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ABSTRACT

The difference of two "posynomials" (namely, polynomials with arbitrary

real exponents, but positive coefficients and positive independent variables)

is termed a lfsignomial.lf

Each signomial program (in which a signomial is to be either minimized

or maximized subject to signomial constraints) is transformed into an

equivalent posynomial program in which a posynomial is to be minimized

subject only to inequality posynomial constraints. The resulting class of

posynomial programs is significantly larger than the class of (prototype)

"geometric programs11 (namely, posynomial programs in which a posynomial is

to be minimized subject only to upper-bound inequality posynomial constraints)

However, much of the (prototype) geometric programming theory is generalized

by studying the "equilibrium solutions11 to the "reversed geometric programs"

in this larger class. Actually, some of this theory is new even when

specialized to the class of prototype geometric programs. On the other hand,

all of it can indirectly, but easily, be applied to the much larger class

of well-posed "algebraic programs" (namely, programs involving real-valued

functions that are generated solely by addition, subtraction, multiplication,

division, and the extraction of roots).
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1. Introduction Originally developed by Duffin, Peterson and Zener [9],

geometric programming with posynomials provides a powerful method for studying

many problems in optimal engineering design [25, 26, 1, 10, 23], However,

many other important optimization problems can be modeled accurately only by

using signomials and more general types of algebraic functions. Hence the

question of extending the applicability of geometric programming to those

larger classes of programs has received considerable attention.

In particular, Section III.4 of [9] presents various techniques for

transforming a limited class of algebraic programs into equivalent (prototype)

geometric programs, but many of the most important optimization problems are

not within that limited class.

Initial attempts at rectifying this situation were made by Passy and

Wilde [16], and Blau and Wilde [3]. They generalized some of the prototype

concepts and theorems in order to treat signomial programs; but most of the

important prototype theorems are not valid in that more general setting.

Nevertheless, this paper advances their work in such a way that those difficul-

ties are at least partially overcome, even in the still more general setting

of algebraic programs.

More recently, Avriel and Williams [2] have shown how to reduce the

study of each "rational program11 to the study of a family of approximating

prototype geometric programs. That reduction forms the basis of a potentially

useful algorithm for which they have established convergence. It seems that

similar algorithms have been proposed independently by Broverman, Federowicz

and McWhirter [4], Pascual and Ben-Israel [14], and Passy [15], but for

somewhat smaller classes of programs and without convergence proofs. Actually,



the same ideas can be further exploited both theoretically and computationally

by reducing the study of each algebraic program to the study of a family of

approximating linear programs. In fact, a special application of that

reduction combined with the original duality theory for linear programming

[11, 12] provides an alternative proof [6] of the main theorems from the

rfrefined duality theory11 for prototype geometric programming ([7] or Chapter

VI of [9]). However, in overall philosophy and approach, all of that work

(on reducing the study of various programs to the study of other families

of programs with nicer properties) is not nearly as closely related to this

paper as it is to a parallel and independent companion paper [8].

Other work of that general type has been done by Charnes and Cooper

[5], who proposed methods for approximating signomial programs with proto-

type geometric programs. However, the errors involved in their approxima-

tions have never been investigated.

With the exception of a single isolated theorem whose proof makes use

of the "refined duality theory" ([7] or Chapter VI of [9]), this paper is

essentially self-contained.

2. Signomial Programs Transformed into Equivalent Posynomial Programs, By

employing the well-known elementary"transformations from mathematical pro-

gramming and by using rather obvious extensions of the transformations given

in Section III.4 of [9], each well-posed algebraic program can be transformed

into an equivalent signomial program - and hence ultimately into an equivalent

posynomial program by exploiting the transformations to be developed in this

section. Due to the inherent difficulty in giving a general analytical

description of the class of algebraic programs, we only illustrate their



transformation into equivalent signomial programs with an example in Appendix

A. In this section we shall confine our attention to the more easily described,

but much smaller, class of signomial programs.

signomial is a (generalized) polynomial
N

t ail

(with arbitrary real exponents a..) whose independent variables t. are all

restricted to be positive. It is convenient to arrange the terms of a signomial

f(t) so that those with positive coefficients c. (if any) appear first in the

summation. Then each signomial f(t) is seen to be either a posynomial (i.e.

all coefficients c. are positive), the negative of a posynomial, or the

difference of two posynomials.

By using the well-known elementary transformations employed in mathe-

matical programming, one can easily transform each signomial program into

an equivalent signomial program in which a signomial is to be minimized

subject only to upper-bound inequality signomial constraints. Moreover, it

is clear that each of the resulting constraints can be formulated in one of

the following three forms:

f(t) <: -1 f(t) < 0 f(t) < 1. (1)

We now show how to transform each of these signomial programs into an

equivalent posynomial program in which a posynomial is to be minimized subject

only to inequality posynomial constraints having one of the following two forms:

g(t) ^ 1 g(t) :> 1. (2)



Unless the objective function is already a posynomial, we first trans-

form it by introducing a new positive independent variable t^. To see how

this is done, suppose that we wish to minimize a signomial fn(t) subject to

inequality signomial constraints. The transformation to be used depends

on the sign of the constrained infimum of f^Ct)- If this sign is not negative,

we should minimize the positive independent variable t subject to the original

constraints and the additional constraint fn(t) ^ t ; in which case the

constrained infimum of t clearly gives the constrained infimum of fo(t).

If the constrained infimum of fo(t) is negative, we should maximize t^

subject to the original constraints and the additional constraint fn(t)

+ t £ 0; in which case the negative of the constrained supremum of t clearly

gives the constrained infimum of fn(t)- Now maximizing t can obviously be

accomplished by minimizing tfi , so in all cases we are left with an equivalent

program that consists of minimizing a posynomial subject only to inequality

signomial constraints.

Of course, the sign of the constrained infimum of fn(t) may not be known

in advance. In that event, one should probably make an educated guess at

the appropriate sign and hence the appropriate transformation. If the first

transformation is chosen and the resulting infimum turns out to be zero, then

the second transformation should also be tried in order to see whether the

desired infimum is actually less than zero. If the second transformation

is chosen and the resulting program turns out to be inconsistent, then the

first transformation should also be tried in order to see whether the original

program is actually inconsistent or just has a non-negative infimum. In

any event, it is clear that the additional signomial constraint can be form-

ulated in at least two of the three forms (1).



The additional transformations required to obtain an equivalent posynomial

program are most easily described within the context of a special case in which

there are only three signomial constraints, each representing one of the

three possible forms (1). Thus, suppose that we wish to minimize a posynomial

g (t) subject to the signomial constraints

fx(t) < -1 f2(t) <: 0 f3(t) < 1.

If f (t) is a posynomial, the constraint f (t) <. -1 clearly can not

be satisfied, so the program is inconsistent. If f-(t) is the negative of a

posynomial, this constraint is equivalent to the posynomial constraint

-f-(t) - 1, which already has the second of the desired forms (2). Hence,

we need to give further consideration only to the case in which f-(t) is

the difference of two posynomials.

