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Observation and Prediction for the Heat Equation,II

V. J. Mizel and T. I. Seidman

1. Introduction, Consider an insulated uniform body occupying a bounded

open subset & of Rm with piecewise smooth boundary dft. Under

proper normalization the temperature u = u(t,x) satisfies

u t = Au t > 0, x € a (la)

where u denotes the (outward) normal derivative defined at alln

points of d& except the negligible subset for which a normal is

not defined. Suppose it possible to observe the boundary value

f(t,*) = u(t,*) U R throughout the time interval 0 < t < T. Is it

then possible, given this data alone, to predict w(x) = u(T,x), x e ft,

and furthermore is the problem flwell posed"? More precisely, we ask

whether the mapping

A: f H> w (2)

from the linear manifold to of boundary values assumed by solutions

2
of (1) to the space L (ft) , is well-defined and continuous, topo-

2
logizing m by the norm of L ((0,T) xdft) .

in our previous paper [5] we succeeded in showing that the answer is

affirmative whenever a is a cylindrical region, i.e., when

a = (a,b)xfi for some bounded open subset & of Rm~ with
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piecewise smooth boundary. The purpose of the present note is, first,

to show that the answer is likewise affirmative when ft is the

m-ball and, second, to discuss the problems involved in extending

these results to a more general class of regions ft.

As in the paper [5], the argument proceeds by using separation

of variables to reduce this problem to a problem in the theory of

approximation by exponential sums (Dirichlet series). The significant

new aspect of the present problem is the necessity of developing uniform

results concerning Dirichlet series approximation: results which are

valid for every series whose exponent sequence A = (A.,A ,...)

belongs to a prescribed class of sequences. As far as we know,

such uniformity problems involving a class of exponent sequences

have not previously been considered (except ejn passant in [1]).

For this reason, our results in this direction are presented in

somewhat greater generality than is needed directly for our application

(see §4).

§2. We begin by noting that the mapping given in (2) is well-defined

for every bounded ft with piecewise smooth boundary and every T > 0.

This follows from the fact, implied by the unique extension property

for the heat equation, that the only solution to (1) which satisfies

the additional condition

u(t,x) =0 0 < t < T , xedft

is u s 0; see e.g. [5].

We now restict ourselves to an investigation of the mapping A

for the case of an m-ball, which without loss of generality we may

take to be of radius 1. The separability of the Laplacian for the
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m-ball ensures that we may write any solution of (1) in the form

u(t,x) = E cine
 xn ^(0)) R±n(r) , (3)

i,n

with t > 0, uu varying over the unit sphere, and r € [0,1],

So x = rut) € ft . (We refer to r as the f radial1 variable,

u) as the 'angular' variable.) The (Q.) are the orthonormalized

'angular1 eigenfunctions of A for ft, the {R«n) are the corresponding

radial eigenfunctions for the Neumann boundary condition (lb), and

the (A. } are the eigenvalues of A pertaining to this boundary

condition. In writing (3) we have used the fact that in R

1 m S r m-1 d , , - 2
= r SF [r 5F] + r L

where L is a partial differential operator involving only the

'angular1 variable u). It follows that

LQi = viTh , i ̂  1, (4)

(Note that the operator L has multiple eigenvalues so each distinct
2

eigenvalue may appear several times in the sequence {v.}») Likewise

R! (1) = 0, R. (0+) bounded,m in

We also have the normalization conditions

I nndu) 6

<Rin'Rin.> = I R in ( r ) R in ' ^ ^ ' ^ = 0 n f n» (6b)
o
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R in(l) = 1, (6c)

and we set

Nln - Jo iRinWlV^dr. (6d)

With the above normalizations the coefficients (c i n) satisfy

-2A. t
Z |c i n |2N2

ne i n < ao for t > 0, (7)

since u(t,«) € L2(ft) for a l l t > 0.

From the expansion (3) and from (6c) and (7) we see that

" Ain t

f(t,x) = E(S c. e )ni(»») x = u) e dfc, (8a)
1 n 0 < t < T,

-A. t
w(x) = Z (c±ne

 i n )Qi(uu)Rin(r) x = rou € ft. (8b)

Using (6a) we have f(t,x) = Z fi(t)n.(«j), with

f±(t) = S cine
 i n =

n

= < f (t,») ,n. >-so = I f (t,» )fl.duu
1 CJT(/ U 1

(9)

0 < t <i T, i = 1,2,. ...

