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ABSTRACT

The difference of two "posynom al s" (nanmely, polynomals with arbitrary
real exponents, but positive coefficients and positive independent vari ables)
is termed a''signomal.'f

Each signom al program (in which a signomial is to be either mnimzed
or maxim zed subject to signomal constraints) is transformed into an
equi val ent posynom al programin which a posynomial is to be mnimzed
subject only to inequality posynom al constraints. The resulting class of
posynom al progranms is significantly |larger than the class of (prototype)
"geonetric prograns' (nanely, posynomial programs in which a posynonial is
to be minimzed subject only to upper-bound inequality posynbnial constrainfs).
However, nuch of the (prototype) geonetric progranmng theory is generalized
by studying the "equilibriumsolutions® to the "reversed geonetric prograns"
inthis larger class. Actually, sonme of this theory is new even when
Specialized to the class of prototype geonetric programs. On the other hand,
all of it can indirectly, but easily, be applied to the much |arger class
of well-posed "al gebraic programs” (namely, progranms involving real-valued
functions that are generated solely by addition, subtraction, nultiplication

di vision, and the extraction of roots).
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1. Introduction Oiginally developed by Duffin, Peterson and Zener [ 9],

geonetric programm ng with posynom als provides a powerful nmethod for studying
many problens in optinmal engineering design [25, 26, 1, 10, 23], However,
many other inportant optimzation problens can be nodel ed accurately onl-y by
using signom als and nore general types of algebraic functions. Hence the
guestion of extending the applicability of geometric programmng to those

| arger classes of prograns has received considerable attention.

In particular, Section Il1l1.4 of [9] presents various techniques for
transforming a limted class of algebraic prograns into equivalent (prototype)
geonetric prograns, but many of the nost inportant optimzation problenms are
not within that linmted class. |

Initial attenpts at rectifying this situation were made by Passy and
Wlde [16], and Blau and Wlde [3]. They generalized sone of the prototype
concepts and theorens in order to treat signom al programs; but nost of the
i nportant prototype theorenms are not valid in that nmore general setting.
Nevert hel ess, this paper advances their work in such a way that those difficul-
ties are at least partially overcone, even in the still nore general setting
of al gebraic prograns.

More recently, Avriel and Wllians [2] have shown how to reduce the
study of each "rational programt' to the study of a fanily of approximting
prototype geonetric prograns. That reduction forns the basis of a potentially
useful algorithmfor which they have established convergence. It seens that
simlar algorithns have been proposed independently by Brovernan, Federow cz
and McWirter [4], Pascual and Ben-Israel [14], and Passy [15], but for

somewhat smaller classes of programs and without convergence proofs. Actually,




the sane ideas can be further exploited both theoretically and conputationally
by reducing the study of each algebraic programto the study of a famly of
approximating linear prograns. |In fact, a special application of that
reducti on conbined with the original duality theory for I|inear progranm ng
[11, 12] provides an alternative proof [6] of the nmain theorems fromthe
"refined duality theory' for prototype geonetric programming ([7] or Chapter
VI of [9]). However, in overall philosophy and approach, all of that work
(on reducing the study of various progranms to the study of other famlies
of programs with nicer properties) is not nearly as closely related to this
paper as it is to a parallel and independent conpanion paper [ 8].

O her work of that general type has been done by Charnes and Cooper
[ 5], who proposed net hods for approxi mating signonial prograns with proto-
type geonetric prograns. However, the errors involved in their approxima-
ti ons have never been investigated.

Wth the exception of a single isolated theoremwhose proof nmakes use
of the "refined duality theory" ([7] or Chapter VI of [9]), this paper is

essentially self-contained.

2. Signomial Prograns Transforned into Equival ent Posynonial Prograns, By

enpl oyi ng the wel | -known eIenentary"fransfornations frommat hemati cal pro-
granm ng and by using rather obvious extensions of the transformations given
in Section Ill1.4 of [9], each well-posed al gebraic programcan be transforned
into an equival ent signomal program - and hence ultimately into an equival ent
posynomi al programby exploiting the transfornations to be developed in this
section. Due to the inherent difficulty in giving a general analytical

description of the class of algebraic prograns, we only illustrate their
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transformation into equivalent signomal prograns with an exanple in Appendi x
A. In this section we shall confine our attention to the noré easily described,
but nuch smaller, class of signom al prograns.

A signomial is a (generalized) polynom al

N
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(with arbitrary real exponents a.l.J) whose i ndependent vari abl es t.J are all
restricted to be positive. It is convenient to arrange the terns of a signonial
f(t) so that those with positive coefficients cy (if any) appear first in the
sunmati on. Then each signonmial f(t) is seen to be either a posynomal (i.e.
all coefficients c,are positive), the negative of a posynom al, or the
di fference of two posynonials.

By using the well-known elenmentary transformations enpl oyed .i n mat he-
mati cal progranm ng, one can easily transform each signom al progr am into
an equival ent signomal programin which a signonmial is to be mininmzed

subject only to upper-bound inequality signomial constraints. Mreover, it

is clear that each of the resulting constraints can be fornulated in one of

the following three fornmns:
f(t) < -1 f(t) <O f(t) < 1. (1)

We now show how to transform each of these signomial progranms into an
equi val ent posynonmi al programin which a posynomial is to be minimzed subject

only to inequality posynom al constraints having one of the following two forns:

g(t) "~ 1 g(t) = 1L (2)
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Unl ess the objective function is already a posynom al, we first trans-
formit by introducing a new positive independent variable t~. To see how

this is done, suppose that we wish to mnimze a signomal f,(t) subject to

inequality signomal constraints. The transformation to be used depends

on the sign of the constrained infimumof fACt)- If this sign is not negative,
we should m nimze the positive independent vari abl e t0 subject to the origina
constraints and the additional constraint f,(t) ~ t 0; in which case the

constrai ned infinmm of t0 clearly gives the constrained infinum of fq(t).
If the constrained infimumof f,(t) is negative, we should maxinize t*
subject to the original constraints and the additional constraint f,(t)

+ tO £ 0; in which case the negative of the constrained suprenum of t0 clearly

gives the constrained infimumof f,(t)- Now maximzing t_. can obviously be

0
acconpl i shed by m nim zing ui'l, so in all cases we are left with an equival ent
program that consists of mnimzing a posynom al subject only to inequality
si gnom al constraints.

O course, the sign of the constrained infinmm of fﬂ(t) may not be known
in advance. In that event, one should probably make an educated guess at
the appropriate sign and hence the appropriate transformation. |If the first
transformation is chosen and the resﬁiting infimumturns out to be zero, then
the second transformation should also be tried in order to see whether the
desired infimumis actually less than zero. |If the second transformation
is chosen and the resulting programturns out to be inconsistent, then the
first transformation should also be tried in order to see whether the origina
programis actually inconsistent or just has a non-negative infimum In

any event, it is clear that the additional signomal constraint can be form

ulated in at least two of the three forns (1).




