
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



VIBRATION OF A BEADED STRING

ANALYZED TOPOLOGICALLY

by

R. J. Duffin

Research Report 70-32

September, 197O

Ui

•BIT U B M I T
CARNEGIE-MELLON UNIVQBOT



Vibration of a Beaded String Analyzed Topologically*

R. J. Duffin

Carnegie-Mellon University

Abstract

Of concern are the transverse vibrations of a finite string

of beads. It is shown that a periodic vibration can result when

the beads are released from an inital configuration. Moreover a

norm on the initial configuration can be given a prescribed value.

The proof uses the Brouwer fixed point theorem.
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University of Houston, November, 1970, in honor of David Bourgin.



1. introduction.

Consider the transverse vibration of a string of beads stretched

between two fixed points. If the displacement from the rest position

is infinitesimal, then the vibration is governed by linear equations.

The classical analysis of these equations leads to the so called

normal modes of vibration. Each normal mode is a periodic vibration.

For finite displacements the equations governing the vibration

are nonlinear. In this paper Brouwer's fixed point theorem is used

to show that there always exists a periodic vibration of a certain

type. This type of periodic motion is characterized by adjacent

beads having displacements of opposite sign. We term this an

oppositional mode of vibration. For infinitesimal vibrations the

oppositional mode is the mode with the highest frequency.

Attention is confined to two classes of initial conditions.

In the first class of initial conditions the beads are released

from displaced positions with zero velocities. This may be described

as a plucked string. In the second class of initial conditions

the beads start from the equilibrium position with specified

velocities. This may be described as a struck string. In the

oppositional mode of periodic motion adjacent beads have displacements

of opposite sign. Consequently at some time all the beads will

simultaneously pass through the equilibrium position. In other words

the periodic motion found for the plucked string can also be regarded

as a periodic motion of a struck string but starting at a later time.



In the linearized theory a periodic solution remains a periodic

solution if all the displacements are increased in the same ratio.

Consequently if a norm on the displacement is introduced then

there is a periodic solution for any prescribed value of the norm.

This latter property is also proved for the nonlinear theory. In

particular the potential energy could serve as a norm. Consequently

there is an oppositional mode of vibration for any given value of

the energy.

As the number of beads becomes large, the behavior of a

beaded string should resemble the behavior of a violin string.

The infinitesimal vibrations of a violin string satisfy the wave

equation, u.. = u Of course the wave equation has periodic
tt. XX

solutions. In fact all solutions satisfying the boundary conditions

are periodic. The finite vibration satisfy an equation of the

form u.. = f(u ^ u . Such equations have been studied by
tt X XX

MacCamy and Mizel [1] and others. A surprising consequence of the

MacCamy and Mizel analysis is that the nonlinear string equation

has no periodic solution. This suggested that it would be interesting

to learn more about the vibrations of the beaded string. This paper

is a step in that direction.



2. Motion of a Plucked String.

Consider now a string of beads stretched between fixed

points A and B as shown in Figure 1. For the sake of
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clarity the string is shown with three beads,

however the consideration to follow readily

generalize to the case of any number of

beads. Let m. , m_, m., be the masses of

the beads and let x, -y, z be the

transverse displacement from the

position of static equilibrium.

No longitudinal motion is permitted.

Then Newton's equations for the

transverse accelerations are

(la) nyc = f 1 (x) + f 2 (x + y) ,

(lb) m2y = f2(x + y) + f3 (y + z) ,

B

Figure 1.

A beaded string.

(lc) = f3(y z) f4(z).

Here f, , f~, f,, f, are force functions which arise from the

tension in the four string segments. These functions are continuous

but are nonlinear. The nonlinearily arises because of the geometry

and also because the string may not obey Hooke's law. However the

following weak restrictions are assumed:

(2) -f • (x) _̂ hx for x > 0 and for a constant h > 0,

= -f±(x) .

No further properties of these functions are needed.



It is convenient to regard (x,y,z) as coordinates of a point

in configuration space. Suppose given the initial coordinates (x ,y ,z )

and initial velocities (x , y , z ) at time t = t . Then

Newton's equations determine a trajectory in configuration space as

(4) x = X(t) , y - Y(t) , z = Z(t) .

From the theory of differential equations we know that the

functions X, Y, and Z are jointly continuous in the seven

variables t, x , y , z , x , y , z . This property will be used

in the proof of Lemma 3 to follow.

A string is said to be plucked if the beads are held in the

configuration (x , y , z ) for t < t and at t = t the
o o o o o

beads are released with zero velocity.

Theorem 1. A beaded string is plucked. The initial configuration

point is constrained to be on a surface S of configuration space

having given norm. Then there is at least one initial point

on S such that the resulting trajectory passes through the

origin.

Proof. The norm is arbitrary so S may be described as an

arbitrary closed surface starlike with respect to the origin.

Let D be the part of S in the first octant: x ~£_ 0,

y ^ 0, z _̂ 0. Since S is starlike with respect to the origin it

follows that D is a topological image of a closed disk. For

example if S is the surface |x| + |y| + |z| = 1 then D is a



triangle such as shown in Figure 2.

Now we restrict consideration to

trajectories starting from D.

Consider a trajectory leaving

a point P of D. A

point Q where the

trajectory first touches

one of the coordinate plane

is said to be a contact point.

In Figure 2 the contact point Q

is shown on the plane x = 0.

. x

Figure 2.

A trajectory in the first octant.

If Theorem 1 is not true it follows that the origin cannot

be a contact point. This assumption will be made in the proofs

to follow.

Lemma 1. A trajectory leaves the first octant at a contact point.

Proof. Since a contact point Q is not the origin one of the

coordinates x , y , z is positive and an adjacent coordinate is

zero. For example, suppose y > 0 and x n = 0. Then relations

(1) , and (2) give

(5) m i x Q = f2(yQ) < o.

