PRABIR ROY'S SPACE A IS NOTN-COMPACTby
Peter Nyikos
Report 70-40

Introduction* N -compact spaces were introduced by S. Mrowka in [$M_{\perp^{\prime}}$], where the general concept of an E-compact space was defined: given a Hausdorff space E, a space X is E-compact if it is homeomorphic to a closed subspace of $\mathrm{E}^{\boldsymbol{\pi n}}$ for some cardinal number Mi. Thus the I-compact spaces (where I is the closed unit interval) are the compact Hausdorff spaces, the R-compact spaces are the realcompact spaces, and the 2 -compact spaces (where 2 denotes the discrete two-point space) are the O-dimensional compact Hausdorff spaces. The N -compact spaces are those which can be embedded as closed subspaces in N^{\wedge} where N is the set of natural numbers with the discrete topology.

The main properties of E-compact spaces were given in [EM], where it was asserted that the N -compact spaces are precisely the O-dimensional realcompact spaces. (${ }^{\mathrm{f}} \mathrm{O}$-dimensional ${ }^{\mathrm{f}}$ there, as here, means 'having a base of clopen sets. ${ }^{1}$) It is clear that every N -compact space is O-dimensional and realcompact, but the proof of the converse in [EM] was incomplete. The purpose of this paper is to show that the converse is in fact false, that Prabir Roy!s space A is a counterexample. It is not N-compact, but it is metrizable of cardinality $2^{\boldsymbol{N}}$ 。 and hence realcompact [cf. GJ, p. 232] and it is O-dimensional.

The space A was described by P. Roy in $\left[R_{1}\right]$ and many of its properties were proven in detail in [Rol* including its metrizability and its zero-dimensionality. The fact that A is not N -compact is the new result, first established by the author using the proof given below. It is based on the following characterization of N -compactness, first discovered by H. Herriich
[H, Beispiele 6].
Theorem. A zero-dimensional Hausdorff space X is N-compact if, and only if, every clopen ultrafilter ${ }^{1}$ on X with the countable intersection property ${ }^{2}$ is fixed.

In what follows, we establish the existence of $2^{\text {N。 }}$ distinct free clopen ultrafilters on A, any one of which is enough, by Herrlich's theorem, to establish that A is not N-compact.

Constructing the Ultrafilters. In order to facilitate comparison with [$\left.R_{\underline{2}}\right]$, the numbers of the lemmas and theorems will begin with a 5, and if a lemma closely parallels a lemma or a definition in [$\left.R_{2}\right] * \wedge^{*}{ }^{w} \wedge^{1} \wedge^{e}$ given a similar numbering. (Thus, the first two lemmas follow right from Definitions 5.3.3 and 5.3.4 in $\left[R_{2} 1\right.$ and are numbered 5.3.5 and 5.3.6; the next three lemmas are like Lemma 5.4 in $\left[R_{2} I^{*}\right.$ andare numbered respectively 5.4.0, 5.4.1, and 5.4.2. And a later lemma is a generalization of Lemma 5.7 in $\left[R_{2} 1\right.$ and is numbered $5.7{ }^{f}$.

All the notation used in this section, unless otherwise remarked, follows that of $\left[R_{2}\right]$. Not all the results in $\left[R_{2}\right]$ will be used in proving the lemmas below; while familiarity with [R_{2}] up to the beginning of Section $5.3, \mathrm{p} .127$ is certainly an asset, the reader will be able to get by with considerably less. Specifically, after the end of Section 2.1 only the following facts in $\left[\mathrm{R}_{2} \mathrm{~J}\right.$ are used:

1 an ultrafilter on the Boolean algebra of clopen subsets of is called simply a clopen ultrafilter.

2
Given a cardinal number $4 * \backslash$, a filter 3 is said to have the if every collection of $*_{n}$ or fewer sets in 3 * has nonempty intersection. The countable intersection property is the case $A M=N_{0}$.
(1) Lemma 2.7, which shows that the regions R_{x} and R, * form a base for a topology, and which can be proven right after Lemma 2.1;
(2) Lemma 2.8, which shows that the regions $R_{\mathbf{x}} e T_{\mathbf{1}}$ form a local base at a point peP-^ and the regions $\left.R_{(p, n)}\right)^{X \in l_{2}}$ form a local base at a point $p e P_{A^{\prime}}$ and which can be proven right after Lemma 2.1;
(3) A modest version of Property II [p.126]:
given a point peP-p let x_{n} be a member of X with $\left|x_{n}\right|=n$ and such that p extends x_{n} (this means

facts can be proven right after the definitions of Section 1.
(4) Lemma 5.1, which shows that every R and every $\mathrm{Rr}_{\mathrm{vP} *{ }^{\mathrm{n}} \mathrm{y}}$ is clopen. This can be proven after Section 2 and does require all the results in that section.