The additional transformations required to obtain an equival ent posynom a
program are nost easily described within the context of a special case in which
there are only three signom al constraints, each representing one of the
three possible fornms (1). Thus, suppose that we wish to mninize a posynom al

go(t) subject to the signomial constraints

fo(t) = -1 fo(t) < O fa(t) =< 1.
| f fl(t) is a posynonial, the constraint fl(t) <. -1 clearly can not
be satisfied, so the programis inconsistent. |If fl(t) is the negative of a

posynom al, this constraint is equivalent to the posynonm al constraint
-fl(t) = 1, which already has the second of the desired forms (2). Hence,
we need to give further consideration only to the case in which fl(t) is
the difference of two posynom als.

| f ff(t) is a posynom al, the'constraint_??“ AN N oclearly can not be
satisfied, so the programis inconsistent. |If fg(t) is the negative of a
posynom al, this constraint is automatically satisfied and therefore can be
ignored. Hence, we need to give further consideration only to the case in
whi ch fzﬂt) is the difference of two posynoni al s.

| f f;(t) is a posynom al, the canstraint f;(t) N1 is already a posynom a
constraint that has the first of the desired forms (2). |If fg(t) is the
negati ve of a posynoﬁial, this constraint is automatically satisfied and
therefore can be ignored. Hence, we need to give further consideration only
to the case in which fg(t) is the difference of two posynom al s.

Thus, suppose that we wish to mninize a posynom al gt(t) subject to

the constraints




hl(t) - h4(t) £ 1

hott) - hs(t) * O

hy O -h(p  * 1,
wher e the h.k(t), kB1, 2, ..., 6, are posynomals and t = (t,i., tZ tr?]'
Introducing three new positive independent variables t .-, t .., and t .,

we see that t is a feasible solution to these constraints if, and only if),

there are positive values for t tm#?’ and tnf% such that the augnented

me1’

vector (t, tm+1"’ tm+’f’ tm+J’) is a feasible solution to the constraints

1+h|(t) = tm_”_ = h4(t)
ho (L) = tm+2 = hg(t)
h3(I) < tm+3 = h6(t) +l.

But these constraints are clearly equivalent to the constraints

gk(t’ tm+1’ tm+2' “m+3) s L k-1, 2 3,
gk(t’ tm+1, tm+2’ tm+3) z 1, k=45 8
. wher e
-1 o
t ok 1 + hk(t)] k=1
e Tl oty k=2 3
m¥+k Tk ’
Bt mel e+ 2t tmas) 8
-1
€t (i-3) B (O k=45
e Tl () +1] k=6
m+ (k-3) " 'k =0
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Moreover, it is obvious that these functions g- (t, t .., t .t .J are
R m+1 m+Z m+J

posynom als and that each of the preceding six constraints has one of the
two desired forns (2).

It is now apparent fromthe preceding considerations that each signonial
program can easily be transfornmed into an equival ent posynonial programin
whi ch a posynonial gj(t) is to be nininized subject only to inequality posynom
ial constraints having one of the two forns (2). Hence, there is no |oss of
generality in restricting our attention to this special class of posynom al

progranms, so we make this sinmplifying restriction in the follow ng sections.

section shows how to transform each signomal programinto an equival ent
posynom al programhaving a special form Posynonmial prograns having that
special formhave been termed "reversed geonetric programs” [ 6], because
some of their inequality posynom al constraints have a direction g(t) > 1
that is the reverse of the direction g(t) < 1 required for the (prototype)
geonetricprograns. treated in [7, 9]. |

The nost general teversed geonetric programis now stated for future
reference as

PRI MAL PROGRAMA.  Find the infimumM “of a posynom al g,(t) subject to the

. ,

ogk(t) * 1, k=1 2, .... p, (1)
and
g () * 1, k=p+1, ..., p+r %q (2)
Here,
g(t) % w(t), K=0, 1 .. q 3
i e[ k]

The preceding
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Fbitikaz W NG k=0, 01, . p, ()
ui(t)
~a -ajo -a. .
Citl il tz ...tm im, i ¢ [k]s k:p+1, . q’ (5)
wher e
[k] & {irn, iinH, ..., nid, k=0 1, ..., q (6)
and
1 Smg < ng, ngt 1 * n™ £ 17, Coe, -*_ J+J£~r% n nq'gn (7

q-

The exponents a.!_.J and —a.lj are arbitrary real nunmbers, but the coefficients

. and the independent vari abl es tj are assuned to be positive.

W have placed mnus signs in the exponents for the reversed constraint terns

(5 in order to obtain a notational sinplification in the ensuing devel opnents,

To provide other notational sinplifications, we introduce the index sets

P*{1, 2, ..., p}, (8)
R:E[p+1 .., q}, (9)
and
(K% U [K] " for each Kc(0) UPUR. (10)
keK .

For purposes requiring pronunciation, [K] is called "block K.

In terms of the preceding synbols, primal programA consists of mnimz-
ing the "priml objective function g,(t) subject to the prototype "primal
constraints" g, (t) ~ 1, k e P, and subject to the reversed pri mal cbnstraints

g.(t) ~1, k e R where: the posynomal g (t)aE ) u.(t) for each
i e[ k]




a a
b a M
k e {0} UP UR; the posynomal termu”t) = city* t,'2--.t, [imforeach

) i e [OJU[P]; and the posynomial termu”t) T o tA*IlE,~% 2. Lt %imfor
eachi e[R]-
As in prototype geonmetric programming [ 9], each posynomial termug(t)
in primal programA gives rise to an independent "dual variable® 5,,i e-
[0] U[P] U[R], and each posynom al gi.(t) '.gi ves rise to a dependent dual

variable X, (6) “ Y 5., k e {0 UPUR To define the "geonetric dual"
i e[K]

of primal programA, it is convenient to extend the notation of the preceding

paragraph by introducing the synbols

K(6) = {keKI X{6 * 0} for eachKc {0} UPUR (11)
and
CK3 (6)*={i e [K] | 6 * O})for each Ke {0} UPUR (12)
* Then, corresponding to prinal programA is the follow ng geonetric dual
. program

DUAL PROGRAM B. Find the suprenumM‘ of the "dual objective function"

v c- 51 r‘ }
®r° {[Eo]m ) ]L[ 148) G ) T [R](8) 51 ]
Sn EXCE v ERCa B

subject to the "dual constraints" that consist of the "positivity conditions"

(13)

6. * O, te{l, 2, ..., np =[0] Urprl U[R], (14

the "nornality condition"

" Xo(6) = 1, (15)

and the "orthogonality conditions"




n
by
L a. 6 =o0, i =1, 2, ..., m (16)
i:

Her e

X (6) *Y 6., keCQ 1, ..., q} {0} UPUR (17)
i e[ k]

and the nunbers a.l.J and c.I are as given in prinmal programA

The dual constraints are identical to their anal ogues in prototype
geonetric progranm ng; and they are linear, so the dual feasible solution set
is either enpty or polyhedral and convex. The dual objective function differs
fromits anal ogue only by the presence of mnus signs in the exponents of
the factors corresponding to the reversed prinmal constraints; but those m nus
signs result in very large theoretical and conputational differences between
reversed and prototype geonetric progranm ng.

The source of those differences is nost easily reveal ed by considering
the logarithmof the dual objective function. O course, the nmonotonicity
of the logarithmc function guarantees that v(6) can be maxi m zed by
maximzing log v(6). Consequently, the followi ng theoremshows that, unlike
prototype geonetric programm ng, reversed geonetric progranmng i S not essen-

tially a branch of convex progranmi ng.

Iheorem 3A. TIhe transforned dual objective function

I-og v(6) a [*H y 6,(lagc §}°g11 i
LTor(6) ”

+[E 6. (log g, - log 6:) + * X(6) log xfc(s)]

[P3%6) p(6)
2
-['A 6. (log c. - log 6;) + * Xc(6) log X¢(6)]
Lxlvo) R(6)

10




i s concave in the variabl es 6.i i e[o] U[P], but convex in the variabl es

6., i e[R.

