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Resolution in Type Theory

Peter B. Andrews

§ 1. Introduction.

In [8] J. A. Robinson introduced a complete refuta-

tion procedure called resolution for first order predicate

calculus. Resolution is based on ideas in Herbrand's
Theorem, and provides a very convenient framework in which
to search for a proof of a wff Dbelieved to be a theorem.
Moreovef, it has proved possible to formulate many refine-
ments of resolution which are still complete but are more
efficient, at least in many contexts. However, when effi-
clency is a prime consideration, the restriction to first
order logic is unfortunate, since many statements of mathe-
matics (and other disciplines) can be expressed more simply
and naturally in higher order logic than in first order
logic. Also, the fact that in higher order logic (as in
many-sorted first order logic) there ig an explicit syntac-
tic distinction between expressions which denote different
types of intuitive objects is of great value where matching
is involved, since one is automatically prevented from
trying to make certain inappropriaté matches. (One may con-
trast this with the situation in which mathematical state-

ments are expressed in the symbolism of axiomatic set theory.

1. .
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In this paper we shall introduce a refutation system
R for type theory which may be regarded as a generaliza-
tion of resolution to type theory, and prove that R is
complete in the (weak) sense that in R one can refute
any sentence ~ A such that A is provable in a more
conventional system 3 of type theory. For J we take
the elegant and expressive formulation of type theory
introduced by Church in [2] , but use only Axioms 1-6.
It should be noted that because substitution with A-con-
version is a much more complicated operation than substi-
tution alone, the matching problem, which was completely
solved for first order loéic by Robinson's Unification
Theorem [8] , remains a major problem in the context of
the system R . (Some appreciation of thé complexity of
the situation can be gained from [3]). In this sense R
is not as useful for refuting wffs of type theory as

resolution is for refuting wffs of first order logic.

In §2 we review certain facts about the system J

and A - conversion. In §3 we prove a theorem which is

(at least in conjunction with the results of Henkin in [4])

an extension to J of Smullyan's Unifying Principle in
Quantification Theory ([10] and [11, Chapter VI]). oOur
proof relies heavily on ideas of Takahashi [12] as well

as Smullyan, which is not surprising since the Unifying
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Principle is closely related to cut-elimination. 3 1is a
somewhat richer formulation of type theory than Schitte's
formulation in [9] which Takahashi treats in [12], since
in ¥ for all types o and B there is a type (aB) of
functions from elements of type B to elements of type a.
Therefore we verify the details of this argument rather
carefully, although there is a close parallel with Takahashi's
argument. We apply the theorem in §4 to prove cut-
elimination for J , and in §5 to prove the completeness
of R. (Except for the preliminary definitions, §4 can
be skipped by those interested primarily in f). In §6

we present some examples of refutations in R.
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§ 2 The System 3.

For the convenience of the reader we here provide a
condensed description of the system J, with a few trivial notational
changes from [2]. A more complete discussion of J can be
found in [2] or [4]. The sustems G and R in § 4 and § 5

will have the same wffs as 3.

2.1 We use 0q,B,Y, etc., (but not o or ) as syntactical

variables ranging over type symbols, which are defined inductively
as follows:

2.1.1 o 1is a type symbol (denoting the type of truth values).
2.1.2 1+ 1is a type symbol (denoting the type of individuals).
2.1.3 (aB) is a type sumbol (denoting the type of

functions from elements of type £ to elements of type q).

2.2 The primitive symbols of 3 are the following:

2.2.1 Improper symbols: | ] A

2.2.,2 For each o, a denumerable list of variables of type a:

1 o1 1 £2
fugahu‘"Xayazafagu"’zufa'"

We shall write variablgu as an abbreviation for variable of

type a. We shall use £a’9a’°"’§aﬂ¥a’5a’ etc., as syntactical

variables for variablesa.

2.2.3 Iogical comstants: ~ vV ((50)0)%(0(0n))

2.2.4., 1In addition there may be other constants of various

types, which we call non-logical constants or parameters.
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2.3 We write wffOL as an abbreviation for wff of

type @, and use éa’ga’ga’ etc., as syntactical variables

variables ranging over wffsa, which are defined inductively

as follows:

2.3.1 A primitive variable or constant of type a is a wEf .
2.3.2 [éaBEB] is a wffa.

2.3.3 [%gséa] is a Wff(aB)'

We shall assume given a fixed enumeration of the wffs of J.
This also provides an enumeration of the variables and constants
of each type.

An occurrence of X

a is bound (free) in EB iff it is
(is not) in a wf part of EB of the form [Agagé]o A wff
is closed iff no variable occurs free in it. A sentence is a

closed wEf .
(o)

2.4 Definitions and abbreviations.
2.4.1 Brackets (and parentheses in type symbols) may be
omitted when no ambiguity is thereby introduced. A dot stands
for a left bracket whose mate is as far to the right as is‘
consistent with the pairing of brackets already present and with the
formula being well formed. Otherwise brackets and parentheses are
to be restored using the convention of association to the left.
2.4.2, Type symbols may be omitted when the context indicates

what they should be. The type symbol o will usually be omitted.
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2.4,.3. Lbo V‘EO] stands for [[V((oo)o)éo] QO].

2.4.4. [go D_go] stands for [[Aboéo] v go].

2.4.5, [Vgaéo] stands for [n(o(oa))[x§a§o]]‘

2.4.6. Other propositional connectives, and the existential
quantifier, are defined in familiar ways.

2.4.7. Q stands for [%xa%yano

D
oo ' foa¥a - foo¥o!

2.4.8. [éa = ga] stands for Qoaaéaga

2.4,9, d.x A stands for

[APoor &Yy Poa¥o N "2¢ PoaZq = Zg = Yol MR

X X
n'a' “d‘ . .
2.4.10. SAQBB (§AGBB) denotes the result of substituting A, for X,

at all (all free) occurrences of Xy in gB.

2,4,11, éd is free for X, in BB iff no free occurrence

of ¥, in BB is in a wf part of B of the form
C i ' i L]
[K¥Y~6] such that XY is a free variable of Aa

2.5 Axioms of 9.

2.5.1 PVp>2p

2.5.2 P2p Vg

2.5.3 Prvg>2qVp

2.5.4 P>g>[rVp>Dr Vgl
2.5.5% 1 x

o)
o(oa)foa foa o

2,5.6 an[p \Y fo xa] Dp Vv I

o4 o(oa)foa
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2.6 Rules of inference of J.

2.6.1 Alphabetic change of bound variables.

]

To replace any wf part [Ax_ A ] of a wff by [Ay,S BA 1,
B~a Y8y~

provided that yB does not occur in A and KB is not bound

in éa'

2.6.2 A-contraction. To replace any wf part [[%gaggl Aq]

™

of a wff by S agﬁ, provided that the bound variables of B
a

are distinct both from ¥, and from the free variables of B,

2,6.3 )\-expansion. To infer ¢ from D if D can be inferred

from C by a single application of 2.6,2.

2.6.,4 Substitution, From FooX to infer

. Foaéa’ provided

that x is not a free wvariable of -Eo .

a o

2.6.5 Modus Ponens. From [A > B] and A to infer B.

2.6.6 Generalization. From Foo¥q to infer Ho(oa)goa’

provided that Xy is not a free variable of Eoo

Remark: It can be proved that 1 is equivalent

o(oa)an

to Vx F x i X is n i .
XL oaZa £ Xy s not free in an
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2.7. M- conversion.

2.7.1. Rules 2.6.1-2.6.3 are A- conversion rules.

i - - IT B
We write A conv By (resp. éa conv I ~a)

iff there is a sequence of applications of rules 2.6.1-

2.6.3 (resp. 2.6.1-2.6.2) which transforms A into

B . It is well known that conv 1is an equivalence re-
~a —

lation.

2.7.2. A contractible part of a wff Sﬁf is an oc-

currence of a wff of the form [[A ?-{'oz 'B~B ] éa ] in 9‘7 .
We say Eﬂ/ is in A - normal form iff it has no contracti-

ble parts.

2.7.3. Proposition. For each wf€f Dy there is a

wff C in A - normal form such that D conv - I-1II C
~Y ~y Y

Proof2:

Define # [[A x_ B, ] A, ] to be the number of occurences

~a =B
of ( in (Ba) .

Let nﬂp’) =max {# G, | G is a contractible part of D .
We say that a contractible part & of D is maximal in
A ~Y
D iff G = i
# Sa m(gy) . Let n(D ) be the number of maximal

contractible parts in D
~y

2 . . . .

