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| ntroducti on* N-conpact spaces were introduced by S. Mowka in

[I\/JI:], where the general concept of an E-conpact space was defi ned:
given a Hausdorff. space E a space X is E-conpact if it is
homalom)r phic to a closed subspace of E™ for some cardinal nunber
M. Thus the | - conpact spaces (where | is the closed unit
interval) are the conpact Hausdorff spaces, the R-conpact spaces
are the real conpact spaces, and the 2-conpact spaces (where 2
denotes the discrete two-point space) are the O dinmensional
conpact Hausdorff spaces. The N-conpact spaces are those which
can be enbedded as closed subspaces in N where N is the set
of natural nunbers with the discrete topol ogy.

The mai n properties of E—Corrpact spaces were given in [EM,
where it was asserted that the N-conpact spaces are precisely
t he O di mensi onal real conpact spaces. ("o di rre_nsionalf there, as
here, neans .' having a base of clopen sets. 1)- It is clear that
every N-conpact space is Od_i mensi onal and real conpact, but the
proof of the converse in [EM was inconplete. The purpose of
this paper is to show that the converse is in fact false, that
Prabir Roy's space A is a counterexanple. It is not N-conpact,
but it is metrizable of cardinality 2Re  and hence real conpact

[cf. GJ, p. 232] and it is O dinensional .

The space A was described by P. Roy in [R-L] and many of
its properties were proven in detail in [Rgl* including its
metrizability and its zero-dinensionality. The fact that A
is not N-conpact is the newresult, first established by the
aut hor using the proof given below. It is based on the follow ng

characterizati on of N-conpactness, first discovered by H Herriich




[H Beispiele 6] .

Theorem A zero-dinensional Hausdorff space X is N conpact
if, and only if, every clopen uItrafiIter:L on X wth the
countabl e intersection p'roperty2 is fixed.

In what follows, we establish the existence of 2%° distinct
free clopen ultrafilters on A, any one of which is enough, by
Herrlich's theorem to establish that A is not N-conpact.

Constructing the Utrafilters. In order to facilitate

conparison with [R_z], the nunbers of the | emmas and t heorens
will beginwith a5, and if a lenma closely parallels a | emma
or a definition in [Ry]* ~'Yi~lAregjven a sinilar nunmbering.
(Thus, the first two |lemmas follow right fromDefinitions 5.3.3
and 5.3.4 in [R1 and are nunbered 5.3.5 and 5.3.6; the next
three lemmas are like Lemma 5.4 in [R,1* 2"923"® nunbered res-
pectively 5.4.0, 5.4.1, and 5.4.2. And a later lemma is a gen-

eralization of Lemma 5.7 in [R1 and is numbered 5. 7.

All the notation used in this section, unless otherw se renarked,

follows that of [R;]. Not all the results in [R] w Il be used
in proving the lemmas below, while famliarity with [R;] up to the

begi nning of Section 5.3, p. 127 is certainly an asset, the reader

will be able to get by with considerably Iess. Specifically, after

the end of Section 2.1 only the following facts in [RJ are used:

t an ultrafilter on the Bool ean al gebra of cl open subsets of x
is called sinply a clopen ultrafilter.
2
~ Gven a cardinal nunber 4*\ , a filter 3 is said to have the
/ if every collection of *n or fewer sets in

has nonenpty intersection. The countable intersection property is
the case AM = N,.

3*



(1) Lemma 2.7, which shows that the regions R
and R * forma base for a topology, and which can be
proven right after Lenma 2.1,

(2) Lemmm 2.8, which shows that the regions

| RxeT,l forma |ocal base at a point peP-* and the regions
R,(p, n)ﬁlﬁ forma |ocal base at a point pePy, and which can

be proven right after Lemma 2.1;

(3) A nodest version of Property Il [p.126]:

given a point peP-p | et Xn be a menber of X wth

|xn| = n and such that p extends x, (this means
_ 00
X (1) =p(i) for i =1,...,|xL); then fI_R_ =1[p];
" Ber n=1 ¥
simlarly, given a point peP,, T, R.- v={p). These
Z n=l \P9")

facts can be proven right after the definitions of

Section 1.
(4) Lemma 5.1, which shows that every R
X

P+
after Section 2 and does require all the results in

and every' R Is clopen. This can be proven

t hat section.