In addition to the notations used in $\left[R^{\wedge} l^{*}\right.$ we adopt the following notation: if $X G X$ and $x \in X$ [resp. pePf] are such that $I^{x ?} I$ J> $I^{x}{ }^{x}$ and $x^{f}(i)={ }^{x}(i)$ for $i=1, \ldots,|x| \quad$ [resp. $p(i)=x(i)$ for $i=1, \ldots,|x|]$ then we write $x<x^{\text {! }}$ [resp. $\left.x<p\right]$. Similarly, if Trell and $T T^{f}$ en [resp. xeX] [resp. $\left.p € P_{\perp}^{\perp}\right]$ are such that ITT'I $2 \mathrm{kl}{ }^{\mathrm{a}} \mathrm{nd} 7 \mathrm{r}^{\mathrm{f}}(\mathrm{i})=\operatorname{ir}(\mathrm{i})$ for $\mathrm{i}=1, \ldots,|\mathrm{TT}| \quad$ resp. $|\mathrm{x}| \wedge|\mathrm{TT}|$ and $x(i)=T(\pm)$ for $i=1, \ldots,|T T|] \quad[r e s p . p(i)=7 r(i)$ for $\mathrm{i}=1, \ldots,|\mathrm{TT}|]$ then we write $I T<\mathrm{TT}^{\prime}$ [resp. IT < x] [resp. ir < p]. Also, we adopt the convention that if $x e X$ is the (unique) member of X with $|x|=0$, then $R=A$.

For the convenience of the reader, the following definitions
in $[\underset{\sim}{\sim}]$ are repeated, with the above notation used where possible.
5.3.1. $7 \mathrm{r}=$ the set of all finite sequences of positive real numbers, defined on initial segments of the set of positive integers. If ireH, then $|T T|=$ the greatest integer for which $I T$ is defined.
5.3.2. K is an indicator means that K is a subset of $I T$ with
(1) if $7 r, 7 r^{f} f K$, then $|i r|=\left|T T^{f}\right| \wedge$ and that integer is denoted by $|K|$
(2) $\{r: r=7 r(1)$ for some $v e K)$ is an infinite set, and
(3) if TreK and j is a positive integer with
$j<|T T|$, then $\left[r: r=T T^{T}(J+1)\right.$ for some TTGK
with $7 r^{T}(i)=7 r(i)$ for $\left.i=1, \ldots, j\right\}$ is an
an infinite set.
5.3.3. If K is an indicator and $x e X$ then $E(K, x \pm)=\left[R_{. r},:\left|x^{T}\right|=|x|+|K|, X<x^{T}\right.$, and for some TreK,

$$
\left.\mathrm{x}^{\mathrm{f}}(|\mathrm{x}|+\mathrm{i})= \pm 7 \mathrm{r}(\mathrm{i}) \quad \text { for } \quad \mathrm{i}=1, \ldots,|\mathrm{~K}|\right\}
$$

(Remark: this is a composite definition; the things actually defined are $£(K, x+)$ and $\left.£\left(K, x^{-}\right).\right)$
5.3.4. If K is an indicator and $R, \quad{ }_{N} \in F_{O}$ then $\mathrm{E}(\mathrm{K},(\mathrm{p}, \mathrm{n}))=\left\{\mathrm{R}\left(\mathrm{q}, \mathrm{m}^{\wedge}: \mathrm{m}=\mathrm{n}+|\mathrm{K}|, \mathrm{q} € \mathrm{R} p \mathrm{p}, \mathrm{n}\right)\right.$, and for some

$$
\left.7 \mathrm{~T} € K, \mathrm{q}_{\mathrm{z}}(\mathrm{n}-1+\mathrm{i})=7 \mathrm{r}(\mathrm{i}) \quad \text { for } \quad \mathrm{i}=1, \ldots,|\mathrm{~K}|\right) .
$$

5.3.5. Lemma. Let K be an indicator.

$$
(E(K,(p, n))) \star: c: R_{x} \ll R_{(p} \wedge_{n)} e \wedge
$$

Proof. ^: (E ($K,(p, n)$)) * is a union of subregions of R, ${ }_{N}$.
5.3.6. Lemma. Let K be an indicator
($\left.\left.\mathrm{DCC}\left(\mathrm{K}, \mathrm{x}_{+}\right)\right)^{*} \mathrm{C}_{\mathrm{R}(\mathrm{pjn})}-\mathrm{R}_{\mathrm{x}} \mathrm{C}_{\mathrm{R}(\mathrm{p}} \mathrm{N}_{\mathrm{n}}\right)$
(2) $\left(E\left(K, x^{-}\right)\right) *<=R(p, n)-R x^{\wedge} R^{\wedge} n$,

Proof. <*: $(2(K, x+))^{*}$ and $(E(K, x-))$ * are both unions of subregions Of R_{x}.
=*: Proof will be given of (1) in the case $n>1$, the only case needed here.