This proposition is part of the folklore of type-theoretic
A; conversion. The author first heard the idea of the proof
given here from Dr. James R. Guard.
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£ is by induction on p(D ) = w - m(D.) + n(D )
The proof is by inducti pQﬂy) W 2, 2,

Clearly Dy is in A - normal form iff p(gy) = 0.

If p(Ey) >0, 1let [[A Ea.gﬁ] éa] be that maximal

contractible part 9@ of 27 which occurs farthest to
the right in By , with the position of a contractible
part being determined by the leftmost occurrence of A in

it. By applving 2.6.1 if necessary we may assume that

2.6.2 may be applied to obtain from D‘y a wff -Ey in
x _

which GB has been replaced by SZG BB . Thus _Qy conv I- II
~Cl

E , and it must be shown that E < D .
E, p(E,) < P(@,)

For the sake of brevity, we shall not explicitly
distinguish wffs from occurrences of wffs at certain

points in the following argument.

We first prove that

X
(¥*) for each wf part C of B, , S @ C contains
=6 =B Al =6
no contractible part H_ with # H 2 m(py) . The proof

is by induction on the construction of ¢
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pS
Case_(a): 5_:5 is X, - Then SAG QG is A_ , and
a

P

(*) holds by virtue of the definition of 'GB

Case (b): 96 is a primitive constant or variable other

2.9

than x . s 2 c is C, , so (¥) holds trivially.
=a By o) (0

Case (c¢): C6 has the form [Ay M ] . Note that vy
= <y ~g x -~ %

cannot be Xy by the restriction on 2.6.2. SAq 95
o =a

is [7\_3_7” s, & _1\_4g] , 80 (*¥) holds by the inductive hypo-
=a

thesis applied to ‘M-'c

Zq

Case (d): '96 has the form [Mﬁe ge] .  Then SAG __(;6

. Za Eq . . .

is [(S_z_}d Mde) SAG ;ye] ; and the inductive hypothesis

applies to _Dilée and _1\1€ » 80 we need only consider the

.S
possibility that SAO( “c'b is itself a contraetible part
~a
P9 X
(o4 a - .
[D\Ye _135] Séa _1\_T€] , where S—Ao( Mée = [7\—y€ 36] , with
o
# (Séa Cg) 2 m(PJy) - Since M, has one of the forms
P
-— u .
2.3.1-2.3.3 , S-éa ;\_45€ can have the form [Age ~P§] in

only two ways:
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i

(i) M is x and A is [Aze 26] . Then « (6¢)

=8¢ e ~a

zd
so #(Séa Cg) < m(Qy)

X
{(ii) Mﬁe is [A¥€ 95] and %é

In this case 95 = [[Ay Q6] -ye] and # 96 > m(Qy) .
But since Cs is a part of Bg this contradicts the

definition of .gs . Thus neither possibility can occur,
and (*¥) holds in case (d) also.

For each wff we let k(ga) be the number

6
of contractible parts ‘ET of C4 with #‘ET = m(Qy).
For any wf part Ls of 27 which contains ‘QB , we
X
let QG‘ be the result of replacing ‘QB in ga by SAOl
~a
and prove
(**) k(gé’) + 1 = k(ga) and 96' contains no contracti-
ble parts . with #_ET > m(Qy) . The proof is by in-

duction on the construction of ¢

8

X
. . v ~a
Case (a): 'ga 1s _gB s SO §5 1s Sa B

Then (**) follows directly from (*).
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Case (b): *QG is [G ] , and B has the form (b6¢).

B ~¢
p.S
Thus 'QG' is [(SAG B.) N 1. If gb' is contractible,
o
# 96' = the number of occurrences of ( in B , which is

less than m(gy) , 8O

P:3
a
k(SA
“a

i

k(gﬁ') + 1 §B) + k(ge) + 1

(by (*)) O+ k(§) +1

= k@) +k(gg) = k(G

and (**) 1is easily seen to be true.

The remaining cases involve trivial applications of the

inductive hypothesis, and are left to the reader.

D' is E,, soby (*¥) k(E,},) + 1= k(_D,y) = n(D,_)

Y
and m(E m(D . If m(E = D th =
(,,y) < (_y) (,,,y) m(,.y) en n(.E_},)
k(E D : h th =
(’y) < n(~y) ence whether m(gy) m(Qy) or m(Ey) < m(py)
we have p(gy) < p(Qv) . Therefore by inductive hypothesis

Ey is conv-I-II to a wff in A- normal form, so D is

y
also.
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2.7.4 Church-Rosser Theorem: If EY and QY are in

A-normal form and EY conv QY, then ‘gY can be converted

into gY by applications of 2.6.1 alone. That is, a A-normal
form of a wff is unique up to alphabetic changes of bound
variables,

This theorem was originally proved for a different system
of A-conversion without type symbols but it is known that it
applies to 3 also. See [ 5] and the references cited therein,

2.7.5 nv"wffs.

A wff A of 3 is an n-wff iff 2, is in A-normal form

and for each wf part [kgagY] of A, Xg is the first variable

B

in alphabetic order which is distinct from the other free variablesB
of QY. Using 2.7.3, 2.7.4, and 2.6.1 it is easy to see that for

each wff A ~ there is a unique n-wff B, such that A, conv B,.

We write B = ma_. (To convert a wff in A-normal form into
an n-wff, proceed from left to right to decide what each bound
variable should be; however some additional temporary changes of

bound variables may be necessary before these changes can be made.)

n-wffs have the following pleasing properties. If Aa is

an n-wff, then every wf part of ga is an n-wff.
B = { . ] : . ]
n[A&E“B] [-néaﬁ) (ngﬁ)] if [gasgsl is not contractible
2.8 Wffs
o

2.8.1 A wff0 Al is atomic (an atom) iff the leftmost primitive

symbol of A, which is not a bracket is a wariable or parameter.

HUNT LiBRARY .
BARNEPIF 1er1 oy UNIVERSITY
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2.8.2 Every wff D, of 3 in A-normal form has one of the

following forms:

(a) A, where A is atomic.

(b) ~B
(¢c) BV EC
(d) o (oa) EOC(.

Proof: The leftmost primitive symbol of D which is not

4

a bracket cannot be A, so it must be a variable, parameter,

~ 5,V , Or

[oTe) 000 Ho (o) *

2.9 A set § of wffso is inconsistent iff there is a

finite subset {él,...,g}n} of & such that |- ~§l VooV ~ An;

P

otherwise S8 is consistent,
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§3. Abstract consistency properties, valuations, and consistency.

3. l.

Definition. A property I' of finite sets of wffsO

is an abstract consistency property iff for all finite sets 8

of wffsO the following properties hold (for all wffs A,B):

3.1.1.

3.1.6.

3.1.7.

If

If

If

If

If

If

If

I'(8), then there is no atom A such that
Aec8 and [~A] € 8.
T'(s U {Aa}), then T(S U {na)).
I'(s U {~A}), then T(8 U (a}).
r¢$ y ([a Vv Bl1}), then T(8 U {Aa}) or TI(S U {B}.
r(s U {~[a Vv BI}), then T(S U {~A,~B}).
r(g u {1

}), then for each wff B ,
~a

Fg U {Ho(oa)éba’éoaga})'

[(8 U (~ }), then T(S U (~a_ S })

o(oa)éoa

o(oa)éba

for any variable or parameter <, which does

not occur free in Aoa or any wff in §.

Remark: Satisfiability is an abstract consistency property.

The notion of an abstract consistency property is due to

Smullyan.

OQur main theorem of this section will be that if T

is an abstract consistency property and TI'(8), then § is con-

sistent. This is an analog for J of Smullyan's Unifying

Principle in Quantification Theory [10].
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3.2. Definition. A semi-valuation is a function V with

domain some set of wffsO and range a subset of the set ({t,f}
of truth values such that the following properties hold (for all
wffs A,B):

3.2.1., I1If Vv A 1is defined, then V mA = V A.

3.2.2. If V[~A]

t, then V A = f.

3.2.3. If V[~al

]
ﬁ

£, then V A

3.2.4. If V[A V B]

t, then VA=t or VB=t.

3.2.5. If V[A

<
w
I

f, then Vv

b
il

f and V B = f£.

