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Introduction

For a long time, general topology has not only been a study of topological
spaces. Weil and Bourbaki introduced uniform spaces to study uniform continuity
more than thirty years ago. The concept of a neighborhood space or closure space
or "mehrstufige Topologie" is nearly fifty years old, due to Hausdorff and used
largely by the Eéch school, The recognition that not all structures with limits
of filters are topologies led to the limit spaces of Kowalsky [21] and Fischer
[9]. Feedback from other mathematical theories, and sometimes simply the urge
for variations on a theme, led to yet other categories such as Hammer's extended
topologles, uniform convergence spaces [5], and various quasi-uniform spaces.

Limits, continuous functions, open and closed sets, and other paraphernalia
of topology were soon defined for most or all of these categories, usually by
analogy to existing concepts. This séaroh for analoga, and the companion pheno-
menon of carrying over proofs from one theory to another, made a general theory
more and more desirable, Efforts to establish a descriptive theory of structures
of topological nature were made, but they seemed overly complicated and not
general enough, and thus they were largely abandoned in favor of a categorical
approach,

Several categorical solutions for the problém of finding & theory of topo=
logical theories have been offered. Hufek's S-spaces [15], Kat&tov's M-spaces
[17], Bentley's T-spaces [3], and Kennison's pullback siripping functors [18]

are examples. Thus our top categories join an already large company. Not sur—
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prisingly, one finds that amy two of these approaches are either categorically
equivalent, or that one is a special case of the other. W, Shukla's thesis [29]
contains a detailed study of these connections. It turms out that S-~categories
are equivalent, and pullback stripping functors almost equivalent, to top cate-
gories. M-snaces are less general, and T-spaces are a rather special case of
top categories.

Our main reason for preferring top categories over S-spaces or other equi-
valent theories is the fact that top categories have a simple invariant defini-
tion which puts general topology into a larger categorical framework: a top
category is "simply" a fibred category in the sense of Grothendieck {12] or Gray
[11] with small complete fibres.

Top categories go back to [30]. A revised version [31], with some topics
omitted and others amplified, has been submitted for publication. Meanwhile,
some questions left open in [31] have been answered, new applications have been
found, and experience showed that some special cases of general results are use-
ful enough to deserve a more detailed treatment. Thus the author decided to
write this report as a detailed and reasonably complete introduction to top cate-~
. gories, on a pre-publication level, The present report contains almost all of
(%11 and of [30], results from [25]1, [26], [81, [33], some results of Shykla's
thesis, and some.new results,

Section 1 discusses fibred categories in ggneral. ¥e give a simpler defi-
nition than that of Grothendieck and Gray. The same material occurs in [8],
in somewhat more general and more condensed form, except that a converse of
[8; 7.8] has been added.

Section 2 provides basic definitions and some general results.
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The list of examples in section 3 could have been enlarged almost indefi-
nitely. Shukla [é9] has some very interesting examples from automata theory and
information theory.

Sections 4 and 5, on the lifting of functors and of universal morphisms, are
mostly from [31]. They contain results which are very useful in general topology.
Section 9, also from [31], puts topological algebra into the framework of top
categories. Thus new useful applications of the basic results of sections 4 and
5 can be made.

Sections 6 and 7 contain material from {25, [26], [30] in amplified and
sometimes modified form. These two sections present specialized, and very use-
ful, versions of basic results from sections [4] and [5].

The point separators of section 8 do not deal with top categories directly,
but they certainly form a vart of categorical topology, coming as they do from
the point separation axions Ti (i = G, 1, 2) and related topological axioms.
The theory was originated in rather special form in [28], generalized to top
categories over ENS in [30], and put in definitive form in this report.

Section 10 stems from an interesting theorem of Kennison [18] which was put
into a general categorical framework by Herrlich [14; § 13].

Section 11, on images and relations, contains some basic definitions and
results of [8], and a condensed preview of parts of [33]. Ko proofs have been
given; this section has been inserted mainly for the convenience of the reader,

The continuous relations of section 12 are é new development of the general
theory. More than any other, this section must be considered as preliminary.

We do not anticipate a switch from the given definition of continuocus relations

to one which is not substantially equivalent, but it seems definitely indicated
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to find a common framework for relations and continuous relations. Other ques=_ -
tions are posed in 12,7, and there are many more.

The study of the categories of general topology is one aspect of a new .
mathematical discipline for which the author has proposed the name categerical
topology. Top categories seem to be a good tool for this, Categorical topology
has many aspecte which are not discussed at all in this report. We mention only
the study of reflective, coreflective, and otherwise interesting subcategories
of TOP using categorical methods (see €., [14]), the study of completions and
compactifications (see e.g. [32]), and the study of autonomous top categories,
in the sense of Linton [23]. Binz and Keller [4], and Cook and.PFischer [5],;have
shown that limit spaces form such a category.

Due to the pre-publication level of this report, no references have been
provided in the text, except occasionaly to an author by name. These elliptic
references can easily be amplified from the appended bibliography. Some results
and definitions appear only after they have been used, but eliminating such minor
defects of the report would have delayed its appearance unduly. We hope that the

present report will be useful to the reader despite these and other shortcomings,
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A SURVEY OF TOP CATEGORIES

Oswald Wyler

1. FIBRATIONS, Top categories are special fibred categories in the sense
of Grothendieck and Gray. We begin this survey therefore with a brief discussion

of fibred categories in general.

1.1. DEFINITION, Let P : /A —= € be a functor. We call a morphism £,
a ~—>b of & P-fibred if for every morphism v : C —> P a of ¢ and every
morphism u, : ¢ —>b of A such that P u, = (p fl) v there is exactly one
morphism v, : ¢ —>a of A such that w =f, v, and Pv; =v. Wecall P

a fibration if for every morphism f : 4 —>B of @ and every object b of A

such that P b =B there is a P-fibred morphism f. of /X with codomain b

1
and P £, =f . Dually, we say that f; €\ is P-gpfibred if f, is fibred
for the induced functor PP :/A%P—> °P | and we say that P is an opfibra-

tion if P°® 4s a fibration.

1.2. EXAMPLE, The category C? has morphisms of ¢ as its objects, and
its morphisms are quadruples (r o’fl) : u—>v of morphisms of ¢ such that
vf =uf; in C , The codomain functor Dy :(L'QZ'-—?@. is defined by putting

, . . 2 . . .
D, (fo,fl) =f, for (fo,fl) tu—>v in€ “ . A fibred morphism for this

functor is a pullback in d. . Dually, an opfibred morphism for the domain func-

tor D : €8 —5¢ is e pushout in € . D, is a fibration if and only if a
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has pullbacks, and DO is an opfibration if and only if ¢ has pushouts.

1.3, DEFINITION, Let P : /A~ ( as above. For each object A of C ,

the morphisms f, /N such that P £, =id A forn a subcategory of A, Iet

P* A dénote this subcategory and HA s P* A --~~>A the inclusion functor. For

f:A~>B in ¢, we call P-cleavage at f a pair (f*, $of) consisting of
a functor f* : P* B—>P* A and a natural transformation Cp ¢ HA £* —-~>HB
such that ?f b is P-fibred and P (?Df b) = f for every object b of P* B,
Dually, a P-opcleavage (f*, gpf) at f consists of a functor f, : P* A —>

P* B and a natural transformation g)f : HA —»> H_ f* such that ?f)f a is P-

B
opfibred and P (Qf a) = f for every object a of P* A ,

1.4. PROPOSITION, P : /A —>¢ is a fibration if and only if there is a

P-cleavage (f*, ¢.) at eve m f of 4 .
cleavage ¥¢/ &k every morphism

Proof. The existence of a P-cleavage at every f¢~( obviously guarantees
the existence of enough P-fibred morphisms. Conversely, let P be a fibration
and £ :A—>B in ¢ . Assign to every b< Ob 4 such that Pb=B a P-
fibred morphism Q. b: f*¥ b —3 b. such that™ P ((Pf b)=f. Ifu:b —>b
in P* B, then u (?f b) = (7:&. b') v and P v =id B for a unique morphism
viftb —>f*b' in A, Ve put f* u = v . One verifies easily, using the
unicity of v , that this defines a functor f* : P* B-—>»P* A |, and then the

morphisms Pe b define a natural transformation Fp * H, f* —> Hy 0

1.5, PROPOSITION. Let a P-cleavage (f*, y”f) at every f&C be given,

for P: A= C, 1f Acovd and &4 ~55> B —€5C jind , then

FaaBe) = idl,  and g (Hoc ) =6 (7e)
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T £* ¥

for unique natural equivalences c, : Id (P* 4) —> (id A)* and Co gt
]

—> (g £)* .

Proof., For a & Ob P*¥ A there is a unique ¢

) 8 in P* A such that

(spid A a)(cA a) = ida .

We have (7§d RN a)(?id a8 = %pid s a)(id ((id A)* a)) in P4, and
thus (cA a)(?ﬁ‘)id A a) = id ((ia A)* a) , and c, & is an isomorphism of P* A,

Using the unicity of c, &, we see that the morphisms a:a —~—>(id A)* a

Cp

define a natural equivalence : Ia P A* —> (id a)* .

Cp

For ¢ €0b P* C, there is a unique ¢ ¢ in P* A such that

f,g
" = (o S o
(%gf e)ep . c) (y/g c)(yf g* c)
in A « Using the unicity of Ce g c: f* g*¥e “—%(g f)* ¢, we see that this
?
determines a natural transformation c s ¥ gt —> (g £)* .

f,g

We have to show that Co g ¢ 1is an isomorphism. There is a unique morphism
1
: * % : i = =
v:(gf)*e—g*c in A with Pv=¢f and (?gc)v pgfc, and there
is a unique morphism w : (g £)* ¢ -3 f* g% ¢ such that Pw=1id & and

(7% gtc)w=v, With Cr g for Crg © * it follows that

(ng c) Cr gV = (ch)@fg* c)w = (?gC) v = ?gfc ’
and (?g c)(}i‘f g ec)w r g = (yfgf c) Crg = (fg 0)(% gt c) .

Thus w = id (g f)*c  and . we,, = ddffgte ,

c
f.e g

and c, ¢ is indeed an isomorphism ]
’

The natural equivalences s and Ce . satisfy coherence conditions, but
14

we are not interested in these: we always have (g f)* = f* g* and (did A)*

=Id (P* A) for a top category.
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1.6. A fibration P : /A —» ¢ determines fibres P* A and embedding funce
tors HA : P* A — /A for objects A of € , cleavages (f*,g’zf) for morphisms

f of ¢ , and coherence equivalences c, and ¢ These data can be used

f,g *
to describe or reconstruct A\ as follows. An object Al of A is given by a
pair (4,a) with A = PAl , a~0b P* A, and Al = H;ca . A morphism fl :
(4,a) —> (B,b) is represented by a pair (f,u) , with f=Pf, : A—>B
inC, u:a —>f*b in P*A, and £, = (7Df b)(HA u) in A . Composition

of (f,u) : (a,a) —>(B,b) and (g,v) : (B,b)—> (C,c) is given as follows.

