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Introductory

The present report is a first write-up of a neﬁ theory. The theory may not
yet be in its final form, but there are enough results to justify a belief that
it will be useful. Due to the preliminary nature of this report, no references
are given in the text, and some concepts related to Cauchy triples are used with=
out explanation or with an explanation long after their first use. The reader is
asked to bear with this: rewriting these notes would have delayed their appear—
ance unduly. A list of 19 references is appended to the report, and & preprint
survey on top categories is planned.

The theory of Cauchy triples had its origin in the observation that many
completion and compactification constructions in general topology follow a rather
rigid pattern. An early example of this vattern is the construction of the com-
pletion of a uniforr space in the first edition of Bourbaki's Topologie générale,
chap. II. (Later editions use a different construction which is based on special
properties of uniform spaces.) Another early example is the construction of the
Stone-ééch compactification of a topological space E via a compact, but not
Hausdorff, space E* of ultrafilters, Frink's construction of Wallman type com-
pactifications [7] and the discussion of coripletions and compactifications for
Cauchy spaces in J.F. Ramaley's thesis {see {151) made the pattern clear. Once
the pattern was clear, it was easily seen that it fits into the categorical the-
ory of triples in a special way. This helped to illuminate the pattern further.

It showed in particular that the precompletions used in all earlier examples and
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recognized in [15] are of purely categorical nature.

The results of [151 made it clear that regularity in topology is related to
Cauchy triples and hence to completions., The exact formulation of the connection
between regularity and Cauchy triples required the concept of a continuous rela=-
tion for a general topological situation. Our continuity concept for relations
is purely categorical and seems to work rather nicely. As a new application of
our general theory of regularity, we discuss regular uniform convergence spaces.,
A patisfactory theory of such spaces has been an open problem for some time,

One aim of a topological completion theory is to obtain a universal sepa-
rated regular completion for every snace, Such a completion need not be an em-
bedding; it may be a non-trivial problem to determine those spaces for which the
completion is an embedding. For a Cauchy triple, a sevarated regular complete
space has & unique algebra structure, given by filter convergence, and every map
of separated regular comnlete spaces is a morphism of algebras for the triple.
For sufficiently nice categories, the existence of universal ceparated comple-
tions follows from general category thecry. Unfortunately, some important cate-~
gories, such as convergence spaces, closure svaces, and uniform convergence
spaces, refuse to be sufficiently nice. For these categories, completions may
exist, but they have to be constructed.

As presented in this report, the theory of Cauchy triples does not include
the Wallman type compactifications of Frink {71 and others. It can easily be
extended to include such compactifications, but the present state of the theory
of Wallman compactifications dces not encourage categorical considerations,

A satisfactory completion or eompectification theory for uniform or topo-

logical elgebras has yet to be obtained. Tt is no problex to carry algebraic
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operations from elements of a set to subsets of the set and hence to filters on
the set. However, formal laws easily manage to get lost in the process, and com=
pression is usually not a homomorphism of algebras., For example, if a binary
overation + 1is carried to subsets of and filters on a set E in the obvious

way, and if a set E* of Cauchy filters is given which is closed for + , then
o4 Y O (X +Y)x

for subsets X , Y of E , and the inclusion can be proper. Thus
(¢7+k}/’)* é- d’* + V/'*
for filters (i3, g17 on E* , and the inequality may be strict,

Nets instead of filters may be - horribili dictu - a solution. Nets over an
algebra, with a fixed directed set as domain, certainly obey all formal laws of
the algebra, lowever, compression may be a problem. There is e.g. no natural
compression from Cauchy sequences of Cauchy sequences on a metric svace to Cauchy
sequences on the space,

All Cauchy triples considered in this report have remarkable formal ana-
logies. They may be instances of a structure which is richer than a Cauchy
triple, or it may be that these analogies represent pronerties built into. the
definition but not yet obtained. This is at present a wide open problem.

There are other open questions, but let the list oresented here suffice.
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CAUCHY TRIPLES

Ozwald Wyler

1. FILTER FUNCTORS, There is a contravariant as well as a covariant fil-
ter functor on ENS , and the two functors are related by & Galois correspon~
dence, as follows.

For a set A, denote by £ A the set of all filters on A , including
the improper or null filter, generated by the empty set and consisting of all
subsets of A . We put @< @ if ¢ C-(f With this relation, # A is a
complete lattice, with the null filter as finest filter on A4 and the trivial
filter {A% as the coarsest filter. The supremum L,}:fl of a family (fi) i E1
of filters on A 1is the set intersection of all 7.-1 » considered as sets of
subsets of A . More to the point, L’&}‘ i consiats of all sets U Xi with
xiécf)i for all i1 .

For a mapping f : A —> B and filters {f‘ on & and w on B, let
f*(z}D) denote the filter on B generated by the sets f(X) with Xé?’, and
f*(t?l/) the filter on A generated by the =ets f—l(Y) with Y& ¥. The fil-
ter f*(rF) is improper only if 'f is, but if f is not surjective, then f*(kp)

may well be the null filter on A for proper 7L .

1.1. PROPOSITION, If f : A —> B in ENS and ¢ is a filter on 4 ,

then YETf,(p) <= f.l(Y)é.cF , for YC B.
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Proof. If Y€ f,(g), then f()C Y, hemce X £-(Y), for some
Xe @, and thus f'l(Y)E.CP. Conversely, if f-l(Y)é’cf , then f(f-l(Y))

is in f,(@) and £(£HY)) < Y . Thus Te1,6) |

1.2, PROPGSITION. Let f : A —>B in ENS . If @ g_ng\,u are filters

on A and B resvectively, then f*((,c)g ¢ = q:-:i‘f*(cy) .

Proof, By 1.1 and the definitions, both statements are equivalent to the
implication Y& =% f-l(Y)E; g, forall YC B 0

It is clear from the definitions that we obtain a covariant functor F*
and a contravariant functor F * on ENS by putting F, f=f, : FAo —F B
and F*f=f*:FB —>F A forevery f : A—>B in ENS . If we regard
the complete lattices f A as complete categories, then the maps f, and f¥
themselves are functors. 1.2 then states that £, is left adjoint to f* for
every f € ENS . It follows immediately that f, preserves suprema and f¥*

infima.

2. CAUCHY TRIPLES, ¥We consider a concrete category € , i.e. one with a

faithful functor U : L —> ENS .,

2.1. DEFINITION. A Cauchy triple on (. coneists of the following.

2.1.1. There is a functor R : € —> & such that U R A is a set of fil-
ters on UA for every A €0b{ , the mapping (U f)* maps U R A into
URB forevery f :A—~>B inl , and U R is the restriction of (U f)*
to URA and URB.

2.1.2. Por ACObd , the filter ¥ on UA isdn UEK A for all

xEUA, and (U jA)(x) = % defines a morphism jg :A—>R4 in c ,
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2.1.3, For every AE O0b L, there is a morphism k, :RRA— RA

in € obtained as follows. We put
» = {peurRA:xcq}l ama ¢y, = xC UL:xedl ,

for all X C U A and all filters d‘) on URA . We require that (P, EURA
for JEURRA, and that (UkIP) =y for PEURRA.

One sees easily that
(ZMY)* = X*OY* and 2 EX* &= xE€X ,
for subsets X , Y of UA and xC U A, This shows that d’* is a filter

on UA for a filter CL‘ on URA, and that d}* is proper if ¢’ is.

2.2, THEOREM, The data of 2.1 define a functor R : £~>C and natural

transformatio j:Id€C—> R and k : RR—> R which form a triple over € .

Proof. This is an exercise in filter algebra. We must verify the formulas:
(Re£) 5, = ggf » (®Rf)k = kg (RRE)

= idRA = k, (RjA) . k, kg, = k, \RkA) ,
for £:A—>B inC and ACG Ob@ . At the set level, they are formulas

2.3.1, 2.3.3, 2.3.5, and 2,3.7, and faithfulness of U 1lifts these to C ]
2.3, Consider ACOLC and f : A—> B in{ . We write f, for the
restriction URf of the filter mapping (U f), .
2.3.1. If xCUA and yCUB, then x=(Uf)iy) &> t=r1(3 .