Proof. Differentiation shows that the Hessi ah matri x of second partial deriva--

tives for the function Irz 6. (log c. - log 6.)] is negative definite,
To1(8) ' v

so this function is concave. Differentiation and an application of the

Cauchy - Schwartz inequality show that the Hessian matrix for the function

[Z 6_ (logg - log6) +V'21 Xk(6)|og.)(k(6)] is negative seni-
[PI(6) p(6)

definite, so this function is also concave. (For the conplete details: of this

step, see page 122 of [9].) It follows that the function

r -
- z 6.I glog c. - Ilog 6.) JL) I\< (6) log \‘k(G) i's convex, SO

TR (6) R(6)

the proof of Theorem 3A is conplete.

The convex nature of prototype geonetric progranmng is reflected in
its "main lemm” (Lemma 1 on page 114 of [9]), which asserts that the primal
obj ective function evaluated at each primal feasible solution is greater
than or equal to the dual objective f_u”nction evaluated at each dual feasible
solution; with equality holding if, and only if, the primal and dual feasible
solutions satisfy certain "extremality conditions" (a termthat is used in
[18-22] although not in[7, 9]).

Wth suitable but very weak hypotheses, one of the main duality theorens
of prototype geonetric programmng asserts the existence of primal and dual

feasible solutions that satisfy the extremality conditions; in which event

11




the prinmal infinmmequals the dual supremum and the primal and dual optinal
solutions (namely, "mnimzing points" for the primal programand "nmaxi m zi ng
poi nts" for the dual program) are characterized as those prinal and dua
feasible solutions that satisfy the extremality conditions.

The preceding facts and the linearity of the dual constraints lead to
algorithns for finding priml and dual optinmal solutions to prototype geo-
metric prograns; and it is our ultinate goal to devise such algorithnms for
reversed geonetric programm ng. However, the lack of total convexity in
reversed geonetric programming will force us to be content with devising
algorithns for finding "equilibriumsolutions" that need not always be opti nal

Thus, the preceding remarks and the extrenality conditions for prototype

geonetric programmng help to notivate the following definition

Definition 1. A feasible solution t* to prinal programA is terned a prinal

equilibriumsolution if there is a feasible solution 6* to dual programB such

t hat

8%t 8o(t*) - u«(t*), i e [0], (18a)

Q
=}
o

& = X (6) u.(t*), i e [K], kePUR (18b)

in which case 6* is ternmed a dual equilibriumsolution. @G ven correspondi ng

primal and dual equilibriumsolutions t* and 6*, the nunbers E, £ go(t*) and

%

E v(6*) are said to be corresponding prinal and dual equilibriumval ues.

The rest of this paper #s devoted to studying the properties of equilibrium
solutions. Wth that goal in mnd, the following theoremis fundanental in
that it brings out the nobst elenmentary properties to be repetitively used in

subsequent devel opnents.

12




Theorem 3B. Each primal equilibriumsolution t* and its corresponding dual

equilibriumsolution 6* to prograns A and B respectively have the follow.ng

propertijes:

(1) t'he non-zero conponents of the vector 6* are positive; nore specifically

6, >0fa i e[o] andfor i e[PUR] (§)

(™) the non-zero conponents of the vector X (6*) are positive; nore

speci fically,

\o(6%) = 1 and %c(6*) >0 Jor.k e (PUR)(6%),

(iii) the vectors t* and .\(6*) satisfy the "conplenentary sl ackness"

condi ti ons

Xk(G*} Ak(t*> . Aoz 0y k ¢ P,

and

X(6%) [1- g« (t*)] =0, keR

Proof. The equilibriumconditions (18a) and the positivity of both go(t*)
and ua(t*) inply that 5*,i >0 for i e [0]; and Definition 1 requires that

each dual equilibriumsolution 6* satisfy the positivity conditions (8), so

6* >0 for i e [P UR](8*). Definition 1 also requires that 6* satisfy
the normality condition (15), so \,(6*) = 1, and fromconclusion (i) we see
that X(6*) >0 for k e (P UR)(6*). Finally, we sumthe equilibrium

conditions (18b) over i to showthat X (6*) = X (6*) g..ft*), ke P UR
K K K

This conpl etes our proof of Theorem 3B.

From Theorem 3B we might guess that equilibriumsolutions are intimately
related to the "Lagrangi an" for primal programA. Even though they are, we
13
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need not, nor do we, nmake explicit use of those relations in this paper.

Nevert hel ess, those relations do serve as a convenient vehicle for establishing

two illumnating facts that indicate the practical relevance of equilibrium

solutions: first, the set of all equilibriumsolutions to primal programA

is identical to the set of all those feasible solutions that are "tangentially

optimal" in a certain weakly global sense; and, second, alnost every "locally

optimal" solution to primal programA is also a priml equilibrium solution.

Thus, we devote the rest of this section to a study of those relations so

that the practical significance of succeeding sections is established.
Corresponding to primal programA is the followi ng "Lagrange's problent.

LAGRANGE PROBLEM C.  For the Lagrangi an

L(t, n) "~ gdt) + TAkAKN) TN - )],

P R
find a critical solution (t*, |i*), _namely, _a vector (t*, |j,® en|1£+q such that
() the vector t* satisifes both the prototype posynonmial constraints
gk(t) - 1 £0, k e P,

and the reversed posynomal constraints

1 - g«(t) £0, k e R

(rn the vector JJ,* satisfies the positivity conditions

iy * O, k e PUR,

(1) the partial derivatives D.JL (t, p)_of the Lagrangian L with respect

tothet.Jz;_l'L:_ (t, \x)>j =1, 2, ..., m _satisfy the conditions
DjL(t*, u*) =0, j =1 2, ..., m

(1V) the vectors t* and p,* satisfy the conplenentary slackness conditions

14




p, *kQa(t*) - 1] =0, keP,

p.*i[I - 8c(t*)] =0, k e R

Here, the posynonmials g«(t)>* e {0} UPUR, are, of course, as given.in

primal program A.

By characterizing the equilibriumsolutions to prinal programA as the
conponent vectors t* of the critical solutions (t*, [j,*) to problemC the
following theoremrelates the mai n concepts of this paper to the nore standard

concepts of nmathenati cal pr ogr amm ng.

Theor em 30 Each primal equilibriumsolution t* and its correspondi ng dual

equi l i briumsolution 6* to prograns A and B respectively produce a critical

solution (t*, p,*) to the Lagrange problemC by letting

M 2 X(6%) VA k e PUR

Conversely, each critical solution (t*, y,*) to the Lagrange problemC produces

correspondi ng equilibriumsolutions t* and 6* to primal programA and its

dual program B respectively by letting

[17go<t*) T (1) i e [0]

5]
i
Lu*, /8, (t%) ), (£%), ie [K], k e PUR

Proof, First, observe fromDefinition 1 that t* is a feasible solution to
programA and hence possesses property (I) of the Lagrange problemC.  Then,
note that the positivity of the posynonmal ¢g,(t) and the non-negativity of
Xk(6*) asserted in conclusion (ii) of Theorem 3B show that y,* as defined

satisfies property (Il1). Now, wite the orthogonality conditions (16) in

15




terns of gb(t*), ui.(t*), and ,\(C,(G*) by using the equilibriumconditions (18)

to elimnate 6*.; and then elimnate \, (6*) in favor of y* by usi n'g our defining
1 K K

formula for JJ,*, so that nultiplication of the resulting conditions by
gO(t*)/t*3, j =1, 2, ..., m inplies that t* has property (l11). Finally,
observe fromour defining fornula for p,* that nultiplication of the conpl enen-
tary slackness conditions in conclusion (iii) of Theorem3B by gO(t*) verifies
the validity of the conplenentary slackness conditions in property (IV). This
conpl etes our proof of the first half of Theorem 3C.