~, C
v 7 N\ e |
s <{>F'~\,ji"<::, = i
£* b .ﬂ,g* ¢ Gqe
e . \‘\ V' ey ~. “
- Pe b / i AWV
Thus (g,v) (f,u) = (g f, w) with w = St g (£* v) u in Px a4,
y

We note that (f,u) does not describe f; quite fully: b 1is not given. .

1.7. THEOREM, If P : A->(C 4ic a fibration with cleavages (f*,?ﬂf) ’
then the following are equivalent for f ¢t A-—>B in a. .

1.7.1. (f*,xf"}f) is an opcleavage for P at f .

1.7.2. fy : P*A —> P* B is left sdjoint to f*, and (v, = (R f*)(HA;7)

for a front adjunction 1) : Id P A —>f* £, for f*.

Proof. If (f*, \'wf) is an opcleavage at f , consider the equation

(5Df u = vy, e)
for objects a of P*A and b of P*b . If u:a —>f*b in P*A is

given, this determines v : f,a —>b in P* B uniquely since (f*,y/f) is an
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opcleavage., Dually, v determines u uniquely. Thus we have bijections

Dy, ¢ (P B)5, 8, B) —> (% A)a, 1),

a,
one for each pair (a,b) of objects. One verifies easily that 1~ a,b is natural
in a and in b . We obtain a front adjunction 47 for this adjoint situation

by putting ’2/} a=u for b=f,a and v =3id b . For this front adjunction,

vea = (@1, alna) ,
for a €0b P* A, end thus ¥, = (¢ f*)(gA47) .

Conversely, we have to show that SVf a above is P-opfibred if the adjoint
situation is given, Thus let u : a—>» ¢ with Pu=vf ., If vy b"‘_—~> c
is P-~fibred and P vy =V, then u=v fl for a unique fl ta—>b such
that Pf; =f, and f; = (qf b) w for a unique w : a —>f*b in P* A ,
Now w = (f* x)(77a) for a unique x : f, a —>b in P* B, Since Py

natural, the remaining square in the diagram below commutes,

-_-./x c
T
f,_ b > b /Vi

F
"L A

f* f x & ._.Y.ﬁ ,/-i‘;.‘g:.j. f* a.

\

f*b

‘~

Thus u = v} (ylfa) for vi =v, x with Pvj=v. If also u=v (SVfa)

with Pv'i:v, then v’i=v:L x' with x' : fy a—>b in P* B, This sets

up the diagram above with w = (f* x')('W? a) and £, = (</1/-f b) w. Thus x' =x ,

"
and v} = v, follows ]

2. TOP CATEGORIES, Much of what follows remains valid for general fibra-

tions, but we specialize to a simpler and important case.
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2.1, DEFINITION., A top category over a category € is a pair (A, P)
consisting of a category /A and a functor P : A—>C |, with the following
two properties.

2.1.1. P 1is both a fibration and an opfibration.

2.1.2, Every fibre P* A, for A€ 0b/A\, is a complete ordered set.

We call P the projection functor of the top category (4, P) , and by abuse

of language, we often identify the top category with A .

2.2, PROPOSITION, If (A, P) is a top category over @ , then the dual

pair (#°P, P°P) is a top category over 7 °F .

Proof. Definition 2,1 is self-duall

Ve shall use this self-duality of our theory freely in what follows,

2,3. DISCUSSION, We have noted in 1,6 that a fibration P : /A —>
determines, and is in turn determined by, the fibres P* A for 4 &ob - s the
cleavages (f*, y‘f‘f) for f= s and the coherence maps A and cf’g « For
ordered sets as fibres, all equivalences are identities. Thus (id A)* = id P* A
and (g f)* = g% g¢ | if g f is defined. In other words, the fibres and clea-
vages determine a contravariant functor P* :/TO P ~—2>O0RD , from (" to the .
category ORD of ordered sets. In this situation, u :t a —>f* b in P* A
means that a < f* b, Thue a morphism (f,u) : (4,a) ~=> (B,b) of /A is a
morphism f ¢ A —> B of <. with a f* b, ‘and we can suppress u from the
notation. With this convention, composition in /2\ becomes simply composition
of "underlying" morphisms in ¢ , The cleavage 7791. b becomes a morphism f :
(A,. £* b) -—> (B,b) which we call coarse. Clearly every contravariant functor

p* : L% —5 0rD sets up a fibration P : A—> & in this vay.
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A complete ordered set is one which is complete as a category, or in other
words a complete lattice. Categorical limits are infima, and categorical colimits
are suprema., By 1.7, a fibration P is an opfibration if and only if 81l func-

tors f* have left adjoints. Thus we are led to the following theorem.

2.3, THEOREM. A top category (A, P) over a category € is determined
by a contravariant functor P* :C °P —> ORD s from 4 to the category of

ordered gets, with the following properties.

2.3.1, Every fibre P* A, A€ 0b@ , is a comvlete lattice.

2.3.2. Everymap P* f=1f*, for f&C, jgreserves infimaf

24, If £ :A —2>B and g : B —>A are functors of ordered sets, i.e.

order preserving maps, then g is left adjoint to f if and only if
gb<ta &= b<fa ,

i.e. if and only if f and g form a (covariant) Galois correspondence, This
is of course well known, If A is complete and f : A —>B is given, then g
with this property exists if and only if f preserves infima., This is equally

well known, and at the basis of 2.3.2.

2.5, NOTATIONS, Let P : /A (. Qefine a top category (4, P) over & .
We put pA for P*A and f° for f* if A O0bC) and <7, Thus fP :
PB—>pA for f:A->B in € . Ve identify objecte of A with pairs
(4,a) with A€ 00T and a Ep 4, and morphisms f : (A,2) —> (B,b) of A

with morphisms f : &4 —>B of & such that a £f® b . By 2.3.2 and 2.4,
f,a€b &= adffb ,

for all a& pA and b<& p B, defines fp:pA-—%pBiif.f:A—"-}B.




We have noted that f : (A, £¥ b) —>(B, b) is P-fibred (or goarse); by 1.7
the morphism f : (A, a) —> (B, fp a) is P-opfibred (or fine). The following

result expresses this situation.

2.6. PROPOSITION, Let (4, P) e a top category over € , If f:
A—>C and g:C—>B in €, andif a£pA and b E€p B, then the
following three statements are logically eguivalent.

2.6,1. gt : (a,a) —>(B,b) in A.

2.6.2. f£: (8,8) —>(C, & b) in /A.
2.603. g : (C, fp a) __-‘> (B’b) _:L!_l_/f’-'\.

Proof. a £(g )P b &= a <fP P o &= fpaégpb 0
We note that P, A=pA and P, f = fp defines a covariant functor P, :
d,—-> ORD , This follows easily from the dual of 1.5 and the fact, noted in 2,3,

that coherence maps are identity maps if fibres are ordered sets.

2.7. DEFINITION. Let (/, P) be a top category over (_ . We denote by
X, and W, , orby o, and (0 if the situation requires it, the least and
the greatest element of pA , for A€ 0b . Elements of p A are usually
known as structures of A , and O(A and (J " then are called the discrete and

the indiscrete structure on A . We say that a structure a is finer than a

structure a' if a <a', or equivalently if id A : (A,a) —-> (4,a') in/A .

2.8, THEOREM, If (A, P) is a top category over & , then the functor

P is faithful and has a left adjoint right inverse X5 obtained by putting

o<pA=(A,(><’A) for A €E0bC , gn_g_apf=f:pr~—>yPB for £ : A—> B

in C . Dually, P has a risht adjoint right inverse {4, » Obtained similarly.,
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Proof. Since in particular & A £ fpfx'B for £ :A—>3B in ¢ , X p is a
functor. We have f Foly A ~—>(B,b) in A if and only if f : A —>B in

since (X Aé f? b in any case. The bijection
b, 40 (B,8)) —> (4, P (3,b))

thus obtained clearly is natural in A and in (B,b). This proves the first

part, and the second part is strietly dual to thisﬂ

3. EXAMPLES OF TOP CATEGORIES, We give examples from general topology,

from topological algebra, and purely set-theoretic examples, and one theorem.

%.1. TOPOLOGICAL SPACES., Let t E be the complete lattice of all topo-
logies on a set E , with T % TUif T is finer, i.e. has more open sets. For
£f:E~>F and a topology O of F, let £U(5) be the topology of E with
all sets £1(v) , V open for o, as open sets. This satisfies 2.3.2, and
the resulting top category over ENS clearly is the category TOP of topolo-

gical spaces.

3.2. A convergence structure on a set E is a relation q from proper

filters on E to E which satisfies the two Fréchet axioms in filter form.
L1, £qx for x€E and the filter ¥ on E with basis {gxfg .
L2, If Paqx and ¥ is finer than <0, then Ja x .

We put gq éq' , for convergence structures q and q' on E, if always

@q X = C? q' x . With this order relation, convergence structures on E

form a complete lattice QE . For a mapping f : E ~>F and a filter 7}

on E, define a filter f,(@) on F by Y& f*(gfa P f-l(y)ecp , for

YCF . Then SDq* x &= f*(w) o} f(x) defines a convergence structure
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Q

q* = fQ(q) on E for a convergence structure q on F ., The maps f- pre-

serve infima, and a top category CONV over ENS , the category of convergence

spaces, results.
There are many similar examples, such as uniform spaces, limit spaces, clo-

sure spaces, proximity spaces, uniform convergence spaces, and others,

3.3, TOPOLOGICAL GROUPS. Let € = GRP , the category of groups. For a
group G, let tg G be the set of all topologies of G which are compatible
with the group structure of G . Define £ and %€ g £ and £% in 3.1,
The resulting top category is the category of topological groups and continuous
group transformations.

This is a theme with many variations,

3.4, PFor any category  , the identity functor Id 4 is both a fibration
and an opfibretion. The fibres are singletons and thus trivially complete lat-

tices. Thus every category ¢- is a top category over itself.

3.5. If we include the null filter or improper filter with basis -{ﬁ? ’
then filters on a set E form a complete lattice. The proper order relation for
this lattice turns out to be the one opposite to set inclusion. For a mapping
f:E~>F, we have defined a mapping f, from filters on E to filters on
F in 3.2, We obtain f* in the opposite direction by letting f*(y)) be the
filter on E generated by all sets £ 1(Y) with YEw . If f is not sur-
Jjective, f*@u) may well be the null filter on E for e proper filter W
One sees easily that f*(?ﬂ)é \}J@ (P L f*(y/) , where £ means finer; see
above. Thus f¥* preserves infima, and a top category over ENS results, with

pairs (E,?D s Where 43 is a filter on E , as objects.




