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1. Introduction

Let X be a real normed linear space, and let

be its unit ball, with the boundary d£(X) . If dim X ^ 2

6V denotes the inner metric of ST(X) induced by the norm

(cf. [1; Section 3]). If no confusion is likely, we write

Ti, SL, 6 . In [1] we introduced and discussed parameters

of X based on the metric structure of d£, namely D(X)

= sup{6(p,q): p,q e 3S} , M(X) = sup[6 (-p,p) : pe9S), m(X)

= inf {6( -Pj,p) : p e dL} . D (X) is the inner diameter of

5£(X) , and 2M(X) and 2m(X) are the perimeter and the

girth of E(X) , respectively. In additional papers [2],

[3]., [4] we discussed the range of the girth for finite-

and infinite-dimensional spaces.

In this note we propose to study the spaces X for

which the inner diameter and the perimeter take their

greatest possible value, namely D(X) = M(X) = 4 . For the

finite-dimensional among these spaces we obtain a complete

characterization: they are precisely those spaces whose

unit ball is a cylinder or the intersection of two cones.
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We use the terminology, notation, and results of

Sections 1-5 of [1] freely. That paper shall be

referred to as S, and its contents quoted as, e.g.,

Theorem S.3.4, formula S(3.1).

We know that M(X) = D(X) if dim X is 2 or 3 ,

but for higher dimensions this equality is a matter of

conjecture (Theorem S.5.8, Conjecture S.9.1). It might

therefore be questioned whether the conditions D(X) = 4

and M(X) = 4 are, in fact, equivalent. The following

proposition resolves this doubt.

1. Theorem. Assume dim X ^ 2 . Then

(1.1) 2D(X) - 4 £ M(X) <; D(X) £ 4 .

In particular, D (X) = 4 .if and only .if M(X) = 4 . In

that case, if p,q e 3Z) and 6(p,q) = 4 , then p + q = 0

Proof. All inequalities in (1.1) except the first

hold by Lemma S.5.2 . If p,q e 3£ , let Y be a two-

dimensional subspace of X containing p,q (it is unique

if p i q ^ 0). By Theorem S.3.4,(a) , the first papagraph

of Section 4 of S , and Theorem S.4.2 ,

6(-p,q) + 6(q,p) £ 6y(-p,q) + 6y(q,p) = L(Y) < 4 ;
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therefore

(1.2) 4 I 6(-p.p) I 6(p,q) - 6(-p,q) ̂  26(p,q) - 4 .

Taking suprema for all p,q e 3E in the second and last

members of (1.2), we obtain the first inequality in (1.1).

The equivalence of D (X) = 4 and M(X) = 4 follows from

(1.1) . If 6(p,q) = 4 , equality must hold throughout

(1.2); therefore 6(-p,q) = 0 , i.e., -p = q .

Remark. The last part of the statement indicates

that when D(X) = M(X) = 4 , the suprema in the definitions

of D(X) and M(X) are attained together and at the same

points,, if either is attained at all.

2. Homothetic disks.

The auxiliary result proved in this section is surely

known. A proof without recourse to a euclidean metric

or to the calculus would be desirable.

2• Lemma. Let K,,KO be compact convex sets in a
— — _ _ _ _ - _ • — • • — — - j_ ^ — — f- ____»________ _ _ _ _ _ _ _ _ _ _ _ _

two-dimensional real vector space, with 0 ^s_ _a common

interior point. For each ray from 0 , assume that K,

and K2 have .a pair of parallel supporting lines at the
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respective boundary points on the ray. Then there exists

a number p > 0 such that Ko = pKn .— — — — — — — — ——»- _ _ _ — • ^ ĵ

Proof. Choose a euclidean metric and a system of

polar co-ordinates in the given plane, and let r = f.(6) > 0 ,

0 £ 9 < 2TT be the equation of the boundary of K. , i = 1,2 .

For all 6 with a countable set of exceptions, both K,

and K2 have unique supporting lines at the boundary points

corresponding to 6 . Since these lines are parallel,

f11iQ)/f1(Q) = f^(9)/f2(9) for all 9 with the same set

of exceptions (here primes indicate differentiation with

respect to 9). Since K. is convex, f. is absolutely

continuous, i = 1,2 ; integration therefore yields

f l ( 9 ) / f l ( 0 ) = f 2 ( e ) / f 2 ( O ) f o r a 1 1 9 ' T h e conclusion

holds with p = f2(O)/f1(O) .

3. Poles.

We now return to the study of a normed space X with

dim X ^ 2 . if D(X) = M(X) = 4 and we are interested in

the pairs of points where the supremum in the definition of

D(X) is attained--if any exist--the Remark to Theorem 1

indicates that we need only consider antipodes. We define

a P° l e o f x (or of £ , or of SS) to be a point u e

such that 6(-u,u) = 4 . While poles can exist only in
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spaces X with D(X) = M(X) = 4 , such spaces need not,

in general, have poles (see Example 4.3); but they must

if dim X < OD , by Lemma S.5.1, (b) .

