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Introduction* N-compact spaces were introduced by S. Mrowka in

[M,], where the general concept of an E-compact space was defined:

given a Hausdorff space E, a space X is E-compact if it is

homeomorphic to a closed subspace of E for some cardinal number

Mi. Thus the I-compact spaces (where I is the closed unit

interval) are the compact Hausdorff spaces, the R-compact spaces

are the realcompact spaces, and the 2-compact spaces (where 2

denotes the discrete two-point space) are the O-dimensional

compact Hausdorff spaces. The N-compact spaces are those which

can be embedded as closed subspaces in N^ where N is the set

of natural numbers with the discrete topology.

The main properties of E-compact spaces were given in [EM],

where it was asserted that the N-compact spaces are precisely

the O-dimensional realcompact spaces. (fO-dimensionalf there, as

here, means 'having a base of clopen sets.1) It is clear that

every N-compact space is O-dimensional and realcompact, but the

proof of the converse in [EM] was incomplete. The purpose of

this paper is to show that the converse is in fact false, that

Prabir Roy!s space A is a counterexample. It is not N-compact,

but it is metrizable of cardinality 2 ° and hence realcompact

[cf. GJ, p. 232] and it is O-dimensional.

The space A was described by P. Roy in [R,] and many of

its properties were proven in detail in [Rol* including its

metrizability and its zero-dimensionality. The fact that A

is not N-compact is the new result, first established by the

author using the proof given below. It is based on the following

characterization of N-compactness, first discovered by H. Herriich



[H, Beispiele 6] .

Theorem. A zero-dimensional Hausdorff space X is N-compact

if, and only if, every clopen ultrafilter on X with the

2
countable intersection property is fixed.

In what follows, we establish the existence of 2 ° distinct

free clopen ultrafilters on A, any one of which is enough, by

Herrlich's theorem, to establish that A is not N-compact.

Constructing the Ultrafilters. In order to facilitate

comparison with [R2], the numbers of the lemmas and theorems

will begin with a 5, and if a lemma closely parallels a lemma

or a definition in [R2]* ^
t w i ^ 1 ^e given a similar numbering.

(Thus, the first two lemmas follow right from Definitions 5.3.3

and 5.3.4 in [R21 and are numbered 5.3.5 and 5.3.6; the next

three lemmas are like Lemma 5.4 in [R21*
 a n d a r e numbered res-

pectively 5.4.0, 5.4.1, and 5.4.2. And a later lemma is a gen-

eralization of Lemma 5.7 in [R21 and is numbered 5.7
f.

All the notation used in this section, unless otherwise remarked,

follows that of [R2]. Not all the results in [R2] will be used

in proving the lemmas below; while familiarity with [R2] up to the

beginning of Section 5.3, p. 127 is certainly an asset, the reader

will be able to get by with considerably less. Specifically, after

the end of Section 2.1 only the following facts in [R2J are used:

an ultrafilter on the Boolean algebra of clopen subsets of x
is called simply a clopen ultrafilter.

2
Given a cardinal number 4*\ , a filter 3 is said to have the

/*H-intersection property if every collection of *n or fewer sets in 3*
has nonempty intersection. The countable intersection property is
the case AM = No.
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(1) Lemma 2.7, which shows that the regions Rx

and R, * form a base for a topology, and which can be

proven right after Lemma 2.1;

(2) Lemma 2.8, which shows that the regions

R eT, form a local base at a point peP-^ and the regions

R, x€l\ form a local base at a point peP9, and which can(p,n) 2 *

be proven right after Lemma 2.1;

(3) A modest version of Property II [p.126]:

given a point peP-p let xn be a member of X with

|x | = n and such that p extends xn (this means
oo

x (i) = p(i) for i = 1,...,|x I); then fl R, = [p] ;
n cr\ n = l 1X

similarly, given a point pePo, Tl, R, v = {p). These
z n=l \P9n)

facts can be proven right after the definitions of

Section 1.
(4) Lemma 5.1, which shows that every R

x
and every R, , is clopen. This can be proven

vP*n/

after Section 2 and does require all the results in

that section.