STC 11

3.6. The graphs of equivalence relations on a set E , ordered by set
inclusion, form a complete lattice e E , with set intersections as infima,
If f:E—>F and v FX F is the graph of an equivalence relation, then
£2(v) = (£ x£)"Yv) defines the graph of an equivalence relation on E . This

preserves infima, and a top category on ENS , the category of equivalence rela-

tions, is obtained.

A category of reflective relations is defined in the same way.

3,7, Subsets of a set E form a complete lattice, with set inclusion as
order relation, If f : E — > F , then f-l maps subsets of F into subsets
of E , preserving intersections. Thus a top category on ENS is obtained.
Objects are pairs (4,X) of sets with X € A, and maps f : (4,X) —>(B,Y)
are mappings f : A —>B with X & f-l(Y) , i.e. with £(X)< Y, fThus this
bcategory is the category of pairs of sets.

The same construction works if we replace sets and subsets by groups and
subgroups, or by topological spaces and subspaces. Thus pairs of groups and

pairs of topological spaces form top categories over GRP and TOP respectively.

3.8. THEOREM, If (/‘\, P) is a top category over  and K a small

category, then (AK, K ) is a top cateszory over the functor category o .

Proof, Let I =0bK . If F :K—>C. is a functor, then we define an

F-family as a family (ai) vith a8, €p (F'i) for each i €I, and with

i€l
aié_(FcF)p(aj) for every y-: i —>j in K . P~fomilies forma set p F .

It (a;); g isen P-fanily, then ($i=(Fi,a) for i1, and e

i
: A~
= F77 : §f.)i —>{ 5 for oot i —=>3 in K, clearly defines a functor @.

K—> /A such that P J'= PJ'=F . Every functor - : K —>/4\ with P(P= P
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is obtained in this way.
- ili = s Lar s '

We order F-families a (ai)iGI by putting a %a' if ai.é ai for all

i&I ., For F-families 8, = (aki)iél .

we claim that a  =/)a . for i&lI
; i
defines an F-family a =/ | a pe If @idi— 3 din K, then indeed

May CLEpMe) = ey
as required, Thus F-families form a complete lattice p F .,
For \ : F—5>G in C.X and a G-family b= (bi)i(_:l , we claim that
a; = (}\i)p(bi) for i &1 defines an F-farily a=}\p(b) . Indeed,

(;\i)P(bi) < (A i)p(G({;)p(bJ.) = (F/g:)p(Q\j)p(bj)
for (}} ti——Jj in K. Thus )\p(b) is an P-family. Now one sees easily
that }\p : pG—>3pF preserves infima.

Let (> and .’ be functors from K to /A, with (i = {F 1, ai) - and
YA = (61, bi) for 1 GI. 1f Ardi =9’ in AY ana FA-PA =N
P—>C¢ in @5, then Ai=Ai: (Fi, ai) —> (¢ 1, bi) in /AN for i€ I.
This requires aié ()\i)p(bi) for all i4~1, or a<AP(b) . Conversely, if

a é;\p(b) s, then the morphisms given above exist, and one sees easily that they

define A+ (D= 4 in AL with A=\

4, LIFTING FUNCTORS AND NATURAL TRANSFORATIONS, We consider in this sec-
tion top categories (AP, P) over . and (=%, Q) over #3, and we use the

notations of 2.5 in the obvious way for both categories.

F: AR ir qb=FP. 1r 7 and { 1ift P and G, then we say that

AN . .
a natural transformation .;’\ : 70 2 47 lifts a natural transformation /\ :
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F—>G if QA=AP,
Ir & uifts F, then F=Q0Dx =Q®uy , and thus (O deternines F .
The case F = Id/A is important in general topology (where A = ENS ) and else-

where; we shall consider this case separately.

4.2, PROPOSITION. Let F :/A~>/  be a functor. If maps ¢, : pA —>

qFA jn ORD are given, one for every object A of £ , &and if

(4.2.1) gy Py < (F)iayy

in q P A whenever f : A—>3B in /A and y€ pB, then

(4.2.2) Pl = Fa, @ 2 , Pf = 7:Pl,x)—>P 3,y

for objects (A,x) and morphisms f : (A,x) —> (B,y) of AP, defines a func-

;t_g_r_@ : AP —>B Y ywhich lifts F . Every functor ¢ tA? —>B % yhich lifts

F is obtained in this way.

We call the maps Pa the structure maps of the functor d/ .

Proof. If the mavs & s in ORD are given and satisfy (4.2.1), then also
(4.2.3) x &Py = 2 x<F )iy,

for f:A—>B in A, x€pAh, y€&pB, and thus (4,2.2) defines a func-
tor @ :AP—> B ¢ wnich lifts F . Conversely, a functor (5 which lifts F
obviously is of the form (4.2.2), with P, x&€qF 4 for x€ph, andwith
(4.2.3) satisfied. For f = id A , (4.2.3) shows that %, Dreserves order, so

that @, : pA~>qFA in ORD, and (4.2.1) is (4.2.3) for x = Py {

4,3, PROPOSITION, 1Id Ap lifts Id/\, with structure morphisms id p A .
If AP —->FEY and VLIS C T 1irt P/ F and 6 : BT,

HUNT LIBRARY
GARMEGIE-MELLON UNIVERSITY,
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with structure morphisms cp, and , Iespectively, then Y@ 1ifts G F,
with structure morphisms Yra (PA 0

4.4, PROPOSITION., If functors ¢ and ¥ from A® to BR? 1ift funct
Foand ¢ fron Afo B, with strvcture nape @, and ( » thenevery
natural transformation /\ : ® = lifts a naturel trensformetion A : F —> G,

and in this situation /\ and /'\ determine each other.

Proof. If /\ lifts A, then A = Q/\&.{) , and /\ determines A , Con-
versely, let \(4,x) =1 : (F A, @, x) =2 (¢ Ay, x) for an object (A4,x) of
AP and 1et A (W, 4) =4, :Pwh —> Wwh ., Since id A : (A,x) —> w4
in AP, wehave A, (i1d FA) =(1dG4a) £ : D(A,x) W wa inBY, end
thus £ =A, . Since A )= Q/\(wD A) , the morphisms A , define a natural trans-

formation A = Q/\wn : F—> G . A clearly determines /A , and QA = AP ||

4,5, COROLLARY, A in 4.4 is a natural equivalence if and only if A is a

patural equivalence and ¢p, = (/\A)ql,‘)A for every A GOb A,
Proof. This follows immediately from 4.4 and from 7.2 below(]

4.6. EXAMPLE. One does not expect every functor (P : AP —>R ¢ to be
lifted from a functor F :A""’B . The following simple example sustains this
expectation. Let Ap be the category of pairs of sets (3%.7) and Bq = ENS ,
both considered as top categories over ENS ., Put 7T (A,X) = X for a pair of
sets, and let T f : X—>Y be the restriction of f for f : (4,X) — (B,Y) .
Since P (A,X) =4 and Q X =X in this situation, there can be no functor F :
ENS —> ENS such that QT =F P,

The following theorem of Shukla generalizes our Theorem 3.8,
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4.7. THEOREM. Let AP and B? be top categories. If A is small, then

the functors @ :A"—>B? unich 11t functors F : A —>/B , and the natural

A
transformations of these functors, form a top category over &

Proof. If (P 1lifts F, then we write & = (F,q.:) , where ¢p is the
family of all structure maps ?A tph ~—>2qFA of (l) . It A is amall, then
these families form a set t 4 . We order t A by putting ¢ s";ﬁ/ if TA x
£, x in g F A for every object (A,x) of A® . For a family of families
¢P in t ¥, we put (,ﬂp’u)A X = ﬂ (p}f:*x) for every object (4,x) of A .
This defines n(})" in t F ; see the proof of 3.8 for this and other details.
If AN:F—>G in B ana Y EL G, put (}\t(i,u))A x = (ADPy x) for
every object (4,x) of AP . This defines At —>t F . One sees easily
that /\t preserves infima, and that a natural transformation A:F—>G can
be lifted to a natural transformation A : (F,p) —> (G,f) (which 4s unique

by 4.4) if and only if yé}\t(yu) 0

5. LIPTING UNIVERSAL-MORPHISKS. We consider in this section the lifting of
categorical linits and colimits, and of adjoint functor situations, from cate~

gories A and #3 to top categories AP ana B .

5.1. DEFINITION., We say that @A’ > B i taut over F : A >R ’

or that ¢> l1ifts F tasutly, if ¢3 lifts ¥, all structure maps ;01,1 tpA—>
qFA of @ preserve infima, and ?A £P = (F f)qy\B for every morphism f :

A —>B of ﬂ\ . VWe say dually that ¢7 is cotaut over F if Qﬁ' lifts F,
all structure maps }Z‘A preserve suprema, and always ?"B fp = (F f)q 7’A .

Bverything in this section follows from our next result.
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5.2. THEOREK., Let a functor @:AP —» BY 1ift a functor F : A— R,
with structure maps ?A . If @ is taut over F, then h: (B,y) —> ¢(C,z)

is a universal morvhism for ¢ if and only if h : B —>F C igs a universal
morphism for F and z = [ -;_xép C: yéhq@c xi.

Proof. If h: (B,y)-———}d)(c,z) is universal for Q) y let g : B-—>F 2
in B . If ¢ is taut, then $(A,wA) = (F A,{,-JFA) , and thus g : (B,y) —>
@(A,LOA) inBY, and g=(Ff)h fora unique f : (C,z) —> (A,LoA)
in A’ . 4e £:(C2) > (A,w,) In AP ifand onlyir £:C—>4 in A,
it follows that h ¢+ B —2> F C is universal for F .

Conversely, let h : B—>F C be universal for F . By the definitionms,
h : (B,y) —» @(C,z) is universel for @ if and only if y < g% ¢ x =
zéfpx for £ :C~> 4 in #\, x&pdA, and g=(Ff)h in B . For
f=3id C, it follows that we must have 2z = ﬂ{x EpC: yéhq@c xg .