We introduce the following notation: for any sequence A= (̂ -1*̂ 9

with " 0 < A < A2 < . . . we write
-At o

[AJ = sp [e :A € A} c L (0,a>)

[A]T = i p {e"At:A € A} c L2(O,T).

A T A TThen l e t [l^ = *i:n > 1) and {£ = t+*' 2n > 1} denote linearn n ^ - n ti *-

functionals--assuming they are well defined—such that
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"V 2I :cp *-» b whenever cp = S b . e e [A] <= L (0,a>)n T n K

T "V 2-t, :0 »-» b whenever 0 = E b e * € [A]™ <= L (0,T) .n n JC JL

We will be concerned in particular with the eigenvalue sequences

A. = {A. } , obtained from the boundary value problem (5). In

terms of the above notation and using equation (9) , we may express

the coefficients {c. ) appearing in (3) and (8) by

T i

where for brevity we have written I. for t . Thus (8b) can

be written as

T "AinT

. in i Owe x xn
m

It follows that if each of the [I. } is continuously extendable to
2

all of [̂ ilrn c L (0,T) and if we can obtain suitable estimates

for the || t. || then we can estimate ||A||. In fact, we have from

(6) and (10) that

i n ^n

-2A. T
ine

 i n

x • n

since by (6a) and the completeness of the [Cl.}9

2 2

^i I <f, Q ±> I (0 f T) = I
 f I (o, T) XSR

(For convenience we will consistently use | |, with subscripts
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2
for the range of integration, to denote integral L norms of

functions, and we will use || ||, without subscripts, to denote

operator norms of linear functionals and transformations.) Hence

we have the estimate

||A||2 £ suPi{En!|t^n||
2N2ne"

2AinT}. (11)

T A TBy the Hahn-Banach theorem, the functional I = I '

(defined initially on sp{e~ :A € A}) is continuously extendable
-At

to [A]T if and only if the function e , 0 < t < T, satisfies

-At -A t
e M A - (*n)IT =

 sP(e -k f n} c L^(O,T). (12a)

In this case,

\\l^f = inf[|e n - cpl(0,T)
:cp £ sp{e :Ak e A ^ k f n ^

-At
= dist(e , [A- (^n3]T)- (12b)

Thus our prediction problem reduces to obtaining suitable estimates,

uniform in. jL, of the quantities(N. } and

IKjjl"1 = dist(e n A/^ - *inlT>. (13)

§3. in this section we examine the sequences A. and {R. ]

given by (5) . For the purposes of this section we may suppress the

subscript i and consider the eigenvalue problem:

Rti + mzJ, Ri + (A - V
2/r2)R = 0, 0 < r < 1,

R(0+) bounded, R1(1) = 0, (5f)
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in which v appears as a parameter. We take v ̂> 1, this being

valid for the eigenvalues vi given by (4) (see, e.g., [2]). We

seek the eigenvalues A = A, , A ,. . . and eigenfunctions R = R-.,!̂ *.*

satisfying (5f) with the normalization: R(l) = 1.

It is convenient to set z =^A~" in which case we can express
n n ^

z , R in terms of Bessel functions:n n

Rn(r) = r
1"1"72 Jv(znr)/Jv(zn), and (14)

vA = z is the n zero of Jf .
n n v

This leads to the formula

z
± n

Nn " 1 Rn(r) l ^ ^ d r = J Jv(z)
2zdz/AnJv(zn)

On multiplying BesselTs equation by zJr and integrating by parts

between 0 and z n we now obtain the uniform estimate

Nn = 2"(1 - v 2 / A n } ^ 1/2'
2

Note that this also shows that A > v > 1.

n *- *—

We proceed next to obtain a uniform lower bound for the separations

(z n + 1 - zn)3 namely we show that z n + 1 - z n ̂  1/2. Note first that

with the change of scale r *-» y = rzn, k(y) = Rn(r) , the differential

equation of (5') becomes

ft., + atlft,+ (1 . v
2 / y 2 ) ^ = 0. (16)

Passing now to the polar phase plane variables (cf. [3])

ym~ &t = p cos 9, & = p sin 0,
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one obtains the system

p. = [y1-1* . (y111"1 - v2ym"3)l P sin 6 cose ,

(17)

9. = y
1-™ Cos

2 9 + [y^ 1 - v2ym"3] sin9 .