$$
\text { Suppose }\left(£\left(K_{5} x+\right)\right)^{*} c R(p, n)^{\text {' }} \text { then for each } R_{x} » e^{£}\left(K_{5} x+\right)_{y}
$$

 because $R \mathbf{x}_{+}$contains qeP_{2} of length $\left|\mathrm{x}^{\mathrm{f}}\right|$ while all P_{2}. points in $R \not f p, n_{l}$ must have x-coordinates of length at least $|p \mathbf{x}|+n+1$. This implies $R \boldsymbol{\gamma}\lfloor p, n, \notin \mathbf{~} \boldsymbol{\jmath} \Rightarrow \mathbf{x}$? for exactly one j (2.1.1).
 and $\quad R_{v f f} € S(K, x+)$. If $n>1$ we have $q\left(\left|p_{v}\right|+n+1\right)=p\left(\left|p_{v}\right|+n-1\right)$ for all $\mathrm{qePj}^{\wedge} 11 \mathrm{R}_{\mathrm{p},}, \wedge$ Now let $\mathrm{q}^{\text {lf }} € \mathrm{P}_{1}$ fif $\mathrm{R}_{\mathrm{x}, \mathrm{t}}$ and $\mathrm{q}^{\mathrm{T}} € \mathrm{P}_{\mathrm{lL}}$ fl R_{x} ? .

5.4.0. Lemma. Let $\left[r_{\alpha}\right\}_{\alpha \in Q}$ be an infinite set of positive real numbers. For each r let K be an indicator, with $\mid K_{\alpha} I=n$ for all a. Now let $K=f 7 r^{f} 517 r^{\mathrm{T}} \mid=n+1$, $\operatorname{TT}^{1}(1)=\mathrm{r}^{\wedge}$ for some afG and, for the same $\mathrm{a}, 7 \mathrm{r}^{\mathrm{f}}(1+\mathrm{i})=\operatorname{ir}(i)$ for some TTGK. \}. K is an indicator.

Proof. (1) is clearly satisfied.
(2) $\{\mathrm{r}: \mathrm{r}=\mathrm{TT}(1)$ for some TTGK) is an infinite
set, namely $\left\{r_{a}\right\}_{\alpha \in \mathbb{C}}$.
(3) is also satisfied: for $j=1$ it is satisfied because of property (2) of each $K_{\boldsymbol{\alpha}^{\prime}}$; for $j>1$ it is satisfied because of property (3). of each K_{α}.
5.4.1. Lemma, If it is a collection of regions and $R_{\text {-. }}$ is such that, for uncountably many x^{f} with $\left|x^{f}\right|=|x|+1$, $x<x^{\prime}, x^{\prime}(|x|+1)>0$ [resp. $\left.x^{\prime}(|x|+1)<0\right]$ there is an indicator
 an indicator K such that $E(K, x+)$ a $3 J$ [resp. $\left.£\left(K, x^{-}\right) c i f\right]$.

Proof. Since $\left[M: M=\left|K_{f}\right|\right.$ for some $\left.x^{?}\right\}$ is a countable set, let N be a positive integer such that $|K \ddot{\cdots}|=N$ for infinitely many X^{1}. Let $\left.\mathrm{f}^{\mathrm{r}}{ }_{\mathrm{a}}\right\}_{\mathrm{aeG}}=\left({ }^{\mathrm{x}} \boldsymbol{\prime}(\mathrm{Ix} \mid+\mathrm{l}):\left|\mathrm{K}_{\mathrm{x}} \mathrm{r}\right|=\mathrm{N}\right\}$ [resp. $\left.\left\{-x^{\prime}(|x|+1):\left|K^{\bullet},\right|=N\right\}\right]$ and let K be as defined in the previous lemma. Then $£(K, x+)$ a U [resp. $£(K, x-) c \mathbb{H}]$.
5.4.2. Lemma. If W is a collection of regions and $R^{(p, n)}$. is such that, for uncountably many $r e R^{+}$there exists $q^{r} e R ?_{p, \hat{X}}^{\hat{n}}$; with $q_{z}^{\wedge}(n)=r$ and an indicator K_{r} such that $E\left(K_{r},\left(q^{r}, n+1\right)\right)<=H^{\wedge}$ then there is an indicator K such that $\boldsymbol{\Sigma}(\mathrm{K},(\mathrm{p}, \mathrm{n})) \quad$ с U.

Proof. Proof is as in 5.4.1.
5.6.1. Lemma. Let (${ }^{u} S^{\wedge} R_{f} t i j$. ke an open cover for $R_{\mathbf{x}^{\prime}}$ with $|f c|<C(C=2 * * 0)$. Then there exists jSeB and an indicator K such that $(£(K, x+)) * C \quad \dot{\boldsymbol{\beta}}_{\boldsymbol{\beta}}$, and there exists yefo and an indicator K^{1} such that $(E(K, x-))^{\wedge} \subset U_{\boldsymbol{\gamma}}$.