In addition to the notations used in [RM* " adopt the fol-
lowing notation: if XGX and x'€X [resp. peP#] are such that
0 3 00 A X () =X(i) for io=1,..., | x| [resp. p(i) = x(i)
for i =1,...,]x|]] then we wite x < x' [resp. x < p] . Sirﬁlarly,

if Tdl and TT en [resp. xeX] [resp. p€PL] are such that

T 2 kI @nd 7rf(i) =ir(i) for i = 1,..., [TT| [resp. | x| ™ |
and x(i) =T¢) for i =1, ... |TT|] [resp. p(i) = 7r(i) for
=1,..., |TT|] then we wite IT<TI [resp. IT<X] [resp. ir <p].

Al so, we adopt the convention that if xeX is the (unique) nenber

of X with |x] =0, then R = A
X
For the convenience of the reader, the follow ng definitions




in [R;] are repeated, with the above notation used where possi bl e.
5. 3.1. 7r =the set of all finite sequences of
positive real nunmbers, defined on initial segnents
of the set of positive integers. |If ireH then |TI =
the greatest integer for which IT is defined.
5.3.2. K is an indicator means that K is
a subset of IT wth
(1) if 7r,7v'fK then |ir] = |TT'| ~ and that integer
i's denoted by | K|
(2) {r:r =7r(l) for sone veK) 1is an.infinite set,
and
(3) if TreK and | is a positive integer with

j < |11, then [r:r =T77(J+1) for some TT' &K

with 7r'(i) = 7r(i) for i-=1,...,j} is an
an infinite set.
5.3.3. If K is an indicator and xeX then
E(K.xt) = [R..,:|x"| = |x] +|K|,X < x7, and for some TreK,
x" (|x|+i) = +7r(i)) for i =1,...,|K|}.

(Remark: this is a conposite definition; the things actually

defined are £(K x+) and E£(K x-).)

5.3.4. If K is an indicator and R, nEFo  then

(p*n) 2
E(K,(p,n)) = {Rig,,m = n + |K|,gER®p,n), and for some
TTEK, g (n-1+) =7r(i) for i=l,..., |K]|).

5.3.5. Lenmma. Let K be an indicator.
(E(K (p,n)))* ¢ R « Rphnye 7

Proof. ~: (E(K, (p,n)))* is aunion of subregions of R, N-

=2: (Z(K, (p,n)))* ¢ %( = |§ n W%mm> N D o=» Ig‘ 3 R.(p,n)#




5. 3.6. Lemma. Let K be an indicator

(D cC(K, Xi)* Cr(pin) - RxCr(p™n)
(2) (E(K x-))* <=R(p,n) - RXxX*R"n,

Proof. <*:(2(K x+))* and (E(K x-))* are both unions of subregions
O R«.

= Proof will be given of (1) in the case n > 1, the
only case needed here.

Suppose (£(Ksx+))* ¢ R s« then for each R»e£(Ksx+),

{(p,n)
we have Ryr° Rp"ny and so Rgn R(,"+yj for some | (2.1.3);

furthermore, since R, R . (2.1.3), we have |x'| J> |p |+n+l
§ (p*n) g
because Rx contains qeP, ° length |x'] while all P;-
+

points in RtPsN} nust have x-coordinates of length at |east

|pX|+n+l. This inplies Ryipsn,#)3 => R, for exactly one |

(2.1.1).

I'f Rx $ R(p/\n),l*l £ |le+n (2_1_1)_ pick xft such
x"(i) = x'(i) for i= 0,...3p+nx"(Ip<l4.n+l) £ X'(Ipxl+n+),
and Ruy€S(K,x+). If n > 1 we have q(|pv|+n+I) = p (|pv|*+n-I)

for all gef™ 11 Ro, ™ Now let J'€P, T Ry and g€R. fl Ry
>

g and g cannot both be in R,.  contradicting L(Kx+) c R, .
vp*n; (Ps™)

5.4.0. Lemmm. Let [r .} o be an infinite set of
Q. ‘aeg

positive real nunmbers. For each r let K be an indicator,
a a '

with |Kgl = n for all a Now let K = f&f 514" | = n+1,

T (1) =~ for ;ome &G and, for the same a, 7@ (1+i) = ir(i)

for some T } . K is an indicator.
Proof. (1) is clearly satisfied.