For this 2z , we have hqqrc z={\ {hq?c X:y éhqgac xg since h® and
(by request) P preserve infims . It follows that y <n? Pox &= z<x

for xEpC., If f:C—>A inA and g

I

(Ff)h, then

q = nl 91 Q.. P
el = b (FENG = nig.f
for ? taut over F , and then
y€ el x &9 yEnig Px &> 1< x

for x&p4, as requiredﬂ

5.3. THEOREK. A diagram D : K -—>Ap has a limit in AP if and only if

the disgram PD : K—>/A has a limitin A. If A : &5—>PD is a linit

of PD, then A = A =PA fora unique limit /\ : (A,x)K-——> D of D,
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and all limits of D are obtained in this way.

Dually, all colimits in AP are obtained by lifting colimits in /A .

Proof. We recall that AK

: K—>A is obtained by putting AK(P = id A
for every qaé K, and that fK i=f, forall i&0b K, defines a natural
transformation fK : AK —_— BK for £ : A4 —>B in A . Putting / f = fK for
fé A defines a constant diagram functor [/ : A—AK , and a limit of P D
is a couniversal morphism A :/ A —>P D for this functor., One sees easily
that the constant diagram functor /~ :AP — (AP )K , with (AP)K regarded as
top category over AK by 3.8, lifts the functor A “?AK , WwWith structure
maps 3/1\. given by d’}. X = (xi) s the constant family with X =X for every

i€EO0bi, for x&pA . This is obviously taut and cotaut, and thus we obtain

5.3 by applying the dual of 5.2 to this situation.

5.4, THECREM, _I_f_‘d) AP — B4 is a functor of top categories which
lifts a functor F : A—-B s with structure maps gJA t pA—>»q FA, then

the following three statements are logically eguivalent.

5.4.1. F has a left adjoint functor and QZD is taut over F .

5.4.2. CP has a left adjoint, and (ﬂwp = L.%l F.

5.4.3, ¢ has a left adjoint which 1lifts a funetor G : B—=>/A,

Proof. We prove 5.4.3 == 5.4.2 == 5.4,1 ===> 5.4.3,
If WA and PY=G6Q, then G =P Yo, — Qw, =F . Mus
P \{/ —-—l(bwp , eand G Q—f wq P, so that ¢ wv and wq F are naturally

equivalent., If wu, : (F A, ¢, w,) —>(F A, ¢o,,) is an equivalence, then u
A Pa Wy FA A

is isomorphic in /B, and P, aq = quwFA o, s with 7.2 below. But then

QP wsh = (F a, paoy) = (FA,wp) = wFA, and 5.4.3 = 5.4.2,
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Irf Y — @, then P‘Paq —|F, as above, and (J) preserves limits,
For an object A of /\ and a family (xi)iéI of elements of p A , the object
(A,ﬂ xi) of Ap is a limit of a diagram with one vertex (A, a,h) , and with
arrows id A : (A,xi) — (A,L-JA) . If @ satisfies 5.4.2, then d) preserves
this situation, and thus (pA(ﬂ xi) = m(CFA xi) o Similarly, a diagrem
(4,%) -———-*——%id A (4, wA)
f f

(ByY) _‘—'ii‘l‘é (B’(A)B)

in AP, with f :A—>B inA , is a pullback if and only if x=fPy .
This is easily verified. If Cb satisfies 5.4.2, then CZ: preserves this pull-
back situation, and @, Py = (F £)2 @y ¥ follows. Thus 5.4.2 => 5.4.1,

Finally, 5.4.1 =2 5.4.3 follows immediately from the following result

5.5. PROPOSITION, If G : B~ A jis left adjoint to F : A2/, with

front adjunction 'y] : IdIES'-=7~F G, and if Qﬁ :ﬂ\p —R1 lifts F tautly,

then there is a unigue left adjoint functor R —=> AP of Cb which lifts

G and for which 47 can be lifted to a front adjunction H : Ia BI—> W,

_i'ir_gg_i_‘. Let (B,y) be an object of JRY . By 5.2, there is a unique uni-
versal morphisn ¥, : (8,y) —>(c B, z) for (O which 1ifts the universal
morphism ’17 ' B—>FGDB for F ., Teken together, the universal morphisms ’7 A
for gb determine a left adjoint functor W of @ znd a front adjunction H
1a R? ""9@ (;V in the ususl way., One verifies easily that WY 1ifts G and

that H lifts'l? 0

5.6. REMARKS. If ¢ in 5.4 and 5.5 has a left adjoint functor %’ which
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lifts a functor G : 8S—> A , then G is left adjoint to F by the proof of
5.4, In this situation, a front adjunction /- : IdBY — @ ¥’ lifts a natural
transformation 47 t: 1d B> FG. One verifies easily that “ 1is a front
adjunction for F ., Thus 5.5 has a converse which we have not stated.

5.4, and in particular 5.4.2, raises the following question: is it possible
that CP lifts F and has a left adjoint ‘P, but not a left adjoint which
lifts a functor G : B>\ 2 Shukla has shown that this is indeed possible;

his example follows,

©.7. EXAMPLE, If Q is the forgetful functor from TOP to ENS , then
(Top, Q) is a top category over ENS . Let T0P® e the category of pairs of
topological spaces and define P : TOP® —>T0P by P (A,X) =A and Pf=1¢f .
Then (TOP® , P) is a top category over TOP ; see 3. 7. If =P and F=q
in this situation, then (D obviously lifts F, and ¢ has a left adjoint

functoro(p : TOP —>» mopP . The following diagram illustrates the situation,

PoPP -—C—Qi—?——} TOP

k 5

qop —E=9 5 s
If (E,T ) is a topological space, then &fl F (E,T) = (E,wE) , the set E
with the indiscrete topology, and wap (E,T) = (E,T) . Thus 5.4.2 is false,
and d) cannot have a left adjoint functor which lifts the left adjoint functor

ocq : ENS —>T0P of F (or any other functor G : ENS —=TOP ).

6. TOP SUBCATEGORILS AND FUNCTORS, We apply our results to a special situ~

ation which occurs often enough to merit comsideration.
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6.,1. DEFINITION, Let Ap and A be top categories over a category 4 .
A functor T : AP —2A%Y is called & top functor over A if T is taut over
IdA. Ve call AP 4 top subcategory of A% if Ap is a subcategory of Aq ,
and the embedding functor is a top functor over A . Dually, a functor S :Aq
—> AP is called cotop over A if S 1lifts I/ cotautly, and a cotop sub-

category is one with a cotop embedding functor.

6.2. PROPOSITION. A top functor T :AP —>A% bas a unique cotop left

adjoint functor S :A?—>AP | and then STS=S and TST="T,

Proof. By 5.5, T has a left adjoint S which lifts Id A\, and S is

cotop by the dual of 5.4. If T (4,x) = (4, T, x) and S (4,y) = (4, = y) ,

then 14 (h,y)—> (4,7 x) <> 1dd: (40, y) —>(4,x)
since S —{ T . In other words, YETG ¥ &P T, y=x . Thus T deter-
mines the structure maps T, Al and hence S , uniquely. Moreover, AT
= 01 and ‘L_Aﬂ C; =‘t:[; , as for every Galois correspondence, and S T S =S

and TST=T follow(

6.3. THEOREM, If MR is a subcategory of a top category Ap , then the

following statements are logically equivalent,

6.3.1. /3 is a full reflective subcategory of A" , and every object (h,x)

of AP has a reflection id 4 : (A,x) —> (4,8) for .

6.3.2. B is a full subcategory of A and satisfies the following two

conditions. (i) If A€ ObA gapd (xi)iéI is a family of elements of p A

such that (4,x;) € 0bR for all 1 €I, then (4,(}x) isin ObB.

(1) If £:4~—>B in A and (B,y)E b, then (4, P y) & bR,
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6.3.3. [B is a top subcategory of AF .

6.3.4. B is a full, reflective, replete subcategory of AP » and every

object (A,wA) of AP, for A& ObA, is an object of B3.

Proof. Assume first 6.3.1., In 6.3.2.(i), let id 4 : (A,ﬂxi) —> (4,%)
be the reflection. Then id A : (4,%) —» (A,xi) for all i& I, and thus
Nx, £ %4x, forall 1EI. But then %= (\x; , end (4, x) €bB,
In 6.3.2.(ii), let id & : (&, f°y) —> (A,%) be the reflection., Then f :
(4,2) —> (B,y) . Thus P y<2<fPy, and (&, £Py)c B,

Assume now 6.3.2. Let p' A=3x&p4: (4,x)€ 0bBL for & € ovdh,
and let & : p' A—>pA be the inclusion map. By (i), p' A is a complete
lattice and LA preserves infima. By (ii), fp $: pB~—3pA induces a map
£ i p'B—>p A for £:A—>B inA, with ¢, 2 =P L . The maps
fp' clearly preserve infima. Thus our data define a top category Ap' over
and a top functor I :Ap'-——%ﬁ\p with structure maps (‘A . Ap‘ clearly is the
full subcategory E , and I the embedding functor.

Assunme now 6.3.3. [B is full by Lemma 6.4 below and reflective by 6.2. Put
B=AP' and 1et I :Ap'__._-,/j‘p be the embedding functor, with structure maps
¢, for A& ObA. If z is the greatest element of p' A, then I (4,z)
= (A,NA) gince L, preserves the infimum of the empty family. If wu 3 (A,x)
—> I (B,y) is an isomorphism of AP , then x =u* gy =t " y (see 7.2
below). Thus (A,x) = I (A, uP’ y) , and 6.3.4 is valid.

Assume now 6.3.4. Let u : (4,x) — (C,z) be a refiection for &5. Since
(A,wA)é ob&, wehave hu=3id A for amap h : (C,z) v—-‘?(A,wA) in B.
Now u : (A’wA) — (C,wc) isin/B, and (idC)u=uhu: (4,x) —>

(c,.) . Since u : (4,x) —>(C,z) is a reflection, u h = id C follows.
c
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Now h : (C,z) —> (4, u® z) is an isomorphism of A® (see again 7.2). Since

B is replete, idA=hu: (4,x) —> (4, uP 2) is a reflection for BB |

6.4. LEMMA. A top functor T :AP— B is fuil.

Proof. Let S be the cotop 1éft adjoint of T . If £ : T (A,x) —>
T (A4,y) in A%, then £ :ST (4,x) —>5S T (4,y) in AP vy applying S .

Applying T to this, we get f : T (A,x)—> T (B,y) back, by 6.2]]

6.5. COROLLARY, Every small or large intersection of top subcategories of

a top category AY is a_top subcategory of AF .

Proof., If all subcategories Bi satisfy 6.3.2, then their intersection

(\Bi also satisfies 6.3.2, even if the family is 1arge(]

6.6, PROPOSITION. Let AP be a top category over a category A with pro-

ducts, If /K is a class of objects of AP which is closed under roducts, then
the objects (4, fPy) of AP, for £ : A—>B in A and (B,y)EK, are

the objects of a top subcategory of AP .