2.3.2. If TECUB, then (£,)7Hy*) = ((U ) ))* .

) ﬁ

2.3.3. If EURRA, then ((R ) (L)) = £, .
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5.3.4, If XC UA, then X = (U 3)71(x*) .

2.3.5. If @€ URA, then ((Uyp )@, = ¢ = (3@, .
2.3.6. If XC UA, then (Uk)H(x*) = (x%)* .

2,3.7. If FEURRRA, then ((k),(F)) = (Foe

Proof. All proofs are straightforward; we prove 2.3.%, 2.3.6 and 2.3.7 as

examples. PFor 2.3.3, we note that

]

e (ROUP)), &> TeRP) = () med ,
and YE ) = (U f)'l(Y)edD* &> ((v f)’l(Y))*éd? )
for Y(C UB, and we use 2.3.2., For 2.3%.6, we note that

FTer)m) & §,ex &= xed,

& red = D e (x)»

for P& URRA . For 2.3.7, we note that

XE ((6)u(F))y &= 1€ (5)(F) == Wk)H)eF ,
and xE(Fu ) &= x»& ¥, &= (x*)re¥F ,

for X U A, and we use 2.3.6
2.4, PROPOSITION. (P, = inf sup ¢ fora filter P on URA.
Pe¢ g¢cP
Proof. Put P, = sup® for all ¢ AP, Then X &P, if and only if
XEF for all c?C—_ P, and thus if and only if P (T X* ., The filter inf P,
for Péd‘ , thus is generated by the sets X C UA with P X* for some

PE ¢ . These are exactly the sets X< U A with X*éd) which form the

filter ¢, [




3. CAUCHY TRIPLES WITH CONVERGENCE. A Cauchy triple with convergence is

one over a category with convergence which satisfies some additional conditions,

3.1, DEFINITION, We call a concrete category ¢ , with "forgetful" functor
U:€ —> ENS, a category with convergence if a convergence structure q, on
the set U A is associated with every object A of € in a functorial manner,
ie.if f:A-—>B inC , then Uf : (U4, q) —(UB, qB) is a contine
uous map of convergence spaces., In other words, the functor U : £ —> ENS fac-
tors through the forgetful functor from convergence spaces to sets,

We denote by CONV the category of convergence spaces. It is of course a
category with convergence. The categories studied in general topology don't have

to be, but always are, categories with convergence,

3.,2. DEFINITION, A Cauchy triple on a category (. with convergence is

called a Cauchy trivle with convergence if the following conditions are satisfied,

for every object A of { .

3.2.1, If @ qy x and & é'qz , then (& %4 X .

3.2.2. If P& URRA, then Py, Py .

3.2.3. If ¢ 9ps ¢ and ;rqu X , then @, q x .
Here of course x££ U A, and q: and qj are filters on UA andon URA .,

If a Cauchy triple (R, j, k) with convergence is given, then we call an
objec:b A of @€ separated, with respect to the given Cauchy triple, if every
Cauchy filter of A , i.e. every PE URA, converges for q to at most one
point xS U A, and we call A complete if every Cauchy filter converges to at

least one point. Ve shall call A regular if a, is continuous in some sense

which we specify later.
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3.3. THEOREM., If (4,u) is an slgebra for a Cauchy triple (R, j, k)

with convergence, then ¢ q, x for every c)'péU RA and x= (Ui .

Proof. We have u j, = id A and hence (R u)(R jA) =idRA=k (R gl
Thus (U R u)(d:‘) =CF=CD* for ¢ = (U R Jh)(sf‘) . We have d‘qmq’ by 3.2.2,

and ¢ a, x follows since U wu : (URA, qp,) —> (U4, qy) in CONV 0

3.4, REMARKS, We guarantee by 3.2.2 that R A is complete for every ob-
Ject A of & s but in general R A will be neither .separated nor regular.
A is separated and complete if and only if convergence c¢f filters induces a map~
ping from URA to U A, Regularity means in this situation that the mapping
can be lifted to a morphism u ¢t RA —> A , and we shall see that (4,u) always

is an algebra for (R, j, k) in this situation.

4, EXAMPLES., We discuss Cauchy triples for topological spaces, for con-

vergence spaces, and for categories in between.

4.1. TOPOLOGICAL SPACES, We denote by TCP the category of topological
spaces. We assume that a set A* of filters on the underlying set U A is
assigned to every topological space A so that the set theoretic parts of 2.1.1
and 2.1.2 are satisfied. We define a topology on A* by using all sets X* ,

with X open for A , as a basis of open sets. Since (X AY)* = X*Y* for

subsets X , Y of U A, this works. By 2.3.2, the mapping f, : A* —> B* is
continuous for f : A -— B continuous, and thus the functor R is defined.

By 2.%.4, (U .jA)(x) = ¥ defines a continuous mapping j, A ~—>R A, and
2,1.2 is satisfied. Having R4 , we have (RA)* =URR A, and we require

that L EURA for PE URRA . This defines k,_ at the set level, and
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kA is continuous by 2.3.6. The conditions of 3.2 are also easily verified.
There are at least five examples, probably more. The five examples are
all filters; all ultrafilters; all convergent filters; all convergent ultra-
filters; all filters % . This refers of course to the elements of URA .,
In the last example, A is a homeomorphism for every space A , and so is kA .
Even so, regularity for this example has some meaning.
The implication (h€ URRA =2 (h,E URA is alvaye the lesst easy

to verify. In the ultrafilter examples, it follows from the following lemma.

4.2, LEMMA, If U R A consists of ultrafilters on UA and {ﬁ is an

ultrafilter on U R A , then Q‘\,* is an ultrafilter on U 4 ,

Proof. Since XL YE T &> Xe&q or Y{cr for an ultrafilter < s
we have (XU Y)* = x*_Y* if¢ U R A consists of ultrafilters, for all subsets

X,Y of UA ., Now if (0 ie an ultrafilter, then
XE Py or Yéq'."*' &= »*ed or Y*EQD &= prorred
&3 uired &= &, or Y€P, ,
and this shows that ¢?* is an ultrafilter|]
4.3, CONVERGENCL SPACES. We assume again that a set A* of filters on the

set U A is given for every space A , so that the set theoretic parts of 2.1.1

and 2.1.2 are satisfied. We put on A*¥ = U R A the finest convergence structure

which satisfies 3.2.1 and 3.2.2, by putting

Do ¥ & Pyqx  and ¢qm7né=—;¢*4}a,

for a filter ) on URA, and for x €U A and ¢ €URAN(U 5,)(U a) .
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Now 2.3.1 and 2.3.3%, the latter applied to filters on U R A , gusrantee contin-
uity of f, for f : A —>B in CONV , and 2.3.5 guarantees the first Fréchet
axiom and continuity of a e The second Fréchet axiom follows immediately from
the definition of Qpy + We assume the set theoretic part of 2.1.3, and it re-
mains to prove continuity of kA . Thus assume ¥ qRRA<i> 3+ we must show that
(kh)*(ﬁF) converges to (P, for Qpy + Since validity of LlﬂqRACr depends
only on \}', for given ¢ , it is sufficient to prove F, qRAd'J* and appl&
2.3.7. We have ¢ Qg ¢~* by 3.2.2 and F qR.RAd) by assumption, and hence
Fuqp ¢, vy 3.2.3, applied to R A .

The five examples given for topological spaces in 4.1 apply also for con-

vergence svaces, and again there are others.

4.4, LIMIT SPACES AND CLOSURE SPACES, There are several interesting cate~
gories "between" TOP and CONV . We consider only limit spaces and closure
or neighborhood spaces.,

In a limit space, we require a third axiom:

If ®q, x and- yaq, x, then (Q‘uy)) q X ;
in addition to the two Fréchet axioms. In a neighborhood space, we require:

For every x €U A , there is a filter Nx on UA sothat ¢ qy x &>

?ﬁﬂx , for every filter ¢ on UA .
It follows easily from 4.5 below that R A is a limit space if A is one, and
that R A is a neighborhood space if A is one. Thus the given Cauchy triples
on CONV induce Cauchy triples for limit spaces and for neighborhood spaces.

