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I n t r o d u c t o r y

The present report is a first write-up of a new theory. The theory may not

yet be in its final form, but there are enouph results to justify a belief that

it will be useful. Due to the preliminary nature of this report, no references

are given in the text, and some concepts related to Cauchy triples are used with-

out explanation or with an explanation lone after their first use. The reader is

asked to bear with this: rewriting these notes would have delayed their appear-

ance unduly. A list of 19 references is appended to the report, and a preprint

survey on top categories is planned.

The theory of Cauchy triples had its origin in the observation that many

completion and corapactification constructions in general topology follow a rather

rigid pattern. An early example of this pattern is the construction of the com-

pletion of a uniform space in the first edition of Bourbaki's Topologie generale,

chap. II. (Later editions use a different construction which is based on special

properties of uniform spaces.) Another early example is the construction of the
v

Stone-Cech compactification of a topological space E via a compact, but not

Havusdorff, space E* of ultrafilters. Prink's construction of Wallman type com-

pactifications [7] and the discussion of completions and compactifications for

Cauchy spaces in J.P. Ramaley's thesis (see [l5l) made the pattern clear. Once

the pattern was clear, it was easily seen that it fits into the categorical the-

ory of triples in a soecial way. This helped to illuminate the pattern further.

It showed in particular that the precompletions used in all earlier examples and
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recognized in [l5l are of purely categorical nature.

The results of [l5~! made it clear that regularity in topology is related to

Cauchy triples and hence to completions. The exact formulation of the connection

between regularity and Cauchy triples required the concept of a continuous rela-

tion for a general topological situation. Our continuity concept for relations

is purely categorical and seems to work rather nicely. As a new application of

our general theory of regularity, we discuss regular uniform convergence spaces.

A satisfactory theory of such spaces has been an open problem for some time.

One aim of a topological completion theory is to obtain a universal sepa*-

rated regular completion for every scace. Such a completion need not be an em-

bedding; it may be a non-trivial problem to determine those spaces for which the

completion is an embedding. For a Cauchy triple, a separated regular complete

space has a unique algebra structure, given by filter convergence, and every map

of separated regular complete spaces is a morphism of algebras for the triple.

For sufficiently nice categories, the existence of universal separated comple-

tions follows from general category theory. Unfortunately, some important cate-

gories, such as convergence spaces, closure spaces, and uniform convergence

spaces, refuse to be siifficiently nice. For these categories, completions may

exist, but they have to be constructed.

As presented in this report, the theory of Cauchy triples does not include

the Wallman type cocpactifications of Frink [7 I and others. It can easily be

extended to include such compactifications, but the present state of the theory

of Wallman compactifications does not encourage categorical considerations.

A satisfactory completion or eampactification theory for uniform or topo-

logical algebras has yet to be obtained. It is no problem to carry algebraic
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operations from elements of a set to subsets of the set and hence to filters on

the set. However, formal laws easily manage to get lost in the process, and com-

pression is usually not a homonorphism of algebras. For example, if a binary

operation + is carried to subsets of and filters on a set E in the obvious

way, and if a set E* of Cauchy filters is given which is closed for + , then

x* + Y* cr (x + y)*

for subsets X , I of E , and the inclusion can be proper. Thus

for filters (p , 4̂ ' on E* , and the inequality may be strict.

Nets instead of filters may be - horribili dictu - a solution. Nets over an

algebra, with a fixed directed set as domain, certainly obey all formal laws of

the algebra. However, compression may be a probler.. There is e.g. no natural

compression from Cauchy sequences of Cauchy sequences on a metric space to Cauchy

sequences on the space.

All Cauchy triples considered in this report have remarkable formal ana-

logies. They may be instances of a structure which is richer than a Cauchy

triple, or it may be that these analogies represent properties built into,-the

definition but not yet obtained. This is at present a wide open problem.

There are other open questions, but let the list presented here suffice.
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Oswald Wyler

1. FILTER FUNCTORS. There is a contravariant as well as a covariant fil-

ter functor on ENS , and the two functors are related by a Galois correspon-

dence, as follows.

For a set A , denote by jf A the set of all filters on A , including

the improper or null filter, generated by the empty set and consisting of all

subsets of A . We put <$£ (pi if <f<t C. <?. With this relation, F A is a

complete lattice, with the null filter as finest filter on A and the trivial

filter \k\ as the coarsest filter. The supremum l_/£« of a family (f-)± C T

of filters on A is the set intersection of all (p. , considered as sets of

subsets of A . More to the point, \J<f± consists of all sets l_Jx. with

^••£.Qpi for all i-*cz I •

For a mapping f : A — > B and filters <p on A and y on B , let

denote the filter on B generated by the sets f(x) with X^OP , and

the filter on A generated by the sets f'^Y) with Y £ f>. The fil-

ter f*Gf) is improper only if <T is, but if f is not surjective, then

may well be the null filter on A for proper '4-' .

1.1. PROPOSITION. If f : A —> B in ENS and cp is a filter on A ,

then Y <£ f„ (an) <£=> f~ (Y)£<p , for Y CZ B .
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Proof. If Y £ tjy) , then f(x) C Y , hence X CZ f"X(Y) , for some

p , and thus f~1(Y)£:^ . Conversely, if f " 1 ^ ) ^ ^ , then f(f""1(Y))

--1/is in fM and f(f (Y)) C Y . Thus Y<£f#fc$>) 0

1.2. PROPOSITION. Let f : A —*> B in ENS . If fip and (p are filters

on A and B respectively, then 1

Proof. By 1.1 and the definitions, both statements are equivalent to the

implication Y £ Vp ==% f"1(Y)£^> , for all Y CZ B Q

It is clear from the definitions that we obtain a covariant functor B~"#

and a contravariant functor F * on ENS by putting /F* f = f# s i^A —*^F B

and F * f = f* s F B —> /F A for every f : A — > B in ENS . If we regard

the complete lattices IF A as complete categories, then the maps f# and f*

themselves are functors. 1.2 then states that f# is left adjoint to f* for

every f £ ENS . It follows immediately that f^ preserves suprema and f*

infima.

2. CAUCHY TRIPLES, we consider a concrete category lC , i.e. one with a

faithful functor U : € -> ENS .

2.1. DEFINITION. A Cauchy triple on C consists of the following.

2.1.1. There is a functor R : (T. •—.><li such that U R A is a set of fil-

ters on U A for every A £ Ob (£, , the mapping (U f ) # maps U R A into

U R B for every f : A — > B in € , and D E f is the restriction of (U f ) #

to U R A and U R B ,

2.1.2. Por A £ 0 b £ , the filter x on U A is in U F A for all

x £ U A , and (u JA)(x) = x defines a morphism JA : A — > R A in <C .
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2.1.3. For every A £ Ob € , there is a morphism k. : R R A —-? R A

in C obtained as follows. We put

X* = |<p€ U R A : X£- <p} and 4;* = [x<C UA : X*£(|}} ,

for all X C U A and all filters 0 on U R A . We require that (£}«. £ U S A

for Cf) £ U R R A , and that (U kA)((p) = (£y for Cj-£ U R R A .

One sees easily that

( X H Y ) * = X*n Y* and ± i-LZ* <£=> x ^ X ,

for subsets X , Y of U A and i C C A . This shows that £j>* is a filter

on U A for a filter (fj on U R A , and that cf)^ is proper if (/> is.

2.2. THEOREM. The data of 2.1 define a functor R : C->(C and natural

transformations j : Id C —-/ R and k : R R — > R which form a triple over <£. .

Proof. This is an exercise in filter algebra. We inust verify the formulas:

(R f) 0 A = j 3 f , (R f) kA = kB (R R f) ,

kA JRA = id R A " kA (R it) ' kA kRA = kA (R kA> •

for f : A —^ B in C and A £ Ob (T . At the set level, they are formulas

2.3.1, 2.3.3, 2.3.5, and 2.3.7, and faithfulness of U lifts these to C 0

2.3. Consider A (£ Ob C and f : A--^> B in <f'. . We write f# for the

restriction U R f of the filter mapping (u f)^ .