If f«(t) is a posynomial, the'constraint Z?^ ^ ^ clearly can not be

satisfied, so the program is inconsistent. If f«(t) is the negative of a

posynomial, this constraint is automatically satisfied and therefore can be

ignored. Hence, we need to give further consideration only to the case in

which f?(t) is the difference of two posynomials.

If f~(t) is a posynomial, the constraint f~(t) ^ 1 is already a posynomial

constraint that has the first of the desired forms (2). If f«(t) is the

negative of a posynomial, this constraint is automatically satisfied and

therefore can be ignored. Hence, we need to give further consideration only

to the case in which f«(t) is the difference of two posynomials.

Thus, suppose that we wish to minimize a posynomial gn(t) subject to

the constraints



h2(t)

h (t)

- h5(t) *

- h ( t ) *

- 1

0

1,

where the h. (t), k B 1, 2, ..., 6, are posynomials and t = (t , t , ... t )
k i Z m

Introducing three new positive independent variables t -, t , and t o,

we see that t is a feasible solution to these constraints if, and only if,

there are positive values for t ,-, t 1O, and t (O such that the augmentedr m+1 m+2 mf3

vector (t, t , -, t , o, t . o) is a feasible solution to the constraintsm + 1 m + z m+J

h l ( t ) h 4 ( t )

h 2 ( t ) h 5 ( t )

h 3 ( t ) h 6 ( t )

But these constraints are clearly equivalent to the constraints

' t m + 3 ) k - 1, 2, 3,

k = 4, 5, 6,

where

8k ( t' 'm+l' fctn +

k = 2, 3

4, 5

k = 6.



Moreover, it is obvious that these functions g- (t, t , t 0> t ) are
R m + 1 m + Z m+J

posynomials and that each of the preceding six constraints has one of the

two desired forms (2).

It is now apparent from the preceding considerations that each signomial

program can easily be transformed into an equivalent posynomial program in

which a posynomial gn(t) is to be minimized subject only to inequality posynom-

ial constraints having one of the two forms (2). Hence, there is no loss of

generality in restricting our attention to this special class of posynomial

programs, so we make this simplifying restriction in the following sections.

3. Reversed Geometric Programs and their Equilibrium Solutions. The preceding

section shows how to transform each signomial program into an equivalent

posynomial program having a special form. Posynomial programs having that

special form have been termed "reversed geometric programs" [6], because

some of their inequality posynomial constraints have a direction g(t) > 1

that is the reverse of the direction g(t) < 1 required for the (prototype)

geometric programs treated in [7, 9].

The most general reversed geometric program is now stated for future

reference as

PRIMAL PROGRAM A. Find the infimum M. of a posynomial gn(t) subject to the

posynomial constraints

and

Here,

gk(t) * 1, k = 1, 2, .... p, (1)

(t) * 1, k = p + 1, ..., p + r = q (2)

gk(t) =£ U i ( t ) , k = 0, 1, ..., q, (3)
ie[k]



and

{' * 1 1 * 1 2 ai W k = 0, 1, ..., p, (4)

k = p + 1, ..., q, (5)

where

and

[k] = {ir̂ , ii^+l, . .., n k}, k = 0, 1, ..., q, (6)

1 S mQ <: nQ, nQ+ 1 * n^ £ i^, . .., •* J+ 1 ~ m q ^
 n

q ~
 n

The exponents a.. and -a.. are arbitrary real numbers, but the coefficients

c. and the independent variables t. are assumed to be positive.

We have placed minus signs in the exponents for the reversed constraint terms

(5) in order to obtain a notational simplification in the ensuing developments,

To provide other notational simplifications, we introduce the index sets

P * {1, 2, ..., p}, (8)

R = [p + 1, .., q}, (9)

and

[K] = U [k] " for each K c ( 0 ) U P U R . (10)
keK

For purposes requiring pronunciation, [K] is called "block K!f.

In terms of the preceding symbols, primal program A consists of minimiz-

ing the "primal objective function11 gn(t) subject to the prototype "primal

constraints" g, (t) ^ 1, k e P, and subject to the reversed primal constraints

g (t) ^ 1, k e R, where: the posynomial g (t) = ) u.(t) for each

ie[k]



a •
k e {0} U P U R; the posynomial term u^t) = cit1

 ±l t2
 i2---t

m
 im f o r e a c h

i e [O]U[P]; and the posynomial term u^t) = c± t ^ *
1 1 t2~

ai2.. .tm"
aim for

each i e [R]•

As in prototype geometric programming [ 9 ] , each posynomial term u. (t)

in primal program A gives rise to an independent "dual variable11 5,,i e

[0] U [P] U [R], and each posynomial gfc(t) gives rise to a dependent dual

variable X, (6) = Y 5., k e {0} U P U R. To define the "geometric dual"

ie[k]

of primal program A, it is convenient to extend the notation of the preceding

paragraph by introducing the symbols

K(6) = {k e K I Xfc(6) * 0} for each K c {o} U P U R, (11)

and

CK3 (6) = {i e [K] I 6i * 0}for each K e {0} U P U R. (12)

Then, corresponding to primal program A is the following geometric dual

program.

DUAL PROGRAM B. Find the supremum M^ of the "dual objective function"

subject to the "dual constraints" that consist of the "positivity conditions"

6± * 0, ie{l, 2, ..., n} = [0] U [P] U [R], (14)

the "normality condition"

Xo(6) = 1, (15)

and the "orthogonality conditions"



n

L a.. 6. = 0, j = 1, 2, ..., m. (16)
J

Here

X, (6) * Y 6., k e CO, 1, ..., q} =» {0} U P U R, (17)
ie[k]

and the numbers a.. and c. are as given in primal program A.
IJ I

The dual constraints are identical to their analogues in prototype

geometric programming; and they are linear, so the dual feasible solution set

is either empty or polyhedral and convex. The dual objective function differs

from its analogue only by the presence of minus signs in the exponents of

the factors corresponding to the reversed primal constraints; but those minus

signs result in very large theoretical and computational differences between

reversed and prototype geometric programming.

The source of those differences is most easily revealed by considering

the logarithm of the dual objective function. Of course, the monotonicity

of the logarithmic function guarantees that v(6) can be maximized by

maximizing log v(6). Consequently, the following theorem shows that, unlike

prototype geometric programming, reversed geometric programming is not essen-

tially a branch of convex programming.

Theorem 3A. The transformed dual objective function

log v(6)

[0](6)

a [* y 6 (log c _ § } 1
Lrr>~l/£\ -*

6± (log Cj. - log 6±) + ^ Xfc(6) log Xfc(6)

J^6) p(6)

- ^ 6± (log c± - log 6t) + ^ Xk(6) log X k(6)|

R(6)

10



is concave in the variables 6., i e [o] U [ P ] , but convex in the variables

6±, i e [R].

