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Resolution in Type Theory

Peter B. Andrews

§ 1- Introduction.

In [8] J. A. Robinson introduced a complete refuta-

tion procedure called resolution for first order predicate

calculus. Resolution is based on ideas in Herbrand's

Theorem, and provides a very convenient framework in which

to search for a proof of a wff believed to be a theorem.

Moreover, it has proved possible to formulate many refine-

ments of resolution which are still complete but are more

efficient, at least in many contexts. However, when effi-

ciency is a prime consideration, the restriction to first

order logic is unfortunate, since many statements of mathe-

matics (and other disciplines) can be expressed more simply

and naturally in higher order logic than in first order

logic. Also, the fact that in higher order logic (as in

many-sorted first order logic) there is an explicit syntac-

tic distinction between expressions which denote different

types of intuitive objects is of great value where matching

is involved, since one is automatically prevented from

trying to make certain inappropriate matches. (One may con-

trast this with the situation in which mathematical state-

ments are expressed in the symbolism of axiomatic set theory.)

This research was partially supported by NSF Grant GJ-580.
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In this paper we shall introduce a refutation system

ft for type theory which may be regarded as a generaliza-

tion of resolution to type theory, and prove that ft is

complete in the (weak) sense that in ft one can refute

any sentence ~ A such that A is provable in a more

conventional system H of type theory. For 3" we take

the elegant and expressive formulation of type theory

introduced by Church in [2] , but use only Axioms 1 - 6 .

It should be noted that because substitution with A-con-

version is a much more complicated operation than substi-

tution alone, the matching problem, which was completely

solved for first order logic by Robinson1s Unification

Theorem [8] , remains a major problem in the context of

the system ft . (Some appreciation of the complexity of

the situation can be gained from [3]). In this sense ft

is not as useful for refuting wffs of type theory as

resolution is for refuting wffs of first order logic.

In § 2 we review certain facts about the system 3"

and A - conversion. In § 3 we prove a theorem which is

(at least in conjunction with the results of Henkin in [4])

an extension to 3* of Smullyan' s Unifying Principle in

Quantification Theory ([10] and [11, Chapter VI]). Our

proof relies heavily on ideas of Takahashi [12] as well

as Smullyan, which is not surprising since the Unifying
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Principle is closely related to cut-elimination. 3" is a

somewhat richer formulation of type theory than Schutte's

formulation in [9] which Takahashi treats in [12], since

in 3" for all types a and £ there is a type (a/3) of

functions from elements of type £ to elements of type a .

Therefore we verify the details of this argument rather

carefully, although there is a close parallel with Takahashi1s

argument. We apply the theorem in § 4 to prove cut-

elimination for 3" , and in § 5 to prove the completeness

of R . (Except for the preliminary definitions, § 4 can

be skipped by those interested primarily in R). In § 6

we present some examples of refutations in ft .
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§ 2 The System 3.

For the convenience of the reader we here provide a

condensed description of the system 3", with a few trivial notational

changes from [2]. A more complete discussion of 3 can be

found in [2] or [4]. The susterns Q and ft in § 4 and § 5

will have the same wffs as 3.

2.1 We use <x,$,Y, etc., (but not o or i) as syntactical

variables ranging over type symbols, which are defined inductively

as follows:

2.1.1 o is a type symbol (denoting the type of truth values).

2.1.2 i is a type symbol (denoting the type of individuals).

2.1.3 (ap) is a type sumbol (denoting the type of

functions from elements of type p to elements of type a).

2.2 The primitive symbols of U are the following:

2.2.1 Improper symbols; [ ] A

2.2.2 For each a, a denumerable list of variables of type a:

4f

We shall write variable as an abbreviation for variable of

type a. We shall use f , g , ...,x .y ,z^, etc., as syntactical

variables for variables .

2.2.3 Logical constants: ~, x
v// x ,11, , „. s— a (oo) ((oo) o) (o(oco))

2.2.4. In addition there may be other constants of various

types, which we call non-logical constants or parameters.
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2.3 We write wffa as an abbreviation for wff of

type a, and use A ^ B ,C , etc., as syntactical variables
~~^~ "~(X /"w0t ""(X

variables ranging over wffs , which are defined inductively

as follows:

2.3.1 A primitive variable or constant of type a is a wf f
a«

2'3'2 [ActeV is a w f fa'

2.3.3 [AxpAa] is a wff ( a p ).

We shall assume given a fixed enumeration of the wffs of 3\

This also provides an enumeration of the variables and constants

of each type.

An occurrence of x is bound (free) in BD iff it is

(is not) in a wf part of BQ of the form [Ax C K ] , A wff
—p *-a*"o

is closed iff no variable occurs free in it. A sentence is a

closed wff .o

2.4 Definitions and abbreviations.

2.4.1 Brackets (and parentheses in type symbols) may be

omitted when no ambiguity is thereby introduced. A dot stands

for a left bracket whose mate is as far to the right as is

consistent with the pairing of brackets already present and with the

formula being well formed. Otherwise brackets and parentheses are

to be restored using the convention of association to the left.

2.4.2. Type symbols may be omitted when the context indicates

what they should be. The type symbol o will usually be omitted.
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2-4 .3 . [AQ V BO] stands for [ [V ( ( O Q ) Q ) A Q ] B Q ] .

2 .4 .4 . [A Q 3B o ] stands for [ [ - ^ A J V BQ].

2 .4 .5 . [VxaAo] stands for [n ( o ( o a ) } [ A x ^ ] ] .

2.4.6. Other propositional connectives, and the existential

quantifier, are defined in familiar ways.

2 - 4 ' 7 ' Qoaa stands for [ A x ^ f y f ^ 3 f^yj

2.4 .8 . [Aa = Ba] stands for QoaaA.a§a

2.4 .9 . 3.x A stands for
l—a o

[Ap , 3y . p y A Tz . p z z> z = y ] [Ax A ]1 ^oa J a ^oa-'a a ^oa a a •zaJ L *a-o

xa -a
2.4.10. S_ go ( S B ) denotes the result of substituting A for x

at all (all free) occurrences of x in BQ.

2.4.11. A is free for x ill Bg iff no free occurrence

of x a in gg is in a wf part of Jgg of the form

[Av C ] such that v is a free variable of A .

2.5 Axioms of IT.

2.5.1 p V p => p

2.5.2 p 3 p v q

2.5.3 p V q =3 q v p

2 . 5 . 4 p 3 q = > [ r V p = > r V q ]

2 . 5 . 5 a E , , f =5 f xo (oa) oa o a a

2 . 5 . 6 a Y x f p V f x ] =) p v n / xf
aL±^ oa aJ * o (oa) oa
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2.6 Rules of inference of 3.

2.6.1 Alphabetic change of bound variables.

To replace any wf part [AxaA ] of a wff by [AyaS
 p A a ] ,

P a rP. Xo P

provided that yQ does not occur in A and xQ ^-S no*- bound

i n Aa*

2.6.2 A-contraction. To replace any wf part [[Ax Bfl] A ]
(X P (X

xaof a wff by SA Bg, provided that the bound variables of B^

are distinct both from x^ and from the free variables of A .
(X ~~(X

2.6.3 A-expansion. To infer C from D if D can be inferred

from C by a single application of 2.6.2.

2.6.4 Substitution. From F x to infer F A , provided

that x is not a free variable of F

2.6.5 Modus Ponens. From [A ̂  B] and A to infer B.

2.6.6 Generalization. From F xn to infer II , ̂ vF ,
~ooc~cc o(oa)-oa '

provided tha t x i s not a free var iable of F
-^-cx ~oa

Remark: It can be proved that II . . F is equivalento (oa) ~oa ^1

to Vx F x if x is not free in F .~a~ocx—a —a —oa
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2.7. A- conversion.

2.7.1. Rules 2.6.1-2.6.3 are A- conversion rules.

We write A conv B a (resp. A a conv - I - II BQ)

iff there is a sequence of applications of rules 2.6.1-

2.6.3 (resp. 2.6.1-2.6.2) which transforms A Q into

B . It is well known that conv is an equivalence re-

lation.

2.7.2. A contractible part of a wff C is an oc-

currence of a wff of the form [ [A x B~ ] A ] in £

We say £ is in A - normal form iff it has no contracti-

ble parts.

2.7.3. Proposition. For each wff D̂y there is a

wff C in A - normal form such that D conv - I - II £

2
Proof :

Define # [ [A x^ JB ] A^ ] to be the number of occurences

of ( i n (jSa) .