Note that the condition &f (z ) = 0 is equivalent to cos Biz^) = 0.

For each interval [z ,z .] we have y ^ . z ^ v ^ l so 9 f > 0

and we may find a (unique) subinterval (<x,p) c 9z 9z^Ml] for which

sin? e(y) < y2"2"1 for y e (a,p)

sin2 9 (a) = a2"2"1 , sin2 6(0) = 0.

On this subinterval, by (17), we have 9' £ 2y1~m £ 2a1~m so that

B
6(P) - 9(a) = f 9!dy ̂  2a1""m(p - a).

J

a1"111 = | sin 60) - sin 9(a) | ̂  9(3) - 9(a),

But

and this gives the desired lower bound for the separation:

ẑ .n - z > p - a > [9(p) - 9(a)]/max{0!(y):a < y < p}n+x n

± [sin 9(p) - sin d(a)]/2a1~m = 1/2.

(18)

(Although (18) gives uniform estimates of the separation of zeroes

of J' for arbitrary v ̂  1, much more accurate asymptotic estimates

are available (e.g., in [7]).

§4. The present section is devoted to obtaining the needed estimates

for the quantities ||*inll occurring in §2. In pursuing this goal

we develop, as mentioned earlier, results for approximation by Dirichlet
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We begin by referring to results of L. Schwartz ([9] §6,§9)

(see also [1] and [4]). We restate these in a form convenient for our

purpose. In what follows a regular sequence A = (^JAJJ...) i s o n e

for which EvV^v converges and for which there is a positive lower

bound for the separations (

Theorem (S..) : If A is a regular sequence then each function

2
F € [A] c L (Qoo) posesses a unique Dirichlet series expansion of

the form

-AT
F(T) = Endne

 n (19)

which converges for complex T = t + ia in the halfplane t > 0.

Moreover, there exists a positive function C , defined on (O,OD) by

CA(t) =V2FS d+5?) 2 IT | ^ S L | e " " ( V A l ) t , (20)
n zir m±n A -A1 n m

which i s bounded on each i n t e r v a l [ t Q , o o ) , t > 0 , and f o r which

- (X - e ) t A - ( A , - € ) t
E little n <i CA(t)e X for € > 0. (21)
n

2
Consequently, for each F € [A] c L ( Q , G D ) ,

. A -(A,-€)t
eer|F (t+ io) | < |P| ( o o > ) C (t)e , for all 0 ̂  e £ Ky

Theorem (S2) : If A is a regular sequence and T > 0, then every

function F € [AIT is the restriction to (0,T) of a unique function

F* e [A], and there exists a positive constant c£, independent of F,

such that

lF*l(0,0D) * IFI(O,T) ^ C T I ^ | ( O J Q D ) .
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We now wish to consider classes of sequences which obey a stronger

separation requirement than regularity. To wit, given p > 1

and 6 > 0, we consider all sequences A satisfying

(24)

The regularity of such sequences is clear. Moreover by the results

in §3, the sequences A- determined by (5) satisfy (24) with

6 - 1/4, 0 = 2.

The following result is a uniform version of theorems (S,) and (S2)

Theorem 1: Let £. o denote the class of all sequences A satisfying

o * p

(24) for a prescribed pair 6,3 with 6 > 0, p > 1. Then there exists

a positive function Co Q on {0,co)9 bounded on each interval [t ,<x>),
t > 09 such thato

e € t|F (t

8when A e £, Q and 0 £ e ̂  6P.
0 * P

(25)

Moreover,for each T > 0 there exists a positive constant c*
0 , p 9 T

such that

cr ^ c5,p,T f o r 6,p

Proof: Define a positive sequence M = (M>,, M<2,. ..) as follows

j = (j + 1)5 j ^ l . (27)