(2 {rir = T17(1) fOr some TI&K) is an infinite




set, nanely {raly.q-
(3) is also satisfied: for j =1 it is
satisfied because of property (2) of each Ka; for
] >1 it is satisfied because of property (3). of each Ka'
5.4.1. Lemm, |If it is a collection of regions and
R_ is such that, for.uncount'ably many x' with [x'| = |x|+,
X < x",x"(|x]+l) >0 [resp. X' (|x]+l) <O0] there is an indicator

K, with £K,,x'+) ¢ M[resp. £K,,x}) ¢ W then there is
X X X

an indicator K such that E(K x+) a 3J [resp. £(K x-) c if].

Proof. Since [MM= |K“f| for some x’} is a countable
set, let N be a positive integer such that |K-,-| =N for
infinitely many x*. Let f'.}aec = (X (Ix]+):|Kq| =N}
[resp. {-x (|x|+):|K.,| =N] and let K be as defined in the

previous |emma. Then £(K x+) a U [resp. £(K x-) c Jd] .

5.4.2. Lemma. If W is a collection of regions and

ny . .
R.tp’ . is such that, for uncountably many reR" there exists

qreR’\?/p”‘%gl; with q’z‘(n) = r and an indicator Iﬁ such that
E(K:, (g',n+l)) <= H* then there is an indicator K such that
(K, (p,n)) c U
Proof. Proof is as in 5.4.1.
5.6.1. Lenmma. Let (“s"‘Rﬁt_ij. ke an open cover for Ii(
with |fcf <C (C= 2*0) . Then there exists jSB and an indicator

K such that (£( K,x+))* c \jp’ and there exists yefo and an indicator
K!' such that (E(K x-))" ¢ Uy.

Proof. Gven jSB et #,p:{RX, : RX?CUT‘}. We give the
proof for the existence of a /J and a K as defi ned above (the"
proof for y and K is anal ogous) by applying 5.4.1 to each

V

Suppose no such pair 8K exists. Then, for each




j8fl there are at most countably many x' > x with

Ix'| = |x|+I,x" (] x|+1) > 0, for which there is an indicator K, with
(E(Kx.,x'ﬂ)* = Uﬁ.
Hence, altogether, there are fewer than C distinct x* > x
with |[x'j] = | x| +1,x"(] x| +1) > 0, for which there is sone U‘g
and an indi cator K}é with

(E(Ky, X<+))* ¢ Up.

Now, pick any x* > x with |[x;] = |x|+1,x*[x]+1) > O

for which no such pair exists. The process repeats: there are

fewer than C distinct x" with |[x" | = |x][+2x™ > x*x* (|x]|+2) > o
for which there is some U, and an indicator K , with
p X
EK..,,,x«+))* ¢ Us.
Pick any x, > Xy with | Xz| = |x[+2,X2(|x[+2) > o for

which no such indicator exists.

In this Way' we get a nested sequence
x Xl x2
and the unique point peP, such that X, <P for all n s in
their intersection. For no n is it true that

(L(Kxn,xu+2))* ¢ XJ, for some £ and some Kxn.