A topological space can be regarded as a closure space, with additional pro-
perties., If we form R A in CONV for a topological space A , we obtain in

general a neighborhood structure Qs vhich is not topological. If we form R A
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in TOP , using 4.1 instead of 4.3, we obtain a coarser convergence structure.
One sees easily that this is the finest topological convergence structure on

A* = UR A vwhich is coarser than qRA .

4,5, If UA snd aset URA of filters on U A are given, then filter
algebra imposes the following definition., If ¢ is a filter on U A , then we
denote by qg* the filter on U R A generated by all sets X* with Xéc}? .
We note two properties of -this -filter ?* and a consequence.

4,51, If P is & filter on U A , then (:F*)* =g

4,5,2. For filters g on UA and Cﬁ on URA , we have

$igr &= ducq

4,5,3. For families ('“Ti)iEI and (d),ﬂ")jc_J of filters on U A and

U R A respectively, we have
Ng* = Nig ema (U, = L)

Proof, Since X* (T Y* &=» X Y for subsets X , Y of UA, we
have X*é?s* <& Xéqﬁ. , and 4.5.1 follows. Now both sides of 4.5.2 are
equivalent to X € = x*c@ , forall XCUA . Finally, 4.5.3 is

a general property of Galois correspondences, and we have one by 4.5.2(
5. UNIFORM CONVERGENCE SPACES, We modify the definition of a uniform con-
vergence space and we construct Cauchy triples of Cauchy filters.

5.1. DEFINITION, A yniform convergence structure on a set E is a set U

of filters on E X E which satisfies the following four axioms.
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5.1.1. If x€ E, then ¥#X % = (x,x)° is in 2 .
5.1.2. If Q&ll and YL, then Fell,
5.1.3. If (Pell, then Pre 1l ,
5.1.4, If et and FEUW, then (PeYell .,
A uniform limit structure is a uniform convergence structure which satisfies:
5.1.5. If Pelt and 1L, then P ¥ell .

A uniform structure is a principal uniform convergence structure, i.e. d)é' 1t

L= CL‘ £ d)u for a filter ¢u which satisfies the Bourbaki axioms.
Uniform convergence spaces lead to uniformly continuous functions in the

usvual way, and the category UNCV of uniform convergence spaces is obtained.

5.2. Add to a uniform convergence structure all filters (7‘;_ Z\ , vhere
A is the principal filter on E'X E based on the diagonal of EX E , and a
.uniform convergence structure ‘ZL d vith Ag 2[ a is obtained, the finest one
coarser than /L(. « One sees easily that 2], and 7L a have the same Cauchy fil-
ters, and that (E,lL) — (E,'u,d) defines a functor, the reflector from UNCV
to the reflective subcategory of spaces (E,U) with A&lLl.

For uniform limit structures, L[, consists of all filters PLAUVY,
for some u/"é ‘ZL. The remarks made above also apply.

This shows that replacing A¢ 9 by 5.1.1 does not change the theory of
uniform convergence or limit spaces very much. In view of existing examples,
5.1.1 seems to be the more natural axiom, and it certainly makes the construc-

tion of uniform convergence spaces much easier.

5.3. Assume again: that the set-theoretic part of 2.1.1 and 2.1.2 is satis-

fied, for all spaces A = (v A, 'HA) and all uniformly continuous maps in UNCV .




CT 11

We put A* = UR A for a space A, and we put

v o= {(?,w)eA*x i vepx gl

for VC UAXUA ., Ve define the compression E of a filter ¥ on

A* X A* by putting

and we put R A = (A*,U*) with

Fo = {VCUAXUA: T},

Felr & F,ell

for a filter 'F on A¥X A¥

We have used the same notations for filters on UAX U A and on A%} A%*

as for filters on U A and on A* ., This will not lead to confusion; the con-

text always makes it clear what is meant, We must verify that we have indeed set

the stage for Cauchy triples on

5.4.

for subsets

We have again

(VAW = 7N w*

V , W and a point

UNCV . This calls for more filter algebra.

and ($,§)EVW = (xny)EV ,

(x,y) of UAX UA . Proposition 2.4 and its

proof, and the considerations of 4.9, also carry over as is (i.e. only with the

obvious changes) to the new situstion. In addition, we note the following.

5.4.1. (4”“}’)* = ¢ Xy for filters qr and Y on UA.

5.4.2.

5‘4.30

5.4.4.

(rl)* = (V*)-l for VC UAXUA,

Fh, = (F)7?

Vee W* ( (Vo W)*

for a filter ¥ on A*X A* ,

for subsets V , W of UAXUA.
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5.4.5. (CPO(/))* £ ¢* e W, for filters ), on A*X A*,

5.4.6. ((U£XU £)™Hv))* = (£, x £,)"X(V*) for £:A —>B in UNCV

and VC UBXUB,

5047, ((£,X £,),(F))y, = (WexU)(F,) for £:A—>B in UNCV

and a filter 3 on A*¥X A* ,
5.4.8. (U3,% U 3) W) = V for VCUAXUA,
5.4.9. (U3, x U 3)(P))y =¢ forarilter H on UAXTA,

5.4.10, (XX Y1)*

X¥ X Y* for subsets X , Y of UA.,

"

5.4.11, (?XY)* {f*x‘y:* for filters Y ,90 on UA.,

5.42, WEPXK Y =5 VoVie VEP,xY,, for VCUAXUA

and filters (O ,\P on A%,

5.4.3. (PX W) £ Ox P, £ (Bxy), e (Wxp), e (Pxy),
for filters ¢, ¢ on A* .,

5.4.4, (Uk, x U kA)'l(v*) = (v)x (= (U k, X U kA)((V oVt & V)

for VC UAX UA,

5.5, Ry £ (U, XU ) (R £ ®x e (R e (R

for a filter & on A** X A** , where A** =URRA .

Proof. The proofs are mostly straightforward, and often similar to those of
analogous formulas in 2.3. We prove 5.4.4, 5.4.5, and the last four statements.

If (gY)EV* and (p)E W+, then Ve W is in the filter

exX = (gx¥) e (pxx) .

This proves 5.4.4. In 5.4.5, ¢* o Y, is generated by the sets V OW with
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v eEQP and Wr& '\ . For these sets, (Ve W)*e&d'>¥ by 5.4.4, and thus
Vo W& (oY), . This proves 5.4.5.

For 5.4.12, let PX Q C V* with P& and Qe W , Fix ¢,EP and
L}/‘léQ , and fix Xlé 9‘1 and Ylé ‘})1 with Xlx Y1C V . All of this can
be done by V¥ & P X\J’ and definitions. For every G EP there is X €@
and I%e ¥ such that X‘f XY?', C V, end for every qféQ there is Y.f,ey?
and XLe @) such that XLXTyC V. Put X= Ux?, end Y=Yy, for
all ?‘G‘_P and \FéQ o Then Xc—:(p and Yé-«/z for all such ? and ',
ie. PCX* and QC.Y*. Thus X&€ @, and YE Y, . If (xy)EXXY,
let x¢€ XT and y¢& Yy, and let x'éx,’.nxl and y'éY%,ﬂYl . Then

(x,y') , (x',y') , (x',y) are in V, and thus (=x,y) €EVoevic Vv, This

shows that XX Y C Vo vt

o V and proves 5.4.12,

In 5.4.13, (P,%X\}', is generated by sets XX Y with X*¢ (b and
T*¢€\} , and hence (XX Y)* =X*XY* in (XY, Thus XXYE (bx 4'),
for these sets. This verifies the first inequality. The filter at right is gen-
erated by sets V o Vflc V with VE(Pe$’ ), . These sets are in ¢, X ¥,
by ©.4.12, and thus the second inequality holds.