Proof. 6.3.2.(ii) is obvious in this situation; we verify 6.3.2.(i). Let

- ¢ P . ’ .
x, =f;°y;, for f, : A—>B, and (Bi,yi)é/r‘(. Let (B,y) in /< ve a pro-

duct of the (Bi’yi) with projections T, : (B,y) —> (Bi’yi) . By 5.3 and its

Thus

proof, B =TTB__.L in A with projections mo, and y = ﬂxip ys .

there is £ : A—> B in A with n, £=1,, forall i &I, and then

Py = L ((N05Py)) = N5 Py) = Nx -

1

This proves 6.3.2.(i) for our class]
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6.7. THEOREM, lLet T :AP =B ?Y ve a top functor over A and S : A3

—_— Ap the cotop left adjoint of T . Then T maps Ap onto a top subcate~

gory T(AP) of AT, end S maps AY onto a cotop subcatezory of AP ,

If I:T(AP)—=>AY% is the top embedding functor and J : /A3 —> T(AP) the

cotop reflector, then J I = Id T(AP) apd I1J=Ts5.

Proof. T(AP) is a full subcategory of AY by 6.4. The front adjunction
id &4 : (A,x) —> TS (A,x) for an object (A,x) of A? clearly is a reflection
for T(AP) . Thus 6.3.1 applies, and T(AP) is a top subcategory of AY
Dually, S(AY) is a cotop subcategory of AP .

Every object (A,x) of A? has a unique reflection id A : (4,x) —>
I1J(A,x) for I . Thisis idA : (4,x) —> TS {4,x), and thus IJ =TS
for objects. As both functors 1lift Id A sy we have I J =T 8 for morphisms too.

Since IJI=1 by 6.2 and I is injective, we have J I = Id T(AP) |

6.7. EXAMPLES. In general topology, a structure of one kind on a set E
often induces a structure of another less rich kind. For example, every topology
induces an underlying convergence structure, every uniform structure induces an
underlying topology, and every proximity induces an underlying closure structure.
In such a situation, we have top categories ENs® and Ens? » and a map 1:E :
pE —>qE for every set, Typically, the maps ITE preserve infima and satisfy
Ti fp = fq‘C%‘ for every mapping f ¢+ £E —> F . Thus they are the structure maps
of a top functor T : ENSP? —> ENs? . The top subcatectory T(ENSP) of zNs? .
and the cotop subcategory S(ENSY) of "fine" spaces in ENsP , for the cotop

left adjoint S of T , are of interest in many cases.

Top subcategories occur quite often, not only in general topology but also
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elsewhere. For instance, the top category ENS®  of equivalence relations (3.6)
is a top subcategory of the .category of pre-ordered sets, and pre-ordered sets
form a top subcategory of the category of reflective relations.

In general topology, coreflective subcategories are cotop if replete (i.e.
closed under isomorphisms). We shall consider this later. Reflective full sub-

categories are usually not top, but they have simple top hulls by 6.6.

7. EPIREFLECTIVE SUBCATEGORIES. The present state of this aspect of the
theory of top categories is not very satisfactory. Basic results were obtained
by Kennison, generalized by the author and further refined by Shukla. Herrlich
obtained a much more general theory, but further generalizations seem possible,
In this survey, we present only the more easily accessible basic results. Before
we can discuss these, we need some lemmas concerning monos and epis, extremal
monos and epis, and isomorphisms. We have already used some of these repeatedly.

We recall that a mono m in a category /A is called extremal if m = gf
in A and f epi always implies that £ is isomorphic in A . Extremal epis

are defined dually.

7.1. PROPOSITION. A morphism u : (A,x) —> (B,y) of & top catesory AP

is a monomorphism of AP if and onlv if uw is a monomorphism of A, and u :
(a,x) —> (B,y) is_an extremal monomorvhise of AP if and only if u is an

extremal monomorphism of A and x=u’y.

7.2. PROPOSITION. A porphism u : (4,x) —> (B,y) of.a top category AP
is isomorphic in A® if and only if u is isomorphic in A and x=u’ y .

Proof. The faithful functor P : AP —> A reflects monomorphisms, and thus
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u: (4,x) —>(B,y) is mono if u : A —> B is, On the other hand, if u f -
=ug inA for f,g from C to A, then uf=ug in AP for 7, g
from (C,oéc) to (A,x) . Thus u is mono in A if u is mono in AP,

If u: (A,x) —> (B,y) is iso in AP with inverse v : (B,y) —>(4,x) ,
then x £uPy and y< vPx, end v=u"? in/A. But then v = (vP)™*
in ORD , and uPy éup vwir=x. Thus x=u ¥y . Conversely, if v = u-l
in A and x=uwPy, then y=vP x, and thus u : (4,x) —>(B,y) is iso
in AP with inverse v : (B,y)—> (4,x) .

Consider now u : (4,x) —>(B,y) in AP ., 1If x(up y , then
(h,x) 2245 P y) % o (B,y)

is a factorization of u in Ap with the firet factor epi, but not iso., For

u=gif in A with f not iso, we have a factorization
(a,%) £ (¢, £ y) —E>(3,y)

in Ap with the first factor not iso (by 7.2 which we have proved). Thus assume

that u is an extremal mono in A and x = up ¥y . Consider a factorization
(a,0) —£5 (c,2) —E—5(5,y)

with an epi first factor. By the dual of the first part of 7.1, f 1is epi in
and hence iso. Let h = £ * . Then g=uhb, and g’ y=hnP x follows. From

the first factor, we have x££ f® 2 and thus 2z < hP x = gp Y . From the second
factor, z <’y . Thus z=¢"y, and f2z=u" y=x . This shows that

the first factor is isomorphic in AP ﬂ

7.3. DEFINITION. A full subcategory /3 of 2 category A\ is called epi-

reflective if every A& ObA admits a reflection PA :t A —>RA for 8B with
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.PA epimorphic in A . Ve call B productive if every family (Bi)iéI of
objects of B has a product B in /A such that B& 0bB, and we call B
hereditary if for every extremal monomorphism m : A —»B in A with B E 0w&
there is an isomorphism u : 4 —>C in A with C& b, Ve call A fac-
tored over /B if every morphism f : A —3B in A with B& (0bB has a fac-
torization f =me with e epimorphic and m an extremal monomorphism of A ,

We say that A is colocally small over /3 if for every object A of A there

is a (small) family of epimorphisms e, 3 A —> Bi with codomains Bié o0 B
such that every epimorphism e : A —?B with B & 0b/B is of the form e =u e
with u : Bi —2 B isomorphic, for at least one e, t A—>8B,

7.4. THEOREM, Let /5 be a full subcatescry of a category 4. If & is

epireflective, then B is hereditsry. Conversel s if R is hereditary and pro-

ductive, and if A is factored over /3 and colocallv small over &5 , then &3

is epireflective.

Proof. The proof follows & standard pattern due to Bourbaki; we omit sore
details. If B is epireflective, and if m : A —> B is an extremal mono with
B&E 0b/8 and Pa A TPRA a reflection for B, then m=fp, inA for
a morphism £ : RA -—>B ., <ince fA is epimorphic, FA is isomorphic. Thus
B is hereditary. |

For the converse, let A& o y. with & "representative family" of epis
e; : A—P3B, with B, &0b/5. Form the product B in/A of the B, , with
projections 7T, : B—> B, and with B& 0blA ., Each e, has a factorization
A .—&L; Ra—253 —-Jf—i-—->131.

in A with P epi, m extremal mono, R 4 & O0b43, and with Py end m,
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independent of i . If f :4 —>»B, in A with B,€O0bB, then we can fac-
tor £ into A —2» ¢ By B1 with m extremal mono, e epi, and C &b R.
Then e and hence f factors through one of the e and hence £ =g¢ A for

some g : RA—> Bl in £ . Since JDA is epi, g is uniqueﬂ

7.5. REMARKS, Theorem 7.4 is a variation of a theorem of Herrlich which -
had been obtained for TOP by Kennison and for tov categories by the author.
Herrlich's version is much more complete than either of its predecessors or our
present result. If /A has products and is colocally small and faetored (over A
and hence over any full subcategory), then every top category over ¢\ has these
propverties, by 5.3, 7.1, and the definitions, In this situation, every reflec-
tive full subcategory of A is productive, and 7.4 becomes: 4 full subcategory
Eg of AA\ is epireflective if and only if }? is hereditary and productive.

Kennison, Ehrbar, Shukla, and possibly others, have generalized 7.4 by con=-
sidering different factorizations in A ,» through images or coimages of some
kind. In all of these generalizations, it seems important that either e is
always epi or m always mono in an "admissible factorization" f =m e in A,

Further research in this direction seems indicated.

7.6, EXAMPLEE., Every top category over ENS is factored in the sense of
7.3 and colocally small., Thus 7.4 applies. Examples of epireflective subcate-
gories of TOP are Ti spaces for i =0, 1 , 2, 3%, 3%', and regular and .
completely regular svaces. Normal snaces fail the test: the product of normal
spaces is not necessarily normal. There are of course many reflective subcate-~
gories of top categories which are not epireflective: the usual separated com=-

pletions and compactificatione furnish examples.
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8. POINT SEPARATORS., We discuss in this section a categorical theory of
point separation axioms. The theory is not restricted to top categories; it is

valid for any concrete category, and we present it in this general context.

8.1. DEFINITIONS., We recall that a concrete category A\ is one with a
faithful "underlying set" functor U : A — ENS . If A is concrete, then
every top category over A ' is concrete. We denote by ENST  the top category
of reflective relations and by R : ENSr-> ENS its projection functor. We say
that a full subcategory B of a concrete category A is injective if for every
morphism m : A—>B of A with Umn injective and B& 0b /B, we have n
"in B and thus A €0b B. An injective subcategory is always replete.

We recall that the faithful functor U : /A —>ENS always reflects mono~
- morphisms. Thus m is monomorphic in A if Um is injective, If U has a
left adjoint, then U preserves monomorphisms, and produ.cts. It follows that an

injective subcategory of A is always hereditary.

8;2. DEFINITION, Let A\ be a concrete category. A functor S : A —> Exs®
such that RS =U is called a point separator on A . If S : A—> ENST is e
point sevarator, then we write S A = (U A, SA) for AC ObA . We say that A
is geparated for S if 8y = IUA s the identity relation on UA , and we - -
denote by sep S the full subcategory of A with separated objects of A as . -
its objects. We note that S f=Uf : (U A4, SA,) —> (U B, sp) for a morphism
f:A—>B of /A and a point separator S @en A . Thus S is determined by

the relations s, , and these must satisfy s,< (U £)F sg for £ : A—> B
in A .