Proof. Given j SeB let $\# / \boldsymbol{\beta}=\left\{\mathrm{R}_{\mathrm{x}},: \mathrm{R}_{\mathrm{x}}\right.$? $\left.\mathrm{C} \mathrm{U}^{\wedge}\right\}$. We give the proof for the existence of a / J and $a \quad K$ as defined above (the proof for y and K^{T} is analogous) by applying 5.4.1 to each

Suppose no such pair j8,K exists. Then, for each
jeff there are at most countably many $x^{f}>x$ with $\left|x^{!}\right|=|x|+1, x^{f}(|x|+1)>0$, for which there is an indicator K_{x}, with

$$
\left(\Sigma\left(\mathrm{K}_{\mathrm{x}},, \mathrm{x}^{\prime}+\right)\right) * \subset \mathrm{u}_{\beta} .
$$

Hence, altogether, there are fewer than C distinct $x^{1}>x$ with $\left|x^{\prime} j=|x|+1, x^{T}(|x|+1)>0\right.$, for which there is some Up and an indicator ${ }^{K} \mathbf{x}^{f}$ with

$$
\left(£\left(K_{x f}, x<+\right)\right) * c U p .
$$

Now, pick any $\mathrm{x}^{\wedge}>\mathrm{x}$ with $\left.\left|\mathrm{x}_{1}\right|=|\mathbf{x}|+1, \mathrm{x}^{\wedge}|\mathbf{x}|+1\right)>0$ for which no such pair exists. The process repeats: there are fewer than C distinct $x^{\prime \prime}$ with $\left|x^{\prime \prime}\right|=|x|+2, x^{M}>x^{\wedge} x^{11}(|x|+2)>0$ for which there is some U_{p}, and an indicator K, with

$$
\left(\mathbf{E}\left(\mathbf{K} .,,,, \mathbf{x}_{\ll+}\right)\right)^{*} \mathbf{c} \mathbf{U}_{\mathrm{ff}}
$$

Pick any $x_{2}>x_{1}$ with $\left|x_{2}\right|=|\mathbf{x}|+2, x_{2}(|x|+2)>0$ for which no such indicator exists.

In this way we get a nested sequence

and the unique point p_{1} such that $x_{n}<p$ for all n is in their intersection. For no n is it true that

$$
\left(L\left(K_{\mathrm{x}_{\mathbf{n}}}, \mathrm{x}_{\stackrel{u}{u}+}^{+}\right)^{*} \mathbf{c} X J_{\wedge} \text { for some } £ \text { and some } \mathrm{K}_{\mathrm{x}_{\mathbf{n}}} .\right.
$$

And, a fortiori, none of the $\mathbf{R}_{\mathrm{x}_{\mathrm{n}}}$ is contained in ll for any $\boldsymbol{f J}$. But this violates the hypothesis that the U^{\wedge}, constitute as open cover of R_{x}, for $\underset{x_{v}}{p e R_{v}}$ and the ${\underset{x_{n}}{R}}_{R_{n}}$ form a local base at p (2.8).
5.6.2. Lemma> Let $£^{4} / \rho / ? / / \mathrm{J}$ eft $\wedge^{\wedge^{e} \text { an }}{ }^{\circ} \mathbf{P}^{\text {en }}$ cover for $\mathrm{R}_{\mathrm{p}, n}, n$ with $\backslash H \backslash<C$. Then there exists jSeB and an indicator K such that $(\mathbf{E}(\mathbf{K},(\mathbf{p}, \mathbf{n}))) * \underset{\mathbf{P}}{\mathrm{j}_{n}}$.

Proof. Proof is as in 5.6.1. What we obtain is, inductively, a sequence of $q^{m} e R^{\circ}\left(q^{m-1},{ }^{n+m-}\right]!$, such that for no $j 8$ and no indicator K_{m} is it true that

$$
\left(\Sigma\left(K_{m},\left(q \cdot \cdot^{m}, n+m\right)\right)\right)^{*} c u^{\wedge}
$$

and we thus get a nested sequence

$$
{ }^{R}(p, n)^{3 R}\left(q^{1}, n+1\right): D * r^{m} \wedge^{R}\left(q^{m}, n+m\right)^{3} \bullet \bullet
$$

and now define qeP_{2} with $\mathrm{q}_{\mathrm{x}}=\mathrm{P}_{\mathrm{x}}, \mathrm{q}_{\mathrm{y}}=\mathrm{P}_{\mathrm{y}}>3_{2}(\mathrm{i})=\mathrm{P}^{\wedge}$ *-) for $i=1, \ldots, n-1, q_{z}(n+m-1)=q_{\dot{z}}^{m}(n+m-1)$. It is easy to see that
 a local base at. q, and its intersection is $\{q\}$, and $q e R$? $\%$ But for no m is it true that $\underset{(q, n+m)}{ } \quad \begin{gathered}c \\ u_{Q} \\ p\end{gathered}$ for some $f l$. violating the assumption that the $U \boldsymbol{\rho}$ form an open cover for ${ }^{R}$? P, $n r$
5.7^{f}. Lemma, if K is an indicator, and $x=y(p, n, \pm) j$ with j ^ |k|+1, then

$$
(X(K, x T)) * C(E(K,(p, n))) *
$$

Prof. First, if $j \leq 1|K|$, it can be easily seen from the
 hence a fortiori we get the result above. For the remainder of the proof, assume $j \boxtimes|k|+1$.