In 5.4.14, we have ((h,4) € (Uk, XU k)W) &= VEP X Y, .

In this situation, V& ((hX /), by 5.4.12, and thus (Q@,(?) € (V*)* . For
(G ) ()%, we have Vg d x 7, end then ($*! B)E(Ve e V)*
by 5.4.12 and definitions. The second inclusion of 5.4.14 follows.

For 5.4.15, we note that V& (£,), &= (W)*& R, and that
VE (T, X Uk)W(R)) <> Uk XU k)Hme R

compare the proof of 2.3.7. The first inequality now follows immediately from

the firat inclusion in 5.4.14. The filter at right is generated by the sets

HUNT LIBRARY
CARNEGIE-MELLON UNIVERSTTY
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Vo v}

oV with (V*)* & fI, and the second inclusion of 5.4.14 and the dis-
played statement above show that these sets are in the middle filter. This

proves the second inequality of 5.4.15[

6., PRECOMPLETE UNIFOKM CONVERGENCE SPACES, Ve continue to use the assump-
tions and notations of 5.3. We note from 5.4.1 that the space R A = (4*%,4*) ,
for a uniform convergence space A = (U A,2l) , satisfies 5.1.1 if and only if
(}’X'?'éu for every 7?(:'.6.* y i.e. if and only if A* consists of Cauchy file

ters of A . This leads to the following definition.

6.1. DEFINITION, A uniform convergence space A 1is called precomplete,
with respect to the data of 5.3, if every filter @ € A* is a Cauchy filter
of A ., The full subcategory of UNCV with precomplete spaces as its objects is

called the category of precomplete uniform convergence spaces, for the Cauchy

triple given by 5.3. We abbreviate it by UNCVpc .
We shall also assume the set theoretic part of 2.1.3 for precomplete spaces,
by requiring that (p*é A* for every filter QD in A** = (RA)* if A is a

precomplete space.

6.2. THEOREM, The data of 5.3 and 6.1 define a Cauchy triple (R, j, k)

with convergence on the corresponding catezory UNCVpc .

Proof. The restriction to.precomplete spaces guarantees 5.1.1 for U* .
5.1.2 is obvious from the definition, and 5.1.% and 5.1.4 follow from 5.4.3% and
5.4.5. Thus R A is a uniform convergence space if 4 is precomplete. 5.4.7
and the definition of 7(* show that f, = URf for a uniformly continuous

mapping Rf ¢t RA—>»RB if f : A—>B in Uchpc . Thus R is a functor.
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If 43 € A¥* _ then *xd)*é 72( since A is precomplete and ¢*é A*
Then @xd)e 24* by 5.4.13, Thus R A is also precomplete, and R is an
endofunctor of UI\?CVpc « Now j A and er are uniformly continuous, by 5.4.9
and 5.4.15, and we have a Cauchy triple (R, j, k) on Uchpc « In our situa-
tion, ¢ g, x means tFXi & 74 Using this and 5.4.13, end 5.1.4 for 3.2.3,

we see that (R, Je k) is a Cauchy triple with convergence[]

6.3. PROPOSITION, The full subcategory Uchpc of UNCV defined by the
data of 5.3 is a top subcategory of UNCV gver ENS .

Proof. For each set E , there is a complete lattice S E of uniform con=
vergence structures on E , and every mapping f : E —>F induces an inverse
image structure map f5 ¢ SF —>S E . We must show that the intersection of
precomplete structures in S E is precomplete, and that fs(u) in S E. is
precomplete if 7/ in S F is.

Let 4, = (E,?,,i) , for 1 &I, be precomplete spaces over the same
set E, endlet A=(B [)7L). Put A*=URA and AY¥=URA . For
every i €1, idE : A —> 4, is unifornly continuous. The induced mapping
(16 E), : A* — A¥ is a restriction of id JF B ,. and thus A* C A} for
every i €1 . Thus if (r,-(?: A* | then ?xy*(-Z[l for every i €1, as all
spaces Ai are precomplete, But then ¥ ;<¢ = ﬂ?_(i », and A is precomplete,

If £f:E—>F in ENS and 7l€SF, then £%1[) consists of all ..
eilters P on EXE with (£X£),(P) in U. Put 4= (g, £°)) and
B=(F,2L) . The filter mapping f, maps A¥ into B* , If ’Jé A* _ then
(£ X £),(gxg) = f*(¢,) X £,(¢) is in 7( if B is precomplete. But then

?xqéfs(u) , and A is precomplete]
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6.4. EXAMPLES. The following six examples satisfy all conditions. For a
uniform convergence space A , the set A* could be the set of all Cauchy fil-
ters of A, or the set of all convergent filters, or the set of all ultrafil~
ters on U A, or the set of all Cauchy ultrafilters, or the set of all conver-
gent ultrafilters, or the set of all filters x, x€U A . In five of these
six examples, all uniform convergence spaces are precomplete. In the example of
all ultrafilters, the precomplete spaces are the precompact or totally bounded
spaces,

The statements in 4.5, applied to filters on U A U A and the construc=-
tion in 5.3, show that 7/* is a uniform limit structure or a uniform structure
if 2 is a uniform limit structure or uniform structure respectively, and pre-
complete. Thus every Cauchy triple for uniform convergence spaces, of the kind
considered from 5.3 on, induces Cauchy triples for precomplete uniform limit

spaces and precomplete uniform spaces, by restriction of R, j , k.

7. CONTINUOUS RELATIONS., We consider the following general situation.

A commutative diagram

ool

is given in which Ct and ENs® are top categqries over £ and ENS respec-
tively, the functor U is faithful, and the vertical arrows are the projection
functors, In this situation, the upper horizontal arrow is a “structure functor",
with Y(A,x) = (U A, Vyx) and YE=Uf: (U4, v, x) — (UB,u, y) for an

object (A,x) and amap f : (A,x) —> (B,y) of ft. The functor Y is given
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by its structure maps /-DA:TA——>SUA, one for each A € Ob €, from the

set T A of <t-structures of A +to the set S UA of s-—structures of U A .

T7.l1. We make the following assumptions.

7.1.1, € has finite products and pullbacks. The functor U preserves
finite products and pullbacks, and reflects isomorphisms.

7.1.2. £ has J -images for a class I of morphisms of ¢ such that U j
is injective, and U p surjective, whenever (p,j) is a T ~image inC .

7.1.3, For every A€ 0bl., T A is a subset of S UA , closed under
intersections in S UA , and 1, :TA —> S U A is the inclusion mapping.
For every £ : A—>B in € , we have (U f)° 2 =1y £t .

These assumptions usually are satisfied if ¢ is a category of algebras and

Ct a category of topological algebras, constructed over € ana ENS® .

7.2, It follows from 7.1.2 and the last part of 7.1.1 that U j 4is injec-
tive for every j& J , and that (p,j) is a T -imege of f in & whenever
f=3jp in € with j€ T and U p surjective.

Call j and j' in J¥ equivalent if j'=jh .for an isomorphism h
in € . A subobject of an object A of & is given by an equivalence class of
morphisms in JJ with codomain A . We put u'< u for subobjects u , u'

of A, represented by j , j' in J , if j'=jh for some he d ,
7.3. A relation u : A —>B over £ is a triple (4,u,B) consisting of
two objects A , B of € and a subobject u of A X B, If two morphisms
Letf p. 853

of £ are given, then the image of the induced morphism {f,g} : P—>AXB
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determines a relation u : A —> B which we denote by [f,g] . Every relation
over € can be represented in this form, usually in many ways.,

Composition of relations is defined by means of diagrams

N
P W AN

in which the square is a pullback. In this situation, we put

(7.3.1)

(7.3.2) [£',e'] [£,e] = [f £, g' g"]

One must show of course, and it follows from our assumptions, that this does not
depend on the particular representations [f,g] and [f',g'] of the factors.