In addition to the notations used in [R^l* we adopt the fol-

lowing notation: if X G X and x!€X [resp. pePn] are such that

I x? I J> I xl and xf (i) = x(i) for i = 1,.. ., | x| [resp. p(i) = x(i)

for i = l,...,|x|] then we write x < x! [resp. x < p] . Similarly,

if Trell and TT f en [resp. xeX] [resp. p€P,] are such that

ITT'I 2 kl and 7rf(i) = ir(i) for i = 1,...,|TT| [resp. | x| ^ |TT|

and x(i) = T(±) for i = 1, ...,|TT|] [resp. p(i) = 7r(i) for

i = 1,...,|TT|] then we write IT < TT! [resp. IT < x] [resp. ir < p] .

Also, we adopt the convention that if xeX is the (unique) member

of X with |x| = 0 , then R = A.
x

For the convenience of the reader, the following definitions



in [R~] are repeated, with the above notation used where possible.

5. 3.1. 7r = the set of all finite sequences of

positive real numbers, defined on initial segments

of the set of positive integers. If ireH, then |TT| =

the greatest integer for which IT is defined.

5.3.2. K is an indicator means that K is

a subset of IT with

(1) if 7r,7rffK, then |ir| = |TTf | ̂  and that integer

is denoted by |K|

(2) {r:r = 7r(l) for some veK) is an infinite set,

and

(3) if TreK and j is a positive integer with

j < |TT|, then [r:r = TT T(J+1) for some TT'GK

with 7rT(i) = 7r(i) for i = l,...,j} is an

an infinite set.

5 . 3 . 3 . If K is an i n d i c a t o r and xeX then

E(K,x+) = [R , : | x T | = | x | + |K|,X < x T , and for some TreK,

x f ( | x | + i ) = +7r(i) for i = 1 , . . . , | K | }.

(Remark: this is a composite definition; the things actually

defined are £(K,x+) and £(K,x-).)

5 . 3 . 4 . If K is an i n d i c a t o r and R, N€FO then
(p^n) 2

E(K,(p ,n) ) = {R, m^:m = n + |K| ,q€R? . , and for some

7T€K,qz(n-l+i) = 7 r ( i ) fo r i = l , . . ., | K| ) .

5.3.5. Lemma. Let K be an indicator.

(E(K,(p,n)))* c: Rx « R(p^n)e ^

Proof. ^: (E(K, (p,n) ) )* is a union of subregions of R, N.

, (p,n)))* c R =, R n R ? n n > ^ 0 =» R^ 3 R. .x x (p*n) x (p,n)#



5.3.6. Lemma. Let K be an indicator

(D CC(K,X+))* cR(pjn) -R xc R ( p^ n )

(2) (E(K,x-))* <=R(p,n) - R x ^ R ^ n ,

Proof. <*:(2(K,x+))* and (E(K, x-))* are both unions of subregions

Of Rx.

=*: Proof will be given of (1) in the case n > 1, the

only case needed here.

Suppose (£(K5x+))* c R . • then for each Rx»e£(K5x+) y

we have R xr
c R(p^n) and so Rxf n Ry ( p ^ ± ) j for some j (2.1.3);

furthermore, since Rv,
c: R7 . (2.1.3), we have |xT| J> |p |+n+l

x (p*n) x

because R contains qeP2
 of length |xf| while all P2

points in Rr . must have x-coordinates of length at least

|p |+n+l. This implies R . * . => R ? for exactly one j

(2.1.1).