2.3.1. If x £ U A and y c ^ U B , then x = (U f)(y) <£==|> x = f»(y) .

2.3.2. If I C D B , then (f^J^CY*) = ((u f)~1(Y))

2.3.3. If 4" 6 U R R A , then ((R f)J(fj))» = f

)*
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2.3.4. If X C U A , then X » (U j)"X(X*) .

2.3.5. If ffl^DEA, then ((U 3RA)((p))+ - <p = ((jA)#(<^))* .

2.3.6. If X d U A , then ( U k J ' V ) = (X*)* .

2.3.7. If , F £ U E R R A , then ((kA)#(f))# « (J%)» .

Proof. All proofs are straightforward; we prove 2.3.3, 2.3.6 and 2.3.7 as

examples. For 2.3.3, we note that

Y e ((R f)*(0))» <*==s> Y*

and Y £ f*(c|\) <̂ ==̂  (U f )~1(

for Y C U B , and we use 2.3.2. For 2.3.6, we note that

4=> X* <~ Cp 4=»> 4) <= (X*)« ,

for (^£U8RA . For 2.3.7, we note that

and Xc

for X C U A , and we use 2.3.6Q

2.4. PROPOSITION, p^ = inf sup <t- for a filter & an U R A .

Proof. Put P# = sup ̂? for all <p <?. P . Then X 6- P# if and only if

for all <p £ P , and thus if and only if P C X * . Th« filter inf P#

for P £ (/* , thus is generated by the sets X C U A with P C X * for some

P £ CD . These are exactly the sets X C- U A with X*^c£> which form the

filter c£* Q



CT

3. CAUCHY TRIPLES WITH CONVERGENCE. A Cauchy triple with convergence is

one over a category with convergence which satisfies some additional conditions.

3.1. DEFINITION. We call a concrete category € , with "forgetful" functor

U : C —•> ENS , a category with convergence if a convergence structure qA on

the set U A is associated with every object A of (£ in a functorial manner,

i.e. if f : A — > B in <£ , then U f : (U A, q.) — > (U B, a.) is a contin-

uous map of convergence spaces. In other words, the functor U : £ — > ENS fac-

tors through the forgetful functor from convergence spaces to sets.

We denote by CONV the category of convergence spaces. It is of course a

category with convergence. The categories studied in general topology don't have

to be, but always are, categories with convergence.

3.2. DEFINITION. A Cauchy triple on a category C with convergence is

called a Cauchy triple with convergence if the following conditions are satisfied,

for every object A of £ .

3.2.1. If (t qA x and (£* £(b , then c/> q ^ i .

3.2.2. If 0 f c ' U B R A , then 0 q ^ 0 » •

3.2.3. If 0 q^a' and <jpqA x , then 0 # qA x .

Here of course x <£ U A , and <T and (Jj are filters on U A and on U R A .

If a Cauchy triple (R, j, k) with convergence is given, then we call an

object A of C separated, with respect to the given Cauchy triple, if every

Cauchy filter of A , i.e. every ^ g U R A , converges for q. to at most one

point x € U A , and we call A complete if every Cauchy filter converges to at

least one point. We shall call A regular if q is continuous in some sense

which we specify later.
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3.3. THEOREM. If (A,u) i s an algebra for a Cauchy t r ip le (R, j , k)

with convergence, then <2> q, x for every ff£URA and x = (U u) (<p) .

Proof. We have u J A = id A and hence (R U)(R J A ) = id R A = kA (R J A ) .

Thus (U R u)(<J?) = <j? = d>* for q> = (U R JA ) ty) . We have tf> q M Cf by 3 .2 .2 ,

<T qA x follows since U u : (U R A, q ^ ) —-> (U.A, qA) i n CONV Qand

3.4. REMARKS. "We guarantee by 3.2.2 that R A is complete for every ob-

ject A of £ , but in general R A will be neither -separated nor regular.

A is separated and complete if and only if convergence of filters induces a map-

ping from U R A to U A . Regularity means in this situation that the mapping

can be lifted to a morphism u : R A —-> A , and we shall see that (A,u) always

is an algebra for (R, j, k) in this situation.

4. EXAMPLES. We discuss Cauchy triples for topological spaces, for con-

vergence spaces, and for categories in between.

4.1. TOPOLOGICAL SPACES. We denote by TOP the category of topological

spaces. We assume that a set A* of filters on the •underlying set U A is

assigned to every topological space A so that the set theoretic parts of 2.1.1

and 2.1.2 are satisfied. We define a topology on A* by using all sets X* ,

with X open for A , as a basis of open sets. Since (X /*>Y)* = X*r> Y* for

subsets X , Y of U A , this works. By 2.3.2, the mapping f# : A* — > B* is

continuous for f : A ~j? B continuous, and thus the functor R is defined.

By 2.3.4, (U j,)(x) = x defines a continuous mapping j. : A •—>R A t and

2.1.2 is satisfied. Having R A , we have (R A ) * = U R R A , and we require

that (£# £ U R A for ( ^ f U R R A . This defines k at the set level, and
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k is continuous by 2.3.6. The conditions of 3.2 are also easily verified.

There are at least five examples, probably more. The five examples are:

all filters; all ultrafilters; all convergent filters; all convergent ultra-

filters ; all filters ± . This refers of course to the elements of U R A .

In the last example, j^ is a homeomorphism for every space A , and so is k*

Even so, regularity for this example has some meaning.

The implication (jb £ U E R A = ^ ^ ) # ^ U R A is always the least «asy

to verify. In the ultrafilter examples, it follows from the following lemma.

4.2. LEMMA. If U R A consists of ultrafilters on U A and (f) is an

ultrafilter on U R A , then (f)^ is an ultrafilter on U A .

Proof. Since X«_' Y£-<p <^==> X£-(p or Y<f cp for an ultrafilter cp »

we have (x<uY)* = X**jY* if U R A consists of ultrafilters, for all subsets

X , Y of U A . Now if (p is an ultrafilter, then

or Y £ 0 # <===? X*£ef> or Y* &

<£==* (xuY)*ecj> 4=# ze cfx

and this shows that (B^ is an ultrafilterO

or

4.3. CONVERGENCE SPACES. We assume again that a set A* of filters on the

set U A is given for every space A , so that the set theoretic parts of 2.1.1

and 2.1.2 are satisfied. We put on A* = U R A the finest convergence structure

which satisfies 3.2.1 and 3.2.2, by putting

qA x and

for a filter 0 on U R A , and for i ^ U A and fffUEA\ (u j.)(U A) .
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Now 2.3.1 and 2.3.3, the latter applied to filters on U R A , guarantee contin-

uity of f# for f : A — > B in CONV , and 2.3.5 guarantees the first Frechet

axiom and continuity of j. . The second Frechet axiom follows immediately from

the definition of q ^ . We assume the set theoretic part of 2.1.3, and it re-

mains to prove continuity of k . Thus assume T q™. ($5 ; we must show that

(kA)<(JF ) converges to 4-** for <1RA * Since validity of ^"^j^*? depends

only on Vf^ fOr given <t , it is sufficient to prove W+ Q D A ^ *
 an<^ apply

2.3.7. We have (p q~, </> by 3.2.2 and 3- qbcA ̂  *>y assumption, and hence

F » q ^ $ V by 3.2.3, applied to R A .

The five examples given for topological spaces in 4.1 apply also for con-

vergence spaces, and again there are others.

4.4. LIMIT SPACES AND CLOSURE SPACES. There are several interesting cate-

gories "between" TOP and CONV . We consider only limit spaces and closure

or neighborhood spaces.

In a limit space, we require a third axiom:

If q> q. x and- ̂ q x , then {Cfuy) q^ x ;

in addition to the two frechet axioms. In a neighborhood space, we require:

For every x £-U A , there is a filter N on U A so that <r> qA x <==^

<P ̂  N_ » for every filter <& on U A .