Under our assumptions, objects of ¢ and relations over ¢ are the objects
and morphisms of a category Rel . [id 4, id A] is the identity relation on
an object A of € , and I A=A, If ={[id A, f], for an object A and a
morphism f : A —> B -of € , defines an emwbedding functor I : € —> Rell .
Relations over ENS are relations in the usual sense, and the functor U 3¢ ~A
ENS preserves relations and their composition. In other words, U can be

extended to a faithful functor from Reld to Rel ENS ,

7.4, DEFINITION, Let (4,x) —>(B,y) be objects of c¥ . ve say that a
relation u : A—> B over ¢ is a continuous relation u : (4,x) —> (B,y)
over £ t if for every pair of morphisms A <—§——> P £58 of ¢ such that
[f,e] € u, and for every structure p €T P of the common domein P of f
and g such that f : (P,p) —p (4,x) in c® , we also have g : (P,p) —>
(B,y) in ct .
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Since f : (P,p) — (4,x) in €Y if and only if p,{ft(x) in TP,
and g : (P,p) —> (B,y) if and only if gt(p).é y in T B, we have u :

(A,x) > (B,y) for a relation u : A —> B over C if and only if
(7.4.1) g, (f(x)) < ¥
whenever [f,g] <u in Rel €.

Y.72A—~>TB jis the seme for all .

representations u = [f,g] of & relation u: A —>B over €, and u: (4,x)
—> (B,y) over €' if and only if (7.4.1) holds for ome such representation.

7.5. PROPOSITION. The mapping g, f

Proof. Let j : P)—YAX B in J be a representative of u , and put

j= {fl,gl} . If [f,g]<u, then if,gl=3h, and thus f=1£ h and

t
g,

t t
Since always ht(ht(p)) £p, (gl)t((fl)t(z) £y implies gt(ft(x)) £y.
If [f,g]l =u, then h is surjective. Thus (U h)® and the restriction

t t

P oor (Un)® ere injective. We have h' h, n' = n® in any case, and with h

h

) t % t
injective, we have h h' =id (TP) . Thus g f = (g), (£,)" [

7.6. THEOREM., A morphism f : A—> B of & is continuous from (A,x)
to (B,y) in €% if and omly ir [1d 4, £] : (4,x) —> (B,y) over C€°.
If u: (a,x)—> (B,y) and v : (B,y) — (C,z) are continuous relations

over £, then vu: (4,x) — (C,z) is continuous.

Proof. (7.4.1) for [id &, f] is ft(x) Ly, and thie is also the

requirement for f : (4,x) —>(B,y) . With 7.5, this proves the first part.
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For the second part, we consider a diagram (7.3.1). Put
t R 1
p = fx) , q = () , r = (%) .

Then 8t(p)£y and (g')t(q),éz if u and v are continuous. It follows
that g f" =£' ¢ : (R,r) — (B,y) in€ %, Since q= (f‘)t(y) , this

implies g" : (R,r) — (Q,q) . Thus (g")t(r)é q . Now
(&' &), (£ )52) = (&' &),(x) € (e)a) € 2 ,
and vu=/[ff", g g"] is continuous by 7.5[]

Theorem 7.6 shows that continuous relations over t form a category into

which ¢t is embedded, by a functor which lifts the functor I of 7.3.

8. SEPARATED SPACES, We define separation for a top category ENS® over

ERS on which a Cauchy triple (R, 3 k) with convergence is defined,

8.1. We recall that a top category ENS® over ENS is obtained as follows.
A complete lattice S E of structures on E is assigned to every set E , and
mappings f_  : SE -3 SF end £f° : SF —>S E are assigned to every mapping
f :E~— F ., Both assignments are functorial, one covariant, the other contra-
variant, and f (W &v &= ug t%(v) for all u&SE and v&€S Fif
f:E—>F ., It follows that the maps fs rreserve suprema and the maps 5
infimgs. Objects of ENS® are pairs (E,u) of a set E and some uESE,
and a map f : (E,u) — (F,v) is a mapping f : E —F such that u < fo(v) .
Composition in ENs® is composition of mappings.

The category CONV of convergence spaces, vhich we also denote by Ens? .
is an example. Other examples are topological spaces, uniform spaces, uniform

convergence spaces, limit spaces, and neighborhood or closure spaces.
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8.2, Let ENS® and ENST be top categories over ENS , If a mapping
Ti.: t: RE —~—>S E which preserves infima is assigned to every set E , and if

fs“c'F =“CE'3 £¥ for every mapping f : B —>F , then
T (E,u) = (E,'CE u , Tf = f: (E,'t‘E u) (F,‘CF v) ,

for every object (E,u) and morphism f : (E,u) —> (P,v) of ENST , defines
a functor T : ENST — ENS® which we call a top functor.
Among all functors T : Enst -—> ENs® s, the top functors are characterized

by the fact that they lift Id ENS and have left adjoints which also lift

Id ENS ., In fact, if (E,u) is an object of ENS® and if

oL u = inf{véRE:ué‘c‘E v},

then id E : (E,u) — T (E,O'E u) is a universal morphism for a top functor T
given by structure maps ‘C'E « V¥We do not go further into this.

If in particular R E is a subset of S E , closed under infima in S E ,
for every set E , and if £° maps R F into RE for every mapping f :
E—>F , then we obtain a top category ENSr end & top functor T : ENSr——>
ERs® by letting ff tRF —>RE be the restriction of % for every mapping
f:tE—F, and Ty ¢ RE —>»S E the inclusion mapping for every set E .
In this situation, ENST is a full subcategory of ENS® which we call a top

subcategory of ENs® , and T 1is the inclusion functor.

B.3. DEFINITION, We assume from now on that a top category ENS® with a
top functor ENS® —> Ers?  to convergence spaces, and a Cauchy triple (R, j, k)
with convergence, over ENS® , are given. We put R (E,u) = (E*,u*) for an
object (E,u) of ENS® , and we denote by qE(u) the convergence structure

on E obtained by applying the given top functor to (E,u) . We say that (E,u)
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is separated for the triple (R, 3, k) if every filter CPG_ E* converges to at
most one point x€ E , i.e. if the restriction of qE(u) to E* is a func-
tional relation from E* to E . We do not require that every filter e C E*
converges. If this is the case for a separated space (E,u) , then convergence

of filters induces a mapping from E* to E .

(2]

8.4, PROPOSITION. The product of separated spaces is separated, If f

E —>F 4is injective and (F,v) a separated space, and if u st(v) in SE,

then (E,u) is a separated space.

Proof. Let first TT(Ei,ui) = (E,u) , with sets of Cauchy filters E;*

and E* , with convergence relations 9 and q , and with projections Jci .
If Pax, with ?GE* , then (ﬂ; )*((f') is in E;* and converges for CH
to Vi(x) , for every i . If the spaces (Ei’ui) are separated, this deter-
mines the points 77'i(x) and hence x uniquely, and (E,u) is separated.

In the second part, let E* and F* be the sets of Cauchy filters, and q
and q' the convergence relations. If ?&E* and <pq x , then f*(?) S
and f*(f) q' f(x) . If (P,v) is separated and f injective, this determines

£(x) and then x uniquely, and thus (E,u) is separatedf

T

8.5. THEOREM. If ENS® psatisfies the conditions of 8.3 and ENS® is a

top subcategory of ENs® » then the separated spaces in Ob ERS® are the

objects of an epireflective full subcategory of "ENs® .