For each 7 TGK, let $x_{\pi} \boldsymbol{\mp}$. eX such that
$\left|\mathbf{x}_{\pi \mp}\right|=|\mathbf{x}|+|K|, \mathbf{x}_{\pi \mp}>\mathbf{x}, \mathbf{x}_{\pi \mp}(|\mathbf{x}|+\mathbf{i})=\operatorname{T7r}(i)$ for $i=1, \ldots|T T|$,
and let ${ }^{\wedge} P_{2}$ be such that $\left.\operatorname{Vtfp} \underset{\underline{n})}{ }\right)^{5(q} 7 \mathrm{r}^{\wedge} \mathrm{z}^{(\mathrm{n}+\mathrm{i}}{ }^{1)}=7 \mathrm{r}(\mathrm{i})$ for $i=1, \ldots,|T T|$.
We have then by 5.3.3 and 5.3.4 that if we then

Furthermore, in presence of the definitions of $x^{\wedge} \mp$ and q^{\wedge}, an inspection of 1.3.7-1.3.11 of [R_{2}] will show that

$$
x_{\pi \mp}=\gamma\left(q_{\pi}, n+|k|, \pm\right)_{j-|k|}
$$

Again by 5.3.3 and 5.3 .4 we have

$$
\mathrm{E}(\mathrm{~K}, \mathrm{xT})=\left\{\mathrm{R}_{\mathbf{x}_{\pi} \boldsymbol{F}}: \pi \in \mathrm{K}\right\}
$$

and

$$
E(K,(p, n))=(R(\% j n+\mid k 1): T T 6 K)
$$

and so
$(E(K, \overline{x+})) * c\left\{R^{T}\left(a_{\pi}, n+|K|\right): \text { frex }^{\prime}\right)^{*} c(E(K,(p, n))) *$.
5.13.1. Lemma. Let $\{V, r$ be a partition of R into clopen sets, $|G|<C$. Then there is an aeG for which there is an indicator K^{\wedge} such that $\left(L\left(K_{1} \wedge x+\right)\right)^{\wedge} C V_{\alpha}$ and there is a. 6eG for which there is an indicator K_{2} such that $\left(£\left(K_{2}, x-\right)\right)$ * c v_{0}, Furthermore $a=6$ and a is unique.

Proof. 5.6.1 guarantees the existence of V and Vc. 5.8 of $\left[R_{2}\right]$ can now be used to show that V^{α} and $V_{f i}^{-}$must have a nonempty intersection: assmme on the contrary $V^{\alpha}{ }_{D} V g^{-}=j 6$, then apply 5.8 to V^{-}and $V \sim$; if $\left(E\left(K_{9}, x-\right)\right)$ * $C V_{m}$ then a fortiori $\left(E\left(K_{2}, x-\right)\right) * C z v^{\wedge}$ and now let $x_{] L}>x$ be such that $\left|x_{1}\right|=\mid x j+1$ and there exist indicators K_{3} and K_{4} such that
 with $\left|X_{n} I=\left|X_{n-1}-\right|+1\right.$ so that there exist indicators $\quad K_{\mathbf{x}_{n}}$ and

sequence $\left[R_{x_{i}}\right\}_{i=1}^{\infty}$, and each set in the sequence has a nontrivial
 and since both V_{α} and V_{α}^{c} are closed, p is in both of them, which is absurd. So $V_{\text {ou }} D V_{\dot{0}} \wedge \wedge$, and since these sets are members of a partition, $=V_{\text {fi }}$. Now suppose there exists $V \boldsymbol{\gamma}, y e G$, and an indicator K such that $(£(\mathrm{~K}, \mathrm{x}+))^{*}<=\downarrow$. Then $\mathrm{D} \mathrm{V}_{\mathrm{fi}} / 0$ (same proof as above with y substituted for a) and so $V=V^{0}$. Similarly, if we have \forall,yeG and an indicator K such that $(£(K, x-)) *. c \boldsymbol{\gamma}$ then $V \boldsymbol{\gamma} V_{a} \wedge f t>_{9}$ and $V=V \boldsymbol{\alpha}$.
5.13.2. Lemmao Let. $\left\{V_{\boldsymbol{\alpha}}\right\}_{\boldsymbol{\alpha} \epsilon_{0}}$ be a partition of $R_{r}(\mathbf{p}, \mathrm{n})$ into clopen sets, $|G|<C$. Then there is exactly one aeG for which there is an indicator K such that $[£(K,(p, n))]$ * $c v_{\alpha}$.