8.3. PROPOSITION, If S : A —>ENT is a point se rator, then sep S
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is injective. If /A has products and U preserves products, then sep 8 is

productive.

Proof. If w:E—>F is injective, then u' I, =1, . If E=1[E in
ENS with projections JT, , then n (J'Cir IE(,) =I; in rE, These properties
of reflective relations are easily verified; 8.3 is based on them.

If £:4—9B in A with Uf injective, then s,< (U £)¥ sy =TIy, if
B is separated, and thus 8, = IUA . If A= TTAi in A with projections f"?i
and all A, seperated, then s, < n((U Ri)r IUA;) in rUA, and s =T,

follows if U preserves productsB

8.4. COROLLARY. If ﬁ\ is factored and colocally srall, and if U : A —>

ENS preserves products and monomorphisms, then seo S is an epireflective sub-

category of /A for every point separator S on A .

Proof. This follows immediately from 8.% and 7.4

8.5. DEFINITION. We say that a point separator S' on A is finer than a
point separator S , and we write S'<S, if id U A :S'A —> S A in ENT
for every object A of A , Or in other words if always SA < 5, in rUA,
If S'<£ S, then sep S clearly is a subcategory of sep S' .

Different point separators may produce the same subcategory sep S . We say

that a point separator S on A is coarse if 5'<£ S for every point separator.

S' on A such that sep S is a subcategory of sep S' .

8.6, THEQOREN, _I_i: B is a reflective and injective full subcategory of a

concrete category A , then B = sep S for a unigue coarse point separator S

on A,
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Proof, We write f for U f 4in ENS or ENS' if fE€A. We put

r
Sp=h Iy
determined by A up to an isomorphism u : C —» C' in B s this determines

in rUA if h : A —-9 C is a reflection for 8 . Since h is

s, uniquely. s, =I;, only if h is injective. But then AE obB., Con-
versely, if A €0b/B, then h is isomorphic, and s, = Ig o
If f:A—>A" in A, andif h: A —2C and k : A'—5 C' are
reflections for B s, then kf=gh for anorphism g : C—> C' , But then

r rr _ r I 5
=hIUC£thUC,-frkIUC,—fs

SA A'

in r UA ., Thus the relations sy define a point separator S : A —> ENST ’
and we have already seen that /3 =sep S .
If [B is a subcategory of sep S' for a point separator S' on A and
. . ' 4‘ r ' r =
h : A —>2C a reflection for 8 , then Sy 2h sp=h Lyy=s, . Thus S is

coarse, and hence uniquely determined by B D

8.7. REMARKS, Ve may call a point separator S gsitrict if all relations
8, are in fact equivalence relations, Since sets with equivalence relations
form a top subcategory of ENsT , one sees easily that for every point sepa-
rator S there is a finest strict point separator Sl} S, with sep Sl
= gsep S ., Thus coarse point separators are strict. OStrict point separators over
TOP were studied by Sharpe, Beattie and Marsden, who obtained 8.3 and the first
part of 8.8 below,

We need the following definitions, We call fEA'e P-guotient fap for
a functor P: A —=C if f is P-opfibred (1.1) and P f epimorphic in .
For a top category (ENSp, P) over ENS , this coincides with the usual con-

cept of a quotient map. & morphism f : A—> B of a category A ig called
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reflective over a full subcategory B of A if for every morphism g : A —>C
in A with C&€ O0b/B  there is a unique morphism h : B —> C in A such that
g =h f . This includes all reflections for /B and all isomorphisms of A y an

and reflective morphisms over B form a subcategory of Z .

8.8, PROPOSITION, Let S. be a point separator on A , and let f : 4
—> B Q_A. if £ is 8 U-guotient map and sA=(Uf)rsB, m‘f is
reflective over k. sep S . Conversely, if S is coarse and sep S reflective
| in A, and if f is reflective for sep S , then s, = (v £)F 8g »

Proof. Write again f for Uf if f& A. For the first part, let g :
A —C with C&E0Obsep S . Then £ IUB £ £ 8y = shégr 8¢ = IUC in
r UA . This means that f(x) = f(y) => g(x) =g(y) forall x,y in UA.
As f d4s sunjective, it follows that g=h f for a unique h: UB~—>UC ,
As f is U-opfibred, h 1lifts to & unique morphism h : B—>C , Thus f
is reflective over & .
For the second part, let h : B-—> C be the reflection for sep S . Then

hf:A —>C is a reflection for sep S as f is reflective., Thus
r I S o S
sA-(hf)IUC—thUC-fsB,

by the proof of 8.6, as requiredﬂ

8.9, EXAMPLES, For a topological space A and points x ,y of A, put:
xS,y if x and y have the same neighborhoods in A , and put x sA y if
x 1s in the closure of {yk for A . This defines point separators S and S!'
on TOP , with S coarse and S' not even strict. Objects of sep S are ’1‘0

spaces, and objects of sep S' are '1‘l spaces. T2 spaces also are obtained
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from a point separator. Aull has given a long list of point separation axioms

and references to yet more axioms. One example for which we do not have a con-

venient point separator are the spaces for which every compact set is closed.
Regular and completely regular spaces do not define injective subcategories

of TOP , Thus 'I‘3 and T}i— are not point separation axioms.

9. TOP CATEGORIES OF ALGEBRAS. For every category /A of algebras, a cate-
gory AY of topological algebras over A can be constructed, and A turns out
to be a top category over A . Ve generalize this construction in an appropriate

categorical setting.

9.1, OPERATIONS. lLet U : A~>{ be a functor. We call operation over
U or by abuse of language operation in A a triple (D,w,R) consisting of
two endofunctors D and R of € and a natural transformation w: D U —>
RU . This is not the most general concept of an operation. For instance, the
"relational systems" of universal algebre, and filter convergence in topology,
are excluded. A categorical definition of operations which includes these cases
has been given, but the theory of this section has not been generalized to this,

Operations in algebra are included in the definition given above. An n-ary
opergtion in a category /A of algebras, with underlying set functor U : A —>
ENS , associates with every algebra A € ObA a mapping W, * (Ta)*—>ua,
and every morphism f : A—> B of A satisfies f c, = Wy f° . Thus O is
a natural transformation (¥ : DU ~» RU, where D f =.f2 : ED —>F" for a

mapping f : E—>F , and R = Id ENS .,

9.2. ASSUMPTIONS. We are concerned with the following situation. A func-
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tor U: ADC, afamily.S) = (Di,wi, Ri)ié‘_—I of operations over U , and
a top category { % over € are given. Moreover, all functors Di and Ri can
be lifted to endofunctors Ai and Pl on €9 , with structure maps d é and
Fé respectively., We wish to 1lift A and U toa top category Ap and a func-
tor >’ : Ap —€ % such that every operation in .Q can be lifted to an opera-

tion (A131 P1) over Y. The following diagram illustrates this.

We make /-\p and Y unique up to isomorphism by requiring a pullback property.

9.3, THEOREM, Add to the stated assumptions the condition that pi is
taut over Ri for every i€ I . Then a top category Ap over A and & func-
tor Y :AP— €9 which lifts U ist, with the desired property and with the
following pullback property. If U F = Qd) for functors F : X — A and CD:
X—€% | poairp famity (A ,PY), o, of operations over Y exists
such that Qy = w'F forall i1 €I, then P=P7T and ¢=YT fora

unique functor T K —AP . These conditions determine é‘\p and Y up to an

isomorphism of top categories which lifts Id A . Moreover, Y is taut over U

and has injective structure maps. ‘UA .

Proof. For A& ObA, let pA be the set of all xE€q U A such that
Wy A (U4, x)—=PHua, x) in€Y, i §, x é(wz)qﬁA x , for all
i €I, and let Y, : pA—>qUA be the inclusion map, We claim that this
does the job,

If LE Obéa\ and (x‘k)kéK is a family of elements of p A, then
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St (Nx) € (V@ 1) € NWPipg, =) = wplem (=)
for all i€ I, since the maps S){LIA preserve infima. Thus mxk , taken
in qUA, dis in p A . This shows that p A is a complete lattice, and that
VY, preserves infima.

Similarly, if f :A-—>B iné~ and y&Ep B, then

Wiy £ 0uily £ 0un)? (Wyledyy
= WPTRUDIpLy = @y Wiy,
for i€ I, vy (4.2.1) for Ai , naturality of wi , and tautness of P,
~ Thus (U f)q maps p B into p A, and UA fp = (U f)q UB for a unique map
fP : pB-—>pA in ORD ,

The ma]')s £P clearly preserve infima, and the sets p A and maps fp
define a contravariant functor p A" —> ORD . Thus AP is defined, and the
maps ’DA are the structure maps of a functor Y :Ap —C. % which lifts U
tautly. Moreover, wi s AR Y (a,x)—> pi Y (a,x) in €% for every object
(A,x) of Ap by our construction, and thus the operations in S can be lifted
to operations (Ai,a)i,Pi) over Y , as desired.

It remains to verify the pullback property. If F and (p are given, then
we can put (DX = (U F X,@y) , with ;& qUFX, for XE0bX, and then
HELOFRIP, for h:X—>Y in K . The 1} must satisfy

A= wi ot (UFX,?X)~—>P1 (UFX,q)

for X€ O0bX. Thus y:xepFX for all X & Ob X. The only way to define T

such that F=PT and =Y'T is to put

Th = Fh : (FX,¢) —>(FY, @)
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for h:X—p Y in X . Since ?Xep F X, this maps ObX into Y
We have @, < (UF n)lgpy = (¥ 11)1’7>X , endthus Th:TX—>TY in AP .
Since P T is a functor and P faithful, it follows that T is a functor.

The pullback property implies that Jl\p and Y are defined up to an isomor-

phism over IdA , and we have already proved the last part of the TheoremU

9.4, COROLLARY, If U : A—>C 3in 9.3 has a left adjoint F :£L—2> A ,

then F can be lifted cotautly to a left adjoint @ :C1—>AP of Y.

Proof. This follows immediately from 5.4
In 9.1, we call A operational over c , for a family S of operations

over U, if U is faithful,and for every morphism f, : UA —>U B in c

1
such that wB (p fl) = (R fl)wA for all operations in J’Z, there is & (unique)

morphism f : A—> B in A such that f, =U A .

1

9.5. PROPOSITION. If /A in 9.3 is overational over ¢ , for the given

family S of operations, then AP is operational over % for the family of

all lifted operations (L\i,'t‘\'cl,Pi) .