3.2.6. If vI[I ] = t, then for each wff 'Ea’

A
o(oa)~oa

V[éoaga] =t

3.2.7. If vi[l ] = £, then there is a wff ‘Ea

o(oa)éba
such that V[A B ] = f.
~00~q,

The notion of a semi-valuation is due to Schutte [9].

3.3. Theorem. Let 8 be a finite set of wffso and T
be an abstract consistency property such that T (8). There is
a semi-valuation V such that VA =t for all A ¢ 8.

Proof: (following Smullyan [10]):

We may assume 8 is non-empty, since the theorem is other-
wise trivial.

3.3.1. We shall inductively define finite sequences
81,82,... of wffso such that si has at least i terms and

8. 1is an initial segment of Si + 1° We let El be the i th

1
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term of Sj. For notational convenience if Y 1is a finite

sequence we let UY*A be the sequence obtained from Y by ad-
ding A as an additional term; also when we use notations
which suggest that Y is a set we refer tacitly to the set of
terms of the sequence Y. As we define Si we prove F(Si).

S is to be the sequence of wffs of & arranged in order.

1
F(Sl) since T(8).

Given 8, such that F(Si), we define §,

o+ 1 and prove

r(s.

i+ l) in each case below:

3.3.1.1. gl is not an n-wff.

) .

1 i i
— ,* . . =
Let 8; , 1 Sl“_nE. E ¢ 8 so § siu{g} so F(Si+1
by 3.1.2.
In all other cases we assume Ql is an 7n-wff.
3.3.1.2. gl is an atom or the negation of an atom.
g = 8 xgt
Let 5, 41 = 5%E
30301030 El = ~ N’An
t = S . L] . .
Le 8i +1 i*A F(Si + l) by 3.1.3
3.3.1.4. E" = A VB.
s i : i =
Let P+ be Si*é if F(Si*g), otherwise let gi .1 Siﬁg_
Then F(Si 4 l) by 3.1.4.
i

3.3-1.5. E =~[AVP_]'

Let gi = Si*~g*~@. r(s

b1 ) by 3.1.5.

i+1
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i
3.3.1.6. E =0 A

Let B be the first wff such that [A B 1 ¢ 8, and let
~a o ~ 00~ i

8, +1 7 si*éoa]?’-a*gl‘ P8y 4 1) by 3.1.6
3.3.1.7. Ei = ~ 1 A .
~ o (oa.)—-oa
Let X be the first variableOL which is not free in any wff
of Si and let S, 4+ l;; gi*Néoaﬁa' F(Si +'l) by 3.1.7.
3.3.2. Let u-= ‘Ulgi. Note that every finite subset of
i=

u 1is a subset of some set with property T.

3.3.3. Lemma. There is no wff E such that E ¢ U and
[~E] € u.

Proof:

Clearly by 3.3.1.1. if E ¢ U then ?nE ¢ u. Also
n{~E] = [~ME], so it suffices to prove the lemma for n-wffs.
We do this by induction on the number of occurrences of logical
constants in E. In each case below we suppose E 1is an n-wff
and E € U and ~E € Uu.

3.3.3.1. E 1is atomic.
By 3.3.2. there exists a set Z such that (E,~E} € Z cCUu and
I'(Z). This contradicts 3.1.1.

3.3.3.2. E = ~ A,
Since ~E = ~ ~A € U, by 3.3.1.3. A € U, which contradicts the

inductive hypothesis.
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3.3.3.3. E= [AV B].
By 3.3.1.5. ~AeUu and ~B € U, and by 3.3.1.4. A € U or
B € u, which contradicts the inductive hypothesis.

3.3.3.4. E = Ho(oa)éoa'

By 3.3.1.7. there is a variable X, such that ~ éoaga € u,

and from 3.3.1.6. it can be seen that Abaza € U, since there are

infinitely many i such that gl = I Hence by 3.3.1.1

o(oaréoa'

n[éba§a] e 4 and [~n[§oa§a]] e U. If éba§a is not in

A-normal form, a single contradiction will make it so, and it is
easy to see that n[éoaga] Contains the same number of occur-
rences of logical constants as does éoa' Thus the inductive
hypothesis is contradicted.
3.3.4. We now define a function V which we shall show
is a semi-valuation.
VE=t if E e u.
VE=f if [~E] € L.
Clearly V is well defined by 3. 3.3.
3.3.5. V 1is a semi-valuation.
The proof is straightforward. Each clause of 3.2. is readily
verified using 3.3.4. and the appropriate case of 3.3.1.
3.3.6. If Ae¢ S then Aelu so VA=t.
This proves 3. 3.
3.4. Theorem. If V 1is any semi-valuation, then

(Alv A =t} is consistent.

—
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Proof (following Takahashi ([12]):
3.4.1. For each type symbol Y we define the set SY

of yfcomglexesY as follows by induction on v:

3.4.1.1. So {<§O,p > | A, is an n-wff and p is
t or f and if V A is defined, then p =V A }.

3.4.1.2. 81

(<a.,1 > | A is an n—wfft}.

~1

3.4.1.3. &8 = A A is an -wff and
(@py = (<Bgp > | By TV ap) P

p 1is a function from ﬂB into Sa such that if <§B,q> is

any member of &B, then p < gB,q> = <n[§aB§BLr > for some r}.

3.4.2. Lemma. For each n-wff AY there is an r such
that <A _,r e 8 .
<”Y’ > y

Proof:

We choose r as a function of AY by induction on Y, and
show <A ,r(A ) > e # . This is trivial when y =1t or Yy = o.
Y -y Y
(If V_Ao is not defined, arbitrarily let r(éb) = t,) If

Y = (aB), let r(_AOLB) < QB,Q> =< n[édBEB]’ r(nla 1) > for

B
~ap~B
each <B_,@ € 8 _.

B B
3.4.3. Definitions and notations.

3.4.3.1. If € 1is a V-complex, let @l and 62 be the

first and second components of ¢, so € = <€l,§2 >, If £ is a

function whose yalues are V-complexes, let fl and f2 be func-
tions with the same domain as f defined so that for any argu-

ment t, £t = (ft) 1 for i = 1,2. Thus £t = <flt, £2t>.
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3.4.3.2. An asgignment is a function ¢ defined on the

variables of J such that 0x, € ﬂa for every variablea X,

3.4.3.3. Given an assignment ¢, a variable Xy
€ e &a’ let (wzga/@) be that assignment 3 such that ¢¥B = ¢XB
if ‘ys # X, and ¢§a = G.

3.4.3.4. If p and g are truth values, we denote by ~p
and p V q the (intuitive) negation of p and the (intuitive)
disjunction of p and g, respectively. The context will show

whether ~ and V are to be regarded as symbols of J or of

our meta-language.

3.4.4. U .
©
For each assignment ¢ and wff C we define U¢§Y and show
v
1 2
LCc €8 . Thus bV Cc =< _"C ,U “C >.
o=y Y oSy T o Syl &
3.4.4.1. Let VU %g = n[[kzl...%gég ](wlgl)...(wlzn)],
: ® Y Y
where 31,...,§n are the free variables of QY.
Let U lC = nC if C has no free variables.
1 1 1
3.4.4.2. Note that U A _B = v A v "B.].
o [BygBgl = MUV, Byg) Ty Bl

This is readily established using properties of A-conversion.

We define U¢2§Y’ and show U¢C € SY, simultaneously for

all ¢ Dby induction on the number of occurrences of [ in QY,

considering the following cases:
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3.4.4. 3. QY is a parameter.
Let U¢29Y = r(gY), where r 1is defined as in the proof of
3.4.2. Note that (¢ is an ~-wff, so U C = <C ,r(C e 8
=y n s o=y <*Y’ ("Y)> y
by 3.4.2.

3.4.4.4. QY is a variable.

2 2 1 2
Let U “C =¢°C . Thus U C = <0°C cC>=09C €8 b
0 =y v £y oSy <4 ,__Y,<P __,Y> QD“Y y Y

3.4.3.2., and we see that U¢ extends o.

3.4.4.5. ¢C is ~ .
=y 0o
2

For any <B_ ,g> € 8 , let (Um ~oo) By =<

is clear that Nbogo is an n-wff since go is, so to check

~>. It

~ B,
0o0~0

U ~ . - . . = lad .
that ¢ “oo € soo by 3.4.1.3. we must check that < OO§O,~q> € &o

By 3.4.1.1. this is trivial if V[ggo] 1s not defined. 1If
V[~§o] = r then by 3.2.2.-3.2,3. V_go = ~r; but V“Bo =g
since <§O,q> € mo SO ~q = = V[~§O] and <~§o,~q> € &o.