If Rx $ R ( p ^ n ) , l* l £ I P x ' + n ( 2 - 1 - 1 ) - p i c k x f t

x"(i) = x ' ( i ) for i= 0 , . . . Jpx |+n,x l f( |px |4 .n+l) £ X ' ( |p x l+n+l) ,

and Rvfl€S(K,x+) . If n > 1 we have q( |pv |+n+l) = p ( |p v |+n-l)

for a l l qePĵ  11 R ^. Now l e t qlf€P1 fTf Rx,t and qT€P]L fl Rx? .

q and qf cannot both be in R, w contradicting L(K,x+) c R,
vp*n; (

5.4.0. Lemma. Let [r } Q be an infinite set of

positive real numbers. For each r let K be an indicator,
a a '

with |K I = n for a l l a. Now l e t K = f7rf 517rT | = n+1,

TT1 (1) = r^ for some a€G and, for the same a, 7rf (1+i) = ir(i)

for some TTGK } . K is an indicator.

Proof. (1) is c lear ly sa t i s f ied .

(2) {r : r = TT(1) for some TTGK) is an inf in i te
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set, namely {ra

(3) is also satisfied: for j = 1 it is

satisfied because of property (2) of each K ; for

j > 1 it is satisfied because of property (3). of each K .

5.4.1. Lemma, If it is a collection of regions and

R is such that, for uncountably many xf with |xf| = |x|+l,

x < x',x'(|x|+l) > 0 [resp. x'(|x|+l) < 0] there is an indicator

K , with £(K ,,x'+) c M [resp. £(K x1-) c W] then there is
X X X

an indicator K such that E(K,x+) a 3J [resp. £(K,x-) c if].

Proof. Since [M:M = |K f| for some x? } is a countable

set, let N be a positive integer such that |K , | = N for

infinitely many x1. Let f r
a } a e G = (

x'(Ix|+l):|KX,| = N}

[resp. {-x'(|x|+l):|K ,| = N}] and let K be as defined in the

previous lemma. Then £(K,x+) a U [resp. £(K,x-) c Jt] .

5.4.2. Lemma. If W is a collection of regions and

R. . is such that, for uncountably many reR+ there exists
qreR? ^x with q^(n) = r and an indicator K such that

v p, n; z r

E(Kr, (q
r,n+1)) <= H^ then there is an indicator K such that

p,n)) c U.

Proof. Proof is as in 5.4.1.

5.6.1. Lemma. Let (us^R£tij. ke an open cover for R ,

with |fc| < C (C = 2**o) . Then there exists jSeB and an indicator

K such that (£(K,x+))* c \j and there exists yefo and an indicator

K1 such that (E(K,x-))^ c U .

Proof. Given jSeB let #„ = {Rx, : Rx? c U^}. We give the

proof for the existence of a /J and a K as defined above (the

proof for y and KT is analogous) by applying 5.4.1 to each

v
Suppose no such pair j8,K exists. Then, for each



j8efl there are at most countably many xf > x with

| x ! | = | x | + l , x f (| x |+ l ) > 0, for which there is an indicator Kx, with

Hence, altogether, there are fewer than C distinct x1 > x

with |x!j = | x| + l,xT (| x| +1) > 0, for which there is some Ug

and an indicator K f with

(£(Kxf,x<+))* c Up.

Now, pick any x.̂  > x with |x 1 | = | x|+1, x^ | x|+1) > 0

for which no such pair exists . The process repeats: there are

fewer than C distinct x" with | x" | = |x|+2,xM > x^x11 (| x| +2) > o

for which there is some Up and an indicator K „ with
p x

(E(K ,,,x«+))* c Uft.

Pick any x2 > x- with | x2 | = | x|+2,x2 (| x|+2) > o for

which no such indicator exists .

In this way we get a nested sequence

and the unique point peP, such that x < p for a l l n is in

their intersection. For no n is it true that

(L(K ,x +))* c XJ for some £ and some K .
x u p Xn ^ n

And, a fortiori , none of the R is contained in llg for any fJ.x pn ^
But this violates the hypothesis that the U^ constitute as open

cover of R . for peRv and the R form a local base at p (2.8).
X X xn

5 . 6 . 2 . Lemma> Let £u/?}/Jeft ^e an ° P e n cover for

R? ny with \H\ < C. Then there e x i s t s jSeB and an indicator K

such that (E(K, ( p , n ) ) ) * cz \j
P
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Proof. Proof is as in 5.6.1. What we obtain is, inductively,

a sequence of qmeR°, m-1 n + m _ ] \ such that for no j8 and no

indicator K is it true that

, (q.m,n+m)))* c u^.