It follows easily from 4.5 below that R A is a limit space if A is one, and

that R A is a neighborhood space if A is one. Thus the given Cauchy triples

on CONV induce Cauchy triples for limit spaces and for neighborhood spaces.

A topological space can be regarded as a closure space, with additional pro-

perties. If we form R A in CONV for a topological space A , we obtain in

general a neighborhood structure q~- which is not topological. If we form R A
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in TOP , using 4.1 instead of 4.3, we obtain a coarser convergence structure.

One sees easily that this is the finest topological convergence structure on

A* = U R A which is coarser than q_. .

4.5. If U A and a set U R A of filters on U A are given, then filter

algebra imposes the following definition. If cp is a filter on U A , then we

denote by <r>* the filter on U R A generated by all sets X* with

We note two properties of this-filter <** and a consequence.

4.5.1. If Cp is a filter on U A , then (<p*)* = Cp.

4.5.2. For filters CD on U A and Cjb on U R A , we have

4.5.3. For families ( f - ) i C I and (<$?). ̂ j of filters on U A and

U R A respectively, we have

and

Proof. Since X* C Y* 4==^> X d. Y for subsets X , Y of U A , we

have X*£«f>* <j=£ X<£<p. , and 4.5.1 follows. Now both sides of 4.5.2 are

equivalent to IGfli !=^> *•*£<$> , for all X C U A . Finally, 4.5.3 is

a general property of Galois correspondences, and we have one by 4.5.2Q

5. UNIFORM CONVERGENCE SPACES. We modify the definition of a uniform con-

vergence space and we construct Cauchy triples of Cauchy filters.

5.1. DEFINITION. A uniform convergence structure on a set E is a set

of filters on E yt E which satisfies the following four axioms.
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5.1.1. If x£ E , then i x * = (x,x)* is in 21 .

5.1.2. If Q&U and ty £ <f , then tyC-U .

5.1.3. If (pell , then ty"1 £ IL .

5.1.4. If (pQr'll and ip&l*-t then (p»ty<rlL .

A uniform limit structure is a uniform convergence structure which satisfies:

5.1.5. If <J>£U aod^^H, then (puf^lL .

A uniform structure is a principal uniform convergence structure, i.e. Ct*£il

^=~> (p i=. (f) for a filter (fi which satisfies the Bourbaki axioms.

Uniform convergence spaces lead to uniformly continuous functions in the

usual way, and the category UNCV of uniform convergence spaces is obtained.

5.2. Add to a uniform convergence structure all filters <ft^ /\ , where

A is the principal filter on E X E based on the diagonal of E X E , and a

uniform convergence structure %L , with A,£ 21* is obtained, the finest one

coarser than LL . One sees easily that (X and 1/. , have the same Cauchy fil-

ters, and that (E,lt) \-r> ( E , ^ ) defines a functor, the reflector from UNCV

to the reflective subcategory of spaces (E,'Zt) with &£lL,

For uniform limit structures, 7 X d consists of all filtera 0 ^.A^-'^P *

for some 4^£ LL» The remarks made above also apply.

This shows that replacing A&li by 5.1.1 does not change the theory of

uniform convergence or limit spaces very much. In view of existing examples,

5.1.1 seems to be the more natural axiom, and it certainly makes the construc-

tion of uniform convergence spaces much easier.

5.3- Assume again that the set-theoretic part of 2.1.1 and 2.1.2 is satis-

fied, for all spaces A = (U A, *U.) and all uniformly continuous maps in UNCV .
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We put A* = U R A for a space A , and we put

V* = ((<p,y>)<£ A * X A* :

for V C U A X U A . We define the compression J^ of a filter £ on

A* X'A* by putting

and we put R A = (A*/U») with

for a filter T on A*X A* .

We have used the same notations for filters on U A X U A and on A*X A*

as for filters on U A and on A* . This will not lead to confusion; the con-

text always makes it clear what is meant. We must verify that we have indeed set

the stage for Cauchy triples on UNCV . This calls for more filter algebra.

5.4. We have again

(vr>W)* = V*n V* and (i,y) £ V* <!==> (x,y)£V ,

for subsets V , W and a point (x,y) of U AX" U A . Proposition 2.4 and its

proof, and the considerations of 4.5, also carry over as is (i.e. only with the

obvious changes) to the new situation. In addition, we note the following.

5.4.1. («>*:(£)* = epx^* for filters <T- and yj on U A .

5.4.2. (V 1)* = (V*)"1 for V C U A X U A .

5.4.3. (Jr"1)* = (•F*)"1 for a filter 3F on A*X A* .

5.4.4. V*o W* C (Vo V)* for subsets V , W of U A X U A .
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5.4.5. (<£°</^)*^ 0 » o (JJ* for filters 0 , V on A*X A* .

5.4.6. ((U f X U f ) - 1 (v ) )* - ( f ^ X f J ' V ) for f : A —*• B in UNCV

and V C U B X U B .

5.4.7. ((f»X f»)»(^))« = (DfXUf) t(F t) for f :A-^>B in DNCV

and a filter 3= on A*X A* .

5 . 4 . 8 . (U J A X U J A r X ( V * ) = V f o r V C U A X U A .

5 . 4 . 9 . ( ( U ik"X U J A ) ( ^ ) ) » = 0 f o r a f i l t e r 0 o n U A X U A .

5.4.10. ( X X Y ) * = X * X Y * for subsets X , Y of U A .

5.4.11. (<pxvi>)* = q>*x\p* for filters q , (j> on UA .

5.4.12. 7»£C()XVp = ^ V O T " ^ V £ ^ x ' ^ # , for V CT U A X U A

and filters 0 t^p on A* .

5.4.15.

for filters (p, W on A * .

5.4.14. (U k A x U k ^ " 1 ^ * ) C (V*)* C (U kAX U kA)((V » V 4 f c V)*)

for V C U A X U .

for a filter & on A** X A** , where A** = U R R A .

Proof. The proofs are mostly straightforward, and often similar to those of

analogous formulas in 2.3. We prove 5.4.4, 5.4.5, and the last four statements.

If («,f) & V* and (fty) £ W* , then V c W is in the filter

This proves 5.4.4. In 5.4.5, (fi^ O Vf^ is generated by the sets V O W with
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V*£$ and W*£4^ . For these sets, (V e W)*^4 l aV by 5.4.4, and thus

V« W<£ (4>o vf ) # . Thi8 pr0VeS 5.4.5.

For 5.4.12, let PX Q C V* with P£<t> and Q ^ W . Fix q^ £ P and

^ 6 Q , and fix X ^ ^ and Y1£ ̂  with l ^ X ^ C V . All of this can

be done by V*^C^XV4"' and definitions. For every <JJ £ P there is X»,'£<p

and ¥*£ ̂  8Uch tnat X~XYA C V , and for every u-<r Q there is Ŷ , £ ŷ

and Xyd^-L such that XJ, x Yy.-CT V . Put X = U*<* and Y = U Y f » for

all e<£ P and «p fe Q . Then X£(p and Y£^' for all such (t> and t/5 ,

i.e. P C X * and Q C Y* . Thus X£(£* and Y6' ̂  . If (x,

let x £ X«p and y £ Yy,, , and let x' £ X4,/\ X2 and y ' O i O ^ . Then

(x.y*) , (x',y() , (x',y) are in V , and thus (x,y) € V o V"1 c V . This

shows that X X Y CT V o V"1 o V and proves 5.4.12.

In 5.4.13, Cf>*>:<4<'.* is generated by sets X X Y vith X*£.(ft and

Y* £ \p , and hence (X X Y)* = X* X Y* in & X ^ . Thus X X T f (<t>X ^ ) #

for these sets. This verifies the first inequality. The filter at right is gen-

erated by sets V o v"1© V with V 6 ( | e l | > ) # . These sets are in $ # X ty\

by 5.4.12, and thus the second inequality holds.

In 5.4.14, we have (<£ tf) 6 (u kA X D k^J'^V*) <#=> V £ ̂  >C ^ .