And, a fortiori, none of the R, is contained in ”9 for any fJ.
n
But this violates the hypothesis that the W' constitute as open

cover of RX, for pel)'-\(’V and the B forma local base at p (2.8).
. n

5.6.2. lemma> Let £/2Jeft ~° " °P®" cover for
Rl?p,ny with \H\ < C. Then there exists jSB and an indicator K

such that (E(K, (p,n)))* cz \j..
P




Proof. Proof is as in 5.6.1. What we obtain is, inductively,
a sequence of qmeR°,tqm1 R \’ such that for no j8 and no
s . _

i ndi cat or Klrl is it true that
(D(X,, (9.7 n+m))* c u™.

and we thus get a nested sequence

R(p’n) 3R(ql,n+1):D*lmAR(qm,n+rﬂ)3"'
and now define qgeP, with qgx = Py, qy = Py>3,(i) = P»*-) for
i = 1,...,n-1,g(ntm1) = gq(ntm1). It is easy to see that

R(q,n”rrr)“ = R’(qn}n+rrp’ and so the above nested seguence forms

a local base at q, and its intersection is {q}, and qeR? %
vphn;
But for no m is it true that R x Cug for sonefl..

(g, n+m p
violating the assunption that the Ud form an open cover for

"P, nr
5.7". Temm, if K is an indicator, and x:y(pgn,i)j'
with | ~ |Kl+1, then
(X(K xT))* ¢ (E(K (p,n)))*
while if j < K +1, (L(K, XT))* n (S(K (p,n)))* =fbh.
Proof . First, if | <1 |K|, it can be easily seen fromthe
definitions that R f) R(q,my is enpty, for all g in S. S and.

hence a_fartiori we get the result above. For the remainder of

the proof, assune | P |K|+1.
For each 7T et Xoge eX such that

|x1r'—|‘-'| = |x|+|1<‘|,xﬂ_. > x,xﬁ¢(|x|+i) =Trr(i) for i = 1,..,7TT],

and let "P, be such that Vitfp n),5(q7r,\- S(n+inl) = 7r(i) for
i=1...,|T}.
W have then by 5.3.3 and 5.3.4 that if weK then




R, eD(K,xF) and R .-~ nheE(K (p,n)).
T+
Furthernore, in presence of the definitions of X g and g”, an

inspection of 1.3.7-1.3.11 of [R] w Il show that

X = gL+l KlLe) 5y

Again by 5.3.3 and 5.3.4 we have

E(K, xT) = {Rx',rq: : reK}

and
E(K, (p,n)) = (Rewin+l ki): TT6K)
and so
(E(K x%))* ¢ {RT(%W,”JFI K)o "™ ¢ (E(K (p,n)) ) *.

5.13.1. Lenmma. Let {V } [ be a partitionof R into
clopen sets, |@ < C Then there is an aeG for which there is
an indi catof- KA such that (L(KiAx+))”™ ¢ Vg and there is a
6'eG for which there is an indicator K, such that (£(K; x-))* ¢ Vi
Furthernore a = 6 and a is unique.

Proof . 5.6.1 guarantees the existence of V and Vc.
a o

5.8 of [R)] can now be used to show t hat \7' and Vfi nust have
a nonenpty intersection: assyne on the contrary VaD Vg = ] 6,

then apply 5.8 to V and V~ ; if (E(Ks,X-))* ¢ vm then

atortiort (E(Kz, x-))* czv® and nowlet X > x be such that

| X1 = ]x; + 1 and there exist indicators K; and K; such that
N * R YAS N- H H i

(E(K:,A.xj_)) c v, CE(Kaxi:))® C V75 by induction define x > x_ .

with x| = |)z§-.1.'| +1 so that there exist indicators Ko and

n

(L(Ky ,Xn+))* C© Vo, (S(KN , *p-))* ¢ VA; in this way we get a nested
n n
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'}"DI , and each set in the sequence has a nontrivial
=

oo
intersection wwth V and V(.: Now .£L. R.. = {p} for sone peP.,,
X2 X

sequence [R

oc oc 1—X
. c .
and since both Va and Va are closed, p is in both of them

which is absurd. So V. DV, " ", and since these sets are
a 0

menbers of a partition, W = Vi. Now suppose there exists Vy, yeG
and an indicator K such that (£(K x+))* <=w . Then W DV / O
(same proof as above with y substituted for a) and so W = W,
Simlarly, if we have VWV ,yeG and an indicator K such that
(E(Kx-.))* cw then VWDV, " ft> and ¥ = W,

5.13.2. Jlemmo Let . {Vglqeo be a partition of R (p,n) into
clopen sets, | < C Then there is exactly one aeG for which
there is an indicator K such that [ £(K (p,n))]* ¢ vg.