Proof. Since P is faithful, Y is faithful if U is . If £, ¢ (WA, x)
—> (UB,y) in€?, with x&ph and yE€p B, is homémorphic for the
lifted operations, then fl tUA~—>UB in € is homomorphic for the opera-
tions in S2., 1If f,=Uf for f: A—>B in A, then x <P y=(U )%y
in pA, eand thus f, = Yf for £ : (A,x) —> (B,y) in € ¥. Combining these

statements, one sees easily that ll\p is operational if A isﬂ

9.6. APPLICATIONS, The familiar categories of Algebra are operational over

ENS for operations (DP,w, Id ENS) of finite arity n , where D* £ = ¢£0
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En-——e>Fp for a mapping f : E —» F , Another coperational category over ENS
is the category of compact Hausdorff spaces, with a single operation (D,uJ,R) ,
where D is the (covariant) ultrefilter functor on ENS , R=1Id ENS , and
bJA is the convergence of ultrafilters for a compact Heusdorff space A .

Ir ENS? is o top category over ENS , we lift Id ENS to Id Exs? .
This is of course taut over Id ENS , as required for a range functor by 9.3.
Lifting D¢ is easy: let lSn (E,x) be E" provided with the product structure
(see 5.3) of n copies of (E,x) . The usual categories of topological algebras
result from 9.3 and these functors A" if ENS? = TOP . For other top cate~
gories Ens? , we get categories of uniform algebras, of convergence algebras,
of proximity algebras, and so on.

Another way of lifting the functors D" is described in 9.7 below. This
leads to categories of topological algebras with separately continuous operations.

I1f ENS? is a top category with filter convergence, i.e. with a top functor
I : ens® —> cowv to the category of convergence spaces, and with a suitable
notion of regularity, then the ultrafilter functor D : ENS —> ENS can be. .
lifted. A top category over compact Hausdorff spaces results. We have not
investigated this queer animal.

By 5.3, all categorical limits and colimits can be lifted from a category
A of algebras to a category AP of algebras with some kind of topological
structure. This is well known for limits, but seems to be not quite so well
known for colimits, 9.4 was first discovered for topological groups by Samuel;
the general result seems to be new.

The definition of algebras by operations is by now old-fashioned. However,

it is much easier to lift operations than triples.
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The following special case may be of interest. If A in 9.3 is a category
of algebras andf 9 = pns® , the category of equivalence relations (3.6), then

an object of Ap is an algebra A& ObA with a congruence relation,

9.7. SEPARATE CONTINUITY., let E = TTEi be:the product of a family
(Ei)iél of sets, with projections Tyt E—> Ei « We call a mapping h :
Ei—-—> E an injection of Ei into E if e, h = id Ei , &nd ;cj h: Ei —> E.‘l

is a constant map for all J £#i . This requires that either all sets Ei are

non-empty, or all sets Ei empty.

If a top category ENS? over ENS is given, and if (I(Ei’xi))iéI is a
family of objects of ENSY , then we call weak product of the (Ei,xi) the
object (E,x) of ENS® with E =TI, and x =Uhq x; , forall i€ 1 and
ell injections h : B, —>E . If & fanily of maps f, : (Ei,xi) —> (Ei,yi)
is given, and if (E,x) and (F,y) are weak products, then we note that | £, ¢
(B,x) —> (P,y) in ENSY . Por if h: E, —> E is an injection, then one sees

eagily that (JTg) n=k ¢

i for an injection k : Fi-—-—% P. Thus

£ = U(fq b x) <« U (1:q (fi)q x) £ U (e, 35) = v
for f = TTfi and all possible injections h : Ei —> E and k : Fi —>F .
In particular, if (En, g x) is the weak product of n copies of (E,x) ’
then £ : (%8¢ x) —» (F',d5 x) in EM? if f£: (§,x) —> (B,5) . This
provides an other lifting of the functors D" . A map u : (En'gg x) —> (E,x)

is called separately continuous, Thus this 1lifting of the functors p® provides

us with categories of tovological algebras with separately continuous operations.

9.4 and the lifting of limits and colimits from A to /‘\p remain valid for

these categories.
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10, COTOP SUBCATEGCRIES, Gleason pointed out first that TOP has non-
trivial coreflective subcategories. Kennison proved that every non-triyial full
replete coreflective subcategory of TOP is, in our language, & cotop subcate-
gory., Herrlich pointed out that this is due to the fact that every object.of
TOP is initial (the empty space) or a generator. We provide in this section a
generalization, due to Shukla, of Gleason's construction of coreflective subcate-

gories of TOP , and we generalize Kennison's theorem,

10.1. THEOREM. A subcategory JB of a top catesory AP is a cotop sub-

category of AP if and only if there is a functor T : AP — AP with the

following properties.

10.1,1. T Iifts id A.
10,1,2. id A : T (4,x) —>(a,x) in AP for every object (4,x) of A®.

10.1.3. Tu=u for ueAP if and only if ueB.

Proof. If R is cotop, and if I : B—>AP jis the embedding functor and
J :F — B the top right adjoint of I, then T =1 J satisfies all condi-
tions. Conversely, assume that T exists, with structure maps T, : P A-—>pA
for AE Ob/A . Then T, x<x for x&p4 by 10.1.2, and 1R is clearly a
full subcategory of AP , with (A,x) € ObB if and only if (4,2x) € ObAY and

T, x=x . We show that R satisfies the dual conditions of 6.3.2.

If (xi)'iél is a family of elements of P A& such that T, % S for
all i& I, then xié‘CA(Uxi) < Uxi for i€ I . Thus t‘A(Uxi) = Ux;
and the dual of 6.3.2.(i) is valid for B. If f:4—>B in A and x&p4 ,
then fp‘rA xé‘;r;B fp»x by the dual of (4.2,1). If T, X=X, it follows that

£, x <5 f,x £f, x, and thus the cdual of 6.3.2.(ii) is satisfied|
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10.2. We recall some definitions. An object € of a category A is.
called terminal if for every A & Ob A\ there is exactly one morphism f : A —> C
in A . Dually, C is called initial if for every A €0bA there is exactly
one £f:C—>4 inA . VWecall C&ObA a generator of A if for every
pair of morphisms f : A —>B and g : A —>B of A such that f #g there
is a morphism w : C —>»A such that fu# gu. A bimorphism of A is a mor-
phism of A which is both epimorphic and monomorphic, and A is called balanced
if the isomorphisms of A are the only bimorphisms. A full.subcategory /& of

A is called epireflective (or monoreflective or bireflective) if /B is reflec-

tive with epimorphic (or monomorphic or bimorphic reflections). Monocoreflective
and allied terms are defined in the same way. We state and prove two results of

Herrlich for coreflective full subcategories.

10.3. PROPOSITION., If a full subcategory B of A is epicoreflective,

then /B is monocoreflective and hence bdcoreflective.

Proof. Consider a diagram

f
u' — u
B! —— -3 &' 2B —34 ,
g>

where u and u' are coreflections, If uf=ug, then u (fu')=u (g ut)
with fu' and gu' in /B. But then fu' =gu', and f =g follows if

u' is epimorphicl]

10.4. PROPOSITION. If a full subcategory /R of A is coreflective and

there is a generator of A in Ob/R, then /B is bicoreflective.

Proof., By 10.3, it is sufficient to show that every coreflection for 5 is
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epimorphic in /A . Thus let u : B—> A be a coreflectionand fu=gu .
If h:C —>A with C&0b/B, then h=uh' for a unique h'&F, and it
follows that f h=gh ., If C is a generator of A, then f =g followsﬂ

The following result provides generators for top eategories over ENS .

10.5. PROPOSITION, If ENSP is & top category over ENS such that p S

is a singleton if S is a singleton, then every object (C,z) of ENSP with ¢

non-empty is a generator of ENsP .

Proof. Let f : (4,x) —> (B,y) and g : (4,x) —>(B,y) with f #g,
and let (S,s) be a singleton with its unique structure. There is a mapping
h:S—>A suchthat fh#gh, and then fhk #ghk for the unique
mapping k : B—> S , We have necessarily ws =sg=hPx., Thus ¥ s = Luc R
and hk: (C,z) —> (A,x) in ENSP® with fnk #ghk.

10.6. CORCLLARY, If ENSP is a top categoxry over ENS guch that pS is
a singleton if S is a singleton, and if /B is a full replete coreflective sub-

category of ENS?  which has an object _(C,z) with C non-empty, then B is a

cotop subcategzory of ENs?

Proof. By 10,5 and 10.4, every coreflection u : (B,y) —> (A,x) .for B
is bimorphic in ENsP , and then u is bijective by 7.1. It follows that u :
(B,y) — (4, up y) is an isomorphism of B » by the dual of 7.2 and the fact

1

that B is replete. But then u ~ u =id A : (A, u, y) —> (A,y) is also a

coreflection for /B, and #B is cotop by the dual of 6.3

10.7. EXAMPLES AND REMARKS, The condition that p S is a singleton for a

singleton S is satisfied by many categories ENS?  of interest in general topo-
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logy. Topological spaces, uniform spaces, convergence cpaces, uniform convergence
spaces, proximity spaces are examples, The following example shows that 10,6 is
not valid without this condition.

let ENS® be the category of pairs of sets (3.7), and let R ve the full
subcategory with pairs (B,B) as objects. We claim that J3 is monocoreflective,
but not epicoreflective, and hence not a cotop subcategory of Bxs? Indeed, -
let XC A, and let j : (X,X) —> (4,X) be the inclusion map, This is mono-
morphic, but not epimorphic if X #A , If f : (B,B) ——>(A,X) s, then f maps
B into X, and thus f = j f' for a unique map f' : (B,B) —> (X,X) . Thus
i+ (X,x) —> (4,X) is a coreflection for ZB.

ENS 4s of course not the only category with the properties needed for the

proofs of 10,5 and 10,6, For example, every full subcategory of ENS with a

singleton among its objects qualifies.

11. IMAGES AND RELATIONS. We present in this section the categorical back=-
ground for a theory of continuous relations. Images in. the sense of this section
were investigated by H. Ehrbar and the author jointly, and relations by A. Klein

and the author independently.

11,1, IMAGES, Let JL\ be a category and I a class of morphisms of A

We call J-image of f& /A a pair (p,j) of morphisms of A such that J p

"
-y

in A and j€ I, and whenever vf=gu in A with g& J, then u=xp
and gx=v j in A for a unique x¢& A . TNote that no conditions are put
on J in this definition. In particular, we do not require that I consists of
monomorphisms of A . We say that /A has J -images if every f<& A has one.

In the following, we usually omit the prefix - .
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We say that f & is J-strict if for vf=gu in A with ge A

there always is a unique x&€A such that u=xf and gx=v in A. If p
is J-strict and j p defined-in A with j€ T, then (p,j) is an image

of jp. However, p need not be J -strict if (p,j) is a J -image.