Let mQ^) = max {# ̂ G | G^ is a contractible part of D } .

We say that a contractible part GQ of D is maximal in
—p wy —

iff # GQ = m(D ) . Let n(D ) be the number of maximal

contractible parts in D

2
This proposition is part of the folklore of type-theoretic
A - conversion. The author first heard the idea of the proof
given here from Dr. James R. Guard.
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The proof is by induction on p(D ) = 05 * m(D ) + n (D ) .

Clearly D is in A- normal form iff p(D ) = 0 .

If p(D ) > 0 , let [[A x B ] A ] be that maximal

contractible part Gfi of D which occurs farthest to

the right in D , with the position of a contractible

part being determined by the leftmost occurrence of A in

it. By applying 2.6.1 if necessary we may assume that

2.6.2 may be applied to obtain from D a wff E in

X

which Gfl has been replaced by ST0 B . Thus JD conv I - II

E , and it must be shown that p(E ) < p(D ) .

For the sake of brevity, we shall not explicitly

distinguish wffs from occurrences of wffs at certain

points in the following argument.

We first prove that

x

(*) for each wf part C. of BQ , S,a C. contains

no contractible part H with # H > m(D ) . The proof

is by induction on the construction of Cc .

—o
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XaCase (a) : CR is x Then SA CA is A , and
*•" 0 ""CX J\ 0 01

(*) holds by virtue of the definition of G .

Case (b) : C,. is a primitive constant or variable other
x

than x . S,a C. is £.- , so (*) holds trivially,
-a Aa ° °

Case (c): C- has the form [Ay M ] . Note that y
— — ~ — t. — o ~ ̂  — ^ —• Kxacannot be jc by the restriction on 2.6.2. S, C-

x

is [Ay SA M ] , so (*) holds by the inductive hypo-

thesis applied to M

Case (d) ; Cg ha s the form [Mg N ] . Then SA jg.
~a

is [(S, MR ) S, N ] , and the inductive hypothesis
-a ~ e e ^a ~€

applies to M. and N , so we need only consider the

Xapossibility that S, CA is itself a contractible part
~ct °

X X

r[Aye Pfi ] S^a N£ ] , where SA
a M. = [Aj£ P . ] , w i th

# (S, Cfi ) ^ m(£v) • Since M. has one of the forms
2a

2.3.1-2.3.3 , S, M. can have the form [Ay P- J in
£ a ~oe ~ e —0

only two ways:
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( i ) ME i s x and A i s [Ay Pft J . Then a = (6e)""•oc ~cx ""ot —e •~o

s o # ( S A
a C 6 ) < m(D ) .

(ii) Mf. is [Ay Q* ] and S,a QR = Pc .-6e -e ~0 A Q 6 5

In this case CR = [[Ay Q«. ] N ] and # C. > m(D ) .
*~ o —£—o ~e "~o ~"y

But since C is a part of ^ this contradicts the

definition of G . Thus neither possibility can occur,

and (*) holds in case (d) also.

For each wff jC. we let k(£fi) ^ e t^le number

of contractible parts H of C. with # H = m(D ) .

For any wf part jC- of D which contains £ , we

~alet Cg' be the result of replacing G in jCfi by S, B ,
~a

and prove

(**) k(£g') + 1 = ̂ (£5) a n d C.1 contains no contracti-

ble parts H with # _H > m(D ) . The proof is by in-

duction on the construction of C- .
—0

C a s e (a),: C6 is G^ , so Cg1 is S a

Then (**) follows directly from (*).
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Case (b) : Cc is [G,, N I , and j3 has the form (6e) .
~ 6 2 a ~

fi ~€
Thus C.1 is [(S- Bn) N J . If CE' is contractible,-6 A a -^ ~e -6

# C.1 = the number of occurrences of ( in )3 , which is

less than m(D ) , so

k(C6') + 1 = k(S A
a Bp) + k(N£) + 1

= (by (*)) 0 + k(N€) + 1

= k(N£ ) + k(G3 ) =

and (**) is easily seen to be true.

The remaining cases involve trivial applications of the

inductive hypothesis, and are left to the reader.

Ev' is S y , so by (**) k (gy) + 1 = k(fiy) = n(Dy)

and m(E ) < m(D ) . If m(E ) = m(D ) then n(E ) =
~7 — "7 "7 "7 ~7

k(E ) < n(D ) ; hence whether m(E ) = m(p ) or m(E ) < m(D )

we have p(E ) < p(D ) . Therefore by inductive hypothesis

5 is conv - I-II to a wff in A - normal form, so D is

also.
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2 .7 .4 Church-Rosser Theorem: I f JB and C a r e i n

A-normal form and B conv C , then B can be converted

~Y ~Y ~ Y

into C by applications of 2.6.1 alone. That is, a A-normal

form of a wff is unique up to alphabetic changes of bound

variables.

This theorem was originally proved for a different system

of A-conversion without type symbols but it is known that it

applies to 3 also. See [ 5 ] and the references cited therein.

2.7.5 Tl-wffs.

A wff A of 3 is an •q-wff iff A is in A-normal form
and for each wf part [AxQC ] of A , xQ is the f i r s t variable.,

-p~Y — a ~ p p

in alphabetic order which is distinct from the other free variables

of C . Using 2.7.3, 2.7.4, and 2.6.1 it is easy to see that for

each wff A there is a unique r)-wff B a such that A conv Ba.

We write B = T̂ A . (To convert a wff in A-normal form into

an T]-wff, proceed from left to right to decide what each bound

variable should be; however some additional temporary changes of

bound variables may be necessary before these changes can be made.)

r|-wffs have the following pleasing properties. If A is

an ri-wff, then every wf part of A is an r|-wff.

Ti[AapB ] = [ ( T I A - ) (r|Bp)] i f [AagB ] i s not c o n t r a c t i b l e .

2 .8 Wffso

2.8.1 A wff A is atomic (an atom) iff the leftmost primitive

symbol of A which is not a bracket is a variable or parameter.
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2.8.2 Every wff .D of 3 in A-normal form has one of the
o ~o

following forms:

(a) A, where A is atomic.

(b) ~ B

(c) B V £

Proof: The leftmost primitive symbol of D which is not

a bracket cannot be A, so it must be a variable, parameter,

~oo' Vooo' o r no(occ) '

2.9 A set § of wffs is inconsistent iff there is a
o

finite subset [A ,...,A } of § such that |— ~ A V...V ~h

otherwise § is consistent.
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§3. Abstract consistency properties, valuations, and consistency.

3.1. Definition. A property F of finite sets of wffs

is an abstract consistency property iff for all finite sets S

of wffs the following properties hold (for all wffs A,JB) :

3.1.1. If F(S) , then there is no atom jk such that

A e » and [~A] € §.

3.1.2. If r(S U {A}), then T(S U {*?A}).

3.1.3. If r(g U {~~A}), then T(S U {A}).

3.1.4. If T(S u ( [A V B]}), then T(S U {A}) or T(g U {B})

3.1.5. If r(g U {-[£ V B ] } ) , then T(S U {~A,~g}).

3.1.6. If r(S U {n .A ) ) , then for each wff B ,

o (ocx; —ocx ~a

r(g u {n . .A ,A B }).
9 l o(oa)-oa'**oa-a

3.1.7. If r(S U [~n . .A )), then T(g U {~A £ })
o(oa)~oaJ ' v L —oa a;

for any variable or parameter c which does
not occur free in A or any wff in g.

*~ooc

Remark: Satisfiability is an abstract consistency property.

The notion of an abstract consistency property is due to

Smullyan. Our main theorem of this section will be that if V

is an abstract consistency property and T(S), then g is con-

sistent. This is an analog for 3" of Smullyan' s Unifying

Principle in Quantification Theory [10].
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3.2. Definition. A semi-valuation is a function V with

domain some set of wffs and range a subset of the set (t,f}

of truth values such that the following properties hold (for all

wffs £,£) :

3.2.1. If V & is defined, then V TjA = V &.

3.2.2. If V[~A] = t, then V A = f.

3.2.3. If V[~A] = f, then V A = t.

3.2.4. If V[A V B] = t, then V A = t or V B = t.

3. 2. 5. If V[A V B ] = f, then V A = f and V B = f.