and we thus get a nested sequence

R(p,n) 3 R(q1,n+1):D * ' m ^ R(qm,n+m) 3 • • •

and now define qeP2 with qx = Px,qy = Py>32(i) = P^*-)
 f o r

i = 1,...,n-l,q (n+m-1) = q (n+m-1). It is easy to see thatz z

R, , N = R, m , , and so the above nested sequence forms(q,n+m) (q 5n+m) ^

a local base at q, and its intersection is {q}, and qeR? %•
vp^n;

But for no m is it true that R, x c uQ for some fl.
(q,n+m) p

violating the assumption that the U^ form an open cover for
R?P,nr

5.7f. Lemma, if K is an indicator, and x = y(p9n,±)j

with j ^ |K|+1, then

(X(K,xT))* c (E(K,(p,n)))*

while if j < |K|+1, (L(K,XT))* n (S(K,(p,n)))* = fb.

Proof. First, if j <1 |K|, it can be easily seen from the

definitions that Rx f) R. , is empty, for all q in S.S^j

hence a fortiori we get the result above. For the remainder of

the proof, assume j J> |K|+1.

For each 7TGK, let x -. eX such that

= T7r(i) for i = 1,..#|TT|

and le t ^P2
 be s u c h t h a t Vtfp n) 5 (q7r̂  z ( n + i " 1 ) = 7 r ( i ) f o r

i = 1, . . . , | TT |

We have then by 5.3.3 and 5.3.4 that if weK then



and R, . h e£(K, (p,n)).

Furthermore, in presence of the definitions of x^— and q^, an

inspection of 1.3.7-1.3.11 of [R2] will show that

Aga in by 5.3.3 and 5.3.4 we have

E(K,xT) = {R

and

E(K,(p,n)) = ( R ( % j n + | K l ) : TT6K)

and so

(E(K,x+))* c {RT(a ,n+|K|): fr€K)* c (E(K, (p,n)) )*.

5.13.1. Lemma. Let {V } r be a partition of R into

clopen sets, |G| < C. Then there is an aeG for which there is

an indicator K^ such that (L(K1^x+))^ c v and there is a

6eG for which there is an indicator K2 such that (£(K2,x-))* c v•,

Furthermore a = 6 and a is unique.

Proof. 5.6.1 guarantees the existence of V and Vc.
a o

5.8 of [R2] can now be used to show that V and Vfi must have

a nonempty intersection: assume on the contrary V D Vg = j6,

then apply 5.8 to V and V~ ; if (E(K9,x-))* c vm then

a fortiori (E(K2,x-))* cz v^ and now let x]L > x be such that

|x1| = |xj + 1 and there exist indicators K3 and K4 such that
. x^ ) )* c v , CE(KA,x1-))^ C V^; by induction define x > x .

•̂  j - oc ** J- ex n n~-L

with |x I = |x -| +1 so that there exist indicators K and
n

(L(Kx ,xn+))* c Va,(S(K^ , * n - ) ) *
 c V^7 in this way we get a nested



10

sequence [R } , and each set in the sequence has a nontrivial
xi i=l

c °°intersection with V and V . Now .£L R = {p} for some peP.,,
OC OC 1— X X • X

c
and since both V and V are closed, p is in both of them,

which is absurd. So V D V ^ ^, and since these sets are
OL 0

members of a partition, V = Vfi. Now suppose there exists V , yeG,

and an indicator K such that (£(K,x+))* <= v . Then V D Vfi / 0

(same proof as above with y substituted for a) and so V = V-.

Similarly, if we have V ,yeG and an indicator K such that

(£(K,x-.))* c v then V D Va ^ ft>9 and V = V .