To prove the second hal f, observe that property (I) of the Lagrange
problem C asserts that t* is a feasible solution to program A:

Due to the positivity of the posynomal terms u.it), property (Il) and
our defining fornulas for 6* show that 6* satisfies the positivity conditions
(14). Moreover, a sunmation over i of our defining formula for 6.1 i e [0],
shows that 6* satisfies the normality condition (15); and nultiplication of
the derivative conditions in property (I1l) by t*.Jg«t*), j «1, 2, ..., m
shows that 6* satisfies the orthogonality conditions (16). Consequently, _6*
i's a feasible solution to program B.

Now, our defining formula for 6. i e [0], clearly inplies the validity
of the equilibriumconditions (18a). Mreover, if |J% is zero; then 6*z,

i e [k], must obviously be zero, so X;t (6*) is clearly zero; and hence the
validity of the corresponding equilibriumconditions (18b) is established.
On the other hand, if [j,* is positive, then the correspondi ng conpl enentary

sl ackness property (1V) inplies that g (t*) = 1, so a sunmation over i of our

K

defining formula for 6*., i e [k], shows that \ (6*) =y* /gn(t*), which in
1

turn inplies that our defining fornula for 6*., i e [k], is identical to the

correspondi ng equilibriumconditions (18b). This conpletes our proof of
Theorem 3C.

16




By characterizing the critical solutions to Lagrange problemC in terns

of those feasible solutions to priml programA that are téngéht-ially 'dpt'i mal

in a certain weakly gl obal sense, the following theoremrelates sonme of the
standard concepts of mathematical programming to nore practically rel evant

concepts.

Theor em 3D* Suppose that t* is a feasible solution to prinmal programA,

and 'I et

Z(t*) 2 {k ¢ PUR| gu(t*) =1}.

Then, t* is a conmponent vector of a critical solution (t*, |j,*) to_Lagrange

gr.oblemC if, and only if,

go(t*) * golt)

for every vector t with positive conmponents t. whose logarithnms log t. satisfy

J A 3
the linear system
<9 k e PflZ(t*),
1

| Akj[iog t.J - |Og t*3:}

=1 z 0, k e RnZ(t*),
wher e

A %Z a,, u, (tx) T ke Z(t*) i «1, 2 m

kj ij i 3 1 J ) H LR |

i e[ K]

Proof. Performng nost of the partial differentiations in the equations of

property (I11) for Lagrange problem C, and then multiplying the resulting

equations by the positive nunbers t*., j =1, 2, ..., m we readily see that

]

t* is a conponent vector of a critical solution (t*, y,*) to Lagrange problem

Cif, and only if, there exist non-negative nunbers |j,*,, k e Z(t*), for which

17




t*ijgo(t*) + Z A KA ~|Y AkAK) e j =1, 2, ..., m
Qz(t*> snz(t*)

Now, according to the well-known Farkas |emma concerning |linear systens (for
exanpl e, see Lemma 1 on page 17 of [9]), such nunbers p,*i, k e Z(t*), are

known to exist if, and only if,

0 ][ t*;D,0u(+*) [0 t; - log t*]] (19

for every vector t with positive conponents tj whose | ogarithms |og tj satisfy
the linear system
m C <0, k e POZ(t*),
. - * I
| A [logt. - logt*.] | (29

j=1 =0, k ¢ RNZ(t¥).

Consequently, to conplete our proof, we need only show that inequality (19)

can be replaced by the inequality g *)'£ Sn(') without disturbing the validity

ol!
of the precedi ng statenent.
To do so, we nake the change of independent variabl es

z
tj el i =1 2, ..., m (21)

so that primal programA is transformed into an equival ent reversed convex

programto which we can apply an el enentary theorem from convex anal ysis.

Thi s equival ent programclearly consists of mnimzing the convex function

G.(z) subject to both the prdfofybé éénvék-édnétrafhté
Ge(z) * 1, k e P, (22)

and the reversed convex constraints

Ge(z) £ 1, k e R (23)

18




wher e

G2 * Y, VYi<?: ke{ O} UPUR, - (24)
ie[k]
and
a512y + a. _z04 ... 4 a z w
¢;e i2 2 XMy e [k>ke fo} UP, (25
U, (2) 4

ce 1171 A% LT R l1e[k], keR (26)
1

O course, the convexity of these functions G,K k e {0} UPUR, follows easily
fromthe positivity of the coefficients c,li e [0] U[P] U[R.) In terns of

this notation and the inner product notation <% >, inequality (19) is sinply
0 £ <VGq(z*), z - z*>, (19a)
and inequalities (20) are si mpl y

"g ¢, K e Pnz(t*)

NG (z*), z - 7> \ (20a)
Lzo, k e RnzZ(t*).

From the convexity of Gb we know t hat
<VGq(z*), z - %> N &fz) - Goz*),
so the validity of inequality (19a) inmplies .the validity of the inequality
Go(z*) £ Go(2). (19b)

On the other hand, the solution set for the linear inequalities (20a) is
obviously a cone with vertex z*, so the validity of inequality (19b) for each
vector z in that solution cone inplies the validity of inequality (19a) for
each such solution vector z, by virtue of the differential calculus. Finally,

we observe that inequality (19b) is equivalent to the inequality

19




got*) < 40 (t). (19 ¢)

This conpl etes our proof of Theorem 3C«

The way in which a feasible solution t* ®° ez* can be tangentially o-ptirral
in a weakly global sense is indicated by the solution cone for the I|inear
inequalities (20a). The tangential nature is indicated by the presence of
7G,m(z*), k e PUR, in (20a); the global nature is indicated by the fact that

this solution cone néed not -be sufficiently small; and the weak nature is indicated
by the fact that this solution cone doesn't contain the entire set of feasible
solutions to the constraint inequalities (22) and (23) unless RIZ(t*) « 0.

W now have enough machinery to establish the optimal nature of equilibrium

solutions to prinal programA

Corollary 1. Suppose that t* is a feasible solution to prinal programA, and et

Z(t*) 2 [k e PUR| ge(t*) = 1}.

Then, t* is an equilibriumsolution to primal programA ijE, and only if,

Go(t*) 7 golt)

for every vector t with positive conponents t:I whose |ogarithns |og t.J satisfy

the linear system

£ 0, k e Pnz(t*),
m
ZAkj [log tj - log t*j
j=1
o) k e RiIZ(t*),
wher e :
Ak' * || @i'Ui(t*)) keZ(tx): ] -1, 2, .... m

I eCk]

This corollary follows immediately from Theorems 3C and 3D.
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It is worth nentioning that equilibriumsolutions to primal programA
are also tangentially optimal in an even nore weakly gl obal but nore conputa-
tionally exploitable sense, as described in [8]. Modreover, they are actually
(gl obally) optimal when primal programA is a prototype geonetric prograh
(i.e. R= 0), as can be seen fromthe main | enma of prototype geonetric
programming (Lemma 1 on page 114 of [9]). |In contrast, they need not even

Ill

be "locally optina when primal programA is not a prototype geonetric

program (i.e. R~ 0) .

For exanple, notice that the vector t* :‘(1, 1) and the vector |j,* &
produce a critical solution (t*, JJ,*) to the Lagrange probl emC correspondi ng
to the primal programA that consists of mnimzing tﬁe posynomi al gnw(t) £ t-1+ t2
subject to the single reversed posynomni al constraint g—it):'(I/Z)t— l-—f (1/2) t,J" 1.
Hence, Theorem 3C asserts that t* s (1, 1) is an equilibriumsolution to this
primal program but the contours of 9n and g1 obviously show that this equili-
brium solution is not locally optiml even though it is tangentially optinal.
Such (undesired) equilibriumsolutions are clearly unstable and hence, due to
round-off error, are possibly less likely to be obtained by nost nuneri cal
al gorithms, especially those proposed in[2, 8].

