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On The Bifurcation Theory of Semi-linear Elliptic Eigenvalue Problems

1. This note is concerned with the bifurcation problem for

the semi-linear elliptic eigenvalue problem

(1) -Au = A(P(x)u + g(x,u)), xeO, u| Q 0 = 0.

Here 0 is a bounded region in R , (N J> 2) for which the

Dirichlet problem is solvable, and g, defined for small u, is

odd and monotone in u. For recent contributions to bifurcation

theory for non-linear elliptic eigenvalue problems and for additional

references see [6].

The object here is twofold9 namely to show that in the

variational treatment of the bifurcation problem for (1) a polynomial

growth condition on g9 as usually required, is unnecessary and

using this fact and results of [3], to derive a bifurcation theorem

for (1).

For simplicity we have restricted the linear operator on the

left in (1) to be the Laplacian. Without difficulty the results

obtained below can be extended to the larger class of real linear

formally self-adjoint operators considered in [2]. The machinery

for doing this is set up in [2].

2. The approach here to the eigenvalue problem (1) is

through the study of the integral equation

(2) u(x) = A [ G(x,t)f(t,u(t))dt,

where f(x,u) = P(x)u + g(x,u) and G is the Greens function for

(3) -ZW = p in O, w | a n = 0.



To obtain certain required variational inequalities one must consider

(2) in Lp(0}, for an appropriate p > 2, and for this it is

necessary to assume that f is defined on 0 x R and satisfies

a polynomial growth condition in u. It can be shown however,

by a standard 'bootstrap argument1, that for appropriate p and

suitably restricted f, an L^-eigenfunction of (2) agrees almost

everywhere with a classical solution of (1), i.e. a function
2 —

ueC (Q) fl C(Q and satisfying (1)# This can be done, for example,

as indicated in the proof of Theprem 4 in [1]. By similar arguments

one can prove the following result which implies the superfluity

of the polynomial growth condition in the bifurcation theory of (1).

Theorem 1. Let 0 !be JL bounded region in R (N J> 2) and

assume that the problem (3) has a GreenTs function G(x,t). Let

f (x,u) b»e continuous on 0 x R and satisfy f (x,0) = 0, and
(4) |f (x,u) | £ K(l + | u | y ) , (x,u)eO X R,

for some K > 0, y ̂> 0.

If p > min(l, "T N (y - 1)) and (A ,u ) i s a sequence of
z — YI n — — — k — - _

Lp-solutions of (2) such that

K'lp = (J lun'P d x ) V P •* ° as n » oo,

and

(6) An £ A < oo, n = 1 , 2 , . . . ,

then

(7) Hunllao = ess^sup|un(x) | -» o as n -* oo.



The proof of Theorem 1 will require the following result.

Lemma 1. The integral operator

y -> f G(-,t)y(t)dt

r T s
is completely continuous from L 1(Q) to L (Q , for 1 <£ r.., s ̂  oo
provided

s"1 > r-1 - 2N"1

Proof. From the definition of the Greenfs function for (3)

and the maximum principle for harmonic functions there follows,

for x,teO,

const. (1 + |log|x-t||), N = 2,
I Gfx t) ! <?

const, [x - t| , N > 2,

and this implies, since £1 is bounded,

sup f |G(x,t) | a dt < oo,

for 1 £ a < N /(N-2). This, together with the symmetry of G

implies the assertion of the lemma, see Theorem 9.5.6 [5, p. 658] .

Proof of Theorem 1. In view of the conditions on f,

Theorem 19.1 of [9] implies that u -* f(*,u(#)) is continuous

from Lr(Q to Lrl(O) for finite r± with 1 £ r1 £ r/y.

Combined with Lemma 1, this implies that the operator

u -> f K(.,t)f(t,u(t))dt

is continuous from Lr(Q) to LS(Q) for 1 £ r,s £ oo and

s > yr~ - 2N~ . In particular this operator is continuous from

Lr(0) to L°°(fl) for r > -=7 y N, and from Lr(Q) to Lr+8(i^
1 2

for r J> p > T N(y-l), where 6 = p(2p - (y-l)N)/(yN - 2p) > o,



if p < r < *r yN. From (5), (6) and

u (x) = A f G(x,t)f(t,un(t))dt

it follows by induction that

lim f |u |r dr = 0
n-*oo J O n

for r J> p, and hence that (7) holds. This completes the proof

of Theorem 1.

3. Theorem 1, combined with the results of [3], yields the

following.

Theorem 2. Suppose that P(x) is bounded9 positive, and

locally Holder continuous in Q and that g(x,u) JLs bounded and

locally Holder continuous in (x,u) on {(x,u) : XG O5 |u| < c } ,

where 0 _is jas in Theorem 1. Suppose in addition that g(x,u)

is odd

g(x,u) = -g(xJ,-u)^ xeQ, |u| < c,

and monotone

g(x,u1) J> g(x,u2), xeQ,, c > u± > u2 > -c

and finally that

g(x5u) = o(|u|), as u -> 0^

uniformly with respect to xeQ.