3.2.6. If V[II . .A ] = t, then for each wff B ,
1 o(oa)-oa ' ' -a '

V [ A o a V = fc'
3.2.7. If V[II . ,A ] = f, then there i s a wff B

o(oa)~oa
J -a

such that V[A B ] = f.

The notion of a semi-valuation is due to Schutte [9].

3.3. Theorem. Let S be a finite set of wffs and F

o

be an abstract consistency property such that F(S). There is

a semi-valuation V such that V A = t for all A. e S.

Proof: (following Smullyan [10]):

We may assume § is non-empty, since the theorem is other-

wise trivial.

3.3.1. We shall inductively define finite sequences

S S-,... of wffs such that §. has at least i terms and
X <s O 1

S i is an initial segment of S. ,. We let £ be the i th
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term of §•. For notational convenience if ty is a finite

sequence we let ty*A be the sequence obtained from ty by ad-

ding A as an additional term; also when we use notations

which suggest that ^ is a set we refer tacitly to the set of

terms of the sequence ty. As we define S. we prove F(S. ).

g is to be the sequence of wffs of S arranged in order.

r(g ) since T(S).

Given §i such that F(S. ), we define g. . and prove

F(g^ + 1) in each case below:

3. 3. 1.1. E is not an 17-wf f.

Let g. 1 = S . * ^ 1 . E1 e 8. so g. = ». U {E1} so T(g )

by 3.1.2.

In a l l other cases we assume E i s an 77-wff.

3. 3 .1 . 2. jE i s an atom or the negation of an atom.

Let S. = S.^E1 .
l + l 1 -

L e t gi + 1 = gi*^# F(gi + 1J b y 3'1>3-

3. 3. 1.4. E 1 = A V B.

Let S be S.*A i f r(g.*A) ; otherwise l e t g = § *B
l + l 1 ~ 1 - i + l i - 5

Then r ( g
± + -,) by 3 .1.4.

3. 3 .1 . 5. E1 = ~[A V B].

Let g± + 1 = g^-A^^B. r (8 ) by 3 .1 .5 .
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3. 3. 1.6. E1 = II , , A .- o(oa)~oa

Let B be the f i rs t wff such that [A B ] ^ S. and let-a a l~oa~aJ * x

x + 1 x roa-a —= S..*A__B_*E~. r(§± + ) by 3.1.6.

3. 3.1.7. E = ~ II . ,A .
~ o(oa)— oa

Let x be the first variable which is not free in any wff

of S. and let §. 1 = §,*~A x . F(S. ' .) by 3.1.7.
oo

3.3.2. Let U = U g.. Note that every finite subset of

U is a subset of some set with property T.

3.3.3. Lemma. There is no wff E such that E e U and

[~E] e U.

Proof:

Clearly by 3. 3.1.1. if E e U then r\E e U. Also

r?[~E] = [r-r\E], so it suffices to prove the lemma for rj-wffs.

We do this by induction on the number of occurrences of logical

constants in E. In each case below we suppose E_ is an 77-wff

and E e U and ~E e U.

3. 3. 3. 1. E is atomic.

By 3.3.2. there exists a set Z such that {_E,~E} c: Z c U and

F(Z) . This contradicts 3.1.1.

3. 3. 3. 2. E = ~ A.

Since ~E = ~ ~ A e U, by 3.3.1.3. A e U, which contradicts the

inductive hypothesis.
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3. 3. 3. 3. E = [A. V B ] .

By 3.3.1.5. ~ A. e U and ~B e U, and by 3.3.1.4. A e U or

J3 e U, which contradicts the inductive hypothesis.

3. 3. 3.4. E = n A .
- o(oa)—oa

By 3.3.1.7. there is a variable x such that ~ A x e U,
—a --oa-a

and from 3.3.1.6. it can be seen that A x e U, since there are
•~ooc~oc

in f in i te ly many i such that E = II A . Hence by 3.3.1.1

77 [A x ] e U and [~rj [A x ] ] e U. If A x i s not in
~"OCC"~CC "O0C0C "~O(%~<X

A-normal form, a single contradiction will make it so, and it is

easy to see that T? [A x ] contains the same number of occur-

rences of logical constants as does A . Thus the inductive
-oa

hypothesis is contradicted.

3.3.4. We now define a function V which we shall show

is a semi-valuation.

V E = t if E e U.

V E = f if [~E] e U.

Clearly V is well defined by 3.3.3.

3.3.5. V is a semi-valuation.

The proof is straightforward. Each clause of 3.2. is readily

verified using 3.3.4. and the appropriate case of 3.3.1.

3. 3.6. If A e S then A e U so V A = t.

This proves 3. 3.

3.4. Theorem. If V is any semi-valuation, then

[A.\ V A = t} is consistent.
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Proof (following Takahashi [12]):

3.4.1. For each type symbol y we define the set

of V-complexes as follows by induction on yz

y

3.4.1.1. & = {<A ,p > | A is an T7-wff and p is

t or f and if V A is defined, then p = V A }.
~o ^ ~o

3.4.1.2. & = [<A , t > I A is an tj-wff }.
i —i —t i

3-4'1'3- fi(ap) = f< Aap^ > I 4xp is an *-wff<ap) and

p is a function from & into JS such that if <B ,q> is
p CC ~p

any member of & , then p < B ,q> = <T? [A B ] r > for some r } .
p — p dp—p '

3.4.2. Lemma. For each T?-wff A there is an r such
- Y

that <Ay,r > e J9y.

Proof:

We choose r as a function of .A by induction on y, and

show <A ,r(A ) > € & . This is trivial when y = ^ or Y = o.
~Y ~"Y Y

(If V A is not defined, arbitrarily let r(A ) = t.) If
Y = (aP), let r(Aap) < Bp,q> = < 11^^], r ^ t A ^ ] ) > for

each <BpJc^> e J9p.

3.4.3. Definitions and notations.

3.4.3.1. If (S is a V-complex, let & 1 and S 2 be the

1 2
f i r s t and s econd components o f c , so £ = < < £ , £ > . I f f i s a

1 2

function whose values are V-complexes, let f and f be func-

tions with the same domain as f defined so that for any argu-

ment t, f1t = (ft)1 for i = 1,2. Thus ft = <f1t, f2t>.
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3.4.3.2. An assignment is a function <p defined on the

variables of 3" such that <px e & for every variable x .

3.4.3.3. Given an assignment <p, a variable x , and

E e & , let (<p:x /£) be that assignment J/J such that 0y = <py
OC *"0C — p —p

if yn ̂  x and ibx = £.

3.4.3.4. If p and q are truth values, we denote by ~p

and p v q the (intuitive) negation of p and the (intuitive)

disjunction of p and q, respectively. The context will show

whether ~ and v are to be regarded as symbols of 3" or of

our meta-language.

3.4.4. \s .

<P
For each .assignment <p and wff C we define V C and show

- Y <P~Y
1 2

l r c e & . T h u s U c = < U C , l f C > .
<p-Y Y <P-Y <P - Y <P ~ Y

3.4 .4 .1 . Let U^ 1 ^ = r, [ [Ax1. . . AxnCy] (cpV) • • • ( « P V ) 1,
where x , . . , , x are the free variables of C .

~~ ~~ " " Y
Let If C = T7C if C has no free variables.

<p ~ Y Y ~ Y

3.4.4.2. Note that V^1 [AypBp] = T? t ( ^ \ p ) \ \ l '

This is readily established using properties of A-conversion.

2
We define \s c , and show U C e & , simultaneously for

<p ~Y <P~Y Y '

all (p by induction on the number of occurrences of [ in C ,

considering the following cases:
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3.4.4.3. C is a parameter.

2
Let If C = r(C ) , where r is defined as in the proof of

(p —y "* y
3 . 4 . 2 . N o t e t h a t C i s a n 77-wff, s o U C = <C , r ( C ) > e &

~ Y ' <P~Y ~Y V~Y Y
by 3.4 .2 .

3 .4 .4 .4 . C i s a va r i ab l e .

2 2 1 2
Let \s C = <p C . Thus V C = <«3 C ,(p C > = (DC e $ by

<P ~ Y Y <P~*Y " Y ~ Y Y Y

3.4. 3.2. , and we see that If extends (p.