3.4.4.6. ¢C is V .
=y (oo)o

2

For any <§o,q> € &o, let (Uw V(oo)o

) <,.§o’q> = <V s h>,

(oo)ogo

where h 1is that function from &o into NO such that for any

lJE , gV >,

Since [] ]Eo] is an mn-wff whenever -Eo and ;Eo

\%
(oo)ogo

are mn-wffs, from 3.4.1.3. it is seen that in order to verify

that U V e 8

0" (00)o one must check that

(o0)o

\Y \%
< I ]Eo,q r> € 80 whenever <§O,q> € &o and

(oo)go

<§o,r> € &O. If V[l}O % go] is not defined this is trivial.
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If V[B VE ] is defined then VB = q and VE = r so
~0 ~0 ~o ~0

by 3.2.4.-3.2.5. V[]}O v EO] =q Vr.

~

3.4.4.7. QY is Ho(oa)'

2

For any <§ba’p> € soa’ let (Uw o(oa)

) <A OL,p> <I

o(oa)éba

where r is t if p26 = t for every € ¢ &a, and r is £

otherwise.

It must be shown that V[l ] =r if vVvI[I ]

A
o(oa)Aba o (oa)~oa

is defined, so suppose it is defined.

4

Suppose V[Ho(oa)éba] = t, and let <§q,q> € Sa, By 3.2.6.
and 3.2.1. t = V[Aoaga] = Vn[goaBa], s0
p <§a,q> <n[§oa-a] Vn[Aoa~a]> = <n[A aBa I,t> Dby 3.4.1.3. and

3.4,1.1, Thus r = t = V][I ] in this case.

A
o (ou)~oa

Suppose V(I ] = f. By 3.2.7. and 3.2.1l. there is

o(oa)

a wff ga such that Vn[gbaga] = f. By 3.4.2. there is a ¢
such that <n§a,q> € Sa. Thus p <n§a,q> = <n[§oa§a],f>, SO

r=f=vVvVI[I ] in this case.

o(oa)éoa

3.4.4.8. ¢ has the form [ gB.].
Let U¢2[AYB§B] = ((U AVB)(U B ))2. Note that
Vo [B gBg] = (U(pz B,g) (UB,) € 8, since by inductive hypothesis
UwAYB € sYB and VU BB € &B sO
((L ~YB)(1; B ))l = n[(L l“YB)U¢l gl (by 3.4.1.3.)
=, [éYBEB] (by 3.4.4.2.).

s I,
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3.4.4.9. ¢ has the form AX_A ].
£y [ “B*a]

2 .
Let U¢ [%gséu] be that function from EB into &a whose value

on each € ¢ &B is U(@:zs/@)éa'

To satisfy 3.4.1l.3. we must show that if

1 1

€ =<B_, 8 , th 0 A = v T[Ax.A 1)B.1.

Bpr @ € By then (Vg smBe) T M, DgR 1R,
Let .gl,...,yn be the free variables of [Agséa]. Then
b l[xz Al = n[[%yl...%ynkx A ](wlyl)...(wlyn)]. Also whether or
not x is free in s

1 1 n 11 l1n

Y orpy/mBa SOV DY Ay R Oy (0 DRG] by

3.4.4.1. and 3.4.3.3. The desired result follows by A-conversion.
3.4.5. Remark. 1In the terminology of [4] we have now es-

sentially shown that the set of V-complexes constitute a general

model for J in which the axioms of extensionality (Axioms 10

of [4]) do not necessarily hold. Of course in order to permit

the axioms of extensionality to fail we have avoided making

8 = {t,f}, and we have avoided making &a contain genuine

(o]

B

functions from SB into Sa. Instead we have in essence in-
dexed these truth values and functions p by wffs A and
called the indexed entity <A,p> a V-complex.

Since the theorems of J are known to be valid in all
general models, the unsceptical reader will readily believe

Lemma 3.4.9. below, and may proceed directly to 3.4.10, after

noting 3.4.8.
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3.4.6. Lemma. If ¢ and ¢ are assignments which

0 a

This follows in a straightforward way from 3.4.4.

agree on the free variables of Aa’ then U A = U¢Ad'

3.4.7. Lemma. If PY conv EY and ¢ 1is any assignment,

then U D = VU E .
o=y o=y

Proof: We first establish several subsidiary lemmas.
3.4.7.1. Lemma. If 'PY conv_gY and ¢ is any assign-
1 1
ment, then ¥ D = VU "E .
® =y Y =Y

This follows easily from 3.4.4.1. and properties of A-con-

version, using the fact that if _gl,...,ym are the variables
which occur free in DY or E , then
Y
1 1 m 11 lm
. VL "R oconv [[Ay ...Ay D 1@y )...(07y )].
(p .Y MY oy =
3.4.7.2., Lemma. If the bound variables of 'EB are dis-
tinct from -§a and from the free variables of éd’ ¢ 1is an
X
. a
assignment, and = :X A then ¥ S "B. =Vt B .
gnment, b= (033, /V ) o Bs = ViR
Proof:
3.4.7.2.1. First treating le we have
X
1 "a 1
L "s B, = LU Ax B.]A by 3.4.7.1.
¢ "A =8 o [DEBglA ] (by )
1 1
= ¢ Ax B U A by 3.4.4.2,
MV, Az B DV, A, ] (by )
1 1
= b A B. DU "x ] by 3.4.6. and 3.4.4.4.
"“zp[-ors b % (by )
1
~ = U B (by 3.4.4.2. and 3.4.7.1.).

p =8

Next we prove the lemma by induction on the number of occur-

rences of [ in B and consider the following cases:

~B’




3.4.7.2.2. B is x .
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g ~a
Xy _ y
=V = = .
Then U¢S£d§5 ¢§d wga ¢§B
3.4.7.2.3. X, does not occur in EB.
X
o
Then ¥ S B =B = VU B by 3.4.6.
0B 78~ e8  yB ¥
3.4.7.2.4. gB has the form [955551'

This is straightforward using 3.4.4.8.

thesis.

and the inductive hypo-

3.4.7.2.5. _gB has the form [%yége].

Note that Ys

variables of ‘éa‘ Let € ¢ Sé. Let o
1 = - . i1 =U
) (w.gé/G) Then wAd w'éd
Pr = (9':x /%¢,A ). Thus
2 ¥q 2 za
(b s, B)E = (v “[\y,S, E 1E
© "A "B ® §a~5 A e
= 1;go,s%§e
= U
w'“e
= v "B )€
. (v, B¢
Thus U¢2SACL§B is the same function as
o
3.4.7.3. Lemma.

distinct from X,

an assignment, then U [[%x B

-8
Proof:

Let Y be as in 3.4.7.2. Then

must be distinct from X,

If the bound variables of B
and the free variables of A

~a
]A ] = S, B By
0.

and from the free

= (¢:¥5/G) and

by 3.4.6., so

(by 3.4.4.9.)
(by inductive hypothesis)
(by 3.4.4.9.),
2
k B .
Y T8

are

B

and ¢ 1is
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b A B 1A ] = Ax B 1)U by 3.4.4.8.)
oll ”a*ﬁ]"a] (v " 2| B]) A, (by
= U B by 3.4.4.9.)
¥ oy
Xq,
=Vl S "B (by 3.4.7.2.).
© a8
3.4.7.4. Lemma. If yB does not occur in _Aa and §B

is not bound in Aa and ¢ 1is an assignment, then

-’-‘s
U [Kx A ] =V [7\yB A 1.
¥g

Proof:

We assume X, # Y since otherwise the result is trivial.

s 7 g
1 =B
=l 3.4.7.1.
[%xsﬁ ] o [KXBSXBAQ] by 1
Considering Uwz, for all € ¢ sB we have
2 2
‘ = 3.4.4.9.
( © [7\—}-{8_@@]) U(¢:§B/@) éa. (by 9.)
2
- 3.4.6.
U((¢=~¥B/@):’~‘B/G) By (by 6.)
= %% (by 3.4.7.2.)
(¢=XB/5) ygoo
< By
= (v, Dy,s a,1¢ (by 3.4.4.9.)
© By B

so the indicated functions are the same.
3.4.7.5. The proof of 3.4.7. now follows easily from
3.4.7.3. and 3.4.7.4. One may assume that EY is obtained from

D by a single application of a rule of A-conversion, and pro-

~

ceed by induction on the number of occurrences of [ in Qy'

3.4.8. Lemma. Let ¢ be any assignment.

2 2
e T e O+ Lo U ~, =~U .
3.4.8.1 w[éo] o %o
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2 2 2
3.4.8.2. Vs v = (b A vV (b .
8 2 [éo Eo] ( © *0) ( © Bb)

These follow directly from 3.4.4.8., 3.4.4.5., and 3.4.4.6.