Then every eigenvalue \±- of the linear eigenvalue problem

(8) -Au = |JP(x)u, XGO, uUn = °'

is ̂ a bifurcation point of (1) .

A more precise formulation of the conclusion of Theorem 2 is

contained in the assertion (*) below.



In order to deduce Theorem 2 from the results of [3] we

require the following.

Lemma 2. Let g-(x,u) be bounded and continuous in (x,u)

on ft x R, and satisfy

g.(x,u) = o (|u| ) , as u -» 0,

uniformly with respect to xe ft. Then for 1 j£ r < s < oo ,

u -» gx(x,u)

s r s

is a. continuous operator from L (ft) Jbo L (ft), and is Frechet

differentiable at zero; its Frechet derivative at zero is zero.

Proof. Since g-(x,u) is bounded and continuous the

continuity follows at once from Theorem 19.1, [9]. If we set
0, u = 0

h(x,u) = .,
u~ gx(x,u), u ^ 0,

then h(x,u) is also bounded and continuous on ft x R, thus,

by the result just quoted, u.-» h(x,u) is continuous from LS(ft)

rf 1 1 1
to L (ft) , where — + — = —. Since multiplication (v,w) -» v*w,

r s r

in continuous from LS(ft) x Lr (ft) to Lr(ft) , the result follows.

Proof of Theorem 2. Clearly g(x,u) has an extension

g (x,u) to ft x R which is odd and monotone and satisfies the

hypothesis of Lemma 2. Since P is bounded and continuous, for

any r,s with 1 £ r < s < oo , the operator u -» P(x)u + g (x,u)

from L (ft) to L (ft) is continuous, and Frechet differentiable at

zero, with its Frechet derivative at zero being the operator

u -» P(x)u.



We consider the integral equation

(9) u(x) = AJ G(x,t)(P(t)u(t) + g;L(t,u(t)))dt,

in LP(fi) where

(10) 2 £ p < 2N/(N-2)

and regard the operator on the right in (9) as the composition

of the Nemytsky operator u -» P(t)u + g,(t,u) from iP(Q) to

Lq(O), and the integral operator y -> | G(*,t)y(t)dt from

1 Q

Lq(fl) to LP(ft), where — + — = 1. By virtue of Lemma 1 the

inequality (10) insures the continuity of the integral operator

and, since q < 2 < p, Lemma 2 implies continuity and Prechet

differentiability at zero of the Nemytsky operator. It follows

that the principle of linearization (+) of [3] is applicable

to the integral equation (9) in L (0) • We conclude from the,

result just quoted that every eigenvalue of

y(x) = ix f G(x,t)P(t)y(t)dt,

or equivalently, every eigenvalue of (8), is a bifurcation point

of (9) , considered in LP(Q) . More specifically, if \x is an

eigenvalue of (8) then for every € > 0 there exist non-trivial

LP-solutions (A,u) of (9) with | A-/i| < e, ||u|| < e. Because

of Theorem 1 this assertion remains valid when the LP-norm is re-

placed by the L -norm (notice that in this case the constant y

in Theorem 1 can be taken to be 0). If (A,u) is a solution of

(9) with ||u|| < c, then, because of the Holder continuity of P
oo



and g, it readily follows that u is (up to difference on a

set of measure zero) a solution of (1). Thus we have the follow-

ing.

(*) UL M JL§. !*£. eigenvalue of (8) , then for every e > 0

there exist non-trivial solutions (A,u) oj: (1) with

I* - Ul < €, lluH^ < G.

Furthermore, the results of [3], together with Theorem 1,

imply the following assertion concerning the multiplicity of

solutions of (1) .

(**) JLf IX jLs jan eigenvalue of (8) ojE multiplicity m then

for every e > 0 there exists k_ = k_(e) such that for

0 < k < k the set of eigenf unctions u o_f (1) corresponding

to eigenvalues in (jLt-e 9 y+e) and satisfying

1 * 2 r PU(X)

~ I P(x)u (x)dx + 1 g(x,t)dtdx = k,
2 Jn JnJo

is â  compact symmetric set in C(Cl) oj| genus ]> m.

For the definition of ! genus1 see [3] or [7]; the genus

of a symmetric set without zero in a Banach space is a special

case of the co-index defined by Connor and Floyd, [4].

Remark. It is interesting to note that while Theorem 2 in-

sures the existence of eigenfunctions of (1) when P is pos-

itive, regardless of the behavior of g for large u, (1) can

fail to have any eigenfunctions when P = 0. Such an example is

due to Pohozaev, [8]; consider the problem



8

Au + A|u|m sgn u = 0, | x| < 1

u(x) = 0 , |x| = 1.

An eigenfunction u of this problem, corresponding to the eigen-

value )\, must satisfy, [8],

- (N-2)/2) f |u | m + 1 dx= f u^ds,
> k i J | | i v

where ds is the differential of surface area and u is the

outward normal derivative of u. One readily sees from this

that the problem has eigenfunctions only if m < (N+2)/(N-2),

(by the maximum principle an eigenvalue of this problem must be

positive) .
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