x.,u. [S(x.,u.) A$*]

Jo 1 1 101 1 F

in «© Thus, g satisfies T(<p) in $.

Th_e other direction is simlar.

We have shown that if tp is satisfiable in a structure of
cardinality 2y, then T(co) is satisfiable in a structure of car -
dinality y. W shownowthat if T(<p) is satisfiable inas'truc-
ture of cardinality y, then <p is satisfiable in a structure of
cardinality 2y.

If T(<p) is satisfiable in a structure S of cardinality vy,
we may assunme that C= (1,2,...,y} is the domain, a is 1, b is 2,
and Sg(i,j) *j =1 or | = 2

Define a structure 5 from £ as follows:

(1)) B=[Il,...,y}, the domain of $;
(2) S = Ss;

(3 a is 1l b is 2

“(4)  Pss(ia,jre--yinjn) -

Pe(ivrja,oooyin,dn) ASMiINj) A-.AS (injn).

(Note that only 2k-ary relations appear in T(cp).)

We show by induction that every assignment y which satisfies
T(cp) in £ also satisfies T(cp) in S, and every assignment p
whi ch satisfies T((p) in SB also satisfies T(<p) in S

Qur result follows easily fromthis, because $ is obtainable

froma structure 31 of cardinality 2y as in the previous part of




19.

the proof, and we know that T((p) is satisfiable in 35 iff and
only if <p is satisfiable in 9L
1

If cp is x. :X';.' there is nothing to show, since 33 and

E have the sane donmin.

Case (p is P()i”""’xn)' Assunme T(<p) is satisfiable in <
Then there is a 2n-ary relation P~ on {l,...,vy} ~and an assi gn-’
ment 'y to £ so that pg(yix?),Y"),...,Y(Xs),Y(uy))> and so
that S-(Y(x.),Y(u.)), i =1,...,n. Thus

A 1 1

Pﬁ(v(xl),Y(ul),---,v(xn),v(un))-

That is, y satisfies T(<) in I

It is obvious that an assignnent satisfying T(cp) in 33 also
satisfies T(cp) in (S This direlctionis clear in the follow ng
cases too. |
Case <p_i" 9 Ag. Suppose an assignnent Y satisfies T((p) in
S, SA(Y(X.),Y(U.))g for all free variables x. occurring in <p.
Thus Y satisfies i‘bl and 0, in 33 and Y satisfies T(cp)
in B
Case <p j™» ~0. Suppose T(->0) is satisfied by an assignnent Y
in <€ 9‘1‘ Y(x.J? , Y( l{ ) ) f.or all free variabl es >§ occurring in O.
Thus, as above, Y is an assignnent to S. Y satisfies ** (0 ) in E.
Thus, Y does not satisfy O in E. By induction hypothesis, Y
does not satisfy O in 5 Thus y satisfies "™ (0) = ("0

in 3 That is, T(<p) is satisfiedby y i" @&
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Case <p-is 3x.0. If T(<p) is satisfied in E then 0 is
satisfied by sone y in < S(x.l,ui). Thus y 1is an assign-
ment to S3 and A~ (xi"u.l) Is satisfied by y in & Thus T(<)
i's sati.sfied by vy in 3

The proof of the claimis conplete. Let d((p) denote the
uni versal closure of cp. cp is validina structure 91 of car-
dinality 2y if and only if A{(p) is satisfiable in 31 if and
only if T(d((p)) is satisfiable in a structure S3 of cardinality y
if and only if T(d{(p)) is validin S3 (since T(d(<p)) is closed) .
Define f(x) ='T(OG(<p)r, for x="(p*. Then, R(x,2y) - R(f(x),y).
Lenma 8. There is a recursive function g so that R(xs2y+1) "
R(9(x).y).
Proof. As in the proof of Lemma 7, given <p in SL,- -let x*
be the hi ghest index variable which occurs in <p and |et u,
denote the variable XLK+1+.1, all i. Again as in the proof of
Lenma 7, we can suppose wi thout |oss of generality that <p con-
tains no occurrences of the binary predi cate letter S and (p
contai ns no occurrences of the individual constant letters a, b,
and c. The formula <p is defined for (p as in the previous

proof. Define

T(‘p)=<p*/\a#bna%c/\ba‘c
A [WS(x,a) A WS(x,b) A S(c,c) AWW(S(x,y) ->(y=a

Vy =bV (x=cAy=c)) AS(x. ,u ) A +AS(x. ,u: )l,
1 *1 ™M\
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where x. ,...,X. is a list of the distinct free vari abl es

occurring in <

Caim <p is satisfiable in a structure of cardinality 2y+l if

and only if T(<p) is satisfiable in a structure of cardinality y.
If <p holds in a structure of cardinality 2y+l, then |et

A= {<l,I>...,<y,I><l,2>...,<y,2><3,3» be the donmain of

such a structure, 91 Define a structure 99 with domain B =

{lI,...sy} as follows:

(D) If Fg is a k-ary relation on A then Rm is a 2k-ary re-

lation on B defined by
Rm(il’jl""’ik’jk) e Rmf<il,jl>,...,<ik,jk>),
for 'i>—>\" ¢ {lj--->)? 3;---0, € {1,2,3}.
(2) Sy is a binary relation defined by Syi,l) and S\{i, 2)
for all 1 =1,2,...,y, and 87(3,3).
(3 a is 1, b is 2, and ¢ is 3.
An induction argunent shows that <p is satisfied in 91 (by

an assignment a) if and only if T(<p) is satisfied in SB (by an

assignnent p). Mreover, for all i, a(x.) =<p(x ),P(u.)> It
[ i [

follows that if co is satisfiable in a structure of cardinality

2y+l, then T(<p) is satisfiable in a structure of cardinality vy.
Conversely, if T(cp) is satisfiable in a structure ~ of

cardinality y, we my assune that C= £l,...,y} is the domain,

a is1 b is 2, ¢ is 3, and Se(i,j) ** (j=l or j=2 or (i=3 &

j=3)). Define a structure $ from E as follows:
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(3) a is 1l b is 2, ¢ is 3
(9 VVAi - VvV

Poliy dyseeesd s3) A Se(iy,dy) Avuen Sgli »3,)-

As in the proof of Lemma 7, an induction argunent shows that
if T(cp) is satisfied in E by an assignnment y, then T(<p) is
satisfied in SS by Y and conversely.

S is obtainable froma structure 91 of cardinality 2y+l as
in the previous part of the proof; and vve. know that T(<p) is satis--
fiable in $8 if and only if <p is satisfiable in M Thus, if
T(<p) is satisfiable in a structuré.of cardinality y, then « <p is
satisfiable in a structure of cardinality 2y+l. This‘ conpl et es

the proof of the claim

Define g(x) ='T(C'cp))", for x ="(p". Then

R(x, 2y+1) « R(g(x,y).
Theorem 11. dﬂ(_’to_.._ ) = dlte ) Vdto).
Proof. By Lemma 6, d(to) v d'b ) " dto_..).
~ A ~ B ~ AVB
3y[R(x,y) &y e AVB] «* 3y[R(x,2y) & 2y e AVB]
V 3y[R(x,2y+l) & 2y+l € AVB]

e 3y[R(X,2y) &yeA V 3y[R(x, 2y+l) & yeB].
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By Lemmas 7 and 8, let f satisfy R(x,2y) <* R(f(x),y) and
let g satisfy R(x,2y+1l) <* R(g(x),y). Then,
3y[R(x,2y) &yeAl " 3y[R(f(x),y) &yeA];
and

3y[R(x, 2y+l) &yeB] * 3y[R(g(x),y) &yeB].
Thus, x e tog- f(x) e IQ Vg(x) e {0 Thus, tQp<,ta Vig.

W are now ready to prove our main results.

Theorem12. Va ;> 0* Wb3K[(a b " a &b r.e. a) -* (dK =g
& d(to,) =Db) ].
Proof. (see Eigure) Let a and b satisfy a0 _, a“b” a

and b r.e. a. By Friedberg's characterization [2], 3c a

e

I
o

br.e. c thus by Shoenfield [7], 3d[b=d &c""d£fc ].
By Theorem 6, choose A so that d(A) = a(l») = a By Corol--
lary 8, choose B so that d(B) =d and ~(";J =7 °A By A

Let K= AVB. d(K = d(A

a. By Theorem 11, d(I») = £('°ave) =

q1B,) v dih) =avb=h

a
d(iu):L: < = dIb.)
- K 1 o~ -8
d(K) =a=c =dA =dto
K=AVB |
d = d(B)
:

Fi qure




24,

Theorem 13. Vavb3K[a< b £a - (dK) =b & d(tg) = a )]

Proof, By Corollary 8 and Theorem 10, choose sets A and B so

that d(A) = a, qJ(B) = l?s} drsj(to]_\) = a', and Q(H)_) = bV 1 Let
K=A V B. Then, d(K) = d(A V B) =_d(B) =b. By Theorem 11,
dU>-) = d(to,,J = dﬂ(tog Vdib,) =a VvhVv1i=a2al.
Theorem 14. Va > 0' Vb3K[(a<b ™ a & b r.e. a -

(d(K) £ a & dito,) =a & d(K)' = b)].
Proof, Using [2] and [7], as in the first paragraph of the proof
of Theorem 12, 3c,d[c £ d <£ QT = 2_<£j =b~ a]. By Corollary 8

and Theorem 10, choose A and B so that dLA) =d, d(B =c,

1
et

— — T —
'c_iu(toA) = EI VL, and g‘l‘(IbB) =c =a
dAVB) =dVc=d£fa

d(AVve): =d =b.

Take K

1"
=
<
w
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