If u is a pole of X , it is also a pole of every

subspace Y of X that contains u, since 4 = 6(-u,u)

<; 6 (-u,u) <; 4 . If, in particular, dim Y = 2 , then

L(Y) = 4 and I(Y) is a parallelogram, by S(4.2) and

Theorem S.4.2 . This observation shows, incidentally,

that if u is a pole there actually exists a curve of

length 4 (indeed a plane one) from -u to u in BE.

The next proposition gives an interim account of the

location of poles. If u e dE, we denote by P the set

of all two-dimensional subspaces of X that contain u .

3. Lemma. Assume dim X ^ 3 . A pole u .of X is

either a. vertex of the parallelogram E(Y) for every Y e P
———— ^

or the midpoint of a. side of E(Y) for every Y e P .

Proof. 1. Any two distinct subspaces in P are con-

tained in a single three-dimensional subspace that contains

u and therefore has u as a pole. - Replacing X by this

subspace, if necessary, we shall therefore assume without

loss that dim X = 3 .
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2. If there exist distinct Y,Z e P such that u
~u

is interior both to a side of L(Y) and to a side of T(Z) ,

these sides span the unique supporting plane of S at u .

If, on the other hand, u is a vertex of E(Y) for some

Y e P , the two sides of £(Y) that meet at u must

belong to distinct supporting planes of £ at u .

We claim that u cannot be interior to a side of

E(Y) for exactly one Y e P . For assume this to be

the case; then every supporting plane of £ at u must

contain this side; since the assumption and the preceding

paragraph rule out a unique supporting plane of E at u ,

there are exactly two, say u + V and u + W , with V ^ W

For each Z e P distinct from Y , the sides of E(Z)

meeting at the vertex u must lie in u + V and u + W;

therefore another vertex must lie on the straight line

(u + V) fl — (u + W) ; conversely, if p is any point on

this line and Z is the subspace spanned by u and p ,

we have Z ^ Y , and therefore p is a vertex of S(Z) .

Thus every point on this line lies in £, which is absurd.

Our claim is established.

We conclude from this part of the proof that u is

either a vertex of £(Y) for every Y e P or else an
~u

interior point of a side of Z(Y) for every Y e P . It
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remains to prove that in the latter case u is the mid-

point of each such side.

3. Assume, then, that u is interior to a side of E(Y)

for every Y e P , and let W be the two-dimensional sub-
<—U

space such that u + W is the unique supporting place of

E at u . Let us look at the "lid" of E : we have

£n(u+W) = u + K , were K is a compact convex set in W

with 0 in its interior; let SK be its boundary in W .

Similarly for the "bottom" : in (-u + W) = - u - K .

Let a ray from 0 in W be given, and let p and q

be its intersections with SK and -SK , respectively. Let

Y e P be the subspace spanned by u and the given ray; E(Y)^u

is then the parallelogram with vertices ,+ (u+p), ^(-u+q) .

Consider a supporting plane of £ that contains the side

u + p , -u + q of this parallelogram; its (parallel)

intersections with u + W and -u + W are supporting lines

of the "lid" u + K at u + p and of the "bottom" - u - K

at -u + q , respectively. Therefore K and -K have

parallel supporting lines at p and q , respectively.

Since the ray was arbitrary, we conclude that -K = pK for

some p > 0 ; but then K = -pK = p K , so that p = 1

and -K = K . It follows that, in the preceding construc-

tion, q = p , and the vertices of £(Y) are ,+ (u + p) ,
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_+ (-u + p) ; thus u is the midpoint of the side u - p ,

u + p . Since every Y € P is spanned by u and a ray

from 0 in W , this completes the proof.

4. Cylinders and Rhombuses.

We can now characterize all spaces possessing poles;

this includes, as noted, all finite-dimensional spaces X

with D(X) = M(X) = 4 .

Assume that dim X ^ 2 , and consider u e 5E . X

is cylindrical at u if there exists a normed space Z and

a congruence (bijective linear isometry) S : R © Z -* X

such that S(l©0) = u ; X is rhombic at u if L = (u - C)

Pi (-u + C) , where C is a closed convex cone with apex 0

and u in its interior. If there exists a u e d£ such

that X is cylindrical [rhombic] at u , T is said to

be a cylinder [a (solid) rhombus]. "Cylinder" thus appears

in its usual meaning; "solid rhombus" as a term for the inter-

section of two "opposite" cones has the authority of Archimedes

(cf. 7Tef>< tryaipcLS KGLI KoXtuSpov a', 18), although his

cones were three-dimensional and circular, but not necessarily

congruent. £ may well be both a cylinder and a rhombus, as,

e.g., when it is a parallelotope.



4.1. Theorem. Assume dim X ^ 3 . Then u e

is _a pole of X _if and only if X jLs either cylindrical

or rhombic at u .

Proof. 1. If X is cylindrical at u we may,, re-

placing X by a congruent space if necessary, assume that

X = R © Z for some normed space Z and that u = 1 © 0 .

The proof of Lemma S.5.10 then shows that 6(-1 © 0 ,

1 © o) = 4 , so that u = 1 © 0 is a pole.