In this situation, V £ ( ̂ V C/̂ Ĵ  by 5.4.12, and thus (#,(/>) £ (V*)* . For

(̂ ,̂ ) 6 (V*)» , we have V* £ 4"' X ^ , and then ($», </i) 6 (V e V-1 c V)»

by 5.4.12 and definitions. The second inclusion of 5.4.14 follows.

For 5.4.15, we note that V £ (J?*)# -4=̂ > (V*)*£ >£ , and that

(u k AX u kA)
-1(v R"

compare the proof of 2.3.7. The first inequality now follows immediately from

the first inclusion in 5.4.14. The filter at right is generated by the sets

HUNT LIBRARY
CARNEfilE-MELLON UNIVERSTTV
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V © V"1 o V with (V*)* 6 / T , and the second inclusion of 5.4.14 and the dis-

played statement above show that these sets are in the middle filter. This

proves the second inequality of 5.4.150

6. PRECOMPLETE UNIPOBM CONVERGENCE SPACES. We continue to use the assump-

tions and notations of 5.3. We note from 5.4.1 that the space R A = (A*,l£*) ,

for a uniform convergence space A = (U k,1L) , satisfies 5.1.1 if and only if

(fXf£iL for every &€k* , i.e. if and only if A* consists of Cauchy fil-

ters of A . This leads to the following definition.

6.1. DEFINITION. A uniform convergence space A is called precomplete.

with respect to the data of 5.3» if every filter <p£A* is a Cauchy filter

of A . The full subcategory of UNCV with precomplete spaces as its objects is

called the category of precomplete uniform convergence spaces, for the Cauchy

triple given by 5.3. We abbreviate it by UNCV
Pc

We shall also assume the set theoretic part of 2.1.3 for precomplete spaces,

by requiring that <̂ »# £ A* for every filter <f> in A** = (R A ) * if A is a

precomplete space.

6.2. THEOREM. The data of 5.3 and 6.1 define a Cauchy triple (R, j, k)

with convergence on the corresponding category UNCV
pc

Proof. The restriction to.precomplete spaces guarantees 5.1.1 for 21* •

5.1.2 is obvious from the definition, and 5.1.3 and 5.1.4 follow from 5.4.3 and

5.4.5. Thus R A is a uniform convergence space if A is precomplete. 5.4.7

and the definition of %L* show that f# = U E f for a uniformly continuous

mapping R f : R A —*> R B if f : A — > B in UNCV . Thus R is a functor.
pc
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If <£)<=-A** , then (fc*xC$)*<£rZL since A is precomplete and 0*& k* .

Then <pX(p€ XI* by 5.4.13. Thus R A is also precomplete, and R is an

endofunctor of UNCV . Now j and k. are uniformly continuous, by 5.4.9
pC A. A

and 5.4.15, and we have a Cauchy triple (R, j, k) on UNCV . In our situa-
pc

tion, <̂  qA x means (DXx €? 7i# Using this and 5.4.13, and 5.1.4 for 3.2.3,

we see that (R, j, k) is a Cauchy triple with convergenceQ

6.3. PROPOSITION. The full subcategorv UNCV of. UNCV defined by the
pc

data of 5.3 j.s a top subcategorv of UNCV over ENS .'

Proof. For each set E , there is a complete lattice S E of uniform con-

vergence structures on E , and every mapping f : E — ^ P induces an inverse

image structure map f : S P — > S E . We must show that the intersection of

precomplete structures in S E is precomplete, and that f (2i) in S E is

precomplete if *}Ji in S P is.

Let A = (E,i£.) , for i £ l , be precomplete spaces over the same

set E , and let A = (E, CV±^) . Put A* = U R A and A* = U R A. . For

every i £ I , id E : A — ^ A. is uniformly continuous. The induced mapping

(id E) # : A* —> A* is a restriction of id F B „. and thus A* C A* for

every 1 6 1 . Thus if <p6 A* , then ^ xp^ll± for every i € I , as all

spaces A are precomplete. But then &Xf> t~ f] ZL , and A is precomplete.

If f : E — ^ F in ENS and tU~S F , then fS(2/) consists of all •.

filters^ on E H with (fXf)»(0) in 1L . Put A = (E, fS(li)) and

B = (F,tt) . The filter mapping f* maps A* into B* . If ff>£A* f then

(f Xf)*(fXf) = f+((f)xf+((p) is in Zi if B is precomplete. But then

, and A is precomplete Q
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6.4. EXAMPLES. The following six examples satisfy all conditions. For a

uniform convergence space A , the set A* could be the set of all Cauchy fil-

ters of A , or the set of all convergent filters, or the set of all ultrafil-

ters on U A , or the set of all Cauchy ultrafilters, or the set of all conver-

gent ultrafilters, or the set of all filters i , x 6 U A , In five of these

six examples, all uniform convergence spaces are precomplete. In the example of

all ultrafilters, the precomplete spaces are the precompact or totally bounded

spaces.

The statements in 4.5, applied to filters on U A x U A and the construc-

tion in 5.3, show that 1i* is a uniform limit structure or a uniform structure

if 1L is a uniform limit structure or uniform structure respectively, and pre-

complete. Thus every Cauchy triple for uniform convergence spaces, of the kind

considered from 5.3 on, induces Cauchy triples for precomplete uniform limit

spaces and precomplete uniform spaces, by restriction of R , j , k .

7. CONTINUOUS RELATIONS. We consider the following general situation.

A commutative diagram

* ^ 8
ESS

C • > ENS

t s

is given in which <C and ENS are top categories over £. and ENS respec-

tively, the functor U is faithful, and the vertical arrows are the projection

functors. In this situation, the upper horizontal arrow is a "structure functor",

with Y(A,x) = (U A, Vk x) and Yf = V t '. (U A, t>A x) •—* (U B, yfi y) for an

object (A,x) and a map f : (A,x) — ? (B,y) of € . The functor Y is given
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by its structure maps 2). : T A — > S U A , one for each A £ Ob £ , from the

set T A of t-structures of A to the set S U A of s-structures of U A .

7*1. We make the following assumptions.

7.1.1. C has finite products and pullbacks. The functor U preserves

finite products and pullbacks, and reflects isomorphisms.

7.1.2. C has I#-images for a class 3 of morphisms of 02 such that U j

is injective, and U p surjective, whenever (p,j) is a 31 -image in C .

7.1.3. For every A £ Ob<C , T A is a subset of S U A , closed under

intersections in S U A , and 2-1: T A —^ S U A is the inclusion mapping.

For every f : A —* B in C , we have (U f ) a ZL = L> f * .

These assumptions usually are satisfied if £. is a category of algebras and

<C a category of topological algebras, constructed over <£ and EMS .

7.2. It follows from 7.1.2 and the last part of 7.1.1 that U j is infec-

tive for every j<£ J , and that (p,j) is a 3 -image of f in £ whenever

f = j p in <C with j € 3 and U p surjective.

Call j and j 1 in 3 equivalent if j' = j h for an isomorphism h

in £ . A subobject of an object A of (L is given by an equivalence class of

morphisms in 3 with codomain A . We put u'^" u for subobjects u , u1

of A , represented by j , j ' i n 3 T , if j ' = j h for some

7.3. A relation u : A — ^ B over <C is a triple (A,u,B) consisting of

two objects A , B of (T and a subobject u of A X B . If two morphisms

B

of (£ are given, then the image of the induced morphism \t,g\ : P '—^AX B
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determines a relation u : A — > B which we denote by [f,g] . Every relation

over C can be represented in this form, usually in many ways.

Composition of relations is defined by means of diagrams

(7.3.1)

in which the square is a pullback. In this situation, we put

(7.3.2) [f\g«] [f.gl = [f f", g> g"] .

One must show of course, and it follows from our assumptions, that this does not

depend on the particular representations [f,g] and [f',g'] of the factors.