We will show that we may take
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Since M is regular, <J i s , by theorems (S,) , bounded on each

interval [to,cr>), tQ > 0. Hence i t suffices to verify the inequality

sup{CA|t|e -1 :A € Z& p) £<P{t/2*)e X (28)

which by (20) i s equivalent to

^m^n n m ( 2 9 )

n I
kf j j

for a l l A € Zc Q.
° 9 P

Suppose A ̂  £. o is fixed. By (24) and (27) there exists for each n
V 9 P

an index j such thatJn

and n ̂  m implies j n =f= Jm-
 I n order to show that (28) holds

it is sufficient to show that each term on the left is dominated by

an appropriate term on the right. We show in fact that for each n

and for j = j one has

l ( 3 0 )
<30>

Note that
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Thus

and it remains only to compare the infinite products in (29). Now

by (24) we have, for k =1,2,...,

so,since j = j ^.2 for all n,

A-k, 1/3 (i-2k)6 j^k
; ^ (j-DS £• j

n ̂  1, k ± 1

J6 , _L_
^ j+k

That is,

An
An

which implies that for both m > n and m < n,

VAm,
VA

On noting that any discarded factors of the right hand product

in (30) are greater than 1, we see that (29) has been proved.
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To complete the proof, we note that by Theorem S2 there exists

c*; > 0 for each A e £ and we set

CT = CT,6,P = i n ff CT ;A £ ^'

we need only prove that c > 0. If, indeed, we had c = 0, then

there would exist a sequence K in Z and a sequence of exponential

polynomials P, € sp{e~ :A e K] such that

lPkl(O,a>) = X' k-1,2,..., (31a)

l l - ° ' k -*00- (31b)

By (22), and (25) we have

e€t|Pk(t + ia) | 1 C^pCt) f o r t > 0, 0 1 e ̂ . 6P, (32)

where C. o (t) is uniformly bounded on any interval [t ,OD) • t > 0.
0) p O O

Thus, a standard result on normal families of analytic functions

implies the existence of a subsequence of {P, }--which we again

denote by {P,}--which converges to an analytic limit function P.

Since the convergence asserted is uniform in any compact subset of the

right half-plane, it follows that P, -» P in, e.g., L (T/2,T) .

By (31b), this shows P = 0 a.e. in (T/2,T) whence, as P is

analytic in the right half-plane, we conclude that P = 0. Now,
2

using (32) we also have P, -» P = 0 in L [T,OD), SO

lPk'(O,GD) = lPk'(O,T) + lPk'(T,OD) ~* °

(using (31b)),which contradicts (31a). Hence cT > 0.

HUNT LIBRARY
CARNEGIE-MELLON UNIVERSITY
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Remarks 1. In the above theorem the class £c was obtained by
o, p

8
applying a map Ak = cp(zk) (here, cp(z) = zp) to uniformly separated

sequences (z,,z2,...). In fact, £ was specified by giving cp,

(i.e., p) as well as the separation of the zrs, and a lower bound

for z 1 > 0. The proof of the theorem was tailored to the exponential

nature of the mapping cp considered * but one might also consider more

general mappings. It would seem of interest to determine reasonable

sufficient conditions on cp for the analogous theorem to be valid.

2 2
2. Although we have emphasized the spaces L (O,oo) and L (0, T) ,

analogous results hold for L spaces with p =f 2. In fact

Theorems (S.J and (S2) apply for p =(= 2 (cf. [9]) and a correspondingly

revised proof for Theorem 1 is also available.

3. It should be noted that if A e £. o satisfies a restriction of
o, p

the form

?S / P ^ (r +1)61 ^ o

then the comparison sequence could be taken as the following subsequence

of M,

o v r * r +1''''} '
o o

In that case the limit on e in (25) could be increased to

0 <L € <L (r + 1) 6 while if e is held fixed C. o (t) -> o as r -> GD .
o o, p o

§5. At this point we are ready to state and prove the anticipated

result concerning the 'observation and prediction' problem

Theorem 2: The 'observation and prediction1 problem is well-posed.
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That i s , f o r any T > 0 t h e mapping

A: u | ( 0 T ) x S f t € L2((O,T)xdft) » u ( * , T ) € L2(ft)

is a well-defined, bounded (indeed,compact) linear map for solutions u

of the Neumann problem (1) for the heat equation on the m-ball.

Proof: For m = 1 this follows from the principal result of [6].

For m > 1 we may continue to assume & is the unit m-ball and use

the expansion (3). As noted in §3, the sequences A-jfR.^} obtained

from (51) have v = v. ^ 1. Thus we have the uniform bound

2
N-n <̂  1/2 while by (15) and (18) each sequence A. is in Z~

•*•** l o, p

with 6 = 1/4, f} = 2. Applying Theorem 1 together with (21) gives

e+ ~ A i n t 0
e E || ^ i n ||e £ C, (t) , 0 £ e £ (1/4) A. (33)

n *p

Noting Theorem (S2) we have

so, using (23) and Theorem 1,

ii*U i II«I«II/««.»,«- <34»

Substituting (34) into (33), squaring and discarding cross terms gives

S U ? H e i n < e C 2

9
for each i. This, in view of (11) and the bound on N , gives a

in
bound for A:

I N ^ e - e T C 6 ^ ( T ) / / 2 " c 6 ^ T . (35)
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To show that A is compact we observe that the map f ̂  w

can be factored as

| K>U(T',O »u(T,O =w

with 0 < Tf < T. The restriction map is certainly bounded; the

second map is of the sort shown above to be bounded, with TT

for T; the third is the solution operator corresponding to the

initial value problem for (1) and this is well-known to be compact.