3.4.4.5. C is ~
—Y oo

For any <Bo,q> e * Q , l e t ( l^ 2 ^ J < Bo,q> = <~ooBo,~ci>. I t

is clear that ~ B is an 77-wff since B i s , so to check
oo~o ~o

that If - e & by 3.4.1.3. we must check that <~ B , ~q> e & .
ip 00 00 * oo~o^^^ o

By 3.4.1.1. this is trivial if V[~B ] is not defined. If
"*o

V[~B ] = r then by 3 . 2 . 2 . - 3 . 2 . 3 . V .B. = ~r; b u t V B = q
"*O O "*"" O

s i n c e < B , q > e f i s o ~ q = r = V [ ~ B ] a n d < ~ B , ~ q > e & .
"*O O ™"O ""O O

3.4.4. 6. c i s V
~Y (00)0

For any <Bo,q> e *Q, let (l^
2 v{QQ) Q) < BQ,

where h is that function from & into & such that for any
0 0 •*

<Eo,r> e * o , h<Eo,r> = < [V ( O Q ) ^ J E ^ q V

Since [[V , B ]E ] is an r?-wff whenever B and E
(00)0-0-0 —o —o

are 77-wffs, from 3.4.1.3. it is seen that in order to verify

that \s V e & one must check that
cp (00)0 (00)0

< [V .B ]E ,q V r> e « whenever <B ,q> e & and
(OO) —O "O O —O O

<E ,r> e & . If V[B V E ] is not defined this is trivial.
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I f V[B V E ] i s d e f i n e d t h e n V B = q and V E = r so
- o ~o -o ^ ~o

b y 3 . 2 . 4 . - 3 . 2 . 5 . V [B V E ] = q v r .

3 . 4 . 4 . 7 . C i s II . . .
—y o(oa)

For any <Aoa,p> e 4 ^ , let (\\{oa)) <AQa,p> = <nQ(oa) A ^

2

where r is t if p £ = t for every E e & , and r is f

otherwise.

I t must be shown tha t V [II . .A ] = r i f V [II . .A ]
1 o(oa)—oa o(oa)—'oa

i s defined, so suppose i t i s defined.
Suppose V[II . ,A ] = t, and l e t <B ,q> e & . By 3.2.6.

o(ooc)~occ ~cc a

and 3 . 2 . 1 . t = V [A B ] = V77 [A B ] , so
~oa~a ' *—oa-a '

p <Ba,q> = <^[A
oaBa],VT?[AoaBa]> = <?7 [AQaBa ] , t> by 3 .4 .1 .3 . and

3 .4 .1 .1 . Thus r = t = V[II ,A ] in t h i s case.
o(oa)-oaJ

Suppose V[II . A ] = f. By 3.2.7. and 3.2.1. there is

a wff B such
- a

tha t VTJ [A B ] = f. By 3.4.2. there i s a q
~ OOC'-OC

s u c h t h a t <T]B ,q> e & . Thus p <r?B^,q> = <T?[A B ] , f > , so

r = f = V[II .A ] i n t h i s c a s e .
1 o ( o a ) - o a

3 . 4 . 4 . 8 . C h a s t h e form [A D B O ] .
—Y ~yp~p

Let ^2[AYpBp] = ((^2Av p)(U^gp))2 . Note that

^ } ( V S ) * i b i n d u c t i v e hypothesis

a n d V P e ®p s o

1
 ^ A ^ ) ^ ] (by 3.4.1.3.)

(by 3 .4 .4 .2 . ) .
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3.4.4.9. C has the form [Ax.A ] .
—Y *• ~ p—a

2
Let If [AxoA ] be that function from &o into A whose value

(p "~p CX p CC
on each E e &„ is V ._. A .P (<P:xQA)~a

P
To satisfy 3.4.1.3. we must show that if

In
Let y ,...,y be the free variables of [Ax A ]. Then

~ ~ -p~a

^ [̂ X
R
A ] = V [ [̂Y • • • AynAx A. 1 (̂  y ) • •• (P yn) ] • Also whether or

not x^ is free in A ,

,1 1 n 1 1 I n

3.4.4.1. and 3.4.3.3. The desired result follows by A-conversion.

3.4.5. Remark. In the terminology of [4] we have now es-

sentially shown that the set of V-complexes constitute a general

model for 3" in which the axioms of extensionality (Axioms 10

of [4]) do not necessarily Iiold. Of course in order to permit

the axioms of extensionality to fail we have avoided making

& = {t,f}, and we have avoided making & contain genuine
O CC p

functions from &n into & . Instead we have in essence in-
p a

dexed these truth values and functions p by wffs A and

called the indexed entity <£,p> a V-complex.

Since the theorems of 3* are known to be valid in all

general models, the unsceptical reader will readily believe

Lemma 3.4.9. below, and may proceed directly to 3.4.10, after

noting 3.4.8.
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3.4.6. Lemma. If <p and 0 are assignments which

agree on the free variables of A , then If A = If A .
^ a' <p a $ a

This follows in a straightforward way from 3.4.4.

3.4.7. Lemma. If D conv E and <p is any assignment,
~Y ~Y

then U D = V E •
<p-y (p-y

Proof: We first establish several subsidiary lemmas.

3.4.7.1. Lemma. If D conv E and <p is any assign-

ment, then If D = V E .

<P ~ Y <P - Y

This follows easily from 3.4.4.1. and properties of A-con-

version, using the fact that if y ,...,y are the variables

which occur free in D or E , then
-Y ~Y

\s g conv t [*% " - ̂ m 5 Y
] ̂  - ) • • • (<P ym) ] •

3.4.7.2. Lemma. If the bound variables of J3 are dis-
P

tinct from x and from the free variables of A , <p is an

assignment, and 0 = (<p:x /\s A ), then V S B = If ,B .

Proof:

3.4.7.2.1. First treating If we have

V 2 a § p V a 3.4.4.2.)

= T J [ ( V , 1 [ ^ x B Q ] ) U ^ x ] ( b y 3 . 4 . 6 . a n d 3 . 4 . 4 . 4 . )

= ^ , 1 B _ ( b y 3 . 4 . 4 . 2 . a n d 3 . 4 . 7 . 1 . )
*P " * P

Next we prove the lemma by induction on the number of occur-

rences of [ in BQ, and consider the following cases:
— p
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3.4.7.2.2. B Q is x .

Then 1; S, B = If A = jj)x = lf.BQ.

3.4.7.2.3. x does not occur in B..
-a -B

Then y i ^ = ̂ B p = V ^ by 3.4.6.

3.4.7.2.4. B^ has the form [G O , H S ] .
— g ~po—o

This is straightforward using 3.4.4.8. and the inductive hypo-

thesis.
3.4 .7 .2 .5 . Bo has the form [Ay,E ] .

"* p - 0~€

Note that y£ must be distinct from x and from the free
— o •"•&

variables of A . Let £ e &?. Let
•~CC o

0 ' = ( J / J : Y C / S ) . T h e n V A = V , A b y 3 . 4 . 6 . , SO

0i = ((pi : x /If A ) . T h u s

z CC <c

~a x " '̂ct
= If S E (bv 3 . 4 . 4 . 9 . )

•*"0C

= If E (by inductive hypothesis)
ID "e

= (lf,2Bj£ (by 3.4.4.9.).

Thus If S g is the same function as lr B .

3.4.7.3. Lemma. If the bound variables of Bo are
~ P

distinct from x and the free variables of A , and <p is

an assignment, then ^ [[Ax BO]A 1 = If S B .
vX

Proof:

Let 0 be as in 3.4.7.2. Then
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= ( V [ A S a S p ] > V a (by 3.4.4.8.)

= I; ,Bn (by 3 . 4 . 4 . 9 . )

3.4.7.4. Lemma. If yn does not occur in _A and x
— p a ~p

is not bound in A and <p is an assignment, then

\s [AxoA ] = If [AyDS A ] .
— p

Proof:

We assume x ^ y , since otherwise the result is trivial.
~P ~^P

\s 1 [ A x Q A ] = \s 1 [ A y o S ~ P A ] b y 3 . 4 . 7 . 1 .

B
2

Considering If , for all E £ A we have

\ <b* 3.4.4.9.)

2
= If . . ~, ._. A (by 3.4.6.)

((<p:y/S) :X/C) -a *

~3A (by 3.4.7.2.)
y-a ^

^ p S ^ P A a ] ) E (by 3.4.4.9.)

so the indicated functions are the same.

3.4.7.5. The proof of 3.4.7. now follows easily from

3.4.7.3. and 3.4.7.4. One may assume that E is obtained from

D by a single application of a rule of A-conversion, and pro-

ceed by induction on the number of occurrences of [ in D .