If P is not a boundary point x Q <_ 0 because x > 0 just before

contact. If P is a boundary point then Q = P and so x = 0.

Thus in any case

(6) x Q = 0, x Q 1 0, x Q < 0.



The second derivatives are continuous so relation (6) implies

that x < 0 just after contact. Q E D.

Lemma 2. A trajectory starting from an arbitrary point P makes

contact in a time t <_ K where K is a positive constant

independent of P.

Proof. Assume the trajectory starts at time t = 0 . Then

relations (1) and (2) give the inequality

(7) TtijK + hx ̂_ 0 for 0 £ t £_ t .

Let m,x + hx = cp (t) and integrate this differential equation to

obtain
, t

(8) x = x cos( tn /2K) + I s i n [ ( t - s) II/2K] cp(s) ds/f^]/h
° Jo

where K = (Tl/2) (rt^/h)1/2. so for t = K

(9) x = J cos(sn/2K) cp(s) d s / / ^ / ? ,
o

If t > K then cp(ŝ  <̂  0 in (9) . Thus x £_ 0 for t = K.
Q

This contradiction proves the lemma.

Lemma 3. The position of the contact point Q is a continuous

function of the position of the initial point P.

Proof. Let J be a trajectory from P to Q. According to Lemma 1

the trajectory J goes through Q and extends to some point M

exterior to the octant at time t . Let P1 be another point of D

and let J1 be the associated trajectory. Then J1 can be made

uniformly close to J for time t in the range 0 <̂  t <̂  t M

if P1 is taken sufficiently close to P.



First suppose that P is not on the boundary of D so

consequently t y 0. Thus given an € in the range 0 < £ < t

there exists a 6 such that if |p' - p| <£_ 5 then J1 is

in the interior of the octant for time t in the

range 0 <̂  t <̂  t - e and JT is in the exterior of the

octant for time t in the range t + e <L t £_ t . Hence at some

time tQI in the interval (t - e , t + e) the trajectory J1

has a contact point Q1 .

Next let e -» 0 then P1 -» P and t , -> t . This implies

that Q' -» Q. The same relation follows by a similar argument

if P is on the boundary of D, so the proof of the lemma is

complete.

Let Q be a contact point then the shadow point R is the

projection of Q onto the boundary of the disk D by a ray

from the origin through Q. Such a point is shown in Figure 2.

Lemma 4. The postion of the shadow point R is a continuous

function of the position of the initial point P.

Proof. The image of the closed set D under the continuous

transformation P -> Q is a closed set DQ. The origin is not

in D and since Dn is closed it follows that the origin is

at a finite distance from DQ.

It is then seen by simple geometry that the transformation

Q -» R is continuous. Then the transformation P -» R is continuous

because it is the composition of the continuous transformations

P -» Q and Q -» R. Q E D.
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Lemma 1 and Lemma 4 together state that the transformation

P -» R is a continuous transformation of the disk D into its

boundary with the boundary fixed. This statement contradicts the

Brouwer fixed point theorem. The contradiction shows that there

is at least one trajectory through the origin. This completes

the proof of Theorem 1.

Theorem 2. A beaded string can be plucked so that the resulting

vibration is periodic. Moreover the norm of the initial config-

uration can be prescribed arbitrarily.

Proof. It is now to be shown that the

trajectory of Theorem 1 finally returns

to the initial point P. The complete —

trajectory is of the type shown in

Figure 3. The configuration point

moves back and forth on the

arc P O P 1 .
Figure 3.

Trajectory of a periodic motion.

The arc O P 1 is constructed to be the reflection of O P in

the origin. Let the configuration point traverse the arc O P ' so

that the velocities at point M and at the reflected point M1 are

equal. Clearly this will result in the acceleration at point M'

being the negative of that at M. By hypothesis (3) the force

functions are antisymmetric so the force at M1 is the negative of

the force at M. Hence Newton's equations (1) are satisfied at M1.

Thus arc O P ' is a trajectory. Moreover P O P ' is a trajectory

because the velocity is continuous on this arc.



By the same continuation method the trajectory P O P ' leads

to the new trajectory P1 O P . Thus P 0 P' 0 P is a trajectory

because the velocity is zero at P and P1 and hence continuous

over the whole trajectory. Q E D.

3. Refinements and Applications.

The following extension of the theory are worth noting:

A. The assumption of Theorem 1 that the surface S is starlike

can be weakened. The proof requires only the property that D

is equivalent to a closed disk.

B. The proof of Theorem 1 made use of property (2) but not

property (3) .

C. The property (2) can be replaced by the following weaker

restriction

(2a) - fi(x
1i > 0 for x > 0.

This merely makes the proof of Lemma 2 somewhat longer.

D. A norm on the initial velocities of the struck string can be

imposed. Presumably analogous theorems hold.

E. The beaded string was assumed to be free of damping forces.

Of course a damped system cannot have a periodic motion,

however Theorem 1 might remain valid. Inspection of the

proof shows that Lemma 2 holds if the damping constants are

not too large. With this further assumption Theorem 1 is

still valid.
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The following applications are of some interest:

It is well known that a beaded string has an electrical analogy

in a ladder filter of inductors

and capacitors. Such a filter-

is shown in Figure 4. Then if

the capacitors exhibit nonlinear

behavior the network equations

for charge on the capacitors

can be put in the form (1)

and properties (2) and (3)

Figure 4.

A ladder filter.

hold. Thus a periodic state of current flow can exist in such

a network.

A multiple pendulum is shown in Figure 5.

This is somewhat analogous to a string

of beads. Presumably a similar analysis

can be applied to show that such a

pendulum has a periodic swing.

Figure 5.

A multiple pendulum.
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