Under our assumptions, objects of <£ and relations over <£ are the objects

and morphisms of a category Rel <C * [id A, id A] is the identity relation on

an object A of <L' , and I A = A , I f = [id A, f] , for an object A and a

morphism f : A — > B of (L , defines an embedding functor I : (C —> Rel <C .

Relations over EMS are relations in the usual sense, and the functor U 5C"—>

ENS preserves relations and their composition. In other words, U can be

extended to a faithful functor from Rel£ to Rel ENS .

7.4. DEFINITION. Let (A,x) —} (B,y) be objects of <LX . We say that a

relation u : A — > B over <£ is a continuous relation u : (A,x) — > (B,y)

over C if for every pair of morphiams A < > P - %-> B of <C such that

[f ,g] ̂  u , and for every structure p £ T P of the common domain P of f

and g such that f : (P,p) ~—£ (A,x) in (£. , we also have g : (P,p) >

(B,y) in<C* .
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Since f : (P,p) — > (A,x) in €t if and only if p gt\x) in T P ,

and g : (P,p) — > (Bfy) if and only if g,(p) ̂ y in I B , we have u :

(A,x) — > (B,y) for a relation u : A — ? B over C if and only if

(7.4.1) gJtHx)) £ 7

whenever [f ,g] ̂ u in Rel £ .

7.5. PROPOSITION. The mapping g f * : T A — > T B is the same for all .

representations u = [f,g] of a relation u : A — > B over C , and u : (A,x)

— ? (B,y) over <C if and only if (7.4.l) holds for one such representation.

Proof* Let j : P.. — > A X B in 3 be a representative of u , and put

3 « {'!»«!^ • ^ [f.gl^u , then |f,g\= j h , and thus f = f± h and

g = g, h , for a morphism h in (T . It follows that

*t f t - <«l)t ht h t ^ 1 ^ '

Since always h ^ f p ) ) ^ , ( g ^ U f ^ x ) ^ y implies gt(f
t(x))^y.

If [ffg] = u , then h is surjective. Thus (U h) and the restriction

h of (u h) are injective. We have h h. h = h in any case, and with h

infective, we have ht h* = id (T P^ . Thus g^ f* = (g1)t (t^ 0

7.6. THEOREM. A morphism f : A-—£ B o£ C is continuous from (A,x)

lo (B,y) in £ * if and only if [id A, f] : (A,x)—> (B,y) over €t .

If u : (A,X) — ^ (B,y) and v : (B,y) ~—> (C,z) are continuous relations

over 6L , then v u : (A,x) — ^ (C,z) is continuous.

Proof. (7.4.1) for [id A, f] is f t(x)^ y , and this is also the

requirement for f : (A,x) —>(B,y) . With 7.5, this proves the first part.
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For the second part, we consider a diagram (7.3.l).

p = f*(x) , q = (f)*(y) , r

Then g (p) <£ y and (g')+(q)^.z if u and v are continuous. It follows

that g f" « f' g" : (R,r) — + (B,y) in C * . Since q = (f')t(y) , this

implies g" : (R,r) - ^ (Q,q) . Thus (g")t(r)<Cq . Now

(g1 g")t((f r)*(x)) = (g1 g")t(r) ^ (g')t(q) ^ . ,

and v u - [f f", g1 g"] is continuous by 7.5Q

Theorem 7.6 shows that continuous relations over <C form a category into

which <t is embedded, by a functor which lifts the functor I of 7.3.

8. SEPARATED SPACES. We define separation for a top category ENS8 over

ENS on which a Cauchy triple (R, j, k) with convergence is defined.

8.1. We recall that a top category ENSS over ENS is obtained as follows.

A complete lattice S E of structures on E is assigned to every set E , and

mappings f : S E —> S P and f : S F •*—>S E are assigned to every mapping
s

f : E^—> P . Both assignments are functorial, one covariant, the other contra-
variant, and f ( u ) ^ v <£=> u ^ fS(v) for all u ^ S E and v £ S F if

s
f s E — » P , It follows that the maps f preserve suprema and the maps f

s

infima. Objects of ENS8 are pairs (E,u) of a set E and some u £ S E ,

and a map f : (E,u) — > (P,v) is a napping f ': E — > P such that u
Composition in ENS is composition of mappings.

The category CONV of convergence spaces, which we also denote by El©" ,

is an example. Other examples are topological spaces, uniform spaces, uniform

convergence spaces, limit spaces, and neighborhood or closure spaces.
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8.2. Let EKSS and ENSr be top categories over ENS . If a mapping

: R E — ^ S E which preserves infima is assigned to every set E , and if

f tr- -"££; f for every mapping f : E — ^ F , then

T (E,u) = (E,"CE u) , I f = f : (E,T-E u) (P, r:p v) ,

for every object (E,u) and morphism f : (E,u) —:> (F,v) of ENSr , defines

a functor T : ENSr — ^ ENSS which we call a top functor.

Among all functors T : ENS — ^ ENS , the top functors are characterized

by the fact that they lift Id ENS and have left ad joints which also lift

Id ENS . In fact, if (E,u) is an object of ENSS and if

<T"Eu = inf {v 6 R E : u «£-C7E v\ ,

then id E : (E,u) — ^ T (E,cr_ U) is a universal morphisra for a top functor T

given by structure maps "c . We do not go further into this.

If in particular R E is a subset of S E , closed under infima in S E ,

for every set E , and if f maps R P into R E for every mapping f :

I*
E — ^ P , then we obtain a top category ENS and a top functor T : ENS

ENSS by letting f1" : R F —> R E be the restriction of fS for every mapping

f : E — ^ F » and ~c^ : R E — > S E the inclusion mapping for every set E .

In this situation, ENSr is a full subcategory of ENSS which we call a top

subcategory of ENSS , and T is the inclusion functor.

8.3. DEFINITION. We assume from now on that a top category ENSS with a

top functor ENS — ^ ENS'* to convergence spaces, and a Cauchy triple (R, j, k)

with convergence, over ENSS , are given. We put R (E,u) = (E*,u*) for an

object (E,u) of ENS , and we denote by q^Cu) the convergence structure

on E obtained by applying the given top functor to (E,u) . We say that (E,u)
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is separated for the triple (R, j, k) if every filter f £ E * converges to at

most one point x £ E , i.e. if the restriction of qg(u) to E* is a func-

tional relation from E* to E . We do not require that every filter <p £ E*

converges. If this is the case for a separated space (E,u) , then convergence

of filters induces a mapping from E* to E ,

8.4. PROPOSITION. The product of separated spaces is separated. If f :

E — ? F is infective and (F,v) a separated space, and if u ̂ f (v) in S E .

then (E,u) is a separated space.

.Proof. Let first TT(E u ) = (E,u) , with sets of Cauchy filters E *

and E* , with convergence relations q± and q , and with projections jc. .

If <p q x , with <p€E* , then 0^)»(f) is in E±* and converges for q

to 7r±(x) , for every i . If the spaces (E^u^ are separated, this deter-

mines the points "^(x) and hence x uniquely, and (E,u) is separated.

In the second part, let E* and F* be the sets of Cauchy filters, and q

and q' the convergence relations. If <p£B* and <pq x , then f*(#>) £ F*

and f+(<p) q* f(x) . If (F,v) is separated and f injective, this determines

f(x) and then x uniquely, and thus (E,u) is separatedQ

8.5. THEOREM. If_ ENSS satisfies the conditions of 8.3 asd ENSr is a

top subcategory of ENSS , then the separated spaces in Ob ENSr are the

objects of an epireflective full subcategory of * ENSS .

Proof. We sketch the construction which follows a standard pattern. Let K

be the class of all separated spaces in Ob ENSr . For every object (E,u)

of ENS , there is a family of surjective maps g. : (E,u) -—> (E.,u.) in ENS8
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with (Ei,ui)£K such that every surjective g : (E,u) —>(F,v) in ENS8

with (P,v) £ K is up to an isomorphism (E.,u.) — * (P,v) one of the g. .