Existence of a is shown by using 5.6.2. To show uniqueness, suppose $\left[£\left(1^{\wedge},(\mathrm{p}, \mathrm{n})\right)\right]^{*} \mathrm{c} \mathrm{V}_{\mathrm{a}}$, and $\left[£\left(\mathrm{~K}_{2},(\mathrm{p}, \mathrm{n})\right)\right]$ * c Vg . Let $x=y(p, n, i) j$ with $j J>\max \left\{\left|K^{\wedge} J,\left|K_{2}\right|\right\}+1\right.$. Then

$$
\left.\left.\left(L i K^{\wedge} x T\right)\right)^{*} c\left[E t^{\wedge},(p, n)\right)\right]^{*} c V_{a}
$$

and

$$
\left(L\left(K_{2}, x T\right)\right) * c\left[£\left(K_{2}(p, n)\right)\right] * c v^{\wedge} \#
$$

Now the sets $\left.f v_{\alpha} f l R_{x}\right)_{a € Q}$ partition R_{x} into clopen sets and hence by $5 \ll 13.1, V_{\alpha}=V g$.
 exists an indicator K with $(E(K, x+))$ * $c u\} U^{--}$is a clopen filter.

Proof; Clearly if $\mathrm{UeU}^{-\quad}$ and V is clopen in A with

 and $\left(U_{\mathbf{1}} U U_{2}\right)^{\prime \prime}$ Their intersection with $R_{\mathbf{x}}$ gives a partition of R_{x} into clopen sets. Now $(£(K, x+))$ * $c R_{x}$ for all •k. $\left(U_{1} \backslash u_{2}\right) e U_{x}$ iff (($\left.\left.l^{\wedge} V^{\wedge}\right) n_{x}\right) e^{u}{ }_{x}{ }^{-}$But

$$
\left(E\left(K_{2} ; x+\right)\right) * c\left(u_{2} n R_{x}\right) e U_{x}
$$

and since $\left(\left(U^{\wedge} t^{\wedge}\right) 0 R_{x}\right) n\left(U_{2} 0 R^{\wedge}\right)=f>$, we cannot have ($U^{\wedge} U^{\wedge} e^{l \downarrow} \mathbf{x}^{\bullet}$.
 $\mathrm{U}, 0 \mathrm{U}_{9} € \mathrm{U}_{-}$. by 5.6.1.
5.14\#2. Lemmao Given $P \in P_{2} \wedge$ let $U\left(p, n^{\prime}\right)=\{u: U$ is clopen in A and there exists an indicator K with $[£(K,(p, n))]$ * $c u\}$. U. . is a clopen filter.

Proof. Proof is as in 5.14.1.
5.15.1. Lemmao U is a free clopen ultrafilter with the yffi- intersection property for all $M<C$, and $U_{x}^{\wedge} \mathrm{U}_{\mathrm{x}}$ are distinct whenever $\mathrm{x} \wedge \mathrm{x}^{\mathrm{f}}$.

Proofo That $U^{-\quad}$ is an ultrafilter comes immediately from 5.6 .1 and 5.14.1, and we can also use 5.6 .1 to show that U^{*} has the /w-i.p.: Suppose there is a family of $\dot{f} U\} \sim$ with U eli
 does its complement, a violation of 5.13.1. To show that U - is free, we show that for no $R w$ with $\left|x^{f}\right|>|x|$ is it true that
 it true that $\left.R_{(P, ~},\right)^{\varepsilon 0}{ }_{x}: \quad$ if $u_{x}{ }^{w}$ ore fixed it would either be fixed on a point of $P_{\mathbf{1}^{\prime}}$, in which case it would have as members $\mathrm{R}_{\mathbf{X}}$. for arbitrarily large $\left|\mathrm{x}^{\mathrm{f}}\right|$, or else it would be fixed on a
point $P \epsilon^{p} \underline{g}^{*} \wedge^{n}{ }^{w}$-hich case it would have as members $R_{r}(\mathbf{p}, \mathbf{n})$ for arbitrarily high n, and since $p \in R_{v} c U_{\text {.- }}$ we must also have $R_{\mathrm{Px}} \subset R_{\mathrm{x}}$ by 2.1.1.

First, if $\left|x^{f}\right|>|x|$, we have that $p(|x|+l)$ is the same real number for all $P^{\in R}{ }_{x}{ }^{n}{ }^{n} p_{i>} \geqslant$ while by (2) 5.3.2 and 5.3.3 it is possible to find infinitely many p in (E(K, $\mathrm{X}+$) * D P with distinct values for $p(|x|+1)$. Hence $R_{u t t}<f^{\prime \prime-}$ • Second, if $R M_{M} U^{\prime}$, then by 5.3 .6 we have $R \quad C R$, $\quad . \quad$ and ${ }^{\prime} y^{\prime} X^{x} 1.2$ and 2.1 .3 we
 $\mathrm{n}>1$ but this is all we need.]

