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1. Consider the following second order nonlinear

equation

(1) y11 + q(x)sgn y |y|a = 0, x > 0,

where q(x) is continuous and nonnegative for x > 0

and a is a positive constant. Equation (1) may be

conveniently classified as superlinear or sublinear

according to whether the constant a is greater than or

less than 1. We are here interested in the oscillatory

behavior of solutions of (1), and in particular, in the

extension of results concerning equation (1) to the more

general equation

(2) y« + yF(y2,x) = 0,

where yF (y ,x) is continuous for x > 0 and |y| < <x> ,

and F(t,x) is nonnegative for t 2 0 and x > 0.

Accordingly, we say that equation (2) is superlinear if

F(t,x) satisfies

(3) F(t1,x) £ P(t 2,x), t]_ 1 t 2 ,

for all x, and it is sublinear if F(t,x) satisfies

(4) P(t1,x) ^ P(t 2,x), t± £ t2,

for all x.

Results on the oscillatory behavior of solutions of (2)



are of two types, namely, (i) sufficient conditions

for all solutions to be oscillatory and for the converse,

the existence of a nonoscillatory solution, and (ii) sufficient

conditions for all solutions to be nonoscillatory and for

the converse, the existence of an oscillatory sllution. Here

a solution always means a nontrivial solution and it is

called oscillatory if it has arbitrarily large zeros. On the

other hand, a solution is Ccilled nonoscillatory if it is

not oscillatory, i.e. if it is of one sign for all large t.

In this paper, we consider both the superlinear and sublinear

equations with regard to necessary and sufficient conditions

for oscillation and sufficient conditions for nonoscillation.

For results concerning sufficient conditions for the existence

of an oscillatory solution, we refer the reader to our earlier

work [3] and [4]. The results in this paper differ from those

of [3] and [4] in that we consider only integral conditions

rather than monotonicity conditions concerning F(t,x).

Although we treat both the superlinear and sublinear equations

here, most of the new results are concerned with the sublinear

case. Our approach to this problem follows from the study of

duality between superlinear and sublinear equations initiated

in our latest work [4]. The main results presented below may

be considered as genuine extensions of results for equation (1)

to the more general equation (2), but our emphasis will be on

the duality exhibited between solutions of superlinear and

sublinear equations. Such an investigation has not been made

even for the simpler equation (1).



The integral conditons of concern to equation (1) are

r(5) f°°xq(x)dx = oo

and

r00 a(6) x q(x) dx = oo .

As far as necessary and sufficient conditions for the oscillation

of all solutions of (1) are concerned, we have the following

two interesting results:

THEOREM A. (Atkinson[ 1] ) Let a > 1. M i -Sfillitions _of (1)

are oscillatory if and only if (5) holds.

THEOREM B (Belohorec [2]) Let 0 < a < 1. All solutions

of (1) are oscillatory if and only if (6) holds.

Implicit- in the proofs of Theorems A and B are the following

alternative results:

THEOREM A,. Let a > 1. Equation (1) has a bounded
ĵ  _ _

noubscillatory solution if and only if

(7) J xq(x) dx < oo .

THEOREM Bn . Let 0 < a <. 1. Equation (1) has anl — —

unbounded asymptotically linear solution if and only if

(8) J x<*q(x)dx < oo .

Here by an asymptotically linear solution y(x), we mean a

solution for which there exist constants a,b not both zero

such that



(9) lim y(x) = 1

x-co ax+b

Theorem A., follows from a more general result of Nehari [9]

and Theorem B 1 will follow from Theorem 2 of this paper.

Combining Theorems A and A-, we obtain

THEOREM A~. Let a > 1. The following statements are

equivalent;

(i) Equation (1) has a. bounded asymptotically linear

solution,

(ii) Equation (1) has <& nonoscillatory solution,

(iii) J xq(x)dx < OD .

On the other hand, Theorems B and B- give

THEOREM B o, Let 0 < a < 1. The following statements
£, " — — — '

are equivalent;

(i) Equation (1) has an unbounded asymptotically linear

solution,

(ii) Equation (1) has â  nonoscillatory solution,

(iii) J°°xaq(x)dx < ao .