It is worth recalling the well-known fact that every locally optinal
solution to a general nonlinear programunder any of several rather weak
"constraint qualifications" is always part of a critical solution to the
correspondi ng Lagrange's probl em (for exanple, see Chapter 5 of [13] or Chapter
2 of [24]). Thus, we infer fromTheorem3C that the (desired) set of all
(globally) optimal solutions to primal programA is alnost always a subset of

the set of all primal equilibriumsolutions and hence can al nost always be

found by sharpening the nethods to be used for conputing equilibriumsolutions.
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The initial work on equilibriumsolutions for reversed geonetric pro-
grams was perforned by Passy and Wlde [16] in the setting of "generalized
pol ynonmi al prograns (i.e. signomal prograns); but they used the terninol ogy
"pseudom ni muni’ rather than equilibriumsolution. Subsequent work of a nore
detailed nature on the general relationships between locally optinal solutions,
stabl e equilibrium solutions, and unstable equilibrium solutions was performed
by Avriel and Wlliams (Section 4 of [2]); but they used the term nol ogy
"'quasi mi ni mun rather than equilibriumsolution. In addition to studying
i mportant new questions and phenonena, this paper and its conpani on paper
[8] present a self-contained alternative approach to alnost- all of the inportant
questions and phenonena studied in [2, 16].

The remaining sections of this paper bring to light sone inportant proper-
ties of equilibriumsolutions,which lead to a famly of "indirect nethods"
for computing them O her inportaht properties that lead to famlies of

"direct nethods" are brought to light in[2, 8].

4., Basic Properties of Eguilibrium Solutions. The last part of the preceding

section tended to concentrate on the properties of primal equilibrium solutions.
In this and the next section the enphasis shifts somewhat toward the properties
of dual equilibriumsolutions. Those properties are nore nearly linear in
nature, and hence dual equilibriumsolutions are sonewhat nore anenable to
conput ati on

In addition to showi ng that the non-zero conponents of dual equilibrium
solutions occur in "blocks", the follow ng fundamental theorem also presents
a useful extension of an identity that was first obtained by C.  Zener in

prototype geonetric programi ng.
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Theor em 4A. XE 6* is an equilibriumsolution to dual prodgramB, then

(i) for each ke PUR, either 6% =0 for each i e [k] or 67 >0

for each i e [Kk], with the latter being the case if, ahd_ohl‘y

lL,\k(G*) > 0; henée
[ PUR] (6*) =[(PUR) (6*)]

(ii) given the equilibriumval ue E, 2 g (t*) for_a corresponding

equilibriumsolution t* to prinal proqr'émA, the identity

Ao o ST TTT fen\IO TTT e War T g Yi]}

A TALPi(8%) "1 T TLRJ (6*)\5’1
-
ﬁrﬂ_h (a*)"k(”][ﬂkk(w k(y)]}
LTP( 6*) R (&%)
is valid for every vector y that satisfies both the orthogonality conditions
n
) a.y.=0, j =1 2, ..., m
i=1

and the condition

y- -~ ® for each i for which 6*; = 0.
1 1

Proof. Fromconclusion (ii) of Theorem 3B, we know that X_k_(6*) >0 for k e PUR.

Consequent |y, the equilibriumconditions (3.18b) and the positivity of u.(t*)

imply that either 6.,=0 for each i e [k] or 6*i >Ofor each i e [K], with'the

[atter bei ng t he casé if, and only if, Xk(6_*). >0. This establlshes concl usion (i) ,,
To prove concl usion (iij, first-divide the equilibriumconditions (3.18a)

by c; and raise both sides to the power Yy to obtain the relations

zY. :
1

Then, for each i e [k](6*) and each k e P(6*), divide the equilibriumconditions

(3.18b) by c” and raise both sides to the power y. to obtain the relations

ar e (m) yi(:_"’__z’yi, 16 [K1(%), ke B(6%).
“i i

Al'so, for each i e [k](6*) and each k e R(6*), divide the equilibriumconditions

(3i18b) by c; and raise both sides to the power -Yy to obtain the relations
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(6*1) Klk)_Yl (;l)-y”., e k0%, ke mist)a

Now multiply all of these relations together, and use the defining equations

(3.4) ad (3.5) for u*l., to obtain the relation

e [[ 1(6%) T)Yi][fml’-’)(a*) JQR](S*) (Ec:i_>-yi]
7T, G G LT, o )

wher e T‘:‘{O} UPUR and p-, = J | t.%j for each i e [T]. This establishes

our identity; because t he condition that y, = O for eachi £ [T](5%), the

. | n
A d the orth lit diti Ny =0
definition p.l E J’—i tj ij, an e orthogonal ity conditions 7. a':.jyi = 0,

L=
j =1, 2, ..., m, imply that
n n
n_, . L85 Z 3y
(p,V: = (o, 1 = ¢ e T = 1
[ ](5*) i i=1 i 1 m

for each t > 0. Thus, -our proof of Theorem4A is seen to be conplete.

The following corollary to Theore'rh 4A extends to reversed geonetric pro-
granm ng a somewhat weakened version of the inportant prototype geonetric
programm ng theoremthat asserts the equality of the primal programinfinmm

and its correspondi ng dual program supremm

Corollary 1. Corresponding primal and dual equilibriumvalues Ea :“g (t*) and
A Q —_—

= e v(6*) are always equal.

This corollary follows imediately fromthe identity in conclusion (ii) by
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choosing y tobe &, because 6* is dual feasible and hence satisfies the normality

condition \Q(6*) = 1.

O her inportant properties of dual equilibri um sol utions can be convenient| y

described in terns of the "nullity vectors" that were used in prototype geo-

metric programmng (page 84 of [9]). Anu|||tv vector is si nply any sol ution

V to the honpgeneous counterpart of the normality and orthogonality conditions,

nanel y,
Xy(v) =0 (1)
and |

a,.v. =0, i =1 2, ..., m (2)

The following corollary to Theorem 4A is especially useful because it
i sol ates each dual equilibriumsolution 6* and the posynom al coefficient

vector ¢ = (C'J.’ %) on the opposite sides of an identity.

Corollary 2. rf 6% is an equilibriumsolution to dual programB, then every

nUIIity vector v such that

V':. = 0 for each i for which 6*.l = 0

satisifes the identity

F(6*, V) = K(c, v),

wher e

s ¢ T SN LT, e0)
x{[l;l:) }k(a*f’*k(”)]M)xk(a*)"k(")]}




- I OV 1 OVl [V

This corollary follows imediately fromthe identity in conclusion (ii) by
choosing y to be V;, because v is a nullity vector and hence satisfies the

condition Xo(v) = 0, and because the condition v =0 for each i £

[P](6*) U[R(5*) inplies that-

[J_T (ci)vi][m)(ci)-vi] - [m(ci)vi] [g(ci)—vi].'

[P](6%)

The following theoremis inportant in that it sheds considerable |ight

on the nature of the equilibriumidentity F(6*, v) = K(c, v) by providing

a fundamental |ink between the basic function F(*, v), the basic const ant

K(c, v), and the directional derivative function va(—) of the dual objective
function v- in a given direction v.