Proof. We sketch the construction which follows a standard pattern. Let K
be the class of all separated spaces in Ob ENsT . For every object (E,u)

of ENS® , there is a family of surjective maps g * (E,u) —> (Ei’ui) in ENSS




with (Ei'ui)e K such that every surjective g : (E,u) —>(F,v) in ENS®
with (F,v) €K is up to an iscmorphism (Ei’ui) —> (F,v) one of the g -
If f: (Eyu) —»(F,v) with (F,v) &KX, let f=hg with g : E~—> E'
surjective and h injective. If v' = h®(v) , then g : (E,u) —> (B',v")

in ENS® with (F',v') €K . Thus f factors through one of the g; + Now
form the product (E',u') of the (Ei’ui) and the map g' : (E,u) — (E',u')
with projections g; o Put g' =h" g" with g" : E —>»E" surjective and h"
injective. If u" = (h")%(u') , then g" : (E,u)—> (E",u") in ENS® with
(E",u") £€X, and every map f : (E,u) — (F,v) in ENS® with (F,v)E€ K
factors through this one. Since g" is surjective, g" : (E,u) —>(E",u") is

epimorphic in ENS® , and the factorization is uniquel

9. REGULAR SPACES. Ve continue to use the assumptions of 8.3,

9.1. DEFINITION, A space A = (E,u) in Ob ENS® is called regular, for
the Cauchy triple (R, j, k) , if the convergence relation q E*—> E ,

induced by qE(u) for R A = (E%u*) , is continuous from (E*,u*) to (E,u)..

9.2. THEOREM. Regular spaces in Ob ENS® are the objects of a top sub-

category of ENS® .

PROOF. Let RE be the set of all ué& S-E with (E,u) regular, for a
set E . Consider first a family of structures 'w € RE and put u = N u .
Put R (B,u,) = (E;*,u*) and R (E,u) = (B*,u*) , and put b, =R (id E) :
(E*,u*) —> (Ei*,ui*) . If f: A —>EBE* and g : A—3E with f(x) q g(x)
for every x€ A and q = qE(u) , we must show that gs(fs(u*))e,gm,. In this

situation, hi’" is an inclusion mapping, and q; = qE(ui) an extension of q ,
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for all i . Thus (n £)(x) q; &(x) forall i, and g((h £)%)(u*) Ly

follows since (E,ui) is regular. But u* é(hi)s(ui*) , and hence
gs(fs(u*)) < gs(fs((hi)s(ui*))) = g ((n; f)s(ui*)) £

for all i . Thus gs(fs(u*))_éu , and (E,u) is regular.

Letnow £ :E—~>F and u=f(v) with vERE . Put R (E,u) = (E*,u*)
and R (F,v) = (P*,v*) , and put q = qE(u) and q' = qF(v) . If g:A—>E
and h : A —>F with h(x) q g(x) for every x€ A, then f,(n(x)) q' £(g(x))
for every x€ A . Thus u*é(f,*)s(\r*) » and

(r &) (1%(u*)) & (£ &) (B°((£,)°(+)) = (£&) ((£, 0)°(v)) £ v ,

by regularity of (F,v) . But then gs(hs(u*))é £f%(v) =u, and (E,u) is

regular

9.3. COROLLARY, If ENS” is a top subcategory of ENS® , then the regus:

lar and the separated regular spaces in Ob ENST are the objects of full reflec-

tive subcategories of ENs®

Proof. The regular spaces in Ob ENST are in fact the objects of a top
subcategory of ENS® . This is reflective, and we can.use (8.5) for separated

regular spaces in Ob ENST 0

9.4. TWO EXAMPLES, We consider topological spaces and convergence spaces
with the Cauchy triples of 4.1 and 4.3. In either case, let (E,u) be a space
and R (E,u) = (E¥,u*) ., We put q = qE(u) . Then q(x*) =X, the closure of
XCE for u, if E* consists of all filters on E , or of all ultrafilters
on E , or of all convergent filters, or of all convergent ultrafilters. If ®

is a filter on E , then the sets X, X €& Cf , form a basis of a filter on E
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which we denote by Z[,_ . We formulate T3' as follows.

T3. If x€E and Fax, then _f—qx.
A topological or convergence space usually is called regular if it satisfies T3 .
We wish to show that this is equivalent to our definition 9.1, for the Cauchy
triples mentioned above,

Consider first f : A — E* and g: A —> E with f(x) q g(x) for all
x&E A, and let q* = qE*(u*) and q' = qA(fs(u*)) .« Then q' = £3(q*) , and
&6q'x for x&€ A and a filter <" on A if and only if f*(c‘) qQ¥* f(x) .
As f(x) q g(x) , this implies q a g(x) for @ =(f(x))y . If X*& £(x) ,
then £l(X) o, end g(f7(X*) CX. Thus o) 2F, and gl q elx)

follows if (E,u) satisfies T This means that g : (4, £ (u*)) —> (E,u)

5 .
is continuous, i.e that gs(fs(u*)) Lu,

For the converse, let A be the set of all (tf!,x) in E*¥*X E such that
(Fq x , and put f(?‘,x) = ¢ and g(fs,x) =x for (7,1{) &A. For X CE,
let S, = £(X*) . Then £(S)C X* and g(S,) =X . For a filter ¢ on E,
the sets SX with XGC/D generate a filter Scf on A, with f*(SF)s'(})* and
g*(S?) =F. If ¢ ax, then ¢*q* %, and S?. q' (%,x) follows., If g:

(4, £2(uw*)) —> (E,u) , it follows that g*(S?) qx. Thisis T, for (E,u) .

3

9.5. T, SPACES, Putting D (E,u) = (&°, n°(u)) for an object (E,u) of
a top category ENS® , where E° = -&i : xEEl and h(x) =% for x€ E ,
defines a Cauchy triple (D, 3 k) for every top category ENs® over sets. For
this triple, J and k are natural equivalences, and D j= jD= k-l . Ve say
that (E,u) is a T, space if (E,u) is separated for (D, j, k) .

If g = qE(u) », then ¥ qx forevery x€E . Thus a Tl space is one

which satisfies the following axiom.
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T1 . If x,y arein E and Xqy, then x=y.

This is of course the usual separation axiom T. in filter form.

1
Regular spaces for the triple (D, b k) have occurred in completion conw

structions, but we shall not discuss them here.

As a corollary of 8.5, we have the following result.

9.6, PROPOSITION, If ENS® is a top category over ENS and ENS® & top

=2

subcategory of ENS® , then the T, spaces in Ob ENST are the objects of an

epireflective full subcategory of ENS® d

10, REGULAR UNIFORM CONVERGENCE SPACES., Our general theory strongly sug-

gests the following definition.

10.1. DEFINITION. A uniform convergence space (E,Zl) is called regular
if (E,ZLJ is regular for the Cauchy triple (R, j, k) 5.3, with E* one of
the following sets: all Cauchy filters on E , all Cauchy ultrafilters on E ,
all convergent filters on E , all convergent ultrafilters on E .

We have enumerated four triples; the preceding paragraph suggests that the

sameé spaces are regular for each of these triples.

10.2. Let (E,LL) be a uniform convergence space, E* = UR (E,l) , and
q =qE(‘ZL) . Then ¢qx, for x €E and a filter ¢ on E, if and only if
Pxtell. For UC EXE, weput U= (qxq)(0%) . Thus (x,y)& T if
and only if ¢q x and \f/q y for filters n? and W on E with Ueqlxyz.
We call U the uniform closure of U, The set U is easily seen to be the
same for each of the four triples involved. This observation and 10.3% show that

regularity is the same for each of the four triples.
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For a filter ¢‘ on EXE , we denote by @ the filter on EX E with .

all sets U , for Ué@ , as basis. We have the following result.

10.3. THEOREM. A uniform convergence space (E,7¢) is regular if and only

if it satisfies the following condition.

u v = .
T3. If a filter (;D_og EXE is in 7( then (z}éu-

Proof. Put UNCV = ENSY for this proof, If f : A~—3E* and g :A—>E
are given so that f(x) q g{x) for every x €4, and if (fXf)(V)C U* for
V& AX A and UCLEXE, then clearly (gxg)(V)< T . If X is a fil-

ter on AX A and ¢ one on EX E , it follows that
(fx £,V * = (egxa )P .