If f : (E,u) -^(p,v) with (F,v) £ K , let f = h g with g : E — > E1

surjective and h injective. If v1 = hs(v) , then g : (E,u)—»(E',v')

in ENSS with (Pl,vl)£K . Thus f factors through one of the g. . Now

form the product (E',u') of the (E^^) and the map g1 : (E,u)—>(E',uf)

with projections g± . Put g1 = h" g" with g" : E — > E M surjective and h"

injective. If u" = (h")S(u') , then g" : (E,u)—» (E",u") in EMSB with

(E",u")£K, and every map f : (E,u) — * (P,v) in ENS8 with (P,v)€ K

factors through this one. Since g" is surjective, g" : (E,u) —?-(E",u") is

epimorphic in ENSS , and the factorization is unique 0

9. REGULAR SPACES. We continue to use the assumptions of 8.3.

9.1. DEFINITION. A space A = (E,u) in Ob EKSS is called regular, for

the Cauchy triple (R, j f k) , if the convergence relation q. : E*—> E ,

induced by qE(u) for RA = (E*^u*) , is continuous from (E*,u*) to (E,u)..

9.2. THEOREM. Regular spaces in Ob ENSS are the ob.jects of a top sub-

category of ENS8 .

PROOF. Let R E be the set of all u.£&E with (E,u) regularr for a

set E . Consider first a family of structures " u. £ R E and put u = f} u. .

Put R (E,u±) = (E^.Uj*) and R (E,u) = (E*,u*) , and put h± « R (id E) :

(E*,u*) —^ (E^.Uj*) . If f i A —;»E* and g : A —> E with f(x) q g(x)

for every x ^ A and q = qE(u) , we must show that gs(f
S(u*))^ u... In this

situation, h._ is an inclusion mapping, and qA = qE(u.) an extension of q ,
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for all i . Thus (h± f)(x) q± g(x) for all i , and

follows since (E,u.) is regular. But u* ̂ (h.) (u.*) , and hence

gs(f
S(u*)) ^ gs(f

S((h.)8(u.*))) = gs((h. f)
S(Ui*)) ^ u ±

for all i . Thus g (fs(u*))^ u , and (E,u) is regular.

Let now f : E — > F and u » f^v) with v £ R E . Put R (E,u) * (E*,u*)

and R (F,v) = (P*,v*) , and put q = q£(u) and q' = qF(v) . If g : A — > E

and h : A — > P with h(x) q g(x) for every x £ A , then f*(h(x)) q1 f(g(x))

for every x £ A . Thus u* ̂  (f#)
S(v*) , and

(fg)(hV)) ^ (f g)>8((fjV))) - (f g),((f* h)V)) ̂  v ,
5 S S

by regularity of (P,v) . But then g (hS(u*)) 4. fS(v) = u , and (E,u) is
s

regularf)

9.3. COROLLARY. If EHSr is a top subcategory of ENSS , then the regug-.

lar and the separated regular spaces in Ob ENS are the ob.iects of full reflec-

tive subcategories of ENS .

Proof. The regular spaces in Ob ENSr are in fact the objects of a top

subcategory of ENSS . This is reflective, and we can.use (8.5) for separated

regular spaces in Ob EKSr (]

9.4. TWO EXAMPLES. We consider topological spaces and convergence spaces

with the Cauchy triples of 4.1 and 4.3. In either case, let (E,u) be a space

and R (E,u) « (E*,u*) . We put q = q£(u) . Then q(X*) = X , the closure of

X C E for u , if E* consists of all filters on E , or of all ultrafilters

on E , or of all convergent filters, or of all convergent ultrafilters. If <p

is a filter on E , then the sets X , X £ <P , form a basis of a filter on E
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which we denote by ct . We formulate T, as follows.

T . If x £ E and <£q x , then ZFq x .

A topological or convergence space usually is called regular if it satisfies T, .

We wish to show that this is equivalent to our definition 9»1» for the Cauchy

triples mentioned above.

Consider first f : A —* E* and g : A —> E with f (x) q g(x) for all

x€ A , and let q* = qE*(u*) and q» = qA(f
S(u*)) . Then q1 = fq(q*) , and

& q* x for x€- A and a filter <r on A if and only if f*(<5") q* f(x) .

As f(x) q g(x) , this implies <p q g(x) for f = (f(x))* . If X*£ f(x) ,

then f " 1 ^ * ) ^ ^ , and gif'1^*)) C 1 . Thus g(cr) ̂  , and g(o} q g(x)

follows if (E,u) satisfies T . This means that g : (A, fS(u*))—> (E,u)

is continuous, i.e that g (f (u*)) ̂ u .
s

For the converse, let A be the set of all (c^x) in E*x E such that

« q x , and put f(<5*,x) = (P and g(̂ -,x) = x for (e,x) 6 A . For X CTE ,

let SY = f^U*) . Then f(sv) C X* and g(SY) = X . For a filter cp on E ,
A A. A *

the sets Sx with XfS-CT1 generate a filter S^ on A , with f#(^)<a>* and

g»(s«) = <p"» If (P q x , then <T* q* x , and S& q1 (x,x) follows. If g :

(A, f^u*)) —•> (E,u) , it follows that g*(S«) q x . This is T_ for (E,u) .

9.5. Tx SPACES. Putting D (E,u) = (E*, hS(u)) for an object (jL,u) of

a top category EBSS , where E* = |x : x 6 E^ and h(x) = x for x^ E ,

defines a Cauchy triple (D, jf k) for every top category ENS over sets. For

this triple, j and k are natural equivalences, and D j = j D = k" . We say

that (E,u) is a T^ space if (E,u) is separated for (D, j, k) .

If q = *1E^U^ ' then x q x for every x £ £ . Thus a T.. space is one

which satisfies the following axiom.
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T . If x , y are in E and x q y , then x = y .

This is of course the usual separation axiom T. in filter form.

Regular spaces for the triple (D, j, k) have occurred in completion con-

structions, but we shall not discuss them here.

As a corollary of 8.5, we have the following result.

9.6. PROPOSITION. If EHSS is a top category over ENS and ENSr a tot

subcatee;orv of ENSS , then the T spaces in Ob ENSr are the ob.iects of an

epireflective full subcategory of ENSS Q

10. REGULAR UNIFORM CONVERGENCE SPACES. Our general theory strongly sug-

gests the following definition.

10.1. DEFINITION. A uniform convergence space (E,"iU) is called regular

if (E/U) is regular for the Cauchy triple (R, j, k) 5.3, with E* one of

the following sets: all Cauchy filters on E , all Cauchy ultrafilters on E ,

all convergent filters on E , all convergent ultrafilters on E .

We have enumerated four triples; the preceding paragraph suggests that the

spaces are regular for each of these triples.

10.2. Let (E,lt) be a uniform convergence space, E* = U R (E,2£) , and

q = qE( II) . Then & q x , for x €.E and a filter & on E , if and only if

fX±€il. For U C L E X E , we put U = (q X q)(U*) . Thus (x,y) £ U if

and only if Cj> q x and U/'q y for filters <y and ~w on E with US<3>xy> .

We call tJ the uniform closure of U . The set U is easily seen to be the

same for each of the four triples involved. This observation and 10.3 show that

regularity is the same for each of the four triples.
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For a filter 0 on E X E , we denote by (f) the filter on E X E with

all sets U , for U £ <Q , as basis. We have the following result.

10.3. THEOREM. A uniform convergence space (E,t£) is regular if and only

if it satisfies the following condition.

T^ . If a filter ( J o n E X E is in 1L, then < ^ 6 U.

Proof. Put UNCV = ENSU for this proof. If f : A •—>E* and g : A — * E

are given so that f(x) q g(x) for every x £ A , and if (f Xf)(v)C U* for

V C T A X A and U c T L E X E , then clearly (g x g)(v) £2 V . If JT is a fil-

ter on A X A and 0 one on E X E , it follows that

(fX f)*(2l) < <£* =H> (gXg)Jl)<$ .