3.4.9. Lemma. If ¢ is any assignment and #-350,
then U 2A = t.

¢ o

Proof: We show that W = {éolumzéo = t for all assign-
ments ¢} contains the axioms of J and is closed under the
rules of inference. This follows immediately from 3.4.8. for
Axioms 2,.5.1.-2.5.4. and Modus ponens, and from 3.4.7. for the
rules of A-conversion. We leave to the reader the routine cal-
culations for Axioms 2.5.5, and 2.5.6., using 3.4.4. and 3.4.8.

For 2.6.4. (Substitution) and 2.6.6. (Generalization) we

suppose X is not free in F and that [F__x ] ¢ W; we
~a =oa =o0a~g, :

must show 1 F e W and [F_A ] € W, Given ¢, we let
o{oa)*~ oq = oa~a
€ e Ea and Y = (@:za/S).
2
Then t = U¢ [Foa§a]
= ((L.2F v x)? (by 3.4.4.8.)
b Foa! ¥ y¥a y 3.4.4.8.
2 2
= b
() F,)®
—((th )@;)2 (by 3.4.6.)
- (p'_oa Y . 3 .
for all € ¢ ﬂa so
£ = ((v. %0 ¥ )2 by 3.4.4.7
= o o (oq) RS (by 3.4.4.7.)
2
= U
0 [Ho(oa)goa] (by 3.4.4.8.)
so [Ho(oa)an] e W, Also, if we let € = U¢§a then
2 2 2
= b i = I L.k,
£ = (U E )V B " = VT E ] (by 3.4.4.8)

so [F_A ] e l.
~oa=a
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3.4.10. We now complete the proof of 3.4. If 3.4. is not

1 .
true, there are n-wffs A ,...,éﬁ such that Vv Aﬁ = t for

1< i< n but }—3 ~ él VooV yén. By 3.4.2. we can define an
assignment ¢ so that ¢l§a = X, for all variables X, Then
U¢l§ = A for alln-wffs A Dby 3.4.4.1l. so by 3.4.4. and 3.4.1.1.
for 1< i<n Ua"=c<a"va'>=c<a',es ana v 2’ = ¢,
Q , - 2
n
Hence by 3.4.8. U¢2[gél V...V ~A ] = £, contradicting 3.4.9.

3.5. Theorem. If T 1is an abstract consistency prop-
erty and g 1is a finite set of wffsO such that T(8), then
8 1is consistent.

Proof: Dby 3.3. and 3.4.

Remark. Our analogy with [10] suggests that the conclusion

of 3.5. should be that 8 has a denumerable general model.
By the remark 3.4.5. we have actually shown that & has a
general model (although we have not actually defined what is
meant by a general model whén axioms of extensionality are not
assumed). Of course wé have not dealt with the guestion of

denumerability.
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§ 4. Cut-elimination.

4.1. Preliminary definitions.

4.1.1. The disjunctive components of a wffo are
defined inductively as follows:
4.1.2.1. A and B are disjunctive components of [A Vv BJ] .
4.1.2.2. A is a disjunctive component of A.
4.1.2.3. If A is a disjunctive component of B, and B
is a disjunctive component of C, then A 1is a disjunc-
tive component of (.

We regard disjunctive components as occurrences of wffso

4.1.2. We now find it convenient to modify our con-
ventions concerning syntactical variables so that A V B
and B VA may simply stand for A in appropriate contexts.
To this end we introduce a "pseudo-wff" , the constant [],
which may be interpreted as the empty disjunction, and there-
fore denotes falsehood. We henceforth let ‘éo, By S (ete.)
take [] as value when these syntactic variables occur as
disjunctive components of an expression which stands for a
wff . Then we regard A v []J] and [J VA as abbreviations
for A. [J standing alone may be regarded as an abbreviation

for VI%)po.
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4,2. The System §

4,2.,1. Axioms: ~ A V A, where A is atomic.

4.2.2. Rules of Inference

4,2.2.1. Conversion - I-III. Apply 2.6.1l. or 2.6.3.

4,2.,2.2, Disjunction Rules. To replace a disjunctive

component D of a wff by E, where

D is [[AVBlVC] and E is [AV [BV Cl], or
D is [é vV [B V €]l and E is [[é vV B] V C], or
D is [AVB] and E is |[B V A].

4,.2.2,3. Weakening. From M +to infer M VA

(where M is not [] ).

4.2.2.4. Negation Introduction. From M V A to infer

MV ~ ~A,
~ A

4.2.2.5. Conijunction Introduction. From MV ~A and

MV ~B toinfer MV ~ [AV BJ.

4,2.2.6. Existential Generalization. From

MV ~ 1 V ~A B to infer M V ~ 1

A .
~ of(oa)~oa ~o0~a, o(oa)éoa

4.2.2.7. Universal Generalization. From M V éoaﬁu
infer M V I A , provided x is not free in M or
~ o(o)~oa ~a ~

4.3. Proposition. If F—qé, then F—Sé.

to

A
~oq

This is readily established by showing that the rules of in-

ference of G are derived rules of inference of J.




[32a]

We next establish some subsidiary lemmas. We shall discuss
their proofs together since they all have the same form.

4.4. Lemma., If P conv Q then L-Qg iff L—qg.

4.5. Lemma. If |-~,P, and P has a disjunctive component

G

of the form ~ ~ D, and Q is the result of replacing this

component of P by D, then L—Qg.

P, and P has a disjunctive component

G
of the form ~[D Vv E], and Q is the result of replacing this

4.6. Lemma. If |-

component of P by ~D or by ~ E, then L—qg.
4.7. Lemma. If L—qf, and Zl,...,yn are distinct

variables and 53 is a variable of the same type as yj

for 1 < j < n, then there is a wff Q such that P conv-I Q

and ‘53 is free for _Xj in Q9 for 1< j<n and
Yooy
— S * " Q
| Q'g ...z
4.8, Lemma. If L—qg, and P has a disjunctive component
of the form no(oB)goB’ and Q is the result of replacing this
component of b B .2 then |- _.Q.
Proofs of 4.4-4.8:
Note that to prove 4.4 it suffices to prove 4.4': if L—QR
then Lﬁqng. For when this is established one knows that if |- P,

then |- mB, so |- nQ, so |- 9 by 4.2.2.1.
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To prove 4.4' and 4.5-4.8 let pl,...,P™ be a proof

in G. We prove by induction on i that the lemmas hold

i . s i
for 21 for 1< i < m. Each lemma is trivial when P is

an axiom. 1If ‘gl is not an axiom one considers how .gi was
inferred and applies the inductive hypothesis (if necessary)
to the wff(s) from which it was inferred. ‘The proofs of
lemmas 4.4', 4,5, and 4.6 are routine in all cases.
The proof of 4.7 is trivial except when Pi is inferred
by 4.2.2,1 or 4.2.2.7. Suppose ,Ei is inferred from gk
by 4.2.2.1. One easily defines a wff gi such that gi conv-——I‘gi
and gj is free for .Xj for 1< j < n. Let gk be a wff

whose existence is assured by the inductive hypothesis. Then

Qk conv gk conv gl conv gl so
1 n
§Y "tyngk conv [[Agl...%yngrl gl...EP]
Z2 ...z -
. 1 n ,
conv [[%yl...%yan] gl..agn] conv SYl"°Xan,
~ - ‘z...z

so the latter wff is a theorem of G by 4.4 and the inductive

hypothesis.

Suppose gl is MV I and is inferréd by 4.2.2.7

o(oa)éoa

. . . i
from MV A X . Since x i1s not free in P we may assume X
-~ ~oo~q “a = ~a

is distinct from gl,...,zn, but we must allow for the possibility

is X,- Let g, be distinct from gl,..,gn

~—
-

that some g]

and all variables free in El. By the inductive hypothesis 4.7

o~

there is a wff [M'! VA 'x ] conv-I [MV A x ] such that zj
— ~00 ~q fand o~ -~
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is free for yj in M' VA 'x, for 1 < j<n and

—_—

1 n
SYl...Xnﬁu (M' Vv Aoa'ga]. It is readily seen that one may
z ...2 g -
4 z2 9,

~q

1
apply 4.2.2.7 to obtain L—Qggl o(oa}goa']’
Z

yn
a0V

N}

which completes the proof of 4.7.