Proof. Differentiation shows that the Hessian matrix of second partial deriva-

tives for the function I ) 6. (log c. - log 6.) is negative definite,

L[0](6) " X X J

so this function is concave. Differentiation and an application of the

Cauchy - Schwartz inequality show that the Hessian matrix for the function

is negative semi-6j_ (log c. - log 6.) + 2, Xk(6)log Xk(6)
L[P](6) p(6)

definite, so this function is also concave. (For the complete details: of this

step, see page 122 of [9].) It follows that the function

6. (log c. - log 6.) + ) \ (6) log \ (6) is convex, so
i i l JLJ k k

L[R](6) R(6)

the proof of Theorem 3A is complete.

The convex nature of prototype geometric programming is reflected in

its "main lemma" (Lemma 1 on page 114 of [9]), which asserts that the primal

objective function evaluated at each primal feasible solution is greater

than or equal to the dual objective function evaluated at each dual feasible

solution; with equality holding if, and only if, the primal and dual feasible

solutions satisfy certain "extremality conditions" (a term that is used in

[18-22] although not in [7, 9]).

With suitable but very weak hypotheses, one of the main duality theorems

of prototype geometric programming asserts the existence of primal and dual

feasible solutions that satisfy the extremality conditions; in which event

11



the primal infimum equals the dual supremum, and the primal and dual optimal

solutions (namely, "minimizing points" for the primal program and "maximizing

points" for the dual program) are characterized as those primal and dual

feasible solutions that satisfy the extremality conditions.

The preceding facts and the linearity of the dual constraints lead to

algorithms for finding primal and dual optimal solutions to prototype geo-

metric programs; and it is our ultimate goal to devise such algorithms for

reversed geometric programming. However, the lack of total convexity in

reversed geometric programming will force us to be content with devising

algorithms for finding "equilibrium solutions" that need not always be optimal.

Thus, the preceding remarks and the extremality conditions for prototype

geometric programming help to motivate the following definition.

Definition 1. A feasible solution t* to primal program A is termed a primal

equilibrium solution if there is a feasible solution 6* to dual program B such

that

8*t 80(t*) - u±(t*), i e [0], (18a)

and

6*. = X, (6*) u.(t*), i e [k], k e P U R; (18b)

in which case 6 * is termed a dual equilibrium solution. Given corresponding

primal and dual equilibrium solutions t* and 6*, the numbers EA - g (t*) and

E = v(6*) are said to be corresponding primal and dual equilibrium values.

The rest of this paper ±s devoted to studying the properties of equilibrium

solutions. With that goal in mind, the following theorem is fundamental in

that it brings out the most elementary properties to be repetitively used in

subsequent developments.

12



Theorem 3B. Each primal equilibrium solution t* and its corresponding dual

equilibrium solution 6* to programs A and B respectively have the following

properties:

(1) the non-zero components of the vector 6* are positive; more specifically

6* > 0 for_ i e [o] and for i e [P U R] (6*),

(*•*•) the non-zero components of the vector X (6*) are positive; more

specifically,

\0(6*) = 1 and Xfc(6*) > 0 Jor k e (P U R)(6*),

(iii) the vectors t* and .\(6*) satisfy the "complementary slackness"

conditions

and

Xk ( 6* } ^ k
( t * > - ^ = °> k

Xk(6*) [1 - gk (t*)] = 0 , k e R.

Proof. The equilibrium conditions (18a) and the positivity of both g (t*)

and uA(t*) imply that 5*, > 0 for i e [0]; and Definition 1 requires that

each dual equilibrium solution 6* satisfy the positivity conditions (8), so

6*t > 0 for i e [P U R](8*). Definition 1 also requires that 6* satisfy

the normality condition (15), so \n (6*) = 1; and from conclusion (i) we see

that Xk(6*) > 0 for k e (P U R)(6*). Finally, we sum the equilibrium

conditions (18b) over i to show that X, (6*) = X, (6*) g. ft*), k e P U R.
K. K. K.

This completes our proof of Theorem 3B.

From Theorem 3B we might guess that equilibrium solutions are intimately

related to the "Lagrangian" for primal program A. Even though they are, we

13
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need not, nor do we, make explicit use of those relations in this paper.

Nevertheless, those relations do serve as a convenient vehicle for establishing

two illuminating facts that indicate the practical relevance of equilibrium

solutions: first, the set of all equilibrium solutions to primal program A

is identical to the set of all those feasible solutions that are "tangentially

optimal" in a certain weakly global sense; and, second, almost every "locally

optimal" solution to primal program A is also a primal equilibrium solution.

Thus, we devote the rest of this section to a study of those relations so

that the practical significance of succeeding sections is established.

Corresponding to primal program A is the following "Lagrangefs problem".

LAGRANGE PROBLEM C. For the Lagrangian

L(t, n) ^ gQ(t) + I^k^k^) " ^ + Z^k[l - gk(t)],
P R

find a critical solution (t*, |i*), namely, a vector (t*, |j,*) e E such that

(I) the vector t* satisifes both the prototype posynomial constraints

gk(t) - 1 £ 0, k e P,

and the reversed posynomial constraints

1 - gk(t) £ 0, k e R,

(II) the vector JJ,* satisfies the positivity conditions

|ik * 0, k e PUR,

(III) the partial derivatives D.L (t, p,) of the Lagrangian L with respect

to the t. aj: (t, \x)> j = 1, 2, ..., m, satisfy the conditions

DjL(t*, ut*) = 0 , j = 1, 2, ..., m,

(IV) the vectors t* and p,* satisfy the complementary slackness conditions

14



p,*kCgk(t*) - 1] = 0, k e P ,

and

p.*k[l - 8k(t*)] = 0 , k e R.

Here, the posynomials gk(t)>
 k e {o} U P U R , are, of course, as given in

primal program A.

By characterizing the equilibrium solutions to primal program A as the

component vectors t* of the critical solutions (t*, |j,*) to problem C, the

following theorem relates the main concepts of this paper to the more standard

concepts of mathematical programming.

Theorem 3Ci Each primal equilibrium solution t* and its corresponding dual

equilibrium solution 6* to programs A and B respectively produce a critical

solution (t*, p,*) to the Lagrange problem C by letting

M.*k ~ Xk(6*) V ^ ' k e PUR.*k ~ Xk

Conversely, each critical solution (t*, y,*) to the Lagrange problem C produces

corresponding equilibrium solutions t* and 6* to primal program A and its

dual program B respectively by letting

[l/go<t*)]Ui(t*), i e [0]
i

[k], k e PUR.