Now 2L6rfU(U*) if and only if (f X f )*(2T) ̂ (J»* for some $ell. Thus

T^ implies that g : (A, fu&f)) —* (E,^) is continuous. This is (7.4.1):

For the converse, let A = j(fox)€: S*X E : <j> q x\ , and let

and g(c&x) = x for (<T,x) £ A . Put S^ = (f x f)~1(u*) for U C E K E .

Then (f x f)(Su) C B * and ( g X g X S g ) = U . This is easily verified. For

a filter d) on E K E , let S^, be the filter on A X A with the sets S u ,

U £ 0 , as basis. Then ( f X f ) f ( s u ) ^ and (g X g)#(S^) = (ft". Thus

S,p£fn(Zl*) for <fcGiL. If (B,?/) is regular, then g : (A, fU(2£*)) —*•

(E,tt) is uniformly continuous. Applied to the filters S ^ for 0e7Lt

this implies T^ for (E,2X) (J

10.4. THEOREM. Every uniform space is a regular uniform convergence space.

Proof. For every entourage U , there are entourages V and W such that
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W o V c W"1 CZ U . If (x,y)£V with <p q x t y q y f and V £r(f X ¥', then

there are sets X£Cf and Y£ y such that X d w(x) and I C K ( y ) . Then.

V n (X X Y) in <px: y-- is not empty. Thus (x,y) £ W o V o W~ , and we con-

clude that f C U . If (P is the filter of entourages, this shows that

( £ > ^ 0 . But then the space cleary satisfies T_ and is regularQ

11. COMPLETE SPACES. We use again the assumptions and notations of 8.3.

11.1. DEFINITION. A space (E,u) , with R (E,u) = (E*,u*) , is called

complete, for the triple (R, j, k) , if every filter <jp£.E* converges for

qE(u) to some point x ^ E . In other words, we require q (E) = E* for the

relation q : E* -—> E induced by qE(u) .

The space (E*,u*) always is complete, by 3.2.2. More generally, the under-

lying space of an algebra for the triple (R, j, k) is complete, by 3.3.

11.2. PROPOSITION. If (E,u) is a regular space in ENSS , then

(E, q^Cu)) is a regular convergence space.

Proof. Put q ~ q (u) and q* = qE*(u*) . If f : A — > E* and g :

A —^ E are mappings such that f(x) q g(x) for all x<~ A , then g :

(A, f^u*)) —j? (E,u) is continuous. Since qA(f
S(u*)) = fq(qE+(u*)) = f

q(q*) ,

the map g : (A, fq(q*)) -—> (E,q) also is continuous. Thus (E,q) is regularQ

11.3. THEOREM. A separated space (E,U) - in ENSS is complete and regular

if and only if (E,u) is the underlying space of an algebra for (R, j, k) .

Proof. If q : (iJ*tu*) — > (E,u) is an algebra for (R, j, k) , for a

separated space (E,u) , then q : E* —^ E is filter convergence by 3.3, and
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continuous as a relation by 7.6. Thus (E,q) is complete and regular.

Conversely, if (E,u) is separated, regular and complete, then filter con-

vergence defines a map q : (E*,u*) —>(E,u) in ENS . By 3.3, this map is

the only possible algebra structure of (E,u) for the triple (R, j, k) . Thus

we must show that q j. = id (E,u) and q k, = q (R q) for A = (E,u) .

The first of these laws requires x q x for all x €E . This is always

true. The second law requires that 0 * q x ==> q*(0) q x for a filter

in U R (E*,q*) and i £ E . If *&(p* , then q(X*) = X is in q*(0) .

Thus q^(4>)^ for <p = $ \ , and q kA = q (R q) reflects T^ for (E,q) .

This is valid by 11.2 and 9.40

11.4. THEOREM. If f : (E,u) — ^ (P,v) is a map in ENSS with (F,v)

separated, regular, complete, then there is exactly one map g : B: (E,u) —-^

(E,v) in ENSS for which g JA = f , for A = (E,u) .

Proof. Put B = (F,v) . By 11.3, filter convergence defines an algebra

qB : R B — > B for the triple (R, j, k) , and qfi (R f) JA = qfi JB f = f .

Thus g = qB (R f) satisfies the conditions.

On the other hand, if g : R A — ^ B in ENSS and 0 6 U R R A , then

(p q 0 * , and thus g*(0) qB g(0*) • Thus g t a qB g# at the set level,

and g k. = q_ (R g) at the ENS level. In other words, g is a homomorphism

of algebras for (R, j, k) . Now

qB R(g jJ = % (R g)(R oA) » g kA (R jA) = g .

Thus g = qB (R f) is the only map g : R A —-> B such that g 0A = f 0

11.5. REMARK. By 3.3, a separated space (E,u) has at most one algebra
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structure for a Cauchy triple (R, j, k) with convergence, and by 11.3 such a

structure exists if, and only if, (E,u) is separated and complete. The proof

of 11.4 consists of two parts. We show first that every nap f : R A — > B in

ENS with B regular, separated, complete, is a homomorphism f : (R A, k^)

(B, <Jg) of algebras, and then we prove a general triple-theoretic statement for

the case on hand: if (B, q) is a triple algebra and f : A —^ B a morphism ,

then f = g i for a unique morphism g : (R A, kA) — > (B,q) of algebras.

12. COMPLETIONS. We show that separated regular complete spaces, for a

given Cauchy triple (R, j, k) with convergence on ENS , form a reflective

subcategory of ENS , and an epireflective subcategory of the category of sepa-

srated spaces in ENS , provided that the latter category is nice enough to be

colocally small. We use a general theorem of Herrlich for this purpose.

12.1. PROPOSITION. The following three properties of a map f : (E,u)

(P,v) of separated spaces in ENS are logically equivalent,

(i) f : E — * F in ENS is in.iective.

(ii) f is monorsorphic in ENSS .

iiij f is monomorphic in the category of separated spaces of EKS .

Proof, (i) ==&- (ii) trivially: the projection functor E N S S — ^ ENS ,

like every faithful functor, reflects monomorphisms. (ii) ===> (iii) even more

trivially. We prove (iii) =?• (i) by contradiction.

Suppose f(x) = f(y) but x ^ y . Consider a space ({a], t) consisting

of a singleton with the finest structure. This space is necessarily separated.

g(a) = x and h(a) = y defines maps of ENS from this space to (E,u) by the
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choice of t . We have g ̂  h , but f g = f h 0

12.2. LEMMA. Let f : (E,u) —>• (F,v) be an extremal monomorphism of

separated spaces in ENS , for a Cauchv triple (R, j, k) with convergence.

If cptE* and f*(d qB y for B = (F,v) and. y t P , then y = f(x) for a

point x ^ E such that <pq. x , for A = (E,u) .
/ A

Proof. We put R (E,u) = (E*,u*) . Let P' be the set of all y £ P such

that f*(<̂ ) qB y for some ^ £ P . Since f*(x) qB f(x) for x £ E , we have

f(E) d P! , and hence a factorization

(E,u) -_«._^ (p., js(v)) —L+ (F,v)

of f in ENS where j : P' — > P is the inclusion mapping. The space in the

middle obviously is separated. If h g = h1 g for maps h , h' in ENSS with

separated codomain, then h*(g*(yO) = h'#(g*(<p)) and f*(<jp) = j#(g*(©)) for a

filter <p £ E* . If BJ = (p1, jS(v)) , then qB, = j
q(qB) for the convergence

relation. If f#(<j>) qB y , it follows that g^(p) qB, y (note that y = j(y) ).

In this situation, h#(g*(e?)) converges to h(y) and to h'(y) . Since the

codomain of h and hf is separated, h(y) = h'(y) follows. Thus h = h1 ,

and h is epimorphic. As f is extremal, h is isomorphic in ENSS , and a

fortiori bijective. Thus P1 = f(E) .