The proof of 4.8 1is trivial except when El is inferred

i :
by 4.2.2.7, so suppose P 'has the form M vV no(oa)boa and
is inferred from M V BooEa If the component no(oB)goB
referred to in 4.8 is the component no(oa)éoa introduced by

this application of 4.2.2.7, one obtains M V EOBEB from

MV A X, by 4.7 and 4.2.2.1. Otherwise one may assume

without real loss of generality that P’ has the form

-

N and is inferred from

NV no(oEl)rBoB v no(oa)‘eoa

vV A

N X .
~oa—a

NV HO(OQBOB Let _ye be .distinct from all
variables in the latter wff.

L-Qy v EOBXB VA Xa by inductive hypofhesis

=NV Bog¥y V T o0y Roq by 4.2.2.7.
~6¥ V BogZg V To (00)Pou by 4.7 and 4.2.2.1.
This completes the proof of 4.8.
4.9. Lemma. If g4 VD VDR then |-.MVD.
Proof:

The proof is by induction on the number of occurrences of

logical constants in nDR. We consider the following cases,
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assuming that D is an n-wff in cases 4.9.1-4.9.4:

4.9.1. D has the form [B V C].

- MVBVCVBVC given.
- MVBVBVC by 4.2.2.2 and inductive hypothesis.
- Mv D by 4.2.2.2 and inductive hypothesis.
4.9.2. D has the form ~ ~ E.
- MV~~EV~~E given.
- MVEVE by 4.5 (twice).
- MV E by inductive hypothesis.
|- MVvD by 4.2.2.4.
4.9.3. D has the form ~[B v C]
- MV~ ([BVClV~BV] given.
- MV~BV~B by 4.6 (twice).
- MV ~B by inductive hypothesis.
- MV ~C similarly.
- MV D by 4.2.2.5,
4.9.4. D has the form no(oa)-éoa'

Let x, be a variable which does not occur in D.

Pty

- MV BooZy vV 25X, by 4.8 (twice).
[~ M Vv nia, x ] vV nla ] by 4.4.

Since 'Aoa is an n-wff, it is easy to see as in 3.3.3.4
that n[goag_ga] contains the same number of occurrences of
logical constants as does Aoon’ so

- M v nlA %, ] by inductive hypothesis.
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|~ M v D by 4.2.2.1 and 4.2.2.7.

4.9,5., mnD is an atom, the negation of an atom, or is

of the form Aoa‘

1

~ T (oa)

m o . i
We prove that if P7,...,P is any proof in (¢, and P
has disjunctive components H and K such that nH = nk

and nH has one of these three forms, then the result of

i . i
dropping K from gl (i.e., replacing a component of P~ of

the form [C Vv K] or [KV C] by C) is a theorem of (. The

proof is straightforward by induction on i.

4.10. Theorem. If L—Sé then L—Qé.

Proof:

4.10.1. rLet T{cC l,‘.. c n] ﬁean not | .~C 1 VooV o~ T
~o gade) G o ~o

Note that by 4.2.2.2 this definition is independent of the
order in which the wffs gl are listed. Also by 4.2.2.3 and
1 n
4.9, I'({¢,...,¢} U Lgl,...,gm}) is equivalent to not
1 n 1

m .
L—Q~g VeooV ACT V ~AD™ V...V ~D whether or not some g} is

the same as some D-.
-~

4.10.2. We verify that T is an abstract consistency prop-
erty by checking the contrapositive of 3.1.k in step 4.10.2.k%k

below:

4.10.2.1. If A is an atom, }~ MV ~ ~A V ~A by 4.2.1

P

s

4.2.2.4 , and 4.2.2.3.
4.10.2.2. 1f |- MV ~nA then |- MV ~Aa by 4.2.2.1.
-

4.10.2.3, If MV~A then - MV ~~~Aa by4.2.2.4,
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4.10.2.4. If - MV ~Aa and |- MV ~B then
MV~ [AVB] by4.2.2.5.

4.10.2.5. If |- MV ~~AV ~~B then |-MVAVBE

e

by 4.5, so | MV ~ ~ [AV B] by 4.2.2.4,

A B then

4.10.2.6. MV~ Vo~
10.2 If M Ho(ocx,)'z}oon ~oa*a

- MV ~ 1 by 4.2.2.6.

A
o(oqg)~oa

4.10.2.7. suppose there is a variable or parameter Sq

which does not occur free in M or in éoon such that
- MV~ o~ -éoo,ga' By choosing an appropriate variable X,
and substituting it for S, throughout the proof we obtain

- MV~ ~ éo X , where X is a variable not free in M or

o~ o
. v . v
A - Hence |- M A X, by 4.5, so M Ho(oon)éoa by
. . . - V ~ o~ L) . . .
4.2.2.7, so |- M no(oa)g}oa by 4.2.2.4

4.10.3. Suppose }-—35. Then {~A)}] is inconsistent
(in J) so by 3.5, not TI{~a}, i.e., {-—q~~,§, so |_Q~A' by
4,5,

4,11. Corollary. If |- M V A and ,—Q-A~V—I§~ then

quvg.

=

Proof: by 4.3 and4.10 , since this result is easy to

establish for J.
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§5. The Resolution System R.

5.1. Definition. ILet 8 be a finite set of sentences.

For each type symbol v choose a parameter (hence-

<y (ov)

forth called an existential parameter) which does not occur

in g. For this choice of existential parameters, a derivation

in R of E from 8 is a finite sequence _Ql,...,gn such

that Qn is E and each Ql is a member of 8 or is ob-
tained from preceding members of the sequence by one of the

following rules of inference:

5.1.1. Conversion - I-I1. Apply 2.6.1l. or 2.6.2.

5.1.2. Disjunction Rules. (4.2.2.2.)

5.1.3. Simplification. From M V AV A to infer M V A.

5.1.4. Negation Elimination. From M Y Alﬂxé to infer

5.1.5. Conjunction Elimination. From MV~ [AVB] to

infer M V ~A and M V ~ B.

5.1.6. Existential Instantiation. From

MV I A to infer V ~ A c .

~ o(ot)~o M ‘*oa[*a(oa)éba]
5.1.7. Universal Instantiation. From

M Vv I A to infer M V A x .

- o(oa)~oa -~  ~oqg-a

5.1.8. Substitution. From A to infer [kg@é]ga.

5.1.9. Cut. From M VA and NV ~A to infer M V N.
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A derivation of [] from g is a refutation of 8.

In ® one proves a sentence A by refuting ~A (i.e.,
{~A}). More generally, one shows that A follows from a
set # of sentences by refuting # U [gé}.

5.2. Remarks.

For convenience, & has been formulated so that only
sets of sentences may be refuted in &, but clearly this in-
volves no real loss of generality.

We write g L—RQ (resp. $ L—Jg) iff there is a der-
ivation of E from § in R (resp. in J). For J this
notion is defined, and the deduction theorem is proved in
[ 2, section 5]. 1In a proof in J from assumptions g
one may not generalize upon or substitute for a variable
which is free in a wff of 8.

The reader may be bothered by the presence of the cut
rule 5.1.9. among the rules of inference for R, since we
showed in 4.9. that this need not be taken as a primitive
rule of inference in (. However, since one proves wffs in
G, but refutes them in R, the role of the cut rule is quite
different in the two systems. One is tempted to establish
the completeness of ¢ and R directly with a proof by
induction on 1 that if Ql,...,pn is a proof in J, then

F—le and {51 F—R [}, where 51 is obtained from 'Pl
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upon replacing free variables by new parameters in one-one
fashion. In each case the crucial difficulty arises when ‘Qi
is inferred by modus ponens. In § one can overcome this dif-
ficulty by proving that the cut rule is a derived rule of in-
ference. However in R the analogous meta-theorem is that if
sU{a) -0 and 8 U {~a} [ then g [ .