Proof, First, observe from Definition 1 that t* is a feasible solution to

program A and hence possesses property (I) of the Lagrange problem C. Then,

note that the positivity of the posynomial gn(t) and the non-negativity of

Xk(6*) asserted in conclusion (ii) of Theorem 3B show that y,* as defined

satisfies property (II). Now, write the orthogonality conditions (16) in

15



terms of gn(t*), u.(t*), and \,(6*) by using the equilibrium conditions (18)
0 i *c

to eliminate 6*.; and then eliminate \ (6*) in favor of y,* by using our defining
1 K. K.

formula for JJ,*, so that multiplication of the resulting conditions by

g (t*)/t*#, j = 1, 2, ..., m, implies that t* has property (III). Finally,

observe from our defining formula for p,* that multiplication of the complemen-

tary slackness conditions in conclusion (iii) of Theorem 3B by g (t*) verifies

the validity of the complementary slackness conditions in property (IV). This

completes our proof of the first half of Theorem 3C.

To prove the second half, observe that property (I) of the Lagrange

problem C asserts that t* is a feasible solution to program A.

Due to the positivity of the posynomial terms u.(t), property (II) and

our defining formulas for 6* show that 6* satisfies the positivity conditions

(14). Moreover, a summation over i of our defining formula for 6*., i e [0],

shows that 6* satisfies the normality condition (15); and multiplication of

the derivative conditions in property (III) by t*./g~(t*), j « 1, 2, ..., m,

shows that 6* satisfies the orthogonality conditions (16). Consequently, 6*

is a feasible solution to program B.

Now, our defining formula for 6*.> i e [0], clearly implies the validity

of the equilibrium conditions (18a). Moreover, if |j* is zero; then 6*.,

i e [k], must obviously be zero, so X, (6*) is clearly zero; and hence the

validity of the corresponding equilibrium conditions (18b) is established.

On the other hand, if |j,* is positive, then the corresponding complementary

slackness property (IV) implies that g. (t*) = 1, so a summation over i of our
K.

defining formula for 6*., i e [k], shows that \ (6*) = y,*- /gn(t*), which in

turn implies that our defining formula for 6*., i e [k] , is identical to the

corresponding equilibrium conditions (18b). This completes our proof of

Theorem 3C.

16



By characterizing the critical solutions to Lagrange problem C in terms

of those feasible solutions to primal program A that are tangentially optimal

in a certain weakly global sense, the following theorem relates some of the

standard concepts of mathematical programming to more practically relevant

concepts.

Theorem 3D* Suppose that t* is a feasible solution to primal program A,

and let

Z(t*) = R| gk(t*) = 1}.

Then, t* is a component vector of a critical solution (t*, |j,*) to Lagrange

problem C if, and only if,

go(t*) * gQ(t)

for every vector t with positive components t. whose logarithms log t. satisfy
j A 3

the linear system

I Akj[iog t. - log t*3:
o,

0,

k e PflZ(t*),

k e RnZ(t*),

where

k e Z(t*), j « 1, 2, ..., m.

ie[k]

Proof. Performing most of the partial differentiations in the equations of

property (III) for Lagrange problem C, and then multiplying the resulting

equations by the positive numbers t*., j = 1, 2, ..., m, we readily see that

t* is a component vector of a critical solution (t*, y,*) to Lagrange problem

C if, and only if, there exist non-negative numbers |j,* , k e Z(t*), for which

17



^*kAkj ~L ^kAkj " °' j = 1, 2, ..., m.
Qnz(t*> snz(t*)

Now, according to the well-known Farkas lemma concerning linear systems (for

example, see Lemma 1 on page 17 of [9]), such numbers p,*fc, k e Z(t*), are

known to exist if, and only if,
m

0 <:][ t* D go(t*) [log tj - log t*j] (19)

for every vector t with positive components t. whose logarithms log t. satisfy

the linear system

m C < 0, k e P0Z(t*),

I Akj [log t. - log t*.] j (2Q)

Consequently, to complete our proof, we need only show that inequality (19)

can be replaced by the inequality g (t*)'£ Sn(t) without disturbing the validity

of the preceding statement.

To do so, we make the change of independent variables

tj = e j, j = 1, 2, ..., m, (21)

so that primal program A is transformed into an equivalent reversed convex

program to which we can apply an elementary theorem from convex analysis.

This equivalent program clearly consists of minimizing the convex function

Gn(z) subject to both the prototype convex constraints

Gfc(z) * 1, k e P, (22)

and the reversed convex constraints

Gfc(z) £ 1, k e R, (23)

18



where

and

Gk(z) * Y, U i < z ) ' ke{O}UPUR, (24)
ie[k]

a. _zo 4- . . . 4- a. z „ ^
i2 2 xmm> ± e [k]> k e f0} UP , (25)

12 2 ••' im m^ 1 e [k], k e R. (26)

Of course, the convexity of these functions G,, k e {0}UPUR, follows easily

from the positivity of the coefficients c, i e [0] U [P] U [R].) In terms of

this notation and the inner product notation <%•>, inequality (19) is simply

0 £ <VG Q(z*), z - z*>, (19a)

and inequalities (20) are simply

k e Pnz(t*)

k e R nZ(t*).

<VGfc(z*), z - z*> \ (20a)

From the convexity of Go we know that

<VGQ(z*), z - z*> ^ GQ(z) - GQ(z*),

so the validity of inequality (19a) implies the validity of the inequality

GQ(z*) £ GQ(z). (19b)

On the other hand, the solution set for the linear inequalities (20a) is

obviously a cone with vertex z*, so the validity of inequality (19b) for each

vector z in that solution cone implies the validity of inequality (19a) for

each such solution vector z, by virtue of the differential calculus. Finally,

we observe that inequality (19b) is equivalent to the inequality
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gQ(t*) <; g()(t). (19 c)

This completes our proof of Theorem 3C«

The way in which a feasible solution t* s e can be tangentially optimal

in a weakly global sense is indicated by the solution cone for the linear

inequalities (20a). The tangential nature is indicated by the presence of

7G, (z*), k e PUR, in (20a); the global nature is indicated by the fact that
tc

this solution cone need not be sufficiently small; and the weak nature is indicated

by the fact that this solution cone doesn't contain the entire set of feasible

solutions to the constraint inequalities (22) and (23) unless RflZ(t*) « 0.

We now have enough machinery to establish the optimal nature of equilibrium

solutions to primal program A.

Corollary 1. Suppose that t* is a feasible solution to primal program A, and let

Z(t*) = [k e P U R | gk(t*) = 1}.

Then, t* is an equilibrium solution to primal program A ijE;, and only if,

go(t*) ^ gQ(t)

for every vector t with positive components t. whose logarithms log t. satisfy

the linear system

{£ 0, k e Pnz(t*),

SO, k e RflZ(t*),
where

I aijUi(t*)) k e Z(t*)' j - 1, 2, .... m.
ieCk]

Akj * I aij

This corollary follows immediately from Theorems 3C and 3D.
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It is worth mentioning that equilibrium solutions to primal program A

are also tangentially optimal in an even more weakly global but more computa-

tionally exploitable sense, as described in [8]. Moreover, they are actually

(globally) optimal when primal program A is a prototype geometric program

(i.e. R - 0), as can be seen from the main lemma of prototype geometric

programming (Lemma 1 on page 114 of [9]). In contrast, they need not even

be "locally optimal11 when primal program A is not a prototype geometric

program (i.e. R ̂  0) .