Progfo Existence of a is shown by using 5.6.2. To show
ulni gueness, suppose [ £(17,(p,n))]* ¢ V,, and [. £E(Ky, (p,n))]* c Vg.
Let x=y(p,n,i)] with j I>pax{| KJ, | K;| }+l. Then

(LikK*XT))* ¢ [Et™, (p,n))]* c V,
and

(LK, xT))* © [E£(Ke(p,n))]* € vAy
Now t he sets fvafl Ry) a¢Q partition R; into clopen sets and

hence by 5«13. 1, Va = Vp.

5.1401. lLemmmo Let U.= {UU is clopen in A and there

~ X
exists an indicator K with (E(K x+))* culo U™ is a clopen
filter.

Proor; Cdearly if UU and V is clopen in A with

Uc v, then VeU™ and clearly j~AU . Now suppose U, and U,
_ X x X X £
are both nmenbers of U, with associated indicators K- and K,
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respectively. Consider the four clopen sets U 0 UUi)"2" “27%1"
and (U1 UU,) ", Their intersection with R gives a partition
of R, into clopen sets. Now (£(K, x+))* ¢ Ry for all < k.

(Ul\us)eU, iff ((1~VA) n R)eY- But

(E(Kz; x+))* ¢ (uz n Ry) el

and since ((UMM”) OR) n (U 0R) =f> we cannot have (U"U"elxx.

A ADQNO! sofcpat

In a simlar way we elininate Y9\'i 2" (4

U 0 U€U by 5.6.1.

5.14,2. Lemmao G ven PEP,M |et U(p #)
¥

A and there exists an indicator K with [ E(K, (p,n))]* c u}.
U. . 1s a clopen filter.

Proof. Proof is as in 5.14.1.

5.15.1. lemmao U is a free clopen ultrafilter with the

X

yifi- i ntersection property for all M< C and U ~U; are distinct
X X

whenever x "~ x'.
Proofo That U is an ultrafilter comes inmedi ately from
5.6.1 and 5.14.1, and we can also use 5.6.1 to showthat U has

the/w—i.p.: Suppose there is a famly of fU} ~ with Udi
* 2 a aeG a X

&
LI d <c, th U f .cl
¥8F aR-- gndago 0111(9 01‘g rtnher% beﬁ o%rés io }@jG angrgg a-clopen cover

does its conplenent, a violation of 5.13.1. To showthat W s

free, we showthat for no Rw with |x'| >|x] is it true that
Ryw €Uy * and that forno Ry Rgln, With n>1 and R jc R ,is

. L | x .
it true that Fip’n)”x: v “ere fixed it would either be

fixed on a point of P,, in which case it would have as nenbers

Ry. for arbitrarily large | x|, or else it would be fixed on a

={u: U is clopen in
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poi nt P€P9* A" hich case it would have as nenbers R, (P, 1) for
- »

arbitrarily high n, and since p€R,  c U_. we nust also have

R c¢cR by 21.1.
Px X

First, if |x'| > x|, we have that p(|x|+l) is the sane
real nunber for all P*R» "Pia while by (2) 5.3.2 and 5.3.3
it is possible to find infinitely many p--in (E(K x+)* DP& with

distinct values for p(|x|+l). Hence Ry<fck”+ Second, if R y*U"’
. X, X (p,n; X
then by 5.3.6 we have R ¢ R : and by 2.1.2 and 2.1.3 we
X \ Pj n;
cannot have RPC R.. [Note: 5.3.6 was only proven in the case
X

n>1 but this is all we need.]