Thus from the oscillation and nonoscillation point of view,

the following properties may be considered as duals to one

another:

(a) the superlinear equation has an asymptotically constant

solution, (b) the sublinear equation has an unbounded asymp-

totically linear solution • Similarly, the integral conditions

(7) and (8) become dual to each other. Upon examining

Theorem B-̂ , we find that the conclusion stated is in fact



true even for a > 1, a result due to Nehari [9] who proved

it for the more general equation (2). Now further manifestation

of the duality just described led us to conjecture that

Theorem A, remains valid for 0 < a < 1, which is indeed

the case (Corollary 1).

The search for sufficient conditions for nonoscillation of

(1) offers further evidence of the usefulness of the concept

of duality between results for superlinear and sublinear equations<

Let us consider the following result

THEOREM C (Atkinson [1]) Let cc> 1 and let q(x) be

nonincreasing. Then (8) JLS sufficient for all solutions of

(1) to be nonoscillatorv.

The dual role played by conditions (7) and (8) necessitates

the following:

THEOREM D (Heidel [6]) Let 0 < a < 1 and let q(x)

be nonincreasing. Then (7) j-S. sufficient for all solutions

of (1) Jbo be nonoscillatorv.

Further evidence of this duality between properties of solutions

of superlinear and sublinear equations may be found in [4].

The extensions of the above mentioned results to the

more general equation (2) are the main results of this paper.

Although the techniques involved in such extensions are in

general rather intricate, the results are quite easy to

describe. The generalization of the integral conditions (7)

and (8) are



G D ry

(10) I xF(c ,x)dx < GO , c > 0,

and
r°° 2 2

(11) J XF:(C x ,x)dx < oo, c > 0.

Theorem A, has been generalized by Nehari [9] to equation (2)

with the condition that (10) hold for some c > 0 replacing

condition (7). In [9], Nehari also has introduced the

following stronger notion of superlinearity:

(12) t~fi P(t2,x) > t~
f' Fttj.x), t2 > tx.

Under this stronger assumption, we have established the

generalization of Theorem A 2 to equation (1) in [4] as

follows:

THEOREM E# Let F(t,x) satisfy, for some & > 0,

condition (12) . The following statements are equivalent:

(i) Equation (2) has ja bounded asymptotically linear

solution,

(ii) Equation (2) has JL nonoscillatory solution,

(iii) For some c > 0, (10) holds.

We introduce, as a dual condition to (12), the "stronger"

sublinearity conditon: for some 6 > 0, F(t,x) satisfies

(13) t 2
S P(t2,x) < tx

& F(t1,x), t2 > t1.

The corresponding result for equation (1) when F(t,x)

satisfies the stronger sublinearity condition (13) is given

as Theorem 2 in the next section. The condition that

q(x) be nonincreasing takes the form



for all t > 0. Theorem C has been generalized to equation

(2) again by Nehari [9]• The desired generalization of

Theorem D is given below as Theorem 3. The main results

concerning oscillation and nonoscillation of solutions of

(2) may be summarized in the following table:

F(t,x)

(3)

(4)

(12)

(13)

(4); (14)

(4) , (14)

P00 2
(10) 1 xF(c ,x) dx < oo

Necessary and sufficient
for existence ofa bounded
nonoscillatory solution•
(Nehari [9])

Necessary and sufficient
for existence of a bounded
nonoscillatory solution
(Theorem 1)

Necessary and sufficient
for existence of a non-
oscillatory solution
(Coffman and Wong [4])

(10) =* (11)

X
Sufficient for nonoscil-
lation (Theorem 3) .

(11) J xF(cx ,x)dx < OD

Necessary and sufficient
for existence of an un-
bounded nonoscillatory
solution. (Nehari [9])

Necessary and sufficient
for existence of an un-
bounded asymptotically
linear solution (Theorem 2)

(11) * (10)

Necessary and sufficient
for existence of a non-
oscillatory solution
(Theorem 2)

Sufficient for nonoscil-
lation (Nehari [9])

In section 3, we consider further improvements of

Theorems C and D wherein we relax the monotonicity condition
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on q(x). In particular, it will be shown that the condition

(is) r dx < oo ,
q(x)

where q*(x) = max(O,q!(x))9 is sufficient for the validity

of Theorems C and D. These results are also given for the

more general equation (2) .