Now u = fs(v) since otherwise

(E,u) •• id E > (E,fs(v)) _ I ^

in ENS , with id E epimorphic but not isomorphic, and the middle space sepa-

rated. This cannot happen if f is extremal. It follows that qA =

and thus <r> qA x for ^ <£ E* if f»Cp) qB y for y = f (x) in P Q
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12.3. THEOREM. For a Cauchv triple (R, j, k) with convergence on ENS8 ,

the class of separated regular complete spaces is closed under the formation of

products and of extremal subob.iects.

oof. Consider first A = 77A. with projections JC. , with A = (E,u)

and A, = (E.,u.) . Convergence for A. defines an algebra q. : R A. —5>A.

for the triple (R, j, k) . There is a unique map q : R A —•? A in ENS8 such

that 7T q = q. (R/r^) for all i . We have

xi * h = <k ( R 7 r i } JA = i i h/c± = ^ i »

and Jt± q (R q) = q± (R/r\)(R q) = q± R(^:± q)

= qi k ^ (R R.^) = q± (Rjr±) kA =

for all K. . Thus q j, = id A and q (R q) = q k. , and we have an algebra

q : R A — > A . Since A is separated by 8.4, this shows that A is regular

and complete, by 11.3*

Now let A = (E,f (v)) and B = (F,v) for an extremal monomorphism f :

A — > B of separated spaces, and put E A = (E*,u*) . If B is separated and

complete and (p<~E* , then f#te) q£ y for a unique y 6 F . By 12.2, there

is a unique x £ E such that (1 qA x and y = f(x) . Thus convergence defines

a mapping q. : E* —^> E such that f q, = qB f* . Since q^ and f* are con-

tinuous, we have q. : (E*,u*) — ^ (E,fs(v)) in ENSS . Thus A is regular

and completed

12.4. COROLLARY. If the category of separated spaces in ENS8 is colocally

small, then separated regular complete spaces define a reflective subcategory of
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ENS and an epireflective subcategory of the category of separated spaces.

Proof. The category of separated spaces in ENSS is locally small by 12.2.

8

It is reflective in ENS and hence complete. Thus the general theory of Herr-

lich applies if it is colocally small 0

13. AN UNPLEASANT EXAMPLE. Much of this paper is a buildup toward 12.4.

We proceed to deflate 12.4 by proving the following result.

13.1. THEOBEM. The following categories are not co3ocfl,i,Xy small: sepa-

rated convergence spaces, separated limit spaces, separated closure spacesf

separated uniform convergence spaces, separated uniform limit spaces.

Proof. With obvious symbols, we have forgetful functors as follows.

OTLIM >UNCV

CLOS > LIM > CONV

The horizontal arrows represent full and faithful functors with left inverse left

adjoints. These functors preserve separated spaces and epimorphisms of separated

spaces. The vertical arrows represent functors with left adjoints which preserve

separated spaces and their epimorphisms. Thus it is sufficient for the proof to

show that there are separated closure'spaces which can* be .embedded as dense sub-

spaces into closure spaces of arbitrarily high cardinality. An example follows [J

13.2. We recall that a set X C E is called open for a convergence space

(E,q) if Q? q x , for a filter r/> on E and x £ X , always implies X £ < p .

A set X C E is called dense for (E,q) if 0 is the only open set for (E,q)
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which is disjoint from X .

A map f : (E,q)—^ (P,r) of separated convergence spaces is epimorphic

in the category of separated convergence spaces if (and in fact only if) f(E)

is dense for (F,r) . For consider maps g and h from (Ftr) to the same

separated space, and let Y be the set of all y£r F such that g(y) ̂  h(y) .

If <yT v f o r a filter *f on F and y 6 Y , then the filters g* (*/->) and

h#(y^ converge to points g(y) ̂  h(y) . A filter finer than g*(f) and h*(^)

would converge to both points, and this cannot happen in a separated space. Thus

g*(f)r\ h*(^) is the null filter, and hence g(Y') r\ h(Y") » 0 for sets, Y.1.;.

and Y" in ^ . But then I ' O Y " C Y , and hence Yfcy-'. Thus Y is open.

If g f = h f , then YAf(K) = 0 , and if f(E) is dense for (F,r) , this

implies Y = 0 and hence g = h .

13.3. We construct the example. We begin with an infinite discrete space

(E-fq ) . By transfinite induction, we construct for each ordinal number n'p> 0

a space (E ,q ) and for each pair of ordinals i ^ n a map u : (E_,q)

(E ,q ) , with the following properties.

1 3* ? a- unn = id (En'qn} • BX>& ump = unp umn i f m < n ^ P •

13.3.2. Every map u is injective.
cm

13.3.3. Every space (En,q ) is a closure (or neighborhood) space, and if

m ̂ . n and N is the neighborhood filter of x <£ E for a , then (uinw)»(N )

is the neighborhood filter of u (x) in (E ,q" ) .
Suppose that the spaces (E ,q ) and maps u are already constructed for

in i n ^ k . If k is a limit ordinal, put (E, ,q ) = lim (E ,U ) in the cater
K ic n n

gory of convergence spaces, for the given spaces and maps. This is a directed

limit, and injective maps u , : (E ,q. ) — ^ (Ej,*11!,) a r e automatically given
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so that u . u = u , i f m < C n < C k . The maps u . are "collectively onto",
nK inn nuc *̂ mis.

and one sees easily that 13.3.3, for n = k , describes qfc fully. If p , q

are in E, , then p = u , (x) and q = u , (y) for one n<T k and points x ,

y of E . The neighborhood filters N and N for q contain disjoint

sets X and Y , and then u , (x) and u , (Y) are in the neighborhood filters
nK nK

N and N for q, . Since u . is injective, these sets are disjoint, and

thus (̂ VtOi.) is separated.
Let now k = h + 1 . Let K consist of all filters x with x €. E. and

all ultrafilters on EL which do not converge for q. . Put u. Ax) = x for

x 6 E
h i and put u , = u_ u if m h . This defines the maps u ^ . Put

N* = K k ^ V for x ^ ^ and N = f "W (u^),^ for f &

This defines q . The conditions of 13.3 are easily verified. We show that

(E. ,q ) is separated by showing that the neighborhood filters N and N of
K K p q

distinct points p and q of E, contain disjoint sets. Three cases must be

considered; we leave the details to the reader.

13.4. We show by transfinite induction that u (E ) is dense for (E ,q )
mn m n n

if m ^ n . Thus all maps u are epimorphic.

Suppose that u (E ) is dense for (E ,q ) if m 4 n < k . Let A C E .niri m n n ic

be open and disjoint from u , (E) . If u , (x) € A for some x 6.E_ , with

n <^k , then necessarily m <^n . In this situation, u .~ (A) is open for

(E ,q ) and disjoint from u (E ) , and x 6. u , ~ (A) . This contradicts ourn Ti mn m nk

assumption that u (E ) is dense for (E ,q ) . If *p6. A is not in one of
mn in n n /

the sets U-i^E ) with n *Ck , then k cannot be a limit ordinal, and GO is

a non-convergent ultrafilter on E if k = h + 1 . But then (ujo,)*^) <U, &

by our construction, and hence A £. (u^, )#(^) , and ^S (A) €. ̂ . Thus
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u, ~ (A) is not empty, and we obtain the same contradiction as before for

p" (A) . This shows that we must have A = $ t as claimed.

13.5. We examine the cardinalities \ En! • ^jet G % z for an ultrafilter

G on E and x£.E , and let m ^ n be the least ordinal number.such that

x = u (z) for some z £ E . Then G •$- (u__)*(N ) , and it follows that

G = (u L(p) for some ultrafilter F -< N on E . If m = 0 , then P = zmn * z m

and G = x . If m > 0 , then m cannot be a limit ordinal. If m = h + 1 ,

then z is a non-convergent ultrafilter on E. , and F ^ z t ' k )*(z) • Thus

either P = z or P ^(u, )#(z) , and then P = (u. )#(z) . This shows that

at most two ultrafilters on E converge to a x>oint of E . It follows that
n n

|E j is the cardinality of the set of all ultrafilters on E , and thus

| E \<C.\ E . | . We conclude that \E | can be made arbitrarily large for n

large enough, and thus cur example does the job it is supposed to do.
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