For example, notice that the vector t* = (1, 1) and the vector |j,* - 1

produce a critical solution (t*, JJ,*) to the Lagrange problem C corresponding

to the primal program A that consists of minimizing the posynomial gn(
t) ~ t- + t

subject to the single reversed posynomial constraint g-(t)=(l/2)t- -f (1/2) t,T ̂  1

Hence, Theorem 3C asserts that t* = (1, 1) is an equilibrium solution to this

primal program; but the contours of gn and g obviously show that this equili-

brium solution is not locally optimal even though it is tangentially optimal.

Such (undesired) equilibrium solutions are clearly unstable and hence, due to

round-off error, are possibly less likely to be obtained by most numerical

algorithms, especially those proposed in [2, 8].

It is worth recalling the well-known fact that every locally optimal

solution to a general nonlinear program under any of several rather weak

"constraint qualifications" is always part of a critical solution to the

corresponding Lagrange1s problem (for example, see Chapter 5 of [13] or Chapter

2 of [24]). Thus, we infer from Theorem 3C that the (desired) set of all

(globally) optimal solutions to primal program A is almost always a subset of

the set of all primal equilibrium solutions and hence can almost always be

found by sharpening the methods to be used for computing equilibrium solutions.
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The initial work on equilibrium solutions for reversed geometric pro-

grams was performed by Passy and Wilde [16] in the setting of "generalized

polynomial programs11 (i.e. signomial programs); but they used the terminology

lfpseudominimumff rather than equilibrium solution. Subsequent work of a more

detailed nature on the general relationships between locally optimal solutions,

stable equilibrium solutions, and unstable equilibrium solutions was performed

by Avriel and Williams (Section 4 of [2]); but they used the terminology

flquasiminimumM rather than equilibrium solution. In addition to studying

important new questions and phenomena, this paper and its companion paper

[8] present a self-contained alternative approach to almost all of the important

questions and phenomena studied in [2, 16].

The remaining sections of this paper bring to light some important proper-

ties of equilibrium solutions,which lead to a family of "indirect methods"

for computing them. Other important properties that lead to families of

"direct methods" are brought to light in [2, 8].

4. Basic Properties of Equilibrium Solutions. The last part of the preceding

section tended to concentrate on the properties of primal equilibrium solutions.

In this and the next section the emphasis shifts somewhat toward the properties

of dual equilibrium solutions. Those properties are more nearly linear in

nature, and hence dual equilibrium solutions are somewhat more amenable to

computation.

In addition to showing that the non-zero components of dual equilibrium

solutions occur in "blocks", the following fundamental theorem also presents

a useful extension of an identity that was first obtained by C. Zener in

prototype geometric programming.
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Theorem 4A. X£ 6* is an equilibrium solution to dual program B, then

(i) for each k e P U R , either 6*t = 0 for each i e [k] or 6* > 0

for each i e [k], with the latter being the case if, and only

if,\ (6*) > 0; hence

[PUR] (6*) = [(PUR) (6*)]

(ii) given the equilibrium value E. - gft(t*) for a corresponding

equilibrium solution t* to primal program A, the identity

LTP(6*)

is valid for every vector y that satisfies both the orthogonality conditions
n

) a y = 0 , j = 1, 2, ..., m,

and the condition

y- = ® for each i for which 6*# = 0.

Proof. From conclusion (ii) of Theorem 3B, we know that Xk(6*) > 0 for k e PUR.

Consequently, the equilibrium conditions (3.18b) and the positivity of u.(t*)

imply that either 6*. = 0 for each i e [k] or 6* > 0 for each i e [K], with the

latter being the case if, and only if, Xk(6*) > 0. This establishes conclusion (i) ,

To prove conclusion (ii), first divide the equilibrium conditions (3.18a)

by c and raise both sides to the power y. to obtain the relations

Then, for each i e [k](6*) and each k e P(6*), divide the equilibrium conditions

(3.18b) by c^ and raise both sides to the power y. to obtain the relations

() y l

Also, for each i e [k](6*) and each k e R(6*), divide the equilibrium conditions

(3il8b) by ci and raise both sides to the power -y. to obtain the relations
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' ' ^ 1 ' " ' f X -' r i .T,^x k e R ( 6 * ) a

Now^multiply all of these relations together, and use the defining equations

(3.4) and (3.5) for u*., to obtain the relation

\ x <

where T = {0} U P U R and p. = J | t.aij for each i e [T]. This establishes

our identity; because the condition that y. = 0 for each i £ [ T ] ( 5 * ) , the

definition p. - I._ I t.aij, and the orthogonality conditions > a. .y. = 0,

i l

j = 1, 2, . . ., m, imply that
n

n

for each t > 0. Thus, our proof of Theorem 4A is seen to be complete.

The following corollary to Theorem 4A extends to reversed geometric pro-

gramming a somewhat weakened version of the important prototype geometric

programming theorem that asserts the equality of the primal program infimum

and its corresponding dual program supremum.

Corollary 1. Corresponding primal and dual equilibrium values EA = g (t*) and

A Q
E - v(6*) are always equal.

This corollary follows immediately from the identity in conclusion (ii) by
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choosing y tobe 6*, because 6* is dual feasible and hence satisfies the normality

condition \Q(6*) = 1.

Other important properties of dual equilibrium solutions can be conveniently

described in terms of the "nullity vectors" that were used in prototype geo-

metric programming (page 84 of [9]). A nullity vector is simply any solution

V to the homogeneous counterpart of the normality and orthogonality conditions,

namely,

XQ(v) = 0 (1)

and
n

L a v = 0 , j = 1, 2, ..., m. (2)

The following corollary to Theorem 4A is especially useful because it

isolates each dual equilibrium solution 6* and the posynomial coefficient

vector c = (c. , ..., c ) on the opposite sides of an identity.

Corollary 2. rf 6* is an equilibrium solution to dual program B, then every

nullity vector v such that

V. = 0 for each i for which 6*. = 0

satisifes the identity

F(6*, V) = K(c, v),

where

to>
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and

This corollary follows immediately from the identity in conclusion (ii) by

choosing y to be V; because v is a nullity vector and hence satisfies the

condition X0(v) = 0, and because the condition v. =0 for each i £

[P](6*) U [R](5*) implies that

The following theorem is important in that it sheds considerable light

on the nature of the equilibrium identity F(6*, v) = K(c, v) by providing

a fundamental link between the basic function F(*, v), the basic constant

K(c, v), and the directional derivative function D v(-) of the dual objective

function v in a given direction v.