2. In this section, we state and prove three theorems

concerning the sublinear equation (2) and which constitute

the main results of this paper. The first is the sublinear

analogue of a well known result of Nehari [9,Theorem I].

THEOREM 1. Let F(t,x) satisfy (4). Then equation (2)

has c± bounded nonoscillatory solution if and only if for

some c > 0, (10) holds«

PROOF. Let y(x) be a bounded nonoscillatory of

(2) and suppose that for x > x >. 0,

(16) §<y(x)<c.

Integrating (2) from 0 to x twice, we obtain

x

(17) y(x) = y(0) + xyi (x) + JQ sy(s)F(y
2 (s), s)ds.

It is easy to see that yf(x) is positive and non-increasing

for x J> x , thus

px
(18) y(x) - y(xQ) = J y'(s)ds ^ (x-xQ)y'(x).

Since y(x) is nondecreasing and bounded it follows from (18)

that xy'(x) remains bounded as x tends to infinity, which

in turn implies by (17) that

(19) J sy(s)F(yz(s) ,s)ds < ao .
o

Using condition (4) and (16), we obtain from (19)

c r°° 2 r°° 2
•j J sF (c, s) ds < J sy (s) F (y (s) , s) ds < co ,

Xo

thus proving the necessity of the condition.

To prove sufficiency, we suppose that condition (10)
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holds for some positive constant c, and we construct a

solution y(x) of (2) which satisfies

lim y(x) = c!,
X-4OO

where c! is to be chosen later. Let cf > c and define

y (x) inductively by

yo(x) = c

(20) yn(x) = C - J (s-x)yn-1(s)F(y^i(s))S)ds

If x1 is chosen so that

0 0 _. zP°° 2c! I sF(c , s)ds
Xl

then using (4) and (20), we get for x >_ x.. ,

Yx(x) < c i ,

and

c - J
X

r°° 2J sF(c ,
Xl

Thus, inductively we obtain for x >_ x- and n = 1,2,.

y n (x) < c i,

and

. Yn(x) >. c.

Using the above, we find for x ̂ > xx and all n = 1,2,

that

(x) = J yn_1(s)F(y^ (s),s)ds
xr

n Jx

(21)

- c

r»oo 9
< C F(c ,s)ds <

Jx
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The above estimates for yn and (21) imply that [y (x)} forms

a uniformly bounded and equicontinuous family, hence it

follows from the Arzela-Ascoli theorem that there exists a

subsequence {y (x)}, uniformly convergent on every compact

subinterval of [x^co) . Now a standard argument, see for

example [10; Theorem 3], yields a function y(x) satisfying

r°° 2
y(x) = C - J (s-x)y(s)F(y (s),s)ds,X

which is the desired bounded non-oscillatory solution of (2).

As a corollary to the above result, we obtain

Corollary 1, Let 0 < a < 1. Equation (1) has aL

bounded nonoscillatorv solution if and only if (7) holds.

We next prove the desired extension of Theorem B,.

THEOREM 2. Let F satisfy condition (4) . Then equation (2)

has an unbounded asymptotically linear solution if and only

If (11) hplds for some c > 0. I_f F satisfies the stronger

condition (13) , then (11) JLS also necessary for the

existence of any nonoscillatorv solution.

PROOF. We first show that (11) is sufficient for the

existence of an unbounded asymptotically linear solution.

Choose x such that

r°° 2 2 l(22) J xF(c x ,x)dx < i .

Let c! > c, then ex < c (x - x ) for x > c ! x° = x, .
O C —• C X.