Assume X is rhombic at u , with £ = (u - C) fl (-u+C) ,

and let BC be the boundary of C . Let 9 be any curve

from -u to u in BE c (u - BC) U (-u + BC) . Since u

is interior to C , hence to -u + C , c must intersect

the "edge" (u - BC) 0 (-u + BC) ; if p is a point in the

intersection and Y is the subspace spanned by u and p ,

E(Y) is obviously a parallelogram with vertices j+u , +, p .

Therefore £(c) ;> !|p + u|| + ||u - p|j = 6y(-u,u) = L (Y) = 4 ;

since C was arbitrary, 6(-u,u) ^ 4 , and u is a pole.

2. For the converse,, assume that u is a pole and

apply Lemma 3 . If u is a vertex, of L(Y) for every

Y e £ u , let u - C be the supporting cone of T, at u ;

C is convex. For every Y e P , (u - C) n Y is the

supporting cone of £(Y) at u, i.e., the angle between
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t h e s i d e s of £(Y) m e e t i n g a t u ; t h e r e f o r e (u - C)

n (-u + C) D Y = £(Y) . Thus

I = UfE(Y) : Y € £ u ) = ( u - C) 0 (-u + C) 0 U{Y j Y f P j

= (u - o n (-u + c) ,

and X is rhombic at u .

If, on the other hand, u is the midpoint of a side of

£(Y) for every Y e P , let u + Z be the (obviously unique)

supporting hyperplane of £ at u . We claim that the

mapping A © z »•» Au + z: R © Z ^ » X is a congruence, so

that X is cylindrical at lu + 0 = u . Indeed, the mapping

is linear and bijective (since u / Z) . For given A e R ,

z e Z , let Y e P be a two-dimensional subspace containing

u and z (unique if z ̂  0) . Then £(Y) is a parallelogram

and the midpoints of its sides are ± u and, say, _+ z o ,

where z = ||zj|z0 . Then ||Au + zlj = || Au + ||z||zo||

= max {|A| , ||z||) = |JA © z|| @ z ; thus the mapping is also

isometric, and our claim is proved.

Remark. If dim X = 2 and u e 9L(X) , then

6(-u,u) = L(X) ; thus u is a pole, if and only if L (X) = 4 ,

i.e., if and only if £ is a parallelogram, regardless of

whether u is a vertex, or a midpoint of a side, or neither.
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4.2. Corollary. .If 2 ̂  dim X < CD , then D(X)

= M(X) = 4 jLf_ and only if E(X) .is a. cylinder or _a rhom-

bus.

Proof. As noted at the beginning of Section 3 ,

D(X) = M(X) = 4 is equivalent, for finite-dimensional X,

to the existence of a pole. For dim X ^ 3 the conclusion

then follows from Theorem 4.1 . If dim X = 2 , a pole exists

if and only if E is a parallelogram (Remark to Theorem 4.1);

but E is a cylinder or a rhombus (in fact both) in exactly

the same case.

4.3. Example. We construct a space X without poles

but satisfying D(X) = M(X) = 4 ; its dimension will be

countably infinite, but similar examples can be constructed

with any prescribed infinite dimension. Let X be the

space of all sequences x = (x.) of real numbers with

only finitely many non-zero terms, with the termwise alge-
OD

braic operations. The set E = {x e X : ) |x.|i+1 £ 1}

i=l
is non-empty, convex, balanced, radial, and radially closed,

so that X is a norraed space with unit ball E • Since E

is strictly convex, it is neither a cylinder nor a rhombus;

thus X has no poles. It remains to show that D(X) = 4 .
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Set e = (6 .), n = 1,2,..., the usual basis vectors.

Let Y be the subspace of X defined by Y = (xeX:x =0) ,

n = 1,2,... . We consider the obvious isomorphisms T :

R © Y -» X defined by T (A © y) = A e + y ; the inverses

T : X -* R © Y are given by T x = x © (x - x e ) .n n J u n n n n

Let n be fixed for the time being. Assume A©y e E(R©Y ) ,
CD
 n

i.e., |*| £ 1 , yn = 0 , £ \y±\
i+1 < 1. Set x

= an Tn(A © y) , where an = n < 1 . Then

< (n"1 e)"" 1 ^ 1 ,

provided n ^ 3 . With th is proviso, we conclude that

x = an Tn(A © y) e £(X) , so that

(4.1J ||Tn|| £ n , • n ^ 3 .

On the other hand, if x e Z(X) , then obviously

|xnj ̂  1 and x - x n e n e Y n n L(X) = L(Yn) , so that
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T~ x e E(R © Y ). Thereforen n

(4-2) IJT"1!! £ 1 , n

We now make use of Sections 6 and 7 of S.

Combining (4.1), (4.2), we find A(X, R © Y )

£ log ||Tj| IJT"1!! £ n-1 log n , n £ 3 . By S(7.3)

and Lemma S.5.10, |4 - D(X) | = |D(R © Y ) - D(X) |
-1

£ 6 (nn - 1) -• 0 as n -* OD . Therefore D (X) = 4 .

The same conclusions hold for the completion of this

space X , a separable Banach space.

HUNT UB
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