Now X & £%()*) if and only if (fx £),(F)<@" for some F€UL. Thus
T‘-; implies that g : (4, £2ar)) — (E, %) is continuous. This is (7.4.1):
g, (£ (U*) £ 1L

For the converse, let A = {(q:,x)é: B*x B : ?q x‘; , and let f(?,x) =<f.~
and glx) =x for () €A . Put Sy=(£x £)7H(U*) for UC EXE.
Then (f % f)(SU) C-U* and (gx g)(SU) =T . This is easily verified., For
a filter Cp on EXE, let S¢, be the filter on A X A with the sets SU ’
UEQ , as basis. Then (fx £)(5) L @* and (g x g),(5p) = @ . Thus
S(péfu('L(,*) for (Z“E U. 1t (E,2) is regular, then g : (A, £(2*)) —>
(E,720) is uniformly continuous. Applied to the filters sp for e,

this implies T; for (B, L) ﬂ

10.4. THEOREM. Every uniform space is a regular uniform convergence space.

Proof. For every entourage U , there are entourages V and W such that
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1

WoeVeW U, If (x,y)& 7 with ¢ax, yqy, end VEPX, then

there are sets Xéqr and Y€ Y  such that X & W(x) anéd Y C W(y) . Then.
vNAXXTY) in Fxy is not empty. Thus (x,y)&EWo Vo W-l , and we con=
clude that VT C U . If d‘ is the filter of entourages, this shows that

< ¢ But then the space cleary satisfies T‘; and is regular]

11. COMPLETE SPACES., We use again the assumptions and notations of 8.3.

11.1. DEFINITION. 4 space (E,u) , with R (E,u) = (E¥,u*) , is called
complete, for the triple (R, s k) , 1if every filter gvéE* converges for
qE(u) to some point x € E . In other words, we reguire q'-l(E) = E* for the

relation q ¢ E¥* —> E induced by qE(u) .
The space (E*,u*) always is complete, by 3.2.2. More generally, the under-

lying space of an algebra for the triple (R, R k) is complete, by 3.3.

11.2. PROPOSITION, If (E,u) is a regular space in ENSS , then

(E, qE(u)) is a recular convergence space.

Proof. Put q = qE(u) and q* = qE*(u*) . If f:A—>E* and g:
A —> E are mappings such that f(x) q g(x) for all x& A, then g :
(A, £%(u*)) —» (B,u) is continuous. Since qA(fs(u*)) = fq(qE*(u*)) = f%q*) ,

the map g : (4, f%q*)) —> (£,q) also is continuous. Thus (E,q) is regular(]

11.3. THEOREM, A separated space (E,uw)-in ENS® jis complete and regular

if and only if (E,u) is the underlyving space of an algebra for (R, s k) .

Proof. If gq : (u*,u*) —> (E,u) is an algevra for (R, j, k) , for a

separated space (E,u) , then q : E* —» B 4s filter convergence by 3.3, and
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continuous as a relation by 7.6. Thus (E,q) is complete and regular.
Conversely, if (E,u) is separated, regular and complete, then filter con=
vergence defines a mep q : (E*,u*) —»(E,u) in ENS® . By 3.3, thie map is
the only possible algebra structure of (E,u) for the triple (R, j, k) . Thus
we must show that q j, = id (E,u) and gk, =gq (Rq) for 4= (E,u) .
The first of these laws requires X q x for all x €E ., This is always
true. The second law requires that (B, q x => 0,(@) q x for a filter
in UR (E*,q*) and x&E. If X&(P, , then q(x*) =X isin () .

Thus q*(iﬁ)é?’?" for ¢ =Q‘7* , and gk, =g (R q) reflects T, for (E,q) .

3
This is valid by 11.2 and 9.4

11.4. THEOREM, If f : (E,u) —> (F,v) is amep in ENS® with (F,v)

separated, regular, complete, then there is exactly one map g ¢ R (E,u) —

(E,v) in ENS® for which g j, =f, for 4= (E,u).

Proof. Put B = (F,v) . By 11.3, filter convergence defines an algebra
9z : R B—>3B for the triple (R, j, k) , and ag (R £) jy=agdgf=1~.
Thus g = qg (R f) satisfies the conditions.

On the other hand, if g : RA —> B in ENS® and (PEURRA , then
¢ q ¢* , and thus g(@) ag g(¢‘>*) . Thus g kA“'ﬁ: ag & 2t the set level,
and gk, =qg (R g) at the ENS® 1level. In other words, g is a homomorphism

of algebras for (R, j, k) . Now

i

g hle ) = o Re)R ) = gk, (Rj) = ¢ .

Thus g=qB(Rf) is the only map g : R A => B such that ng=fﬂ

11.5. REMARK., By 3.3, a separated space (E,u) has at most one algebra
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structure for a Cauchy triple (R, j, k) with convergence, and by 11,3 such a
structure exists if, and only if, (E,u) is separated and complete. The proof
of 11.4 consists of two parts. We show first that everymap f : RA ~—>» B in
ENS® with B regular, separated, complete, is a homomorphism f : (R 4, kA)

(B. qB) of algebras, and then we prove a general triple-theoretic statement for
the case on hand: if (B, q) is a triple algebra and f : A —~» B & morphism ,

then f =g j, for a unique morphism g : (R A, RA) -—)(B,q) of algebras,

A
12. COMPLETIONS. We show that separated reguler complete spaces, for a
given Cauchy triple (R, j, k) with convergence on ENg® , form a reflective
subcategory of ENs® , and an epireflective subcategory of the category of sepa~-
rated spaces in Exg® , provided that the latter category is nice enough to be

colocally small, We use a general theorem of Herrlich for this purpose.

12,1, PROPOSITION, The following three properties of a map f : (E,u)

(F,v) of separated spaces in ENS® gre logiczlly equivalent.

(1) £ :E—>F jin ENS is injective.

(ii) f is monomorphic in ENs® .

(iii) f is monomorphic in the category of separated spaces of ENSS .

Proof. (i) ==> (ii) trivially: the projection functor ENS®.—> ENS ,

like every faithful functor, reflects monomorphisms. (i1) == (iii) even nore
trivially. We prove (iii) = (i) by contradiétion.

Suopose f(x) = f{y) but x #y . Consider & space (fal, t) consisting
of a singleton with the finest structure. This space is necessarily separated.

g(a) =x and h{a) = y defines maps of ENS® from this space to (E,u) by the




CT 7

choice of t . We have g #h , btut fg=th

12,2, LEMMA, Let f : (E,u) —> (F,v) be an extremal monomorvhism of
separated spaces in ENs® y» for a Ceuchy triple (R, j, k) with convergence,
I geb* and £,(y) qpy for B=(Fv) and y&F, then y=1£(x) fora

point x¢& E such that Pay X for 4 = (B,u) .

Proof. We put R (E,u) = (E*,u*) , Let F' be the set of all y& F such
that f*(q) qg ¥ for some ¢ CE* ., Since £, (%) ap f(x) for x&E , we have

f(E) C F', and hence a factorization
(Eru) "“—g*;X (F" JS(V)) —-‘2’"7\ (F,V)

of £ in ENS® where J ¢+ P* —>F is the inclusion mapping. The space in the
middle obviously is separated. If hg=h'g formaps h, h' in ENS® with
separated codomain, then h*(g*((/‘f)) = h'*(g*(7::-)) and f*(q/‘) = j*(g*((is)) for a
filter ¢ € B*, If B'= (¥, ;°(v)) , then g = jq(qB) for the convergence
relation. If f,(q) agy , it follows that g({) ag, v (note that y = j(y) ).
In this situation,  h,(gy(@)) converges to h(y) and to h'(y) . Since the
codomain of h and h' is separated, h(y) = h'(y) follows. Thus h = h' ’
and h is epimorphic, As f is extremal, h is isomorphic in ENs® s and a
fortiori bijective., Thus F' = f(E) .

Now u = f(v) since otherwise
(Bu) —HE 5 (5,6%(v)) —E5 ((7,v)

in ENSS » with id E epimorphic but not isomorphic, and the middle space sepa=~
rated. This camnot happen if f is extremal., It follows that q, = £3(qg) ,

and thus 71>qAx for ?GE* if f*QF) gy ¥ for y=1£f(x) in F |
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12.3, THEOREM, For a Cauchy triple (R, j, k) with convergence on ENs® ’

the class of sevarated regular complete spaces is closed under the formation of

products and of extremal subobjects.