Thus, in view of (4) ,
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J (x - x )F(c' (x - xQ) ,x)dx
xo

< x (x - x )F(c' (x - x ) ,x)dx + xF(c xjx)dx
—^ »j o o %}

xo xl

C ' X

Since x, = o tends to x as c! tends to infinity,
c' -c

it follows that

r°° 2 2 1
(23) J (x - xo)F(c'

z(x - xo)
Z,x)dx < i

Xo

for sufficiently large cT. Let y(x) be a solution of (2)

satisfying

(24) y( x
o
) = °̂  y!^x

o^
 = 2 c T

where x and c! are chosen so that (2 3) holds. We claim
o

that yT(x) > c? for x j> x . Suppose that there exists

xo > x such that y! (x) > c1 for x <̂  x <̂  x0, and
£ O O ^

y!(x2) = c
!. Integrating (2) and using the initial conditions

(24), we have

(25) y'(x) = 2c' - J y(s)F(y
2(s),s)ds

xo

for x <^ x <̂  x2. From (25), we know that y! (x) •£ 2cT, and

since y(x ) = 0, it follows from yT (x) > c! that

(26) c!(x - xQ) ^ y(x) ^ 2c
!(x - X Q ) , X Q £ x £ x2.

Using (26) in (25), we obtain

(27) y'(x) ^ 2c'[l - J (s - xo)F(c'
2(s - xQ)

2,s)ds],
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Hence (23) and (27) together imply y! (x) > j C , and in

particular, y1 (x2) >. "̂  c1 contradicting our assumption.

Thus, for all x >_ X Q , we have

(28) c* < y* (x) < 2c1 .

Since y(x) >_ 0 on [x , oo), the integrand in (25) is non-

negative, therefore, lim y!(x) exists, and in view of (28)
x-oo

it must be finite and positive. Clearly this implies that

y is unbounded and asymptotically linear.

Next we suppose that there exists an unbounded asymptotically

linear solution y(x) of (2), i.e. a solution y such that

(29) lim v(x) _
x-oo x ~ c > 0.

From (29), it follows that there exists x > 0 such that

for x > x— o

(30) | < Xi2£l < 2c.

Integrating (2), we have

(31) y< (x) = yt (x ) - } y(s)F(y2(s),s)ds.

xo

We claim that y1 (x) >̂  0 for all x >_ x . Suppose

that there exists x, > x such that y1(x,) < 0. By (2)

and (30) , we have y" (x) <^ 0, thus y1 (x) <̂  y1 (x_) and

y(x) <̂  y(x.) + y* (x,) (x - x.) for x >_ x . Letting x -• QD ,

we obtain a contradiction to (30). Now, y» (x) >̂  0 and (31)

give

(32) J y(x)F(y2(x) ,x)dx < OD

W\ UftlMY
WWERSIVi
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Using (30) in the above, we obtain

c P 2 2 P 23- xF(4c x ,x )dx < y(x)F(y (x ) , x )dx < oo
* J X w X^

proving (10).

Finally, we assume F(t,x) satisfies the stronger

condition (13) and wish to show that (10) is also necessary for

the existence of any nonoscillatory solution. Let y be

a nonoscillatory solution of (2) and let y(x) > 0 for

x > x . Observe thato

f.x
(32) y(x) = y(x y'(s)ds

x

y 1 ( s ) d s J> y f ( x ) ( x - x )
Jx °

On the other hand, we have

(33) y(x) £ y(xQ) + y'(xQ)(x - X Q ) .

From (32) and (33), it follows that there exist constants

c, and x, such that for x J> x, > x .

(34) 0 < y(x) £ c]Lx.

Using (34), we obtain from the given hypothesis that

(35) y2£(x)F(y2(x),x)

for a l l x ^ x, . Consider

(36)
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U s i n g ( 3 5 ) i n ( 3 6 ) , w e o b t a i n

( 3 7 ) - ( y 1 ( x } ) ! ^ 2 G ( y ? ( x ) ) ~ ( y ( x ) ) " ( ^ x ) F ( c 1 x , x ) .