3.4.8. Lemma. Let <p be any assignment.

3.4.8.1. If 2[~A ] = ~V 2A .
<p ~o cp ~o
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3 . 4 . 8 . 2 . 1/ 2[A V B ]• = (\s 2A ) V (U 2B ) .
cp ~o ~*o (p —o <p —o

These follow directly from 3.4.4.8., 3.4.4.5., and 3.4.4.6.

3.4.9. Lemma. If (p is any assignment and ]— -A. ,

2
then If A = t.<p ~o

2

Proof: We show that to = { A If A = t for all assign-

ments </>} contains the axioms of 3" and is closed under the

rules of inference. This follows immediately from 3.4.8. for

Axioms 2.5.1.-2.5.4. and Modus ponens, and from 3.4.7. for the

rules of A-conversion. We leave to the reader the routine cal-

culations for Axioms 2.5.5. and 2.5.6., using 3.4.4. and 3.4.8.

For 2.6.4. (Substitution) and 2.6.6. (Generalization) we
suppose x is not free in F and that [F x ] e to; we
*^ ~a ~oa l~oa~a

must show II . ,F € to and [F A ] e to. Given (p, we let
o(oco)~oa L~oa~a '

E e fl and \b = (<P:ji

Then t = ^ 2 [ F o a x a ]

= <<%2?oa }%V2 ^ 3.4.4.8.)

= ( ( U . 2 F ) £ ) 2
v v ij) ~oa

= ( ( ^ n
2 F ) E ) 2 (by 3 . 4 . 6 . )

f o r a l l E £ i so
a

X 2 3 . 4 . 4 . 7 . )
3 . 4 . 4 . 8 . )

so [II . ,F ] e to. Also, i f we l e t S = If A theno(oa ) -oa J ' (fr-a

s o

3 - 4 - 4 - 8 )
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3.4.10. We now complete the proof of 3.4. If 3.4. is not

true, there are rj-wffs A ,...,A such that V A. = t for

1 < i < n but I— „ ~ A V...V ~A . By 3.4.2. we can define an

assignment <p so that <p x = x for all variables x . Then

1/ A = A for allt?-wffs A by 3.4.4.1. so by 3.4.4. and 3.4.1.1.

(p - ~ ~

for 1 < i < n V A1 = < A ^ V A ^ = <A1J>t> and V 2AL = t.

Hence by 3.4.8. \s [~A v. . . V ^A*1] = £, contradicting 3.4.9.

3.5. Theorem. If F is an abstract consistency prop-

erty and g is a finite set of wffs such that F(g), then

S is consistent.

Proof: by 3.3. and 3.4.

Remark. Our analogy with [10] suggests that the conclusion

of 3.5. should be that § has a denumerable general model.

By the remark 3.4.5. we have actually shown that g has a

general model (although we have not actually defined what is

meant by a general model when axioms of extensionality are not

assumed). Of course we have not dealt with the question of

denumerability.
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§4. Cut-elimination.

4.1. Preliminary definitions.

4.1.1. The disjunctive components of a wff are
1 1 Q

defined inductively as follows:

4.1.2.1. A and B are disjunctive components of [A v B] .

4.1.2.2. A is a disjunctive component of .A .

4.1.2.3. If Â is a disjunctive component of B , and B

is a disjunctive component of C., then A, is a disjunc-

tive component of C_ .
We regard disjunctive components as occurrences of wffsQ .

4.1.2. We now find it convenient to modify our con-

ventions concerning syntactical variables so that Â V B.

and B V A may simply stand for A. in appropriate contexts.

To this end we introduce a "pseudo-wff" , the constant • ,

which may be interpreted as the empty disjunction, and there-

fore denotes falsehood. We henceforth let A , B , C , (etc.)

take CU as value when these syntactic variables occur as

disjunctive components of an expression which stands for a

wff . Then we regard A V • and • V A as abbreviations

for A . • standing alone may be regarded as an abbreviation

for V p p .
0*0
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4.2. The System Q

4.2.1. Axioms: ~ A V A, where A is atomic.

4.2.2. Rules of Inference

4.2.2.1. Conversion - I-III. Apply 2.6.1. or 2.6.3.

4.2.2.2. Disjunction Rules. To replace a disjunctive

component D of a wff by E, where

D is [[A V B ] V c] and E is [A V [B V cl], or

D is [A V [B V c] ] and E is [ [A V B] V c] , or

D is [A V B] and E is [B V A] .

4.2.2.3. Weakening. From M to infer M V A

(where M is not • ) .

4.2.2.4. Negation Introduction. From M V A_ to infer

M V A.

4.2.2.5. Conjunction Introduction. From M V ~ A and

M V ~ B to infer M v ~ [A V B ] .

4.2.2.6. Existential Generalization. From

M V ~ II . , A V ~ A B t o i n f e r M V ~ n . . A .
" o(oa)~oa ~oa-a ~ o(oa)~oa

4.2.2.7. Universal Generalization. From M v A x to
— ~oa~a

infer M v n .A , provided x is not free in M or A
— o(oa)-oa r -a — -o

4.3. Proposition. If |— _A^ then |— A.

This is readily established by showing that the rules of in-

ference of Q are derived rules of inference of o.
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We next establish some subsidiary lemmas. We shall discuss

their proofs together since they all have the same form.

4.4. Lemma. If P conv Q then I— _P iff I—^Q.

4.5. Lemma. If |— _P, and V has a disjunctive component

of the form ~ ~ D, and Q is the result of replacing this

component of P by D, then |— -Q.

4.6. Lemma. If |— „]?, and J? has a disjunctive component

of the form ~[p v E], and Q is the result of replacing this

component of P by ~ D or by ~ E, then I—-,Q.- - — q-

4.7. Lemma. If |—>,P> and y ,. . . ,y are distinct

(j- ~ —

variables and z^ is a variable of the same type as y-̂

for 1 <^ j <^ n, then there is a wff Q such that P conv-1 Q
and z? is free for y-1 in Q for 1 <̂  j <^ n and

4.8. Lemma. If |—~P, and P has a disjunctive component

of the form n
o(oo)5og>

 a n d Q i s t h e result of replacing this

component of f by B QJ5O> then |— Q.

Proofs of 4.4-4.8:

Note that to prove 4.4 it suffices to prove 4.4*: if |— _£

then |—p^P. For when this is established one knows that if |— P,

then |- TIP, so |— r\Q, so |- Q by 4.2.2.1.
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To prove 4.4' and 4.5-4.8 let P ,...,P be a proof

in Q. We prove by induction on i that the lemmas hold

for P1 for 1 <^_ i <_ m. Each lemma is trivial when JP is

an axiom. If JP1 is not an axiom one considers how J> was

inferred and applies the inductive hypothesis (if necessary)

to the wff(s) from which it was inferred. The proofs of

lemmas 4.4', 4.5, and 4.6 are routine in all cases.

The proof of 4.7 is trivial except when P is inferred

i !<.

by 4.2.2.1 or 4.2.2.7. Suppose jp is inferred from P

by 4.2.2.1. One easily defines a wff Q such that P. conv—I jQ

and zJ is free for y for 1 £. j £. n. Let Q be a wff

whose existence is assured by the inductive hypothesis. Then
~k. k i iQ conv £ conv P conv Q so

sV~r,Q k c o n v [[^Y1...^1^*] z1...^1]
jfa • • • £*

conv [ [Ay1. . -Ay /V] z 1 . . .zn] conv S ^ * * 'XnQ,X ,
£* • • • £*

so the latter wff is a theorem of Q by 4.4 and the inductive

hypothesis.

Suppose P is M V Uo| »A and is inferred by 4.2.2.7

from M V A x . Since x is not free in P1 we may assume x~ — oa~a - a ~ J ~a

is distinct from y ,...,yn, but we must allow for the possibility

that some z-5 is x . Let g be distinct from z ,. . zn

and all variables free in P1. By the inductive hypothesis 4.7

t h e r e i s a wff [M1 V A ' x ] conv-1 [M V A x ] such t h a t ??
— ~oa ~ a — -oa^oc -
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is free for yD in M' V A 'x for l ^ j ^ n and

1 n
I— S^,*'"v -a [M1 V A 'x ]. It is readily seen that one may

Q<z1...znsra ~ -"oa~a

apply 4.2.2.7 to obtain | - S ^ / * ' ^ [M' V no (oa) AQa' ] ,
M z . . . z

which completes the proof of 4.7.