Theorem 4 B. IJ: 6 is a feasible solution to dual program B, then 6 + r V

is also a feasible solution to dual program B for each scalar r in some suffi-

ciently small neighborhood of zero if, and only if, v is a nullity vector such

that

V. = 0 for each i for which 6. = 0;

in which case the dual objective function v has a directional derivative

D v(6) at 6 in the direction V that is given by the formula
v —

Dvv(6) = {log K(c, V) - log F(6, v) - \Q(V)}/V(6),

where
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(6)

and

K(c,

Proof. From elementary linear algebra, we know that 6 + rv satisfies the

normality and orthogonality conditions for at least one non-zero scalar r if,

and only if, v is a nullity vector; in which case 6 + rv satisfies the norm-

ality and orthogonality conditions for every scalar r. Moreover, it is clear

that 6 + rv satisfies the positivity conditions for each scalar r in some

sufficiently small neighborhood of zero if, and only if, V. = 0 for each i

for which 6. = 0 . This proves the first assertion in Theorem 4B.

The second assertion can be established under much weaker hypotheses

than those that are given. In fact, we see from the defining formula (3.13)

for v that to keep imaginary numbers from being generated, the domain of v

need only be limited to those vectors 6 that satisfy the positivity conditions,

Given such a vector 6, we have already observed that the vector 6 + rv is

also such a vector for each scalar r in some sufficiently small neighborhood

of zero if, and only if, v. = 0 for each i for which 6. = 0. Under these

conditions the defining formula (3.13) for v shows that at r = 0 the function

V(r) = v(6 + ^v) has the following logarithmic derivative
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D log V(0) = 2, [log c - log 6 - 1 |v.
[0]($)

L Log c - log 6. - lJ v. + L Llog \ (6) + lJx,(v)
DP] (8) P(6) k k

[log c. - log 6. - l]v. - I [log Xk(5) + l}k(v).
) R(6)

Using our defining equation for F(6% v) and the linear homogeneous condition

on v, we see that

log V(0) = J V± log

[0] (6)
c±

This equation establishes the desired formula because of our defining equation

for K(c, v) and the linear homogeneous condition on v. Thus, our proof of

Theorem 4B is seen to be complete.

The following corollary to Theorem 4B shows that dual equilibrium solu-

tions are "stationary solutions11 to dual program B.

Corollary 1. l£ 6* is an equilibrium solution to dual program B, then the

identity

D v v(6*) = 0

is valid for every vector v such that 6* + r v is a feasible solution to dual

program B for each scalar r in some sufficiently small neighborhood of zero.

This corollary follows immediately from choosing 5 to be 6* in Theorem 4B

and then applying Corollary 2 of Theorem 4A.

As indicated by the lack of total convexity brought to light in Theorem
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3 A, equilibrium solutions to dual program B need not either minimize or maximize

the dual objective function v even though they are stationary solutions to

dual program B. However, dual equilibrium solutions are "tangentially optimal"

in a strongly global sense, as explained in [8].

The following theorem shows that dual equilibrium solutions are almost

characterized by the properties that have been brought to light in this section.

Theorem 4c. If,

(i) 6* is a feasible solution to dual program B,

(ii) for each k e {0}UPUR, either 6*. = 0 for each i e [k], or
— — — — — • — — 2 . — — — — — . —

6*. > 0 for each i e [k],

(iii) every nullity vector v such that

V. = 0 for each i for which 6*. = 0

satisfies the identity

F(6*, V) = K(c, v),

where

and

then deletion of the zero components of 6* produces an equilibrium solution £*

to the geometric dual program B f corresponding to the primal program A1 that

results from deleting those constraints in primal program A for which Xi(6*) = 0.
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Proof. Primal program A1 consists of minimizing the posynomial gQ(t) subject

to both the prototype posynomial constraints

8k(t) £ 1, k e P \ (3)

and the reversed posynomial constraints

gk(t) * 1, k € R \ (4)

where the index set

Pf « P (6*) (5)

and the index set

Rf • R (6*) (6)

In the following developments it is notationally convenient to also employ

both the symbol

Q! = P1 UR 1 (7)

and the symbol

T1 « {0} U Qf. (8)

Accordingly, the geometric dual program Bf corresponding to primal program

A1 can be described by introducing an independent dual vector variable £

whose components £., i e [Tf]> are not consecutively ordered unless

T1 = T = {0, 1, 2, ..., q}. To give such a description, we also introduce

the dependent dual variables uv.(£) ^/ £., k e Tf, and we adapt our other

ie[k]

notation so that

K'(O = {k e K f U k (C)^0} for each Kf c T1, (9)

and

E f c ' l C O - { i e [ K ' ] | q + 0 } f o r e a c h K ' c T ' . ( 10 )
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Then, dual program Bf consists of maximizing the objective function

v»

subject to the positivity conditions

0,

the normality condition

u>0(C)

and the orthogonality conditions

X aij^i = °'

where
(C) * IU)k(C) * I

ie[k]

(11)

i e [T 1 ] ,

j = 1, 2, . . . , m,

(12)

(13)

(14)

k e T 1 . (15)

From hypothesis (i) we easily infer that the vector Q* with components

i e [T'L (16)C*± = 6*., -

is a feasible solution to dual program Bf; and from hypothesis (ii) we immediately

see that all components of £* are strictly positive. Thus, introducing another

independent vector variable u whose components u., i € [T T], are not consecutively

ordered unless Tf = T = {0, 1, 2, ..., q}, we readily deduce from hypothesis

(iii) that every nullity vector u for program Bf satisfies the equilibrium

identity

F f(£*, u) s K f(c, u ) , (17a)
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where

Fr(£* ([T~T (c*t)
ui][ T~T K)U i ] f

t T T »k«;Wu)]"}
(17b)

and

K'(c, u) = II |(c, rill I |(c,ri||| |(c )""i| (17 C )

Consequently, £* inherits from 6* every property relative to program Bf

that 6* has relative to program B. In addition, £* has important properties

that 6* need not have; namely, all components of Q* are strictly positive, and

hence all numbers a), (C*)> k e T?, are strictly positive. Using all of these

properties of £*, we shall now carry out our proof by demonstrating the

existence of a vector t* such that

C^ggCt*) = u±(t*), i e [0] (18a)

and

£*i = ^k^*) ui (fc*)> -i e ^ k ^ k e P ' U R l - (18b>

Such a vector t* is automatically a feasible solution to program A1; because

relation (18b) shows that

ie[k] ie[k]

which in turn implies that

gk(t*) - 1, k e P ' U R ' ,

32



by virtue of the positivity of (Dk(G*)> k e P'UR
1.