To conclude the proof of the Lemma, we note that if x jt x^{f}, then in the case $|x| \wedge\left|x^{r}\right|$ we have either $R \wedge \mathcal{U}_{f}$ or $R_{f} £ U$ depending on which $|x|, j x^{f} \mid$ is bigger, while we do have $R{ }_{x}$ eli $\mathbf{x x}_{x}$
 so $R_{x},{ }^{\wedge} U_{x}$.
5.15.2. Lemma. $U-$, is a free clopen ultrafilter.with the $w \sim$ intersection property for all $M<C$, and $\wedge_{V} \wedge U$. . are

Proof. To show U. . is free, we show that no R with $|x|>|p p|, n)$ is in ${ }^{u}\left(p_{p} \wedge_{n)}\right.$, and that no $R_{(q)} \wedge_{m)}$ with $\left|q_{x}\right|+m>\mid p_{x} I+n$ is in U, . - freeness follows from the same considerations as
 then 3 K such that $(£(\mathrm{~K},(\mathrm{p}, \mathrm{n})))$ * $\mathrm{c} \mathrm{R}_{\mathrm{x}}$ which implies that $R!P ?_{n} j \subset R^{\wedge}$. By 2.1.1 and 2.1.2 this implies

$$
\begin{aligned}
& |x| \leq\left|p_{x}\right|
\end{aligned}
$$

which implies that R ? $(p, n)^{f l} R_{r}\left(q, m^{\prime}\right)^{4} j b$. Suppose first
 $q^{T} e P_{2} f l \mathcal{R}_{q}^{\circ}, m$, have the same (k) th coordinate for q_{z}^{\prime} if $k<m$ while by 5.3.2 and 5.3.4 it is possible to find an infinite set of $q^{f} € P_{g}(1 \quad(£(K,(p, n))))^{*}$ with $|\dot{q} \cdot I=| p, I$ and with distinct values
 are those in $R^{(q, m)}$, it follows that if $(£(K(p, n))) * C R^{(q, m)}$, hen $m \overline{<} £ n$, so that in this case $\left|\mathbb{q}_{0}+m £\right| p^{\mathbf{x}_{J+n}}$.

Second, suppose $R ?^{(p, n)} f l R_{1}^{(q, m)}=/ i$, then
 that $\left|q_{\mathbf{x}^{I}}+m+1 £\right| p_{\mathbf{x}} \mid$ and so here too $\left|q_{\mathbf{x}}\right|+m £\left|p_{\mathbf{x}}\right|+n$. The /H-intersection property follows from 5.6.2 and an argument like that in the previous lemma. Similarly, $\mathrm{U}_{(\mathrm{p}, \mathrm{n})}$ is an ultrafilter, To show that U_{x} and $U_{\left({ }^{\prime} p, n^{\prime}\right)}$ are always distinct, note that
 done. If $R^{\wedge}\left(1 R_{., p, n)}^{\wedge}\right.$ jt j\& then $R_{x} 3{P_{\mathbf{x}^{\prime}}}^{\prime}$ which rules out $R_{x}{ }^{c} R /\left(p_{x}^{x}\right)$ Hence by 5.3.6 $R .(p,)^{\wedge}{ }^{U}$ andsothetwo clopen-set ultrafilters are distinct in this case. If R fl R ? $x=0$ but

Finally, suppose $\mathrm{U}_{(\mathbf{p}, \mathrm{n})}=\mathrm{U}_{(\mathrm{q}, \mathrm{m} \boldsymbol{\prime}}$. Then, as shown above, this implies $\left|q_{. .}\right|+m £ \mid p . I+n$, and also $j p_{.,}\left|+n^{\wedge}\right| q_{. .} \mid+m$, so $\left|p_{v} l_{.}+n=\right| q I_{1}+n$. Also, R^{\wedge}.... $D R^{\wedge} \quad,^{\wedge}{ }^{\wedge} 5$, otherwise
 by 2.1.4.

5.16. Propery; A is not N-compact.

The proof consists of either 5.15 .1 or 5.15 .2 together with H. Herrlich's theorem quoted in the Introduction.

Concluding Remarks> With the problem quoted in the Introduction thus solved in the negative, two other problems, also having their roots in [EM], become better defined.

First, as pointed out in [M_{2}], what [EM] really showed about N -compact spaces is that if X is realcompact and /?X is zero-dimensional (a strictly stronger condition the zero-dimensionality of X) then X is N-compact. (An explicit statement and proof of this may be found in [H, Beispiele 5,6].) The first unsolved problem before us is the converse of this statement. In other words, given a closed subset X of $\mathrm{N}^{\boldsymbol{m}} / \mathrm{m}$ any cardinal number, is it true that $j 8 X$ is O-dimensional? (The other condition, realcompactness of X, does hold [cfe CJ, pp. 119-120, and p. 72] 。) A counter-example would still be zero-dimensional and realcompact, of course, and the author is unaware of any spaces other than A itself and spaces trivially obtainable from A which are zerodimensional and realcompact and whose Stone-Čech compactification is not zero-dimensional. There are, however, spaces which may be of this sort and which are moreover known to be N-compact. One example is the Sorgenfrey plane: it is the product of two copies of the real line with intervals of the form $[a, b)$ as a base for the topology. Each factor is Lindelof and thus is both realcompact [cf. GJ, p.115] and has zero-dimensional Stone-Čech compactification [cfo GJ, pp.245-7] and is thus N-compact. Hence the Sorgenfrey plane is N -compact. But is its Stone-Cech compactification O-dimensional? Another possible counterexample is the N-compactification of A. (For a definition and construction of the E-compactification of a space, Cf 。 [EM] or [H, Kapitel I, §3, §9].)