Theorem4 B. |J. 6 is a feasible solution to dual programB, then 6 +r V

is also a feasible solution to dual programB for each scalar r in sone suffi-

ciently small nei ghborhood of zero if, and only if, v is a nullity véctor such

t hat

V. = 0 for each i for which 6'1 = 0

in which case the dual objective function v has a directional derivative

D v(6) at 6 in the direction V that is given by the fornul a
V —_—

Dv(6) ={log K(c, V) - log F(6, Vv) - \Q(V)}/V(e),
wher e
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oo LT T e
A W) AW
x{[lf(;[) WO ][’{(l‘)xk;a) W7

and

11 4

O (OO %1 R 1 VA
0 P R

Proof. Fromelenentary |linear algebra, we know that 6 + rv satisfies the
normality and orthogpnality conditions for at |east one non-zero scalar r if,
and only if, vis anullity vector; in which case 6 + rv satisfies the norm
ality and orthogonality conditions for every scalar r. I\/breover,. it is clear
that 6 + rv satisfies the positivity conditions for each scalar r in sone
sufficiently small nei ghborhood of zero if, and only if, V.l = 0 for each i
for which 6.1 =0. This proves the first assertion in Theorem 4B.

The second assertion can be established under much weaker hypot heses
than those that are given. 1In fact, we see fromthe defining formula (3.13)
for vthat to keep imaginary nunbers frombeing generated, the domain bf %
need only be limted to those vectors 6 that satisfy the positivity conditions,
.Given such a vector 6, we have al rea'd-.y observed that the vector 6 +rv is
al so such a vector for each scalar r in sone sufficiently small nei ghborhood
of zero if, and only if, vy = 0 for each i for which 6.1 = 0. Under these
conditions the defining formula (3.13) for v shows that at r = 0 the function

V(r) 4 v(6 + ~v) has the foIIoWi ng logarithmc derivative
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Dl og V(0) = [logc,- log6,- 1]V,

i
2,
[ae®

. T

Log ¢ .- log 6. - |3 v, +Y [Iog\. 6) +I—jx (V)
0P] (8) ST ‘

R](8) R(6)

Using our defining equation for F(6% v) and the |inear honbgeneous condition
on v, we see that

DlogV(0) =J Vilog ¢, + ) v, logc, = ) v, logec; - log F(6, v) =rg(v).
[0 (6) (B 3) &1 (6)

This equation establishes the desired formul a because of our defining equation
for K(c, v) and the linear honpgeneous condition on v. Thus, our proof of

Theorem 4B is seen to be conplete.

The following corollary to Theorem 4B shows that dual equilibrium sol u-

tions are "stationary solutions® to dual program B.

Corollary 1. 1£6* is an equilibriumsolution to dual programB, then the

identity

Dy v(6*) = 0

is valid for every vector v such that 6* +r v is a feasible solution to dual

program B for each scalar r in some sufficiently small nei ghborhood of zero.

This corollary follow imediately from choosing 5 to be 6* in Theorem 4B
and then applying Corollary 2 of Theorem 4A

As indicated by the lack of total convexity brought to light in Theorem
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3A equilibriumsolutions to dual programB need not either mninize or maxinize
the dual objective functionv .even though they are stationary solutions to
dual programB. However, dual equilibriumsolutions are "tangentially optimal"”
ina strongly global sense, as explained in [8].

The following theorem shows that dual equilibriumsolutions are al nost
characterized by the properties that have been brought to light in this section.
Theorem 4c. Lf,

(i) 6* is a feasible solution to dual program B,

(i) for each k e {0} UPUR, either 6*. =0 for each i e [K], or

_____ N 2 - —

(iii) -everymuHity vector v suchtiat

Vi =0 “for—each i for—whi—cir 6*1 =0

F(6%, V) = K(c, V),

F(s%, v) 2 {[[ ](5*)(6*1)\’1] I:I- ](5*)(6*1'.)\’1] [[R] (5*)(5*1)-\’%}
,{r ® )"k“*’-ki‘(v)][l;[)xk(s*) lk(v)]}

[m(ci)vi] !F_-g-(ci)vi] [Q(fi)-“i]’

then déletion of the zero conponents of 6* produces an equilibrium sol uti on £*

and

[ 4

Kie, V)

to the geonetric dual program Bf corresponding to the prinal programA! that

results fromdeleting those constraints in primal programA for which X (6*) ~ 0.
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Proof. Primal programA! consists of mninizing the posynoni al g(?( t) subject
to both the prototype posynom al constraints

8u(t) £ 1, k e P\ (3)
and the reversed posynomnial constraints

ge(t) * 1, k ¢ R\ ' (4)

where the index set
P« P (6Y) (5)
and the index set |
R « R (6% (6)
In the follow ng devel opnments it is notationally convenient to also enpl oy
both the synbol
Q = P UR (7)
and the synbol
T « {0} UQ. (8)
Accordi ngly, the geometric dual program B’ corresponding to primal program

Al can be described by introducing an independent dual vector variable £

whose conponents E.l, i e [T']> are not- consecutively ordered unl ess

™ =7H* {0, 1, 2, ..., q}. To give such a description, we also introduce
t he dependent dual variabl es U\ll{(E) "/S £.1, k e T", and we adapt our other
i e[ K]

notation so that

|1

K'(O {k e K'Ug(C)~0} for each K' ¢ T, (9)

and

Efc'lco % {i e[K']|]q + 0} for each K' ¢cT". (10)
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Then, dual program B’ consists of maxinizing the objective function

o ¢ {[m(;) i Ci]l: [21¢ >(;1) ]I:ERJ <€>( ) ; ]}

(11)

{[P L (:)“’k‘g’][m)wkcc)'%@}1 ,
subject to the positivity conditions
¢, = 0 i [T, (12)
the normality condition
>(C = 1, (13)
ad the orthogonality conditions
X aij/\i = o1 j=1,2, ..., m, (14)

ielT']

where
0® *y o, ot i
iefk] |
Fom hypothesis (i) we easily infer that the vector Q* with components
C*j: 6 ., - i e[T'L (16)
is a feasible solution to dual programB'; and fromhypothesis (ii) we i-rrms-di ately
see that all conmponents of £* are strictly positive. Thus, int'r.oduci ng anot her

i ndependent vector variable u whose conmponents u., i € [T'], are not consecutively

i
ordered unless T" = T =“{O, 1, 2, ..., q}, we readily deduce fromhypot hesis
(iii) that every nullity vector u for programB' satisfies the equilibrium

identity

Fi(g*, u) s K'(c, u), (17a)
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- wher e

- Fr(E*vy ¢ ([T~T (C*t)u|][ T~T K)Ul]f -l—l- g* i:l}
__ ) . U) " kl?b)

x{[PTl(—c[)mkm*) o OTT »k«,W 1"}
K(eu = (e, ¥ -‘FT—T((‘i'\.r"r [{e)™1T (17¢)

2/ _]Lr'Pfj A R']

Consequently, £* inherits from 6* every property relative to program B
that 6* has relative to programB. In addition, £* has inportant properties
that 6* need not have; nanmely, all conponents of Q@ are strictly positive, and

- hence all nunbers a)k (C)> k e T?, are strictly positive. Using all of these
properties of £*, we shall now carry out our proof by dempbnstrating the

exi stence of a vector t* such that
CrggCt*) = u(t*), i e [0] (18a)
and

g*i = ,\k/\*) uj (fc*)> .'i e Akna k e Pr URI _ (18b>

Such a vector t* is automatically a feasible solution to program A’; because

relation (18b) shows that

wk(g*) gz ;*i = wkcc*)z ui(t*) = wk(!;*)gk(t*), k E PI UR',
i e[ K] i e[ K]

which in turn inplies that
O(t*) - 1, keP' UR',
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o

by virtue of the positivity of (D(G)> k e P' UR.