5.13.2. Lemmao Let {V } Q be a partition of R, . into

clopen sets, |G| < C. Then there is exactly one aeG for which

there is an indicator K such that [ £(K,(p,n))]* c v .

Proofo Existence of a is shown by using 5.6.2. To show

uniqueness, suppose [ £(1^,(p,n))]* c Va, and [ £(K2,(p,n))]* c Vg.

Let x = y(p,n,i)j with j J> max{ | K̂ J , | K2 | }+l. Then

(LiK^xT))* c [Et^, (p,n))]* c Va

and

(L(K2,xT))* c [£(K2(p,n))]* c v^ #

Now the sets fv fl Rx)a€Q partition Rx into clopen sets and

hence by 5«13.1, V = Vg.

5.14O1. Lemmao Let U = {U:U is clopen in A and there
~" X

exists an indicator K with (E(K,x+))* c u}o U is a clopen

filter.

Proof; Clearly if UeU and V is clopen in A with

U c v, then VeU and clearly j^U . Now suppose U, and Uo
x x x £

are both members of U , with associated indicators K- and K2,
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respectively. Consider the four clopen sets U. 0 U2*U-i \
U2'U2^U1'

and (U, U U2) „ Their intersection with R gives a partition

of R into clopen sets. Now (£(K,x+))* c R for all • k.x x

(U1\u2)eUx iff ((l^V^) n Rx)e
u
x- But

(E(K2,x+))* c (u2 n Rx)eUx

and since ((U^t^) 0 Rx) n (U2 0 R^) = f>, we cannot have (U^U^el

In a similar way we eliminate U9\ui an<* (ui ^ ^2^°' so fc^at

U, 0 U9€U by 5.6.1.

5.14#2. Lemmao Given P€P2^ let U , = {u : U is clopen in

A and there exists an indicator K with [ £(K,(p,n))]* c u}.

U . is a clopen filter.

Proof. Proof is as in 5.14.1.

5.15.1. Lemmao U is a free clopen ultrafilter with the
• •' x

yffi- intersection property for all M < C, and U ^U f are distinct
x x

whenever x ̂  xf.

Proofo That U is an ultrafilter comes immediately from

5.6.1 and 5.14.1, and we can also use 5.6.1 to show that U has

the /w-i.p. : Suppose there is a family of f U } ~ with U eli
* 2 a aeG a x

for all a and |G| £ m < c, then {U C} a € G forms a clopen cover
for R and so one of them belongs to U and sox x

does its complement, a violation of 5.13.1. To show that U is

free, we show that for no R . with |xf| > |x| is it true that

Rv»€Uv* a n d t h a t f o r no Rf r>\ with n > 1 and R c R is•̂  x ^p,n; p x

it true that R, n ) € U
x

: i f u
x
 w©re fixed it would either be

fixed on a point of P., in which case it would have as members

R . for arbitrarily large |xf|, or else it would be fixed on a
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point P€p9* ^n w-hich case it would have as members R, , for

arbitrarily high n, and since p€R c U we must also have

R c R by 2.1.1.
Px x

First, if |xf| > |x|, we have that p(|x|+l) is the same

real number for all P€R
X»

 n pi> while by (2) 5.3.2 and 5.3.3

it is possible to find infinitely many p in (E(K,x+)* D P* with

distinct values for p(|x|+l). Hence Rvt<fck • Second, if R M ^ U
x , x (p,n; x

then by 5.3.6 we have R c R, . and by 2.1.2 and 2.1.3 we
x \ P j n;

cannot have R c R . [Note: 5.3.6 was only proven in the case
Px x

n > 1 but this is all we need.]

To conclude the proof of the Lemma, we note that if x jt xf,

then in the case |x| ^ |xr| we have either R ^U f or R f£U
XX XX

depending on which |x|,jxf| is bigger, while we do have R eli
x x

f o r a l l x e X . i f | x | = | x f | b u t x ^ x f , R r i R f = 0 a n d
X X

so Rx,^Ux.