Thus, as a product of bounded maps with a compact map, A is compact.

An alternative proof could be given, using Remark 3 following

Theorem 1 and the fact that v^ -* OD , to show directly that A

is the limit in norm of operators of finite rank.

Corollary: The 'observation and prediction1 problem is well-posed

(indeed, the linear mapping A:f -> w is compact) when the codomain

is taken to be Lp(l £ p £ GO) and the domain ft is topologized

as a subset of Lr(2 £ r £ oo) .

Proof: This follows from the theorem and two observations.

(1) In considering the factorization of A given in the proof

above, it is easiJ.y seen that the solution mapping

u(T»,O -> u(T,O, for the initial value problem is actually

compact from L (ft) to LP(R) for all p ̂ _ 1.

(2) Since (O,T)x^ft has finite measure, the inclusion map

from Lr((O,T)xdft) to L2(O,T)xdft is continuous for r ̂  2.
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§6, We now wish to summarize the work of the preceding sections in

more general terms.

Let {H } be a complete set of (orthonormalized) eigenfunctions,

indexed in some order, for the Laplacian for the region ft with

the Neumann boundary condition (lb); let {A } be the corresponding
P

eigenvalues and set e (t) = exp[-A t]. Then, analogously to (3),
P P

any solution of (1) has an expansion of the form

u(t,x) = E c e (t)H (x) t > 0,x e ft, (36)
p P P P

so that

where

A:f = E c D
e
D
h
D
 € L2((O,T)xdft)

P

-> w = E c e (T)H € L2(ft) ,
p P P P

h = H ko.p p'oft

(37)

Clearly, if A is continuous then the linear functionals

*n, on lu given by

nv : f -> c
p p

must be well-defined and continuous since, by the orthonormality

of {Hp},

= cp =<Af,Hp>R/ep(t).

Conversely, we may express A in terms of these functionals:

Af = E /^(f)e (T)H
P P P P

so that continuity of A follows from having suitable estimates

for the quantities ||#» l|.
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Our approach, in this paper and in [5], has been to partition

the set {p} of indices into subsets v.(i = 1,2,..). Letting

to. = sp( E c e h ) c m c L2((O,T)xdR)
p€7ri

 p p p

we may consider the restrictions ŵ . of ir» to to. (p e ir.)
P p i 1

and write

f = E f± = S( E c p e
p
h )>

f e to±

Af = E Aif± = E( S ^ ( f ^ e (T)H )

where A. is the restriction of A to tn.. Then

p' l' p

Hence

= E E |^ (f )e (T)|2. (38)
i peT^ p x p

(39)

E ||Aj2e^ p r|f ±|^

In the case of the m-ball, the subspaces tn. were actually

orthogonal (each being associated with a single 0.) so

and it follows from this and (39) that

IIA||2 £ sup.{ S ||£U|2e (2T)}. (41)
p€TT i * P
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In order to estimate the quantities ||wuJI appearing in (41)

we observe that the {m, ) can be expressed in terms of functionals

A T
) of the type discussed §4. In fact, for any q

and hence

^(f ±) = cg = ^(:<fi,hq>^(t))/|hq|2R q 6 7 r . , (42)

T
where I is the functional which selects the coefficient of e

q q

for elements of

[A±JT = sp{e :p € Tr±} c L2(O,T)
P

Equation (42) leads to the appraisal

so that (41) implies (compare (11)):

S ! | t V / | h | J oe (2T)}. (43)
i p€Tr± ^ * v~ *

Now by (15)

Hence (43) implies

S \\l*\\ Bn (T) }//27

which on applying theorem 1 leads to the appraisal (see (35))

IN <L e-eTC6^(T)/f2"c5^^, 0 £ € £ (1/4) 2.