The key to establishing the existence of a vector f* that satisfies
relations (18) is the application of a powerful existence theorem from prototype
geonetric programming to a certain prototype primal programA* and its geometric
dual programB*. Corresponding to prograns A* and B* is a new coefficient

vector c* with conponents

Ci, i e[0] U[RA , (19a)

ok

2 1
(g*i/mk(;*)) c; s i e [k], k e R, (19b)

which are clearly positive. Now, the defining equation (19b) readily inplies

that every vector u satisfies the identity

n e 2 c* c
CR'(CY u(ﬁm) i —l[——‘.

because it is easy to verify that R (£*) = R . Taking account of the

def.i ning equation (19a), and nmultiplying the left and right-hand sides of

t he preceding idehtity into the left and right-hand sides respectively of the
equilibriumidentity (17) shows that every nullity vector u for program B!

satisfies the identity

F(£*> u) s K+*(c*, u), (20a)

wher e

e ﬁ[[r 1(1;*) i][ JYT G ]} {f iy o wk(U)]} (20

and
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RE(c*, v) @ [I;g(c*i)ui][m(c*i)ui]. (20¢)

This identity suggests that we consider a geohetric dual program B* which

differs fromprogramB' only in that the objective function for programB* is

gi ‘ l (il) ﬂ}{l ]wk(ﬁ)wk_(o . (21)
o](c) Ci [l gy \°i Q" (©)

The fact that programs B* and B have the same constraints inplies that they
have the sane set of nullity vectors u, so our identity (20) is actually the
equilibriumidentity corresponding to programB*. The fact that prograns B*
and B' have the sane constraints al so implies that f,* is a feasible solution

to program B*, because we have al ready observed that £ is a feasible sol ution
to programB®. Morreover, the defining equation (16) shows that each component
of Q¢ is strictly positive, so £ is in the (relative) interior of the feasible
solution set for program B*.

Wth the preceding properties of £* at hand, it is now expedient to apply
to program B* the theory already developed in this paper. To do so, we tenporarily
identify programB* with programB by choosi ng c. = G*“i i e [T, while letting

=@ and R=0. Then, Theorem4B along with our equilibriumidentity (20)
for programB* shows that £% is a stationary solution to programB*. Hence,
the presence of @ in the (relative) interior of the feasible solufion set
for programB* inplies that £* is actually an optiml solution to program B*,
because program B* is convex by virtue of Theorem 3A and the relation R = 0.
This sanme relation R= 0 also shows that programB* is the geonetric dual of
a prototype prinmal programA*, so we can now apply the refined duality theory

of prototype geonetric programming ([7] or Chapter VI of [9]).
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First, using the defining equations (19) for the coefficients C*i’ we
observe that primal programA* consists of_ m ni m zi ng the posynoni al .gn(t) subj ect

to the standard posynom al constraints
gk(t) =< 1, k e P, (22a)

and

g (t) < 1, k e R, (22b)

wher e

S I R v R A R 11 23
[K]
Now, prograns A* and B* are ''canonical'” (see page 169 of [9]), because the
dual program B* 'has a feasible solution £ with strictly positive components.
Thus, the optimality of @ along with Theorem 1 on page 169 of [9] inplies
that programA* has an optinmal solution t* such that g 6t*) =V*(£*). Then,
the main | emma of prototype geonetric progranm ng (Lemma l on page 167 of

[9]) shows-that t* and £* satisfy the extremality conditions

&L 0o(t") = u (t%), e [0],
and
w0, (R, (£%), i e [K], ke P,
¢, =
o/ KGVACCMEu. Ct*)]"Y, i e[k, ksR

Al gebrai c mani pul ati on of the second part of the latter relation enables us

to rewite the latter relation in the nore conpact form

C. = 0),(3) u.(t*), i e [K], keP' UR'.
1 K 1
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This establishes the validity of relations (18) and hence conpl etes our proof

of Theorem 4C.

It is worth noting that Theorem 4C can not be sharpgned by strengthening
only its conclusion. For exanple, consider an arbitrary pair of priml and
dual prograns A" and B' that possess corresponding prinmal and dual equilibrium
solutions t* and £* respectively;, and then add to program A" an additi onal
primal constraint that can not be satisfied. Then, £* with appropriate zero
conmponent s appended produces a vector 6* that satisfies the hypotheses of
Theorem 4C relative to the resulting pair of prinmal and dual prograns A and
B; but programs A and B can not have an equilibrium solution because program
A is clearly inconsistent.

Al 't hough conputationally oriented, the next (and final) section of this

paper does shed additional light on the nature of equilibrium solutions.

5. An Indirect Method for Cbtaining Equilibrium Solutions. The theory devel oped

in the preceding section leads to useful necessary conditions that help to
deternmine equilibriumsolutions. Such necessary conditions for dual equilibrium

solutions 6* cone fromobserving that the set of all those nullity vectors

v that satisfy the 6* zero-condition (nanely, Vi = 0 for each i for which
6*1 = 0) forms a vector subspace of En.

If this nullity subspace corresponding to 6* contains only the zero vector

then the elenmentary theory of linear algebra asserts that the normality condition,
the orthogonality conditions, and the 6* zero-condition have a unique solution

6*; in which case 6* can easily be conputed by elenentary |inear algebra, and

t here afe no other dual equilibirumsolutions that satisfy the 6* zero-condition

On the other hand, if the nullity subspace corresponding to 6* contains
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nore than just the zero vector, then it has positive dinension d ~ 1 and d

basisvectors-bl, bd. Each such basis deternines a set of d basic constants

K(c, b’), j =1, 2, ..., d, and a set of d basic functions F(*,. b’),

i = 1, 2, ..., d, that give rise to a corresponding set of d equilibriufn equat i ons
F(6, b') = K(c, bl), i =1 2 ..., d, ' (1)

whi ch . (according to Corollary 2 to Theorem4A) nust be satisfied by each dual

equilibrium solution that satisfies the 6* zero-condition. From the construction
1 0, a

of the nullity vectors b , b, .e+., b, we knowthat (n - d) linearly inde-
pendent equations can be selected fromthe normality condition, the orthogonality
conditions, and the 6* zero-condition. Such a selection wll always contain
the normality condition; otherw se, the elenentary theory of |inear algebra
would inply that the dual feasible solution 6* does not exist. Each such set
of (n - d) linear equations and the d non-linear equilibriumequations (1)
provide n necessary conditions to help deternmine the n conponents of 6*.
However, the last part of Section 4 shows that these n necessary conditions are
not always sufficient in that they may have solutions that are not dual equili-
brium solutions. A conclusive test for a given solution consists of show ng
the existence or non-existence of a corresponding prinmal equilibrium solution
t*.

Before elaborating on a method for constructing correspondi ng prinal
equilibriumsolutions, it is inportant to note that not all dual equilibrium
solutions need satisfy our n conditions; but those that do not nust satisfy a
different set of n conditions obtained from equating different conponent
"bl ocks' of 6* to zero. nly conplete conponent blocks of 6* are equated to
zero because of the necessary condition given in conclusion (i) of Theorem

4A. The determ nation of all such sets of n conditions is, of course, an
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elementary (but |engthy) task in combinatorics and |inear al gebra
Froma conputational point of view, it is worth remarking that the only
nonl i near equations in a given set are the d equilibriumequations (1), so such

a set is said to have degree of difficulty d. It may be worth noting that

the equilibrium equations are actually linear in the variables |og 6.1 and

log X, when the logarithmof both sides of these equations is taken. Further-
nore, the resulting equations are linear in the paranmeters |og %: so the

famly of all reversed geonetric prograns with a fixed exponent matri X (aij)

and a given dual equilibriumsolution 6* can be found by constructing the
general solution of this linear system O course, not every reversed geonetric
program constructed in this manner need have 6* as a dual equilibriumsolution
but those and only those prograns for which there is a corresponding pri nmal
equilibrium solution t*.