For further discussion of spaces with zero-dimensional StoneČech compactification, see [GJ, ch.16] (where these spaces are called simply ${ }^{f}$ zero-dimensional ${ }^{f}$ g while the spaces which this paper calls zero-dimensional are simply designated as ${ }^{1}$ having a base of open-and-closed $\operatorname{sets}^{\mathrm{r}}$) g [E, ch, 6^§2] (where these spaces are called 'strongly O-dimensional ${ }^{f}$), [H, Beispiele 5, 6] 3 and [$N, 82$].

The second problem is this: is there a single space E such that the class of O-dimensional realcompact spaces is the class of E-compact spaces? In this paper we have shown that if such a space exists it cannot be N, or any other N-compact space. Might it be A ?

This problem is admittedly less attractive than the first one. If the answer is affirmative, a proof of this result might have to depend on the construction of a non-N-compact, O-dimensional realcompact space that is substantially easier to work with than A I

Bibliography

[E] R. Engelking, Outline of General Topology, Amsterdam, North Holland Publishing Co., 1968.
[EM] Engelking and Mrowka, On E-compact spaces, Bull. Acad. Pol. Sci. Ser. Sci. Math. Astr. Phys. J5 (1958), 429-436.
[GJ] Gillman and Jerison, Rings of Continuous Functions, Princeton, N.J., Van Nostrand Co., 1960 .
[H] H. Herriich, (q-kompakte Räume II Mathematisches Institut der Freien Universityt Berlin, 1965• Reprinted in Math. Zeitschr. . 96 (1967), 228-255.
[M1] S. Mrówka, On universal spaces, Bull. Acad. Polon. Sci. \pm (1956) 479-481.
$\left[\mathrm{M}_{2}\right]$ \qquad , On E-compact spaces. II, Bull. Acad. Pol. Sci。 Ser. Sci. Math. Astr. Phys. $1 \pm$ (1966), 597-605.
[N] P. Nyikos, Not every 0-dimensional realcompact space is N-compact, Report 70-30, Department of Mathematics, Carnegie-Mellon University.
[R_{1}] P. Roy, Failure of equivalence of dimension concepts for metric spaces, Bull. Amer. Math. Soc. j58 (1962), 609-613.
[R_{2}] $\quad i \quad$ Nonequality of dimensions for metric spaces, Trans. Amer. Math. Soc. jL3£ (1968), 117-132。

CORRIGENDUM

The statement of the proof of $5^{\wedge} 306$ is not quite precise* It. is forme that $n>1$ is the only case needed to prove that $£$ is not N-eompactj, but I do eventually make use of the case $n=1$
 distinct f^{\wedge} fom one of the form $\operatorname{li} \mathrm{k}_{\mathrm{k}}$.» There
are also a few typographical errors,, Here is a corrected proof-.
 we 'have $R, C R, \quad$ and so $R \pm f l R ., \quad{ }_{f}{ }_{f}, 0$ for serase

 at least $[p \dot{f}+n \bullet+l \rightarrow$ This implies R » • * $3 R$, for exactly one j (2olol;

 $x^{1}\left(!p_{x} \mathcal{l}^{\wedge} n^{-\wedge} 1\right)$ and Py?r\{K; $x+$), If $n>i$ we have
 $q^{\wedge} f^{\wedge}{ }^{\wedge} H_{x}$ < and $q^{x}-\$ P j . H R \bar{x}-q^{n}$ and q cannot bcth he ii<.

If n « 1 we distinguish three cases; . x^{\prime} » jp j $\boldsymbol{\omega}^{\text {i.r }}$

 Since the $\operatorname{clp}_{x} \wedge \wedge D-c o o r d i n a t e s ~ o f ~ q^{c ?}$ and q are the sam-c .
 coordinates also have icientxcal (ip^fif ${ }^{\wedge}$)-coordinates (1, 3, . 9-10)
$q^{f l}$ and q^{*} cannot both be in R^{*}. $1>0$ If $j x f=\star \quad\left\{p_{v} j\right.$ the same argument works since $I K \mid j £ 2$ and so we can find q^{M} and q^{-n} that differ in the $\left(\mid p_{v}(+2)\right.$-coordinate。 The last case is disposed of by finding $q \in\left(£\left(K^{*} x f\right)\right)^{*} n P^{*} \wedge$ such that $q\left(\left\{p_{x}() \quad>=P_{K}\left(\mid p_{x} f\right)\right.\right.$.

Now the coitmient in brackets on page 12 , lines $9-10$ becomes superfluous* as does "with $n>l^{n}$ on page 11 , four lines fron the bottom*

CS
12/15/70