11.2. SUBOBJECTS, Let us call f and f' in A left equivalent if

f' = f u 4n. A for an isomorphism u of A, A left equivalence class of mor-
phisms f&/A with codomain A & Ob A and at least one representative in J is
called a J-subobject of A . It will be convenient to assume, and we shall do
this, that there is a class J, of morphisms of A such that every left equi-
valence class with a representative in 1 has exactly one representative in T, .
If fE&A has a J-inage, it follows that f has a J, -image (pg.dy) with
(but possibly not po) uniquely determined by f . If. A has J-images, then
every isomorphism of A is left equivalent to some jJjEA , Thus we may assume,
without loss of generality, that all identity maps of A are in :7]0 » &and we
shall do this, It follows that f : 4 —> B is JJ -strict if and only if

(f, id B) is the (unique) JD -image of f .

11,5, IMAGE FUNCTORS, J defines a full subcategory A°[J ] of the mor-
phism category A2 (see 1.2); we denote by I the embedding functor. One sees
easily that (p,j) is a J-imege of f : A—3»B. in A if and only if
(p, 4 B) : f—> j 1is a reflection for A‘?[m] in AZ . It follows that A
has [JJ -images if and only if I has a left adjoint functor im s A —>A Z[TU]

and 2 front adjunction 7T : idﬂ\2 => I im such that D, I im = D, and DyJT

1
= id Dl . We call the pair (im,7t) , or by abuse of language just the func-

tor im , a J-imsgze functor for A .
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We make the image functor im (but not necessarily 7€ ) unique by requiring
that im f&€ J, for every f€J ., This is no loss of generality.
If /A has J -imeges, then the functor D, I :A—Z[:B]-—‘?A is an opfibra-
tion (1.1). If /A has pullbacks and images, then Dl I is 8lso a fibration,
A P-fibred morphism of AZ[ J], for P= D, I, is called an inverse image,

and a P-obfibred morphism a direct image,

11.4. RELATIONS. We assume from now on that A has finite limits, i.e.
products and pullbacks, and J-images. If A and B are objects of A s then
a J~-subobject of A X B is called a J-relation from A4 to B . It will be
convenient to replace the J/-subobject by its unique representative in :Uo H
we shall always do so., A change in :Jo will change this representative, but
it does not change the composition of relations or anything else which we may
want to do with relations.

Relations from A to B are the objects of a category Rel (A,B) . Mor-
phisms of this category are morphisms (u,v) : j —> J' in (1;2[,'0] with j , j'
in Jp end v =1d (AX B) . If A is J-locally small, i.e. if subobjects of
every AEObA form a set, then Rel (A,B) is small. If A is J-locally
small and J consists of monomorphisms of # , then Rel (4,B) is an ordered
set (partly ordered set if the reader prefers to say so) in which every finite
family has an infimum. If A is not only finitely complete but complete, then
Rel (A,B) is a complete lattice.

Ifr A %f-- C ——5—>B inA, then f and g induce a unique morphism
-{f,g}': C—>»AX B, and im{f,g'g is (a representative of) a relation from

A to B, We denote this relation by [f,g] .
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11.5. COMPOSITION OF RELATIONS, Two relations u : A—? B and v :

.

B——>C overA, i.e. subobjects u of AX 3B and v of BX C, determine

a diagram as follows (with dashed arrows omitted).

€---1 - - >
u if v
¢ \\4
AXB AX C BXC
j/>< ><A\V
A B C

In this diagram, arrows like AX B —>» A are projections, We construct a limit

L of the diagram in A » with the dashed arrows as projections, and we put
vou = imf : A —>C

*

for the projection f : L —» AX C of this linit.

Composition of relations defines composition functors:

Rel (4,B), X Rel (B,C) —> Rel (4,C)

14

but composition of three relations is in general not associative,

11.6. Consider a diagram in A

2N
]
N
A B C
in which the square is a pullback. If the functor I im : preserves

pullback squares, then we always have

(11.6.1) [£',8') o [£f,e] = [££", &' &"]
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in this situation. It follows that composition of relations over /A is associa-
tive if I im preserves pullbacks. In general, (1.6.1) can be proved only for
the case that {f,g} and {f',g"'; are in -J s, up to left equivalence.

11,7. We define a relation rel f over A for fEA by putting

rel f

{id 4, f]

for f : A—>B in A « A relation of this form is called functional.

If every coretraction in A (i.e. every f& A with a left inverse) is
in J , up to left equivalence, then (11.6.1) is valid for functional relations,
and rel is a functor, or more exactly a pseudofunctor, from A to the "bicate-
goroid" of relations over A . Moreover, rel id A = [id 4, id A] acts as
identity relation on A, for AE ob A , not only for functional relations but

for all relations in this situations.

11,8, EXAMPLES AND REMARKS, Good behavior of relations clearly depends
on two properties which images may or may not have:

(i) the functor I im :ﬁ§2-—>/§2 preserves pullback squares;

(ii) every coretraction in A is in J y up to left equivalence,

In the more special situation investigated by A. Klein, (ii) is always satisfied,
and (i) is equivalent to the universal valjdity of (11.6.1), and hence to the
associative law for the composition of relations,

Examples are: sets with subsets as subobjects; groups with subgroups as
subobjects; topological spaces or Hausdorff spaces with subspaces as subobjects;
topological spaces or Hausdorff spaces with closed subspaces as subobjects;
groups with normal subgroups as subobjects. (i) and (ii) are valid for the first

four examples. J consists of all extremal monomorphisms of A in the first




STC 46

three examples, and for Hausdorff spaces with closed subspaces as subobjects,
Hausdorff spaces with closed subspaces satisfy (ii), but not (i). In the last
example, groups with normal subgroups, im = ker coker defines an image functor,

but neither (i) nor (ii) is valid.

12. CONTINUOUS RELATIONS. A relation u : A — B between topological
spaces has been called continuous if u-l(Y) is closed in A for every closed
Y B, and open for every open Y ., This works reasonably well but it can
hardly be generalized to other situations. We propose in this section a general
definition of continuous relations over a top category which seems to work quite
well, For TOP , our definition is not equivalent, but quite close, to the

definition mentioned above.

12.1, 1EMMA., If AP is a top categorv and f : A —>B in A, then the

following statements are valid.
12.1.1. x£Py & £,x<y forall x€pA and yEPB.
12.1.2. x(fpfpxg_n_(lfpfpyéy for all x&EpA and yEpB.

12.1.3. fpfpfp=fp and fpfpf =f .

P P
12.1.4. £ injective &= P surjective <= fP £,=idpA, and

fp surjective <= ¢P injective & fp P = iq pB.

Proof. 12.1.1 is a restatement from 2.5, and each of the other statements

follows immediately from the preceding oneD

12,2, PROPOSITION, If AP is & top category over A, and if a commuta~

tive square
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—>2 5B

ai—L

in A is given, then upvpxégpfpx in pB for every x&pA.

Proof. Using 12.1.2, we have, equivalently,
Wwx £ vpfpfpx = upgpfpx

for xE p 4 |

12,3, DEFINITION, Let Ap be a top category over A , and let A have

finite products and pullbacks, and J -images for some class .J of morphisms
of A, so that relations over A are defined. For objects (4,x) and (B,y)

of AP | we define a relation, or continuous relation, u : (4,x) —>(B,y) as

a relation u : A ~—> B with the following property. If (C,z) is an object
of AP and if £ :€ —>A and g : C—> B are morphisms of A such that
{f,g'l: uq> for some q;e#\, then 2z éfp,xf always  implies zégp Yo

In other words, we require that continuity of f always implies continuity
of g if {f,g‘; factors through the subobject u of AX B in A,

The following added definition will be convenient., We say that J ~images

p

are p-taut if u up = id pX for every J -image (u,j) of a morphism f :

A-Sax—dap inA .

12.4, PROPOSITION. If a relation u : A —> B over A is represented by

{F.8Y for At — —€ 5B in A, then u: (4,x)—> (B,y) for x&pA

and yE€ p B if and only if "ép?p x££y, or PP xg<Ey.
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Proof. We have u = if,é}, ‘up to left equivalence. If {f,g3’= u <P ’

it follows that f=?<}9 and g=§;7a , and

P
¥ x
gp

- b =p - 1Y
gpfp? f xégpf x

for x&pA, by 12.1.2. Thus u : (4,x) —s (B,y) if Ep Pxgy

12.5. PROPOSITION. Let A’ be a top category over /A, and let /X have

p-taut images. If A¢t— & 3B in A, then [f,g]: (4,x) —> (B,y)

over AP, for x€pA and yE&pB, if and only if g Pxgy.
Proof. If [f,g] is represented by ={?,§} ing , then f=Ffu and
g =Eu for an image (u,j) of df,g}. It follows that
gpfpx = 'épupupf‘px = ép'f‘px ,

and now 12.5 follows immediately from 12.4)

12,6, PROPOSITION, Let AP be a top category over A , and let A have

p-taut images. If u : (4,x) — (B,y) and v : (B,y) — (C,z) are continuous

relations, then vo u : (4,x) — (C,z) is continuous. If f& A, then f :

(A,x) — (B,y) in AP if and only if [id 4, £]: (4,x) —> (B,y) over AP .

Proof. If {f,g} represents u and {f',g'% represents v , then we can

use (11.6.1) for the product, and we find that
(g' &) (£ f,.)p x = (g") (g") (f‘.)P P x
P p Y
€ (g) (9P g fPx £ (g)_ (£)Py £ 2,
p P P
with 12.2 used in the second step, if u and v are continuous. Now use 12.5,

Also by 12,5, fp x £ y is the continuity condition for [id f, f] and for f D
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12.7. REMABRKS, If we use the usual images in ENS , with subsets as sub~
objects, then relations over ENS are relations in the usual elementary sense,
In this case, images are always taut, For if (u,j) is an imsge, then u . is
surjective and has a right inverse., Thus u? has a left inverse and is injec-
tive, and up W’ is an identity map by 12.1.4, More generally, images in (A
are always p-taut if 4& is a category of algebras, with subalgebras as subob-
ject, and with #\p constructed from a top category ENS? as in section g,

Except for trivial situations, relations u : (4,x) —> (B,y) over a top
category J&p are not relations over l\p in the sense of 11.4, and the results
of section 11 apply only to the underlying relations u : A —>B over A,
Relations in the sense of 11.4 would be subspaces of product spaces, and not con-
tinuous relations in any useful meaning of this term.

Much work remasins to be done on continuous relations; this section is just

a start. Many questions remain. For example, we have a commutative diagram

K ———>re1 A°

I

A ————>Re1 A

with bicategories, in the Bénabou sense, of continuous relations over AP and of
relations over A at right. What is the exact categorical nature of this dia-

gram? This is just one of many questions.
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