In the case of 'cylindrical1 sets, considered in [5], the

spaces m. are by no means orthogonal, so (40) fails to hold.
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We succeeded in that case by noting that there is available the

following replacement for (40):

0 0 0
( 4 5 )

which stems from the orthogonality of the f, | f . - where <S =
1 ( O, A/ X0#

is the base of the cylinder ft = [0,1]XJO. Correspondingly (42)

and (44) were replaced by

Another, more powerful, approach which seems more likely

to extend to the case of a general class of regions &, involves

the replacement of (39) by a condition of the form

2 2 2

?'fi' (T',T)xdft ̂  K lf'(O,T)xdft (46)

for some choice of Tf €(0,T) and a corresponding constant K.

In this situation we are led to appraise the quantities [»l )
P

not in terms of the functionals {£T} used earlier, but rather

ir

Tl
in terms of the functionals [I } where T 1 = T - T

1 . Note
first that the function g^ = <^,h >^a given by

i

when restricted to the interval T1 < t < T, corresponds by a

translation of variable to the following function on (0,T.):

2 c <h .h >p, e (T')e (r) o < r < T,.
pe-rri P P <T o» P P 1
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Hence we have the formula, parallel to (42)

T,

Twhere I selects the coefficient of e in elements of
q q

This leads to the appraisal

lV fi>l ^l^q1" ' ^ ^

Hence (38) implies

2

> . 9
T T. WJf ̂ ll** -F
^ ^ il*V> il I r i ' (r

i p € 7 r ±
 p v '

E U t p 1 | | 2 / , , I2 V 2 T l '

Combining this with (46) we deduce that

||A||2 i K2sup( S U\2/ 2 •
P l l

T e (T /2)
r E | | 4 J - | | e ( T / ^ ^
peiri

 p p
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Therefore under the very mild condition that, say

we have

y v 2 ) < KI < « for ai1 p> (49)

| |A| |^KK sup{ E \\l He (T /2) }.
i p€7T. P P

Finally, assuming that the partitions are such that the sequences

all belong to some £x Q, so that theorem 1 is applicable, we have

the desired boundedness assertion,

| | | | 6 ^ T . (50)

We have shown above that the inequality in (46) is sufficient

for boundedness of A, What is particularly striking is that it

is also necessary if A is to be bounded for all choices at T > 0.

More precisely, we have the following result.

Theorem 3; Suppose that the functions h = H | ^ have the property

that for each e > 0

± S b o u n d e d- (51)

Suppose also that for a given T > 0 there exists a partition

of {A } into subsets

Ai =

satisfying:

(HI) A. € £c o for some 5 > 0,g > 1 and all i,
1 o ,p
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(H2) for some T1 < T there are associated to every

f € spfh e } c L ((O,T)xdft) functions

fi € spfh e :p€7ri} c L ((T
f,T)xdft) satisfying

E fi = f'(T',T)x<* € L2((

Then the following relation holds

S ' f ' ^ K 'f' (O

and the solution operator

A:f -+ u(1V )

is bounded.

Conversely, if the functions (h } have the property that

for each € > 0

2|h|^ Re(€) converges (52)
P

then the boundedness for every T > 0 of the solution operator

A:f -+ u(T,» )

implies that (*) is valid for every partition of [A ] and

every T > Tf > 0.

Proof: The proof of the first assertion is as given above once

we notice that (*) follows from (H2) by the uniform boundedness

principle.

In order to verify the converse we note that the expressions

f. = E c h e with c = <Af,H >9e (-T), satisfy
-L P67T. ^ ^ " P ^ P
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£ S [|e I e (T./2)]2 r t|h |3R |e |( ,e (T./2)].2.

Since |ep| ̂ ^ ^ £ |ep| ( 0 ? Q D ) - ^ - , it is easily seen by (52)

that the second factor on the right side is bounded, uniformly

in i, by a constant D . On summing over i we obtain

2
which, by the formula (38)for |Aff| , where

A' = fl (oT 2

as was claimed.

In view of theorem 3 we have been led to make the following

conjecture.

Conjecture. For each piecewise C00 region ft the sequence {h }

satisfies (51) and the set {A } can be partitioned into subsequences

A. = {A :p€7r.} satisfying both (HI) and (H2) of theorem 3.

It is clear that the "observation and prediction11 problem will be

well posed provided this conjecture holds, but we have been unable as

yet to ascertain the truth of the conjecture.
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