To obtain the primal equilibriumsolutions corresponding to a given dua
equilibriumsolution 6* for fixed coefficients Ci Corollary 1 to Theorem 4A
shows that v(6*) can be substituted for go(t*) into the equilibriuﬁ1conditions
(3,18a) for the corresponding primal equilibriumsolutions t*. After making
this substitution, one can produce a linear systemin |og t*j by taking the
| ogarithm of both sides of the resulting conditions and those other equilibirum
conditions (3.18b) for which Xk (6*) > 0. A summation of these latter conditions
shows that 7, (6%) =\ (°*) \(t*) > °° 8(t*) - tarndnencetne corresponding
prototype and reversed prinmal constraints are automatically satisfied by
each such solution t*; but the other primal constraints (for which X _ (6*) = 0)
need not be satisfied by such a solution t*.

Consequently, the primal equilibriumsolutions t* corresponding to a given

solution 6* of the n necessary conditions that result from equating certain
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conponent blocks to zero are readily characterized as the solutions to a system
of linear equations and (usually) nonlinear inequalities, (Those inequalities
arising from single-termposynom al constraints are clearly linear.) O course
this systemmay not have a solution, in which case the vector 6* is not a dua
equilibrium solution even though it satisfies the appropriate n necessary con-
ditions. However, Theorem 4C shows that such a vector 6* with its zero conpon-
ents deleted is always a dual equilibriumsolution to the dual of the prim
program that results fron1defeting those primal constraints for which f£6*) =0

The presence of nonlinear equations and frequently non-linear inequalities
is the main difficulty with using the preceding indirect nmet hod for finding
equilibriumsolutions, In [8] we develop direct methods based on sol ving
appropri ate sequences of prototype geonetric prograns.

Finally, it is worth mentioning that when reversed constraints are not
present (i.e. R = 0) and when the primal objective function has only a single

term(i.e. [0] = {o}), dual programB is essentially the "chemical equilibrium

probl emt' that consists of mnimzing "GLbbs" free energy function™ - log v(6)
«h

subject to the "mass bal ance equations } a..6. = -a-., i =1, 2 ..., m
LJ 13 1 I.j
i =2

to obtain the "equilibriummole fraction 6*3/\*k f°" ®2°h "cheni cal species" i

that can be chenically formed fromthe ﬁ{"elenents" present in "phase" k of a

p - phase "ideal chemcal systemf. In this context, the nullity vector conponents
are called "stoichiometric coefficients", the basic constants are termed "equilibrium
constants", and the equilibriumequations are known as the "nass action |aws."

For conplete details, see [17] and Appendix C of [9] and the references cited

t her ei n.
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Appendi x A

W now illustrate with an exanple how to transforman arbitrary al gebraic
programinto an equival ent signoniaL program so .that it can be further-
transforned into an equival ent posynom al programwith the aid of the trans-
formations introduced in Section 2

Wthout |oss of generality we assune that the independent vapiables are
restricted to be positive, a condition that can, of course, always be achieved
by replacing each unrestricted independent variable with the difference of
two new positive independent variables.

Thus, suppose that we wish to mininize the algebraic function

VIVE® + 5m0] /) [VE® + 5,0 ) 0

where the f- (t), k=1, 2, 3, 4, are signomals andt = (t-, to, ..., t ).
K - Z TQ

To keep imaginary nunbers from being generated and hence nmake this a WEIT—posed

al gebraic program we must obviously include the constraints
0 < f,(t) (1)

and
0 < fo(t). - (2)
For the sane reason, we nust also include gither the constraints

0 < Vfl(t) + fa(t) (3a)

and

0 £ Vi,(t) + fa(t), (4a)

or the constraints

iv’E;Z?) ¥ £() 5 0 (3b)
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and

VEAT) +f4(t) <i 0. (4b)

In general, nore than a single programnust be solved to solve one algebraic

program In our exanple we rmust solve both the programP wth constraints
a

(3a) and (4a), and the programPP with constraints (3b) and 4b); after
whi ch we rmust choose the snaller of the two optinmal values. To be concise
we shall illustrate our additional techniques on only one of these two

prograns, nanely, programP whose consistency we shall assune.
a A N

To test for the possible occurence of” the—TTrdet er mi nal"e form vO/ 0, we
L - 3 o
shoul d first minimze just the numerator | \/f,(t) + f«(t) j subject, of course,

to the constraints (1), (2), (3a), and (4a). This programP has an optinmal *
a

value that is either zero or positive by virtue of constraint (3a). |If it is

zero, then constraint (4a) Lshows-that ei4her]there is a mninzing sequence

such that the denomlﬁ?(nz“r'\/fg(t) f,(t) is bounded frombel ow by a
positive nunber, or \/r#(t) + f4(t)d approaches zero from above for each

m ni m zi ng sequence. |In the first case the optinal value of programP and
a

hence the original programP is zero; in the second case there is presumably
a common factor that needs to be renoved from the nunerator and denomi nator,
a situation that shouldn't arise when the original programP is properly

formul ated. The renmmining possibility is that the optinal value for program
o
PL. is positive; in which event the indetermnate formVo/ 0 can not occur

a
and we nust consider both the nunerator and the denom nator sinultaneously,
that is, progran1Pd

Bef ore proceeding, we should observe that programP', is generally not

a signonmial program but for the sake of conciseness we shall not carry out its

transformation into an equival ent signomial program |nstead, we assune
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that its optimal value is positive so that we nust actually cone to grips with

the nore conplicated programP .
a

I ntroduci ng an additional positive independent variable t we see that

01

programPa consists essentially of mininmizing the posynom al

Vi,

subject to both the constraints (1), (2), (Qa), (4a) and the additiona
al gebraic constraint [ VACO* 3]/ [VITTA*T4(t)] = ywhichcan

conveniently be rewitten as

0 " - VA0V VT - fyft) +tdy(t) (5a)
by virtue of constraint (4a). To achieve our goal, we must still transform

the al gebraic functions in constraints (3a), (4a) and (5a) into signomals.

Toward that end, we introduce two additional positive independent variables

tm?f and Imt% so that (3a) and (4a) can be replaced by
0 < \/tm+1 + f3(t), (3al)
Sn+1 © f|(t)= (3a2)
and

trn,‘.z * fz(l)l (4a2)

Finally, we introduce another positive independent variable tnﬂf so that (5a)

can be replaced by
0 * . V/\ 3 + /\2 n f3(t> +t0f4(t>l (5al)

s« w (5. 2)
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»r

Thus, program Pa actually reduces to mnimzing the posynomal (Qa) subject to

the signomal constraints (1), (2), (3al), (3a2), (4al), (4a2), (5al), and
(5a2). This programis obviously a signom ;all programwhi ch can be further
transformed into a posynom al programwith the aid of the techniques given
in Section 2.

The variety of optimzation problens that can be expressed as well -posed
al gebraic prograns is worth stressing. For exanple, by virtue of the Stone-
Wei erstrauss approxi mati on theorem each program invol ving continuous functions
wi th bounded domains can be approximated with arbitrary accuracy by a rather

linmted class of al gebrai c prograns, namely, the class of polynoni al progranmns.
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