The proof of 4.8 is trivial except when P is inferred

by 4.2.2.7, so suppose P1 has the form M V n
o ( o a ) ^ o a

 a n d

is inferred from M V A x . If the component n , fl,B fl

— ~oa-<x o(oP)-op

referred to in 4.8 is the component II , ^A introduced by

this application of 4.2.2.7, one obtains M V B pz from
— op p

M V A x by 4.7 and 4.2.2.1. Otherwise one may assume

without real loss of generality that P has the form

V no(o^op V no(oa)Aoa a n d is i n f e r r e d f r o m& V no(o^op
 V - V a - L e t -yp be .distinct from all

variables in the latter wff.

|—«N V BQgy V Aoc(x by inductive hypothesis

h Q S V Bopyp V n o ( o a )A o a by 4.2.2.7.

|-QS V B o pz p V n o ( o a )A o a by 4.7 and 4.2.2.1.

This completes the proof of 4.8.

4.9. Lemma. If I--M V D V D then I— M V D.
'• Q*" - ~ Q~

Proof:

The proof is by induction on the number of occurrences of

logical constants in r\D. We consider the following cases,
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assuming that D is an ri-wff in cases 4.9.1-4.9.4:

4.9.1. D has the form [B V C] .

|— M V B V j T V B V C g i v e n .

|— M V B V B V C by 4.2.2.2 and inductive hypothesis,

|— M V D by 4.2.2.2 and inductive hypothesis,

4.9.2. D has the form ~ ~ E.

|_ M V ~ ~ ^ V ~ ~ J E g iven .

| - M V J3 V E by 4 .5 (twice) .

|— M V E by inductive hypothesis.

I - M V D by 4.2.2.4.

4 . 9 . 3 . D has the form ~[B V C]

| - M V ~ [B V C] V ~[B V C] given.

| - MV ~ B V N | by 4.6 (twice) .

|— H V ~ B by inductive hypothesis.

|— M v ~jC s imi lar ly .

I - M V D by 4 . 2 . 2 . 5 .

4 .9 .4 . D has the form

Let x be a variable which does not occur in D.

I" £ V no(oa)^oa V no(oa)-Aoa

I— M V A^ x V A x by 4.8 (twice) .
-w ~oa~a ~oa~a

I- M V T![Aoaxa] V n[Aoaxa] by 4.4.

Since A Q a is an ri-wff, it is easy to see as in 3.3.3.4

that r\ [&oa£ ] contains the same number of occurrences of
logical constants as does A . so

|— M v •n[Aoa
x
aJ t»y inductive hypothesis.
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|— M V JB by 4.2.2.1 and 4.2.2.7.

4.9.5. nE is a n atom, the negation of an atom, or is

of the form - ^(oai^oa'

We prove that if JE> , ...,P is any proof in Q, and P

has disjunctive components H and K such that r)H = r\K

and r|H has one of these three forms, then the result of

dropping K from P1 (i.e., replacing a component of jf of

the form [C V K] or [K v C] by C) is a theorem of Q. The

proof is straightforward by induction on i.

4.10. Theorem. If f-_A then I— _A.

Proof:

4.10.1. Let T{c 1,...,C n} mean not k^~C X V. . . V ~c n.
~o o ' Q *o ~o

Note that by 4.2.2.2 this definition is independent of the

order in which the wffs C?1 are listed. Also by 4.2.2.3 and

4.9 , r({c1,...,cn} U {D1,...,^1}) is equivalent to not

I— Q~£ v« • • v ~£ v ~D v. .. v ~Dm whether or not some C 1 is

the same as some D"1.

4.10.2. We verify that r is an abstract consistency prop-

erty by checking the contrapositive of 3.1.k in step 4.10.2.k

below:

4.10.2.1. if A is an atom, f— M V A V ^ A by 4.2.1,

4.2.2.4 , and 4.2. 2. 3.

4. 10. 2.2. if [- M V ~ |JA then |— M V ~ A by 4. 2. 2. 1.

4.10.2.3. If \- M V ~ A then \~ M V £ by 4.2.2.4.
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4 . 1 0 . 2 . 4 . I f |— M V ~ A and |— _M V ~ JB t h e n

|_ M V ~ [A V B] by 4 . 2. 2. 5.

4 . 1 0 . 2 . 5 . I f | - M V ~ ~ A V JB then | - M V A V jj_

by 4. 5, so I— M v [h V B] by 4. 2.2.4.

4.10.2.6. If |— M V ~ n ,A V ~ A B then
1 — o(oa)~oa ~ooc-a

|— M V ~ n . ,A by 4.2. 2.6.
"* o(oa)~oa •*
4.10.2.7. Suppose there is a variable or parameter c

which does not occur free in M or in A such that
— ~occ

(— M v ~ ~ A c . By choosing an appropriate variable x

and substituting it for c throughout the proof we obtain

I— M V ~ ~ A x , where x is a variable not free in M or

— — oa~oc —a ~
A . Hence (— M V A X by 4. 5, SO I— M V II . ,A by
~-oa ~ — -oa-a ' ~ - o(oa)~oa *
4.2.2.7, so I- M V IT ,A by 4.2.2.4.

' ' ~ o(oa)-oa *

4.10.3. Suppose [— A. Then {̂ A} is inconsistent

(in 3") so by 3.5 , not Y{~&\ , i.e., f— „ Â, so \— QA by

4.5.

4 . 1 1 . Coro l la ry . I f |—_M V A and I— ̂ ,~A V N then

\-(P v N.

Proof: by 4.3 and4.io , since this result is easy to

establish for 3\
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§5. The Resolution System ft.

5.1. Definition. Let § be a finite set of sentences.

For each type symbol y choose a parameter c . (hence-

forth called an existential parameter) which does not occur

in g. For this choice of existential parameters, a derivation

in ft p_f E, from § is a finite sequence J) ,. . . ,D such

that D is E and each D is a member of S or is ob-

tained from preceding members of the sequence by one of the

following rules of inference;

5.1.1. Conversion - X~Xi.- Apply 2.6.1. or 2.6.2.

5.1.2. Disjunction Rules. (4.2.2.2.)

5.1.3. Simplification. From M̂  V A V Â  to infer M V ̂ .

5.1.4. Negation Elimination. From M v ~ ~ j \ to infer

M V A.

5.1.5. Conjunction Elimination. From M v ~ [A V B ] to

infer M V ~ A and M V ~ B.

5.1.6. Existential Instantiation. From

M V ~ II A to infer M V ~ A [c . .A ] .
— o(oa)~oa — — o a -a(oa)-oor

5.1.7. Universal Instantiation. From

M V II A to infer M V A x .
— o(oa)~oa — ~-oa~cc

5.1.8. Substitution. From A to infer [Ax AlB .
— l -a— -a

5.1.9. Cut. From M V A and N V ~ A to infer M V N.
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A derivation of Q from g is a refutation of S.

In ft one proves a sentence A by refuting ~A (i.e.,

{~A}). More generally, one shows that A follows from a

set J* of sentences by refuting 34 U (~A}.

5.2. Remarks.

For convenience, ft has been formulated so that only

sets of sentences may be refuted in ft, but clearly this in-

volves no real loss of generality.

We write g — QE (resp. § I— _E) iff there is a der-

ivation of E from § in ft (resp. in 3") . For 3 this

notion is defined, and the deduction theorem is proved in

[ 2 , section 5]. In a proof in tf from assumptions g

one may not generalize upon or substitute for a variable

which is free in a wff of S.