To concl ude the proof of the Lenmma, we note that if xjt x',

then in the case |x| ™ |x"| we have either R”U; or R{£U
XX XX

dependi ng on which |x],j x| is bigger, while we do have R di
’ X

for all xeX. if x| = x| but x*x',R TriR;=0 and

' X X
A .

so Ry, MUy. (P, 1)

5.15.2. Lenmm. U , Is afree clopen ultrafilter with
the w~i ntersection property for all M< C, and ", U. . are
al ways distinct, while U, . = u, . Iff R « = R :

s dis ( ¥

"0 (an (p.m)  (a.M

Proof. To show U. . is free, we showthat no R wth

| x| > | pHsnli's in “(,%,), and that no R(q"m W th |agx +m> | pl +n
isin U, . » freeness follows fromthe sane consi derations as

above.f -0 " hoth .
I RXerP"n then 3K such that (£(K, (p,n))) CRX

which inplies that R'P:j ¢ R*. By 2.1.1 and 2.1.2 this inplies
x| < {p ]

| f R(q’ m) eU( by M) then for some K, {Z(K, (p,n)))* R(q,m)
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whi ch inplies that R?lp,’n)fl R, lq,m!JA' | b.  Suppose first

R’fp’ﬁ)fl R°(q’m"ibggthen\/\e have Lig, o = hipgl . NowaII'
q'eP, fl Rg,my have the same (k)th coordinate for qg if k<mwhile
by 5.3.2 and 5.3.4 it is possible to find an infinite set of
’ ?
q'€Py (1 (E(K (p,n)))* with | g.l =|p | andwithdistinct values
X X

for Ca.,f\(n). Since the only,\qr€|39qfly R, . wth |q |T:)Lq | :|'PX|
are those in RET™ it follows that if (£(K(p,n)))* ¢ RET™’ hen
m=Z£ n, so that in this case |[d#mE |p*J+n.
. Seg\onq,/\ suppé)se/\ I?\?"p’,mfl R,‘q"f?’ =/i, then
p, n\ RVEQ’,’ T%{oj for some j which inplies by 2.1.1
that |g,l +m+ 1£|p) andsoheretoo |q, +mE|[p,| +n
The /Hintersection property follows fromb5.6.2 and an argument
like that in the previous lemma. Simlarly, L{p,n) is an ultrafilter,,

To show t hat Ux and U\'p, n) are always distinct, note that

ReeUy and R (p 3™ ( p b, > that if R &I R, 3, =]6 we are

done. If R"(1F¥‘ ,jtj&then_RXSI%,vvhichrulesout
X

Re® Rl (sx , Hence by 5.3.6 R (5) " U andsothetwo o] gnen- set

ultrafilters are distinct inthis case. If R fl R , =0 but
/\
R(p n) A AN then |X| > |bX' 1 anda as shown aJJU\h\-(---/vX?\W'(p n)#
Finally, suppose U’lp,n'} = U-(q,m,). Then, as shown above,

this inmplies |qg..|] +nE |p.J), +n, and also jp.| +n* |g.] +m

SO

Ipd +n=|ql, +n Also, R"_ ..DR* ,. .~ "5 otherw se

n/
JqX|X+-m+1s|pXI as shovvnabove Th|sm'B/I|es v = R

,’ nj (g

by 2.1.4.

5.16. +Proeperty—H4; A is not N conpact.
The proof consists of either 5.15.1 or 5.15.2 to'get her with

H Herrlich's theoremquoted in the Introduction.

. HUNT LIBRART
CARNEGIE-MELLON  UNIVERSITY
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Concl udi ng Remarks> W th the problemquoted in the Introduction

thus solved in the negative, two other problenms, also having their
roots in [EM, becone better defined.

First, as pointed out in [M], what [EM really showed
about N-conpact spaces is that if X 1is realconpact and /?2X 1is
zero-dinensional (a strictly stronger condition the zero-dinensionality
of X) then X is N-conpact. (An explicit statenment and proof
of this may be found in [H Beispiele 56].) The first unsol ved
probl embefore us is the converse of this statenent. I n other
words, given a closed subset X of N*™ /many cardinal nunber,
is it true that j8 1is Odinensional? (The other condition,
real conpact ness of X, does hold [cf« CJ, pp. 119-120, and p. 72] ,)
A counter-exanple would still be zero-dinensional and real conpact,
of course, and the author is unaware of any spaces other than A
itself and spaces trivially obtainable from A -which are zero-

di mensi onal and real conpact and whose Stone-Tech conpactification
i's not zero-dinensional. There are, however, spaces which may be
of this sort and which are noreover known to be N-conpact. One
exanple is the Sorgenfrey plane: it is the product of two copies
of the real line with intervals of the form|[a,b) as a base for the
topol ogy. Each factor is Lindelof and thus is both real conpact