The wffs ¢ . éba introduced by 5.1.6. are essentially

a (o)

Herbrand-Skolem functors whose arguments are the free variables

. V
of -éba Suppose one is given M S§a~ oo where the free
variables of goa are yB l,...,yB % and do not include Xy
“r1 " n
(Matters may be so arranged that one may assume yBl,...,an
. M1 -
were previously introduced by 5.1.7.). The given wff is
VN ~ o Lo U o Lo Lo o L e T
M ol a)[% §oa§a]’ so by 5.1.6., 5.1.1., and 5.1.4
. v = ] .
one obtains M Boa[~a(oa) Axa anga] One may write
1 n
[c AX .~B_ x 1 as £ YV, «o0¢ ¥
a{oa) ol oa~a asn...Bl Bl ~Bn, where EGB .8
n 1
is a new function symbol. Thus one replaces M V H§d~oa~
1 n
by MVvB I[f Yo v+ Yo 1.
ou aBn...Bl~Bl ~Bn

When one sets out to refute a set of sentences by reso-
lution [8] in first order logic, one eliminates all proposi-
tional connectives except negation, conjunction, and disjunc-
tion, and pushes negations in so that they have the smallest

possible scope, with double negations being dropped. Then one
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eliminates existential quantifiers by the method of Herbrand-
Skolem functors, and drops universal quantifiers. The resulting
quantifier-free wffs are put into conjunctive normal form, whose
conjuncts are called clauses. One then derives [ | from this
set of clauses by an operation called resolution, which is an
elegant combination of substitution and cut (with 5.1.2 and
5.1.3. used implicitly). (An important open problem concerning
resolution in type theory is to find an equally elegant way of
combining 5.1.8., 5.1.1., and 5.1.9.). However, in type theory
one may introduce new occurrences of logical constants by the
substitution rule, so one must continually have available the
rules 5.1.4.-5.1.7. which correspond to the preliminary proces-
sing in first order logic. However, 5.1.8. and 5.1.9. (in
conjunction with the subsidiary rules 5.1.1-5.1.3.) remain the
crucial rules of inference.

When applying Rule 5.1.7., one might as well choose X,

to be distinct from the free variables of M V I since

o(oa)ﬁba’
one can identify X with another variable later by a substi-
tution, if desired. If Xy is so chosen, one might as well

apply 5.1.3.-5.1.7. immediately whenever these rules are appli-

cable, and then discard the wffs to which these rules are applied,

since they need not be used again.
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5.3 Theorem. Let & be a finite set of sentences.

If 8 |-g] then s I—RD,

Proof:

5.3.1. For any finite set § of wffso, let T(3$) mean

not 8! L—&[:] , where &' is obtained from & by replacing the
free variables in wffs of § by new parameters in a one-one
fashion. We shall show that TI' 1is an abstract consistency

a .

property, so if & is a set of sentences such that § L—g

then 8 is inconsistent in J, so by 3.5 not TI(8), i.e. § L—R[] .
5.3.2. We verify that T 1is an abstract consistency
property by checking the contrapositive of 3.1.k in step 5.3.2k
below. For the sake of brevity we shall-be rather informal about
the distinction between 8 and 8', simply assuming that wffs are
closed when appropriate.
5.3.2.1. 1If there is an atom A such that A ¢ 8§
and ~Ae$ then § |-_[] by 5.1.9.

5.3.2.2. If 38U (na)} ol  then sy (3} 0O by s5.1.1.
5.3.2.3. If 8 U (A) |-g0J then s u (~~a) |- bys.1.4,

5.3.2.4. Suppose 8 U {A] L—R[j and 8§ U {(B) L—RE]. We may

assume given refutations gl,..., gn of 8 U {B} and E},..., "

—~

of 8 U fa} wusing the same existential parameters. We define

which of the wffs g} are derived from B in the given refutation

in the obvious inductive fashion: if gl is in 8 U {B}, then Q} is
derived from B iff gl is B; if gl is inferred from gj (and g?),

then El is derived from B iff gj (or QF) is derived from B. We
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define ‘Ql (for 1< i< n) tobe AV ct if g} is derived

—

from B; otherwise ‘Ql is g}. By examining the rules of

inference of ® it is easy to see that § U (A Vv B} |~ ngi

for 1< i< n by induction on i. 1If Qn is C] we are done.
Otherwise Qn is A so S U {A Vv B} | nA. Now we readily
establish 8§ U (A V B} |— ngi for 1 < i m by induction on i,
so su {av B |-U.

5.3.2.5. If 8 U {~ A,~B] I—RD then s U {~ [A VvV B]} I—QD

by 5.1.5.
5.3.2.6, If there exists a wff ga such that

s U (O A_.B,) o3 then s u (n ) 0 by 50107,

o(oa)éoa’ o(oa)éoa

5.1.8, and 5.1.1.

5.3.2.7. Suppose there is a parameter ga which does not

0.

occur in A__ or any wff of § such that 8§y {~ A .4,) o

Let a refutation of 8§ U ~A_  d  be given with existential

Since |[c

parameter SCL (oa) . -Q(OQ)AOG.

] is a closed wff it is easy

to see that one can replace ¢ by Ic ] everywhere in the

a na(oayéoa
given refutation to obtain a refutation of 8§ U {~ T

1.

o(oa)éoa}’

using 5.1.6 to infer ~ A . [g (ou)Poa

5.4 Theorem. let 8 Dbe a finite set of sentences.
1f 8 |00 then s |- 0.

Proof:

5.4,1. Definition. A derivation in ® is standard iff the
premiss of each application of 5.1.6 in this derivation is a
sentence and an mn-wff,

5.4.2, Lemma, If § L—R[], then there is a standard

refutation of § in R,
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Proof:

Let Q},..,Qn be a refutation of 8. We prove by induction

on i that (¥) if all the free variables of Ql are amonhg

yl ,.‘,yk , and El ,...,Ek are closed wffs, then there is
=Y =Y =Y =Y
1 k 1 k
1 k i

a standard derivation in ® from § of T](SZ ceed D).

.El Ek

- - 1 k
For the sake of brevity we let 8 Dbe the substitution sy i..yk o

.~E~ ...’E_

(*) is immediate using 5.1.1 if Qi € 8, since Qi is then a
sentence. If Qi is obtained from Qj (where 3j < i) by any
of 5.1.2-5.1.6 or 5.1.9, (*) follows easily from the inductive
hypothesis; as an example we treat the case where Qé is

M V'AJéoa[sa(oa)éoal and is obtained by 5.1.6 from M V ~

no(oon)-e‘oa'
By inductive hypothesis there is a standard derivation of

(n M V~I (n 8 éoa)’ from which by 5.1.6 one may infer

o (oa)

ne MV~ (n 9'50 ) [Sa(oa)n 6 Ayyl, from which one may infer

a
n 6 Ql by 5.1.1. It is easy to see that one thus obtains a
standard derivation of n A Q}.

If Ql is inferred from 23 by 5.1.1 we have

» l 0 l l »
8 QJ conv [[Ay ...kzkgj] E °°'§F] conv [[AY ...A kg}] E}..oEk

conv 6 Ql so 17 6 QJ =n 8 Ql. Thus the inductive hypothesis
suffices.

i R
Suppose D is MV Aco§a and is inferred from

r . .
MV no(oa)éoa by 5.1.7. Let X, be y . By inductive

hypothesis there is a standard derivation of n 6 MV no(oa)n 6 Aoy’
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which is a sentence. From this one can derive n 6 M V(n e“z:\oa)a{OL
by 5.1.7, then [Ax,+n 8 MV(n 6 A_)x IE" by 5.1.8, then n6 D™

by 5.1.1. One thus obtains a standard derivation of n 8 Ql.

Suppose pt  is [%gagnga and is inferred from 'QJ by 5.1.8.

Let ¢ be that substitution which simultaneously replaces free

occurrences of Xy by occurrences of 6 B, and free occurrences

of yr (for 1 £ r < k) by occurrences of E"

E- if y© # Xy Since
e Ba is closed, by inductive hypothesis there is a standard
derivation of 7 ¢ Qj. However it can be seen that

i_ j - 3
6 D” = (6 [Ax,D°]) 6 B, = (0 [AxD"]) 0 x

= c[[kgagj]‘ga] conv O Qj,so n 6 Ql =n0 DJ.

This completes the proof of (*¥), and hence of 5.4.2.

5.4.3. We now prove 5.4, We may assume given a standard

1

__2} ]J"'}
al(oal) oal

1
refutation D ,...,Qn of 8 in R. Let [c

k . . . .
[Su(oak)éoak] be the wffs introduced by 5.1.6 in this refutation.