5.15.2. Lemma. U- , is a free clopen ultrafilter with

the w~intersection property for all M < C, and ^V^U. . are

always distinct, while U, . = u, . iff R, x = R, v.
(P.n) (q,n) (p,n) (q,m)

Proof. To show U. . is free, we show that no R with

|x| > |px| is in u ( p ^ n ) , and that no R(q^m) with |qx|+m > |pxl+n

is in U, . • freeness follows from the same considerations as

above.
If R eU then 3K such that (£(K,(p,n)))* c Rx vP^ ny x

which implies that R. nj c R^. By 2.1.1 and 2.1.2 this implies

I f R(q,m)eU(P,n)
 t h e n f o r s o m e
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which implies that R? , fl R, .j4 jb. Suppose first

R? x fl R° N ^ fb3 then we have I q I = I p I . Now all(p,n) (q,m) ^ "3 l4x' lhx'

qTeP2 fl R° , have the same (k)th coordinate for q< if k<m while

by 5.3.2 and 5.3.4 it is possible to find an infinite set of

qf€P9 (1 (£(K, (p,n)) )* with | q I = | p I and with distinct values
c* X X

f Tfor a (n) . Since the only qr€P9 fl R, , with |q | = |q | = |P |
•̂  ^ ^ i q , m / x x x

are those in R° ,, it follows that if (£(K(p,n)))* c R then

m <£ n, so that in this case |q +m £ |p J+n.

Second, suppose R? , fl R, . = /i, then
R? \ ^ Rjf^ „ .% ^ ^ for some j which implies by 2.1.1
(p,n) Y(Q[,™,±)j J • J

that |q I + m + 1 £ |p | and so here too | q | + m £ |p | + n.

The /H-intersection property follows from 5.6.2 and an argument

like that in the previous lemma. Similarly, U is an ultrafilter,

To show that U and U. . are always distinct, note thatx \ p, n)

R eU and R, )e^( \ * so that if R fl R, » = j6 we are

done. If R^ (1 R^ . jt j& then Rx 3 R , which rules out

Rx
 c R/ nx . Hence by 5.3.6 R. n ) ^ U

x
 a n d so t h e t w o clopen-set

ultrafilters are distinct in this case. If R fl R? x = 0 but
x (p^n) ^

Rx n R(p,n) ^ ̂  then lxl > lpx' and^ as shown ajJUV^ ^x^w(p,n)#

Finally, suppose U, . = U- ,. Then, as shown above,

this implies |q | + m£ |p I + n, and also jp | + n^ |q | + m,

so |pvl + n = |q I + n. Also, R^ . D R^ , ^ ̂ 5, otherwise
x ^p,n/ ^ q, my

Jqv| + m + 1 < |p I as shown above. This implies R, v = R, xxx (p,nj (q.>̂ /

by 2.1.4.

5.16. Property VI; A is not N-compact.

The proof consists of either 5.15.1 or 5.15.2 together with

H. Herrlich's theorem quoted in the Introduction.

HUNT LIBRART
CARNEGIE-MELLON UNIVERSITY
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Concluding Remarks> With the problem quoted in the Introduction

thus solved in the negative, two other problems, also having their

roots in [EM], become better defined.

First, as pointed out in [M2], what [EM] really showed

about N-compact spaces is that if X is realcompact and /?X is

zero-dimensional (a strictly stronger condition the zero-dimensionality

of X) then X is N-compact. (An explicit statement and proof

of this may be found in [H, Beispiele 5,6].) The first unsolved

problem before us is the converse of this statement. In other

words, given a closed subset X of N , /m any cardinal number,

is it true that j8X is O-dimensional? (The other condition,

realcompactness of X, does hold [cf« CJ, pp. 119-120, and p. 72] o)