The reader may be bothered by the presence of the cut

rule 5.1.9. among the rules of inference for ft, since we

showed in 4.9. that this need not be taken as a primitive

rule of inference in Q. However, since one proves wffs in

Q, but refutes them in ft, the role of the cut rule is quite

different in the two systems. One is tempted to establish

the completeness of Q and ft directly with a proof by

induction on i that if D , . . . ,D is a proof in 0", then

|— pD and ~D \—g Q , where D is obtained from D
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upon replacing free variables by new parameters in one-one

fashion. In each case the crucial difficulty arises when D

is inferred by modus ponens. In Q one can overcome this dif-

ficulty by proving that the cut rule is a derived rule of in-

ference. However in ft the analogous meta-theorem is that if

§ U {A} |- • and 3 U {~A} f-Q then g h D •

The wffs c , .A introduced by 5.1.6. are essentially
~a(oa)-oa •* *

Herbrand-Skolem functors whose arguments are the free variables

of A . Suppose one is given M V 3x B x , where the free
-oa r r ^ ~- ~a~oor-cr

variables of B are y , . . . ,y and do not include x .
-o ~$1 -tsn

(Matters may be so arranged that one may assume y , . . . ,y
~ 3 1 ~Pn

were previously introduced by 5 .1 .7 . ) . The given wff i s

M V ~ II , . [Ax ~ B x ] , so by 5 .1 .6 . , 5 . 1 . 1 . , and 5.1.4.
~ o(oa) L -a ~oa*tx

one obtains M V B [C . ,.Ax .~B x ] . One may wr i t e
" ~oaL~a(oa) -a —oa~a J

[c . . . Ax . ~B x ] as f _ n Yn • • - Yr, •, ^
- a ( o a ) ~a -oa~a - a p . . . p n ~ p n ~p , where f „ nn ± 1 n "dp .. . p

n 1

is a new function symbol. Thus one replaces M V 3x B x
* * — -a~oa~a

When one sets out to refute a set of sentences by reso-

lution [8] in first order logic, one eliminates all proposi-

tional connectives except negation, conjunction, and disjunc-

tion, and pushes negations in so that they have the smallest

possible scope, with double negations being dropped. Then one
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eliminates existential quantifiers by the method of Herbrand-

Skolem functors, and drops universal quantifiers. The resulting

quantifier-free wffs are put into conjunctive normal form, whose

conjuncts are called clauses. One then derives Q from this

set of clauses by an operation called resolution, which is an

elegant combination of substitution and cut (with 5.1.2 and

5.1.3. used implicitly). (An important open problem concerning

resolution in type theory is to find an equally elegant way of

combining 5.1.8., 5.1.1., and 5.1.9.). However, in type theory

one may introduce new occurrences of logical constants by the

substitution rule, so one must continually have available the

rules 5.1.4.-5.1.7. which correspond to the preliminary proces-

sing in first order logic. However, 5.1.8. and 5.1.9. (in

conjunction with the subsidiary rules 5.1.1-5.1.3.) remain the

crucial rules of inference.

When applying Rule 5.1.7., one might as well choose x

to be distinct from the free variables of M V II a , since
~ o(oa)~oa

one can identify x with another variable later by a substi-

tution, if desired. If x is so chosen, one might as well

apply 5.1.3.-5.1.7. immediately whenever these rules are appli-

cable, and then discard the wffs to which these rules are applied,

since they need not be used again.



[39]

5.3 Theorem. Let S be a finite set of sentences.

If g |-jj D then § I-RD.

Proof:

5.3.1. For any finite set §> of wffs , let F(S) mean

not §' |-nD , where §' is obtained from S by replacing the

free variables in wffs of § by new parameters in a one-one

fashion. We shall show that T is an abstract consistency

property, so if <=> is a set of sentences such that § I— _ CH ,

then § is inconsistent in 3, so by 3O5 not F(§), i.e. § |— $ LI

5.3.2. We verify that r is an abstract consistency

property by checking the contrapositive of 3.1.k in step 5.3.2,k

below. For the sake of brevity we shall"be rather informal about

the distinction between S and §', simply assuming that wffs are

closed when appropriate.

5.3.2.1. If there is an atom A such that ^ e S

and ~ A e § then S |— aD by 5.1.9,

5.3.2.2. If g U {T|A} |-ftD then § U {A} |-̂  • by 5.1.1.

5.3.2.3. If g U {A} |- RD then g U { A} |- RD by 5.1.4.

5.3.2.4. Suppose § U {A} \-J^ and § U [B] | - R D • We may

assume given refutations C ,..., Cn of S U {B} and ^,...,

of § U f̂ A) using the same existential parameters. We define

which of the wffs £ are derived from B. in the given refutation

in the obvious inductive fashion: if C1 is in S U fj3] , then C,1 is

derived from B iff C1 is J; if JC1 is inferred from C? (and C; ) ,

then C1 is derived from B iff C-3 (or C^) is derived from JB. We
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define JD1 (for 1 <L i £. n) to be A V £x if g.1 is derived

from _§; otherwise jD1 is C1. By examining the rules of

inference of ft i t is easy to see that § U (A V B] |— rig

for 1 <̂  i £_ n by induction on i . If Dn i s Q we are done.

Otherwise Dn is A so § U {A V B) |— r\A. Now we readily

establish § U [A V B} | - riE1 for l ^ i ^ r a by induction on i ,

so S U (A V B} | - D .

5.3.2.5. If § U (~A,~B} | - R D then S U O [A V B] } I-^D

by 5.1.5.

5.3.2.6. If there exists a wff Bn such that

g U (no(oa)*oa' ^oaSa} K D t h e n S U {lIo(oa)^oa} 1~RD b^ 5'1'1'
5.1.8, and 5.1.1.

5.3.2.7. Suppose there is a parameter d which does not

occur in A or any wff of S such that S U {~ A_d } |— „!—1 .

Let a refutation of § U ~ A ~d be given with existential

parameter S a( o a)* Since tc
a (Oa)-

Aoa-' i s a c l o s e d w f f i t i s easY

to see that one can replace d̂  by [c . .A ] everywhere in the

given refutation to obtain a refutation of § U {~ n , * A },

using 5.1.6 to infer ~ A Q a[c a ( o a )A o a].

5.4 Theorem. Let S be a finite set of sentences.

If S |-aD then S \~^ •

Proof:

5.4.1. Definition. A derivation in ft is standard iff the

premiss of each application of 5.1.6 in this derivation is a

sentence and an T\-wff.

5.4.2. Lemma. If S |—^LJ, then there is a standard

refutation of § in R.
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Proof:

Let D ,..,Dn be a refutation of S. We prove by induction

on i that (*) if all the free variables of D are among

Ik Iky ,..,y , and E ,...,E are closed wffs, then there is
~Y1 *"Yk ~Y1 ~Yk

1 k i
a standard derivation in & from S of ^(S-,0**^, D 1).

E . . . E
1 k

For the sake of brevity we let 9 be the substitution *̂ i * v •
£L ' ' • ;£

(*) is immediate using 5.1.1 if D1 e g, since D1 is then a

sentence. If D1 is obtained from D-1 (where j < i) by any

of 5.1.2-5.1.6 or 5.1.9, (*) follows easily from the inductive

hypothesis; as an example we treat the case where I)1 is

and is °ht*i™d bY 5-1-6 f r ° m M V

By inductive hypothesis there is a standard derivation of

(T) 0 M) v ~ n / \ (r\ Q A ) , from which by 5.1.6 one may infer

H 8 M V ̂  (r\ 0 A o a) f̂ a (oa) ̂ 9 -ocJ > f r o m w h i c h o n e may infer

T| 9 D by 5 .1 .1 . I t i s easy to see that one thus obtains a

standard derivation of r\ 8 D .

If D is inferred from D by 5.1O1 we have

8 Jp conv [ [Ay" . . . AykrP ] E1 . . . Ek] conv [ [Ay" . . . A^D1] E^ . . . E_k

conv 9 D so n 9 D-3 = r| 8 D . Tlius the inductive hypothesis

suffices.

Suppose D 1 is M V A x and is inferred from

M V n o^ o a )A o a by 5.1.7. Let x a be y
r. By inductive

hypothesis there is a standard derivation of n 8 M V E / .ri 9 A ,
— o (oa) ~-oa
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which is a sentence. From this one can derive r\ 9 M V(r) 0 A )x

by 5.1.7, then [Ax^ . TI 9 M V(n 6 A )x iE r by 5.1.8, then rp.8 D 1

by 5.1.1. One thus obtains a standard derivation of T] 9 D

Suppose D 1 is [Ax D^]B and is inferred from D^ by 5.1.8.

Let a be that substitution which simultaneously replaces free

occurrences of x by occurrences of 8 B , and free occurrences

of y (for 1 <̂  r <_ k) by occurrences of E if y ^ x . Since

9 B is closed, by inductive hypothesis there is a standard
ex.

derivat ion of TI a Tp. However i t can be seen that

9 D1 = (9 [Ax Dj]) 9 Bn = (a [Ax D j]) a x

= a [[Ax D-3] ĉ ] conv o D^,so r\ 9 D1 = -q cr D-1.

This completes the proof of (*), and hence of 5.4.2.