(Note that any of these wffs may be introduced by several

different applications of 5.1.6.) We henceforth write

c as gj and aJ as AJ. We may assume that the
., (oa,) =~oa.. =

J 3 J
wffs [gjéj] are ordered in such a way that if [9253] occurs

in A%, then j < i. Let EJ be the wtf [al[c7a)] o1 N

A
o(oa.)~
(j)

for 1 < j < k. Note that since each rule of inference of &

except 5.1.6 is a derived rule of inference of J, the sequence

1 n 1 ,
D s...,D, and hence the sequence mnD ,...,ngn, can be regarded
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as a proof in d from the assumptions § U {El,..,gk} using

derived rules of inference.

Let y& ,...,yi be distinct variables which do not occur
-7 "
in any wff of § U,[gl,o..,gk} U {an,...,nQP}. For any wff B,

let pB be the result of replacing all occurrences of [EJAJ]
in B by occurrences of yJ for j = k,...,1, starting with Jj =k
1

and working downward. It can be seen that 8 U {pg "'°9§k} F—ganl

for 1 i n by induction on 1i. We leave the details to the
reader; in each case consider how Qi was inferred in the original
refutationof 8. (In the case where _Qi was inferred by 5.1.8 one
uses the fact that the .éj are closed wffs.) When i =n

we have § U {pgl,...,pgk} L—S[] .

Let e° = ¢ and &i = {le,...,ggi} for 1 i<k,
We prove S U gk-13 L—g[] for 0< j < k by induction on j.
This is clear for« j = 0. PFor the induction step we prove
8 U gi-t P—z[] from

(a) S U 61_1 U {pgl} L—g[] (the inductive hypothesis).

, where vy is yl and B

i
o
PE” has the form B_ vy, no(oa)goa Ja ~00.

is pgl. Note that ya does not occur in Po or in any wff

a
of 8 U &1l  mHence by the deduction theorem and propositional
calculus we obtain

® svuell_~1

3 o(oa)goa and

i-1

(c) S UE L'Kgoaza’ from which we obtain
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i-1
(@) sue l—gno(oa)goa by 2.6.6, so

(e) sy eit I—UD from (b) and (4).

Thus § l—gm and 5.4 is proved.
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§ 6 Remarks and Examples for R

6.1. When one sets out to prove in R a theorem of
some branch of mathematics, one of course assumes as hypotheses
the postulates of that branch of mathematics. In addition certain
assumptions which are used in all branches of mathematics, and
which in other contexts would be regarded as axioms of the under-
lying logic, should be taken as hypotheses., Among these we

mention the axioms of extensionality:
.

i
il

o =
6.1.17 Vp Vg .Ilpy = a,] =.p, = a,

(aB) -
6.1.1 VE .VxB[fan =

aBVgaB B ganﬁ] D'faB - gaB

and the axiom of descriptions:

6.1.2 311(01)Vf01,ilx1f01xt ) fot[l

1(01)fot]. In addltlon one

may wish to assume some formulation of the axiom of choice (in
which case 6.1.2 is dispensable) and an axiom of infinity.

Of course there are infinitely many axioms of extensionality,
and it may not be obvious which of these may be needed to prove
a particular theorem. However, when implementing the system it
should be possible to treat the o and B of 6.l.l(aB) as

special variables (type variables, in the terminology of [1])

for which one can substitute particular type symbols as necessary.
6.2, In the examples below we shall use letters with bars over

them for parameters. Thus 31 and E}t in 6.3 are parameters.

For the sake of brevity we shall introduce Herbrand-Skolem

functors as abbreviations in the manner discussed in 5.2. We
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shall call such a functor with its arguments an existential term.

Since applications of 5.1.1-5.1.7 are routine we shall usually
leave it to the reader to determine which of these rules are being
used. However we shall indicate (at the right-hand margin) from
which line(s) a given line is inferred if it is not inferred from
the line immediately preceding it. The reader will quickly
discover the advantage of formulating derived rules of inference
to speed up these manipulations. We here discuss only two such
rules, which we shall need in 6.4.

6.2.1 If 8 |—o ~ [A =A] VB then § B.

a ]_R
Proof: From the given wff by 2.4.8 and 5.1.1 we obtain

~ ~ \V) : .
.1 VE o™ EocPy vV fooB,] VB where £ - is not free in A

] ~ A v Vv . . . ]
2 ~ EooRq anéa] B vwhere Eoq 1is an existential term

-3 Foody VE \ 02+
.4 ~ Fooky, vV B 2.
.5 B cut: .3,.4.
6.2.2 If a and B, are free for x in ¢, and
X
8 |-pl V ?‘AZE’ and § |- M V{3 =B, or & |- MV [B =Al,

X
then 8 |- .M Vv NV s %c.
‘ B,

Proof for the case [A = B ]:

Let foa be a variable not free in A ,B , or M.

A'=qa




[ g \Y
1 MV UVE .~ £ A VE
2 MV~ Sy Vo ok

3 MV N[Mf@g] -Z}on Y [7\}_{

X X
~Q ~Q
4 MV ~(S,00 VS g
Aa .BG.
¥
a
.5 NV s.%¢
.Aa
‘}"'CG.
.6 MV NVSSC
~a

In the case [B = Aa]

the line corresponding to .2.

6.3 Example

ILet W stand for
ot

Q. “O(].EC(.

[0 nad

substitute

given
Sub
given
cut:
[A X ~¢C] for fF in
~a ~oq

[(An,. ¥p,» [po, A Vxepx 2 pes, x| 2 pn].

™ denotes the set of natural numbers when 31

o1l

and s denotes the successor function. We prove

11

Vyt[niy D W. syl Dby refuting its negation in ®.

1~y . Ny 2 W, sy

.2 m?l

.3 N]N'o.;-};l

.4 ~,[§m€ A T pXx Dpsx] Ops y

*e3 5610

*,6 NEOtxt V psx

*,7 ~p A

o1 4

[47]

.4,.5

denotes zero
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.8 ~p oV ~Y¥x [~px V p.sx] V py )
8 P, .0 \Y% th[ pX V p. sx] Py, 2
*,9 ~ Py ,° V o~ p[x1(01)p] V P.SeXpl] V pY,

Lines .5-.7 and .9 were obtained routinely from .1,

"and ] must be derived from these. We could apply 5.1.5

to .9, but it is convenient to postpone this.

.10 Npoti;t Sub: ,6;cut: ,7

11 e I?M[SEt (O”E] V P.S.X P Suk: .9;cut: .5,,10
.12 ’501 [321 (o;)E] .11
.13~ EOt.E.Sit (01)5 .11

14 [0 Sub: .6;cut: .12,.13

For a somewhat less trivial example, we prove that if some
iterate of a function f has a unique fixed point, then f has
a fixed point. (This example is suggested by [6].)

et J stand for

o(11) (1)

[XfttkgLLVpo(tt)o[pf A Vhtt. h :>p.%tt.f.ht] S pg]l.

Then JngH means g 1is an iterate of £, i.e., g 1is in
the intersection of all sets p which contain f guch that p
contains feh whenever p contains h,

We wish to prove

(*) Vftt.ﬁgtl[Jfg A d xt.gx = x] D Hyt.fy =y

1




*,4 ~ =
11,y1. Y
* a9 < = <
.5 9,.%, x,
*. g = \Y = x
6 Ngl‘lz‘l« z'l. Zl xl
*,7

N%UﬂfHVﬂNPmmeU)

We must derive [ ] from .4,.5,.6, and .7.

[49]

Pl V p.ite f.[hpl £] V pg, .2

We could break down .4,.5,

and .6 further using the definition of equality, but we prefer to

rely on 6.2.1 and 6.2,2,

x ] = f.kx]

Next we substitute (X,

[tht.k[fl

in .7, and write the existential term corresponding to

-

hll(o(tt))po(lt) simply as ﬁnz to obtain
.8 ~f fx =ffxV ~[~h Tx =fhxV fnfx=Effh
Vg fx = fgx

Applying 6.2, 1 to .8 we obtain .9 and .10 below:
.9 h T . x=7ThxV ?;'H'f';f = fgx
.lo~F F F ¥X-FFfRx v 3, FX = g%
11 ~% FH ¥ -Ffhx vg§, X - g% 6.2.2:
.12 waz 1§1 = fgx 6.2,1:
.13 EHfHEt = fx 6.2.2:
14 £ X, = x, Sub:
.15 O Sub:

for p

o(11)

x]

.6;cut:

4:cut:

.13

.14
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