A counter-example would still be zero-dimensional and realcompact,

of course, and the author is unaware of any spaces other than A

itself and spaces trivially obtainable from A which are zero-

dimensional and realcompact and whose Stone-Cech compactification

is not zero-dimensional. There are, however, spaces which may be

of this sort and which are moreover known to be N-compact. One

example is the Sorgenfrey plane: it is the product of two copies

of the real line with intervals of the form [a,b) as a base for the

topology. Each factor is Lindelof and thus is both realcompact

[cf. GJ, p.115] and has zero-dimensional Stone-Cech compactification

[cfo GJ, pp.245-7] and is thus N-compact. Hence the Sorgenfrey

plane is N-compact. But is its Stone-Cech compactification

O-dimensional? Another possible counterexample is the

N-compactification of A. (For a definition and construction of

the E-compactification of a space, cfo [EM] or [H, Kapitel I, §3,§9].)
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For further discussion of spaces with zero-dimensional Stone-

Cech compactification, see [GJ, ch.16] (where these spaces are

called simply fzero-dimensionalf9 while the spaces which this

paper calls zero-dimensional are simply designated as 1having

a base of open-and-closed setsr)9 [E, ch,6^§2] (where these spaces

are called 'strongly O-dimensionalf), [H, Beispiele 5,6]3 and

The second problem is this: is there a single space E

such that the class of O-dimensional realcompact spaces is the

class of E-compact spaces? In this paper we have shown that if

such a space exists it cannot be N, or any other N-compact space.

Might it be A ?

This problem is admittedly less attractive than the first

one. If the answer is affirmative, a proof of this result might

have to depend on the construction of a non-N-compact, O-dimensional

realcompact space that is substantially easier to work with than A I
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CORRIGENDUM

The statement of the proof of 5^3O6 is not quite precise* It.

is fcrme that n > 1 is the only case needed to prove that £ is

not N-eompactj, but I do eventually make use of the case n - 1

in order to show that an ultrafilter of the form U i& alv;< y

distinct f̂ fom one of the form li, .» There

are also a few typographical errors,, Here is a corrected proof-.

*£?% Suppose (S(K9.xv)> c R-, .. Than for each R ,*:E{X,:-r>;-

we 'have R , c R, . and so R f fl R .-, - 4 ,0 for s erase

j (2..1,3); furthermore^ since R_P c R-?^ " (2.1,3), we have

'•**( J-: »"P I ^ n 4- 1 because s contains CrP^ tfifch 'c^j «« j^i:

while all P^ points in R7 ^. must ha-̂ e x-coordxnates of Iefrc:h*̂ K p p n /

at least [p f + n •+ l-> This implies R » • * 3 R , for

exactly one j (2olol;

If R <f: R, -t*ix| < !pvi + n (2..1.1) , Pick xJ' such

that xrf(i) « x';(i) for i » 0^o,o,-p^: 4 n, x9) {j p j * n ̂  1; •'•-

xl(!pxl ^ n -^ 1) and Py?r{K;x+), If n > i we have

q(;pxl + n + 1) ~ P^^n - I) for all q-^ n i<( ., New let

q^fp^ H Rx« and qr-$Pj H R - - qn and q cannot bcth he ii<.

K/^ ^^ « contradicting £{K,X4-) c R. ,(Pi- n) -* (p9 n)

If n « 1 we distinguish three cases; . x' » jp j •*• i.r

ix[ - |p ic |xj < jp i* If :;-.:,• « |p j 4^ 1 then we take q*1

and q in Cs(K^x4-))* n P1 with q'9C;pj - 2/ ^ q ' d P i ^ 2/

Since the ClPx^ ^ D -coordinates of qc? and q are the sarn-c-.

and since any P 1^points in R, 3, with identical CiP x! ^ li-

coordinates also have icientxcal (ip^f-^- 2)-coordinates (1, 3,. 9-10)



qfl and q* cannot both be in R* 1 > o If jxf =* {pvj the same

argument works since I K| j£ 2 and so we can find qM and q-

that differ in the (|pv( + 2)-coordinateo The last case is

disposed of by finding q€(£(K*xf)) n Pĵ  such that q({px() >= PK(|pxf)

Now the coitmient in brackets on page 12, lines 9-10 becomes

superfluous* as does "with n > ln on page 11, four lines fron

the bottom*
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