5.4.3. We now prove 5.4. We may assume given a standard

refutation D ,...,Dn of § in ft. Let [c , „ ,A ],'•->~* *- — a locc..; — oa

[c , \A^,v ] t*e the wffs introduced by 5.1.6 in this refutation.-a tocx;~oa

(Note that any of these wffs may be introduced by several

different applications of 5.1.6.) We henceforth write

c , v as c-1 and A;L as A-1. We may assume that the-~oc. (oa./ —oa. *—

wffs [g^A-1] are ordered in such a way that if i£^£?] occurs

in A 1, then j < i. Let E^ be the wff [A^[c^A^] •=> II , ,A^— — — — ~. o(oa.j-

for 1 <̂  j <^ k0 Note that since each rule of inference of ft

except 5olo6 is a derived rule of inference of 3", the sequence

D ,. o . ,D , and hence the sequence -nD ,. .. , TiDn, can be regarded
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•I T ,

as a proof in 2> from the assumptions S U {E ,..,E } using

derived rules of inference.
Let yl ,...,y be distinct variables which do not occur

1 k

in any wff of g U . {E1,. . . ̂E*} U {rig1,. . . , r^}. For any wff B,

let pB_ be the result of replacing all occurrences of [c^A-J]

in B by occurrences of y-3 for j = k,...,l, starting with j = k

1 k i iand working downward. It can be seen that § U {pE ,. . . pE } — pr]D

for 1 ̂  i ̂  n by induction on i. We leave the details to the

reader; in each case consider how D was inferred in the original

refutation of §. (In the case where D was inferred by 5.1.8 one

uses the fact that the A-* are closed wffs.) When i = n

we have § U {pE , . . .,pE } | - T D .

Let e° = 0 and fi3" = { pE1, . . . , pE1} for 1 £ i £ k.

We prove S U 6 ~ |—J—' for 0 <[_ j ̂_ k by induction on j.

This is clear for j = 0. For the induction step we prove

§ U e1" f-jO from

(a) g U S1" U {pE1} l-jD (the inductive hypothesis).

pE1 has the form BQaya = n o ( o a ) B o a 3 where y a i s y1 and BQa

is pA . Note that y does not occur in B or in any wff

~a ~oa J

of & U 6 1 " . Hence by the deduction theorem and propositional

calculus we obtain

( b , g U S 1 - 1 l-s ~ n o ( o a ) B o a and
(c) § U & l"~tT§oâ a' f r o m which we obtain
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by 2 .6 .6 , so

(e) s u C1-1 I -^D from (b) and (d)

Thus § | - ? Q and 5.4 i s proved.
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§ 6 Remarks and Examples for ft

6.1. When one sets out to prove in ft a theorem of

some branch of mathematics, one of course assumes as hypotheses

the postulates of that branch of mathematics. In addition certain

assumptions which are used in all branches of mathematics, and

which in other contexts would be regarded as axioms of the under-

lying logic, should be taken as hypotheses. Among these we

mention the axioms of extensionalityt

6.1.1° VpoVqo.[po * qQ] 3.po = go

and the axiom of descriptions:

6.1.2 3i , N Vf ,a,x f x =5 f [i , . f ]. In addition one
t (oi) ot* 1 i oi i oi i (oi) oi

may wish to assume some formulation of the axiom of choice (in

which case 6.1.2 is dispensable) and an axiom of infinity.

Of course there are infinitely many axioms of extensionality,

and it may not be obvious which of these may be needed to prove

a particular theorem. However, when implementing the system it

should be possible to treat the oc and p of 6.1.1 as

special variables (type variables, in the terminology of [1])

for which one can substitute particular type symbols as necessary.

6.2. In the examples below we shall use letters with bars over

them for parameters. Thus o and s in 6.3 are parameters.

For the sake of brevity we shall introduce Herbrand-Skolem

functors as abbreviations in the manner discussed in 5.2. We
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shall call such a functor with its arguments an existential term.

Since applications of 5.1.1-5.1.7 are routine we shall usually

leave it to the reader to determine which of these rules are being

used. However we shall indicate (at the right-hand margin) from

which line(s) a given line is inferred if it is not inferred from

the line immediately preceding it. The reader will quickly

discover the advantage of formulating derived rules of inference

to speed up these manipulations. We here discuss only two such

rules, which we shall need in 6.4.

6.2.1 If J |-B ~ [A = A ] V B then § |-o B.
D1" CX (X W

P r o o f : From t h e g i v e n wff by 2 . 4 . 8 and 5 . 1 . 1 we o b t a i n

. 1 ~ V f [ ~ f A V_f A ] V J 3 where jf i s n o t f r e e i n _A .

. 2 ~[~ F A V F A ] V B where F i s an e x i s t e n t i a l t e r m .
"•"OCC'CX ""•OOt""CC "* '"OCX

. 4 ~ jp ̂ A v 13 . 2.

.5 B cut: .3,.4.

6.2.2 If A and B^ are free for x in C, and
**" (X "**U. CX

X

S J-^N V SA
aC, and § |-RM V [A^ = B j o r § |-RM V [Ba = A J ,

x
then § | - aM v N v S~ C.

** ' - a

Proof for the case [A^ = B ]:
*• CX -"-CC

Let f „ be a variable not free in A ,B , or M.
— O C X •*•'CX ""CX «••
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foaAa V

V f

3 M V ~[Ax C] A V [Ax C] B

Ac.
,4 M V ~(SA £) V

-a
3£a

[47]

given

Sub

given

.6 M V N V
-a

cut: .4,.5

In the case [B = A ] substitute [Ax ~ C] for f in
a-a —a

the line corresponding to .2.

6.3 Example

Let 3N stand for
oi

[An , Vp • [po A Vx. px 3 p.s x] 3 pn] .

U denotes the set of natural numbers when o denotes zero

and s denotes the successor function. We prove

Vy [ l y => UN. sy] by refuting i t s negation in ft.

.1 ~ Vy . 3Ny => 3N# sy given

. 2 3NY i

. 3 ~ 3N

.4 ~.[i

* . 5 p~oiC

* . 6 ~ p .

s y

. 1

. 1

A Vx t« px 3 p sxj =>. p s y

x V p s x

. 4

. 4

. 4
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.8 ~ p o V ~ Vx [~ px V p. sx] V py .2
^OI t t

*.9 ~ poto" V ~[~ p[x (O l )p] V p.s~,xp] V py^

Lines .5-.7 and .9 were obtained routinely from .1,

and O must be derived from these. We could apply 5.1.5

to .9, but it is convenient to postpone this.

.10 ~ p y Sub: .6; cut: .7

.11 ~.~ p [x , ,p] V p. s. x p Sub: .9,-cut: .5, .10

.13 ~p o t*«.* t ( o t )p .11

.14 D Sub: .6,-cut: .12,. 13

6.4. Example

For a somewhat less trivial example, we prove that if some

iterate of a function f has a unique fixed point, then f has

a fixed point. (This example is suggested by [6].)

L e t Jo(tt)(tt) s t a n d f o r

[ A f n A g t t V p o ( t i ) ' [ p f A ^ t t ' p h 3 P - A t
t *

 f - h t l 3 P^ '

Then Jf g means g is an i terate of f, i . e . , g is in

the intersection of al l sets p which contain f such that p

contains foh whenever p contains h.

We wish to prove

(*) Vf . Sg,, [Jfg A 3 x . gx = x] => ay . fy = y

.1 ~(*) given

• 2 J l t t^t .1

.3 a x g X = x .1
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* . 4

* ' 5

= y

V . 3

t ]

We must derive Q from .4,.5,.6, and .7. We could break down .4,.5,

and .6 further using the definition of equality, but we prefer to

rely on 6.2.1 and 6.2.2.

Next we substitute [Ak . k[f x ] = f. kx] for p , .
xx x x x J ^o(x x)

in .1, and write the existential term corresponding to

n p , > simply as h to obtain
t))-^o(ii) ^ J xx

.8 ~ f f x = f f x v ~ [ ~ h f x = f h x V f h f x = f f h x ]
X X X XX

V g fx = fgx

Applying 6.2.I to .8 we obtain .9 and .10 below:

11 ~ f < , ? h < x = f f h x v g f x = f g x

15 D

. 7

. 8

.8

6 . 2 . 2 : .9,.10

6 , 2 . 1 : . 11

6 . 2 . 2 : . 5 , . 1 2

Sub: . 6 ; c u t : .13

Sub: . 4 ; c u t : .14
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