The key to establishing the existence of a vector f* that satisfies

relations (18) is the application of a powerful existence theorem from prototype

geometric programming to a certain prototype primal program A* and its geometric

dual program B*. Corresponding to programs A* and B* is a new coefficient

vector c* with components

ci, i e [0] U [Pi , (19a)

2 _T

k e R!, (19b)

which are clearly positive. Now, the defining equation (19b) readily implies

that every vector u satisfies the identity

n
[Rfl

because it is easy to verify that Rf(£*) = R! . Taking account of the

defining equation (19a), and multiplying the left and right-hand sides of

the preceding identity into the left and right-hand sides respectively of the

equilibrium identity (17) shows that every nullity vector u for program B1

satisfies the identity

F*(£*> u) s K*(c*, u), (20a)

where

rJ7T
L CQG(C*)

and
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This identity suggests that we consider a geometric dual program B* which

differs from program B! only in that the objective function for program B* is

v*(0 i (21)

The fact that programs B* and Bf have the same constraints implies that they

have the same set of nullity vectors u, so our identity (20) is actually the

equilibrium identity corresponding to program B*. The fact that programs B*

and Bf have the same constraints also implies that fo* is a feasible solution

to program B*, because we have already observed that £* is a feasible solution

to program B1. Moreover, the defining equation (16) shows that each component

of Q* is strictly positive, so £* is in the (relative) interior of the feasible

solution set for program B*.

With the preceding properties of £* at hand, it is now expedient to apply

to program B* the theory already developed in this paper. To do so, we temporarily

identify program B* with program B by choosing c. = c*., i e [T 1], while letting

P = Q1 and R = 0. Then, Theorem 4B along with our equilibrium identity (20)

for program B* shows that £* is a stationary solution to program B*. Hence,

the presence of Q* in the (relative) interior of the feasible solution set

for program B* implies that £* is actually an optimal solution to program B*,

because program B* is convex by virtue of Theorem 3A and the relation R = 0.

This same relation R = 0 also shows that program B* is the geometric dual of

a prototype primal program A*, so we can now apply the refined duality theory

of prototype geometric programming ([7] or Chapter VI of [9]).
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First, using the defining equations (19) for the coefficients c*., we

observe that primal program A* consists of minimizing the posynomial gn(t) subject

to the standard posynomial constraints

gk(t) < 1, k e P', (22a)

and

gk*(t) < 1, k e R!, (22b)

where

8 k * ( t ) * I [ C*i / u )k (C*>] 2 [ U i ( t ) ] " 1 5 k e R 1 . (23)
[k]

Now, programs A* and B* are flcanonicaltT (see page 169 of [9]), because the

dual program B* has a feasible solution £* with strictly positive components.

Thus, the optimality of Q* along with Theorem 1 on page 169 of [9] implies

that program A* has an optimal solution t* such that g (t*) = v*(£*). Then,

the main lemma of prototype geometric programming (Lemma 1 on page 167 of

[9]) shows that t* and £* satisfy the extremality conditions

G*.go(t*) = u.(t*), i e [0],

and

i e [k], k e P',

^KGV^CC^Eu.Ct*)]"1, i e [k], k s R1.

Algebraic manipulation of the second part of the latter relation enables us

to rewrite the latter relation in the more compact form

C*. = 0),(G*) u.(t*), i e [k], k e P ' U R 1 .
1 K 1
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This establishes the validity of relations (18) and hence completes our proof

of Theorem 4C.

It is worth noting that Theorem 4C can not be sharpened by strengthening

only its conclusion. For example, consider an arbitrary pair of primal and

dual programs Af and B1 that possess corresponding primal and dual equilibrium

solutions t* and £* respectively; and then add to program Af an additional

primal constraint that can not be satisfied. Then, £* with appropriate zero

components appended produces a vector 6* that satisfies the hypotheses of

Theorem 4C relative to the resulting pair of primal and dual programs A and

B; but programs A and B can not have an equilibrium solution because program

A is clearly inconsistent.

Although computationally oriented, the next (and final) section of this

paper does shed additional light on the nature of equilibrium solutions.

5. An Indirect Method for Obtaining Equilibrium Solutions. The theory developed

in the preceding section leads to useful necessary conditions that help to

determine equilibrium solutions. Such necessary conditions for dual equilibrium

solutions 6* come from observing that the set of all those nullity vectors

v that satisfy the 6* zero-condition (namely, v. = 0 for each i for which

6*. - 0) forms a vector subspace of E .

If this nullity subspace corresponding to 6* contains only the zero vector,

then the elementary theory of linear algebra asserts that the normality condition,

the orthogonality conditions, and the 6* zero-condition have a unique solution

6*; in which case 6* can easily be computed by elementary linear algebra, and

there are no other dual equilibirum solutions that satisfy the 6* zero-condition.

On the other hand, if the nullity subspace corresponding to 6* contains
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more than just the zero vector, then it has positive dimension d ^ 1 and d

basis vectors b , ..., b . Each such basis determines a set of d basic constants

K(c, b J ) , j = 1, 2, ..., d, and a set of d basic functions F(*,. b J ) ,

j = 1, 2, ..., d, that give rise to a corresponding set of d equilibrium equations

F(6, bj) = K(c, b j ) , j = 1, 2, ..., d, (1)

which . (according to Corollary 2 to Theorem 4A) must be satisfied by each dual

equilibrium solution that satisfies the 6* zero-condition. From the construction

1 0 A

of the nullity vectors b , b , . •., b , we know that (n - d) linearly inde-

pendent equations can be selected from the normality condition, the orthogonality

conditions, and the 6* zero-condition. Such a selection will always contain

the normality condition; otherwise, the elementary theory of linear algebra

would imply that the dual feasible solution 6* does not exist. Each such set

of (n - d) linear equations and the d non-linear equilibrium equations (1)

provide n necessary conditions to help determine the n components of 6*.

However, the last part of Section 4 shows that these n necessary conditions are

not always sufficient in that they may have solutions that are not dual equili-

brium solutions. A conclusive test for a given solution consists of showing

the existence or non-existence of a corresponding primal equilibrium solution

t*.

Before elaborating on a method for constructing corresponding primal

equilibrium solutions, it is important to note that not all dual equilibrium

solutions need satisfy our n conditions; but those that do not must satisfy a

different set of n conditions obtained from equating different component

"blocks11 of 6* to zero. Only complete component blocks of 6* are equated to

zero because of the necessary condition given in conclusion (i) of Theorem

4A. The determination of all such sets of n conditions is, of course, an
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elementary (but lengthy) task in combinatorics and linear algebra.

From a computational point of view, it is worth remarking that the only

nonlinear equations in a given set are the d equilibrium equations (1), so such

a set is said to have degree of difficulty d. It may be worth noting that

the equilibrium equations are actually linear in the variables log 6. and

log X, when the logarithm of both sides of these equations is taken. Further-

more, the resulting equations are linear in the parameters log c, so the

family of all reversed geometric programs with a fixed exponent matrix (a..)

and a given dual equilibrium solution 6* can be found by constructing the

general solution of this linear system. Of course, not every reversed geometric

program constructed in this manner need have 6* as a dual equilibrium solution,

but those and only those programs for which there is a corresponding primal

equilibrium solution t*.