Proof. Consider first A = 77Ai with projections Ji; , with A = (E,u)
and Ai = (Ei’ui) . Convergence for Ai defines an algebra qQ; ¢ R Ai —_—> Ai
for the trivle (R, j, k) . There is a unique map q : R A —> A in ENS® such
that T, q = g (R7m;) for all i . We have

Fiady = gy (B g = g TR R

q; (BTy)(Ra) = q R(7 a)

il
i

q; Rlq; (Ry)) q; (R q;)(RR7)

ay kAi (R R7T;) q Rk, =77 ak
for all JT, . Thus q j, =id A and q (Rg) =qk, , and we have an algebra
q : RA—->A, Since A is separated by 8.4, this shows that A is regular .
and complete, by 1l.3.

Now let 4 = (B,f°(v)) and B = (F,v) for an extremal monomorphism f :
A —B of separated spaces, and put R A = (E¥,u*) . If B is separated and
complete and SDC:E* , then f*(zl’p) gy ¥ for a unique y &F . By 12.2, there
is a unique x ©E such that Lf q X and y = f(x) . Thus convergence defines
a mapping qy ¢ E*¥* —> E such that f 9, = qg f, « Since ag and f, are con~
tinuous, we have q, : (B*,u*) —> (E,f%(v)) in ENS® . Thus A is regular

and completeﬂ

12.4. COROLLARY, If the category of separated spaces in ENs® is colocally

small, then separated regular complete spaces define a reflective subecategory of
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ENSS and an epireflective subcategory of the category of separated spaces.

Proof. The category of sevarated spaces in ENS®  is locally smwall by 12.2.

It is reflective in ENS® and hence complete. Thus the general theory of Herr-

lich applies if it is colocally smalll]

1%, AN UNPLEASANT EXAMPLE, Much of this paper is a buildup toward 12.4.

We proceed to deflate 12.4 by proving the following result.

13.1. THEOREM. The following categories are not colocally small: sepa-
rated convergence spaces, separated limit spaces, geparated closure spaces,

separated uniform convergence spaces, separated uniform limit spgces.

Proof. With obvious symbols, we have forgetful functors as follows.

UBLIM -——> UNCV

! y

CLOS ——3 LIM ——> CCNV

The horizontal arrows revresent full and faithful functcrs with left inverse left
adjoints. These functors preserve separatcd spaces and epimorphisms of separated
spaces. The vertical arrows represent functors with left adjoints which preserve
separated spaces and their epimorphisms., Thus it is sufficient for the proof to
show that there are separated closure spaces which can be embedded as dense sub-

spaces into closure spaces of arbitrarily high cardinaslity. An example followeﬂ

13.2. We recall that a set XC E is called open for a convergence space
(E,q) if f?fp qx, fora filter y* on B and x&X, always implies Xé?& .

A set X(C E is called dense for (E,q) if @ is the only open set for (E,q)
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vwhich is disjoint from X .

Amap f : (E,q)—> (F,r) of se;;arated convergence spaces is epimorphic
in the category of separated convergence spaces if (and in fact only if) f(E)
is dense for (F,r) . For consider maps g and h from (F,r) to the same
separated space, and let Y be the set of all y& F such that ely) #nly) .
If Yry forafilter Y on F and y €Y, then the filters g,{/) eand
h*(y& converge to points g(y) #h(y) . 4 filter finer than g(¢) and h*()lf)
would converge to both points; and thies cannot happen in a separated space. Thus
&«(#) N h,(4) is the null filter, and hence g(¥') N\ h(Y") =@ for sets Y'.
and Y" in \// + But then Y'N\Y'C Y, and hence Y& ¥, Thus Y is open.
If gf=hf, then YNf(E) =@, and if f(E) is dense for (F,r) , this

implies Y =% and hence g=h .

13.3., We construct the example., We begin with an infinite discrete space
(Eo,qo) . By transfinite induction, we construct for each ordinal number n> 0]
a space (En,qn) and for each pair of ordinals m<n amap u  : (Em,qm)
(En,q n) , -with the following properties.

13.3.1. u  =id (En,qn) , and Unp = Ynp Ynn if n<n<p.

13.3.2. Every map umn is injective.

13.3.3., Every space (En’qn) is a closure {or neighborhood) space, and if
m<n and N is the neighborhood filter of xf:Em for q ., then (\ﬂnn)*(Nx)

is the neighborhood filter of umn(x) in (En,qn) .

Suppose that the spaces (En'qn) and maps u are already constructed for

mn
n<n<k. If k is a limit ordinal, put (Ek,qk) = lim (En,un) in the catesr

gory of convergence spaces, for the given spaces and maps. This is a directed

limit, and injective maps u ) —> (Ek’uk) are automatically given

nk * (En’q‘n
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so that W

and one sees easily that 13.3.3, for n = k , describes 9 fully. If p, q

- . m 1" ] U]
wo =u, if n<nlk . The maps w, are "collectively onto",

are in Ek s then p= unk(x) and q = unk(y) for one n< k and points x ,
y of En + The neighborhood filters Nx and Ny for q n contain disjoint
sets X and Y, and then u nk(x) and u nk(Y) are in the neighborhood filters
Np and Nq for q . Since u, 1is injective, these sets are disjoint, and
thus (Ek,qk) is separated.

Let now k=h+1. Let E_ consist of all filters x with x GEh and
all ultrafilters on Eh which do not converge for q, Put uhk(x) =x for

x&E , and put u, = if m h . This defines the maps u_, . Put

u
mh
N, = (uhk)*(Nx) for x€E and N =¢ v (u'hk)*(?’) for SDE Ek\ u.hk(hh) .
This defines 9 - The conditions of 13,3 are easily verified. We show that

(Ek,qk) is separated by showing that the neighborhood filters Np and Nq of

distinct points p sand q of Ek contain disjoint sets, Three cases must be

considered; we leave the details to the reader,

13,4, We show by transfinite induction that umn(Em) is dense for (En,q n)

if m £n . Thus all maps u

Suppose that umn(Em) is dense for (En,qn) if m<n<k . Let AT E

are epimorphic,

be open and disjoint from umk(E) . If unk(x) € A for some x € E with

n <k , then necessarily m <n . In this situation, u nk.l(A) is open for

n 1

e .o=1 . .
(En,qn) and disjoint from umn(Em) , and x€u (A) . This contradicts our
assumption that umn(Em) is dense for (En,qn) . If ¢+ A is not in one of
the sets u nk(En) with n<k , then k cannot be a limit ordinal, and P is
a non-convergent ultrafilter on Eh if k=h+1 . But then (uhk)*(?’) ay, ?

by our construction, and hence A é(um()*(ff) , and u.hk"l(A)’G?‘«“ « Thus
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uhk-l(A) is not empty, and we obtain the same contradiction as before for

x & uhk-l(A) . This shows that we must have A = @ , as claimed,

13.5. We examine the cardinalities \En' - let Ggq x for an ultrafilter

G on E and xéEn , and let m<n be the least ordinal mumber sich that
x = umn(z) for some =z é:Em . Then G < (umn)*(Nz) , and it follows that

G

(umn)*(F) for some ultrafilter F .éNZ on E . If m=0, then F= A
and G=%, If m >0, then m cannot be a limit ordinal. If m=h +1,
then 2z is a non-convergent ultrafilter on Eh , and Fgéu(uhm)*(z) + Thus
either F=2% or FX (uhm)*(z) , and then F = (uhm)*(z) . This shows that
at most two ultrafilters on En converge to a point of En « It follows that
‘En+1i is the cardinality of the set of all ultrafilters on En , &and thus

l B \ /\'i En+1l . We conclude that ‘Enl can be made arbitrarily large for n

large enough, and thus cur example does the job it is supposed to do.
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