[cf. @&, p.115] and has zero-di nensi onal Stone-Cech conpactification
[cfo GJ, pp.245-7] and is thus N-conpact. Hence the Sorgenfrey
plahe is.N-conpact. But is its Stone-Cech conpactification

O di nensi onal ? Anot her possible counterexanple is the
N-conpactification of A (For a definition and construction of

the E-conpactification of a space, cf, [EM or [H Kapitel |, 83,689].)
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For further discussion of spaces with zero-di nensional Stone-
Cech conmpactification, see [G, ch.16] (where these spaces are
called sinply fzero-di mensional’y while the spaces which this
paper calls zero-dimensional are sinply designated as ‘having
a base of open-and-closed sets')y [E, ch,6782] (where these spaces
are called 'strongly O di mensional '), [H Beispiele 5, 6]5 and
[N, 82].

The second problemis this: is there a single space E
such that the class of O dinensional real conpact spaces is the
cl ass of E-conpact spaces? |In this paper we have shown that if
such a space exists it cannot be N, or any other N conpact space.
Mght it be A ?

This problemis admttedly less attractive than the first
one. |If the answer is affirmative, a proof of this result night
have to depend on the construction of a non-N-conpact, O dinensiona

real conpact space that is substantially easier to work with than A |
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CORRI GENDUM
The statenment of the proof of 57346 is not quite precise* |It.

isfcrmethat n >1 1is the only case needed to prove that £ is
not N-eonpactj, but | do eventually make use of the case n = 1

in order to showthat an ultrafilter of the form U_x I & dv<:y
di stinct fAfomone of the form Ii, .» There '

are al so a few typographical errors,, Here is a corrected proof-.
*£?% Suppose (S(I<9.xv)>* c Rip,ny. Than for each Rx,*:E{X:-r>;j

we 'have R, ¢ R .- and so R; fl R . J4-',O for seae

j (2..1,3); furthernore™ since Rs C R—-%Q.n}' (2.1,3), we have

." ox¥( F ‘SR |1 "~ n4 1 because st contains CrPA tfifch " e «« j"“}
¥ , )
while all P) points in R{ N Must ha-"e x-coordxnates of lefrc:h
ppnr . -
at least [p f + ne+ |-> This inplies R» « * 3R, for
exactly one | (2olol;
If R.<$ R._-t*ix] <'pyj +n(2.1.1) , Pick x" such

that x"7(i) « x''(i) for i » 0o, 0,-p™ 4 n, X9 {] Py *ntle

xX'(I'pl ~n-~1) and Py?r{K.x+), If n >i we have
q(;pd +n+ 1) =PY™n- 1) foral g-"nig ., Newlet
N R

gMpr HR« and o-$H HR & - g" and g cannot bcth he ii<.
Kin AA ; H _
/(H-n)'« contradicting £{K X4-) c %pgn’)

If n« 1 we distinguish three cases; . X » jpj * i,
iX[ T |peic |Xj < jpi* If e « |pd 41 thenwe take gt

and g in Cs(K'x4-))* n P, With q"°Cpj -2/ ~q dP i » 2/

c?

Since the ClP~ ~ D-coordinates of g and ¢ are the sanc.

and since any P;“points in R with identical Ci'Py! ~ Ii-

P
coordi nates al so have icientxcal (i'pALQA- 2)-coordinates (1, 3. 9-10) -




L1

fl

q and qg* cannot both be in R

1s0 1T jxft = {py the sane

argunent works since | K j£2 and sow can find g"¥ and g-

that differ inthe (|p{ + 2)-coordinate, The last case is

di sposed of by finding qg€(£(K*xf)) é"n B~ such that q({px() >= Px(]| pxf) -

Now t he coitment in brackets on page 12, |ines 9-10 becones

superfluous* as does "with n > 1" on page 11, four lines fron

t he bott onf
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