To obtain the primal equilibrium solutions corresponding to a given dual

equilibrium solution 6* for fixed coefficients c, Corollary 1 to Theorem 4A

shows that v(6*) can be substituted for g (t*) into the equilibrium conditions

(3,18a) for the corresponding primal equilibrium solutions t*. After making

this substitution, one can produce a linear system in log t*. by taking the

logarithm of both sides of the resulting conditions and those other equilibirum

conditions (3.18b) for which X, (6*) > 0. A summation of these latter conditions

shows that ^,(6*) = \( 5*) \(t*) > so 8k(t*)
 = 1 a n d n e n c e t h e corresponding

prototype and reversed primal constraints are automatically satisfied by

each such solution t*; but the other primal constraints (for which X, (6*) = 0)

need not be satisfied by such a solution t*.

Consequently, the primal equilibrium solutions t* corresponding to a given

solution 6* of the n necessary conditions that result from equating certain
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component blocks to zero are readily characterized as the solutions to a system

of linear equations and (usually) nonlinear inequalities, (Those inequalities

arising from single-term posynomial constraints are clearly linear.) Of course,

this system may not have a solution, in which case the vector 6* is not a dual

equilibrium solution even though it satisfies the appropriate n necessary con-

ditions. However, Theorem 4C shows that such a vector 6* with its zero compon-

ents deleted is always a dual equilibrium solution to the dual of the primal

program that results from deleting those primal constraints for which ^(6*) = 0.

The presence of nonlinear equations and frequently non-linear inequalities

is the main difficulty with using the preceding indirect method for finding

equilibrium solutionso In [8] we develop direct methods based on solving

appropriate sequences of prototype geometric programs.

Finally, it is worth mentioning that when reversed constraints are not

present (i.e. R = 0) and when the primal objective function has only a single

term (i.e. [0] = {o}), dual program B is essentially the "chemical equilibrium

problem11 that consists of minimizing "GLbbsr free energy function11 - log v(6)

n

subject to the "mass balance equations11 } a..6. = -a ., j = 1, 2, .„., m,
LJ 1J 1 l.j

i=2

to obtain the "equilibrium mole fraction11 6*./\* f°r e a ch "chemical species" i

that can be chemically formed from the m "elements" present in "phase" k of a

p - phase "ideal chemical system". In this context, the nullity vector components

are called "stoichiometric coefficients", the basic constants are termed "equilibrium

constants", and the equilibrium equations are known as the "mass action laws."

For complete details, see [17] and Appendix C of [9] and the references cited

therein.
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Appendix A

We now illustrate with an example how to transform an arbitrary algebraic

program into an equivalent signomial program, so .that it can be further

transformed into an equivalent posynomial program with the aid of the trans-

formations introduced in Section 2.

Without loss of generality we assume that the independent variables are

restricted to be positive, a condition that can, of course, always be achieved

by replacing each unrestricted independent variable with the difference of

two new positive independent variables.

Thus, suppose that we wish to minimize the algebraic function

where the f- (t), k = 1, 2, 3, 4, are signomials and t = (t-, t0, ..., t ).
K. JL Z TQ

To keep imaginary numbers from being generated and hence make this a well~posed

algebraic program, we must obviously include the constraints

0 < fx(t) (1)

and

0 < f2(t). (2)

For the same reason, we must also include either the constraints

f3(t) (3a)

and

0 £ Vf 2(t) + f4(t), (4a)

or the constraints

i / "

(3b)
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and

Vf^T) + f4(t) <i 0. (4b)

In general, more than a single program must be solved to solve one algebraic

program. In our example we must solve both the program P with constraints
a

(3a) and (4a), and the program P, with constraints (3b) and 4b); after

which we must choose the smaller of the two optimal values. To be concise,

we shall illustrate our additional techniques on only one of these two

programs, namely, program P whose consistency we shall assume.
a

To test for the possible occurence of the indeterminate form vO/0, we

should first minimize just the numerator I \/f 1 (t) + f«(t) j subject, of course,

to the constraints (1), (2), (3a), and (4a). This program P' has an optimal ^
a

value that is either zero or positive by virtue of constraint (3a). If it is

zero, then constraint (4a) shows that either there is a minimizing sequence

such that the denominator I \/f9(t) + f,(t) is bounded from below by a
positive number, or \/r7(t) + f,(t) approaches zero from above for each

minimizing sequence. In the first case the optimal value of program P and
a

hence the original program P is zero; in the second case there is presumably

a common factor that needs to be removed from the numerator and denominator,

a situation that shouldn't arise when the original program P is properly

formulated. The remaining possibility is that the optimal value for program

P1 is positive; in which event the indeterminate form Vo/0 can not occur,a

and we must consider both the numerator and the denominator simultaneously,

that is, program P .
a

Before proceeding, we should observe that program P1 is generally not

a signomial program; but for the sake of conciseness we shall not carry out its

transformation into an equivalent signomial program. Instead, we assume
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that its optimal value is positive so that we must actually come to grips with

the more complicated program P .
a

Introducing an additional positive independent variable t , we see that

program P consists essentially of minimizing the posynomial
a

subject to both the constraints (1), (2), (3a), (4a) and the additional

algebraic constraint [ V ^ C O + f3(t)]/[Vf
2
(t^ + f4(t)] * V which can

conveniently be rewritten as

0 ^ - V ^ O + fco V V ^ - f3(t) + tQf4(t) (5a)

by virtue of constraint (4a). To achieve our goal, we must still transform

the algebraic functions in constraints (3a), (4a) and (5a) into signomials.

Toward that end, we introduce two additional positive independent variables

t .,- and t o so that (3a) and (4a) can be replaced by
mrrl nn-Z

Sn+1 l (3a2)

and

* f 2 ( t ) ' ( 4 a 2 )

Finally, we introduce another positive independent variable t ^ so that (5a)

can be replaced by

0 * - V ^ 3
 + ^ 2 " f3(t> + t0f4(t>' (5al)

fl(t> * W (5.2)
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Thus, program P actually reduces to minimizing the posynomial (Oa) subject to
a

the signomial constraints (1), (2), (3al), (3a2), (4al), (4a2), (5al), and

(5a2). This program is obviously a signomial program which can be further

transformed into a posynomial program with the aid of the techniques given

in Section 2.

The variety of optimization problems that can be expressed as well-posed

algebraic programs is worth stressing. For example, by virtue of the Stone-

Weierstrauss approximation theorem, each program involving continuous functions

with bounded domains can be approximated with arbitrary accuracy by a rather

limited class of algebraic programs, namely, the class of polynomial programs.
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