Choose x.. ̂  x so that x - x >̂ ~ for all x ̂ > x... We

may now use (32) to estimate (37) as follows

(38) -(yt2e(x))! ^>26(y!(x)) " (y! (x)~) " ^(Cj^x) ^(c^x ,x)

26 2 2
J> (2c.) xF(c,x ,x)

Integrating (38) from x^ to X, we have

*y p *y p *y P f* *J J
(39) yT (x9) - y

T (X) ̂  (2c^) xF(c,x ,x)dx.

Since y! (x) > 0 for all large x, (10) follows immediately

from (39).

Notice that for the linear equation, Theorem A. and

Corollary 1, taken together, yield the well known theorem

of Bocher, [5,Corollary 9.1, p.380] as well as its converse.

Restricting our attention to equation (1), we see in

Theorem A^ the equivalence of (i) and (ii) for 0 < a < 1

and in Theorem B 2 that of (i) and (ii) for a > 1. This

observation gives an explanation of why when a ^ 1, we can

find necessary and sufficient conditions for all solutions

of (1) to be oscillatory. This being that, in either case,

the existence of any nonoscillatory solution implies the

existence of a nonoscillatory solution of a particular type

for whose existence even in the linear case one can give

necessary and sufficient conditions. Finally, Theorem E

shows that such an equivalence remains valid for the more
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general equation (2) with F(t,x) satisfying the strong

superlinearity condition (12) and Theorem 2 shows that the

dual statement is true for equation (2) with F(t,x) sat-

isfying (13). Such nonlinearity conditions obviously exclude

the linear equation in which case, when (7) holds, there

exist both unbounded and bounded asymptotically linear (hence

nonoscillatory) solutions. This perhaps offers an explanation

of why for the linear equation there is no necessary and suf-

ficient conditions for all solutions to be oscillatory. For an

explanation of this from an entirely different point of view,

see [8, Theorem I] and the remarks which follow.

We now wish to present a generalization of Theorem D to

equation (2) under the sublinearity condition (4).

THEOREM 3. Let F(t,x) satisfy (4) and (14). Suppose

that for each c > 0, (10) holds, then all solutions are non-

oscillatory.

PROOF. We note first that condition (4) and (14) imply

left uniqueness of the zero solution of (2), (see [4], Appendix).

In particular, a solution y(x) satisfying nontrivial initial

conditions at some point x has only a finite number of zeros in

any bounded interval [x ,xj,x. > x . Indeed these facts

follow readily from the proof below, but to keep our discussion

simple, we shall rely on the results of [4].

Assume now that (2) has an oscillatory solution y(x)

and let x. < x2 < ... denote the consecutive zeros of y(x),

then in view of the above observation,
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(40) lim x = oo.
k-oo K

Let ILetx, ,x, , ] denote the point in that interval where y?

vanishes. We wish to show that lyfx^)) £ I Y ( X ] C + I ) U
 f o r

k = 1,2,.,. • For a given value of k we can assume Y(XT<:) >

then y(x]c+i) < °*
 a n d y! (x) < 0 in ^xk^xv+i3 °

 W e h a v e

then

2 . |*tefl y

x
-2 P

similarly,

(42) ( y ' ^ + i ^ 2 = 2

Olry Ol >
= J K+1 F(A,x2(A))dA3

O

where x.. (X) and x2(A) are obtained by inverting respectively

and

y2(x) = A,

y2(x) = A,

It follows from the definition of x,(A) and x2(A) that

, 0 < A < y2(^+1) and x^A) < ̂ ^ , 0 < A < y2 (

2 2
Thus, if we assume y (x, .) < y (x,), then from (14) we

conclude that
2 — 2 —

f F(A,xn(A))dA > f ^ + 1 F(A,xo(A))dA,
Jo 1 Jo 2

but in view of (41) and (42) this yields a contradiction,
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thus y (X^-L) ^ Y (*]<)• Consider now the sequence

which is non-decreasing and hence must tend to a positive

limit, finite or infinite. In any case, there exists a con-

stant c > 0, and a sequence of zeros of y(x), say C*^}*

such that

(43) lim inf Y (*]<.) = c > °
k- C30

From Theorem 1 it follows that there exists a nonoscillatory

z(x) which tends monotonically to c from below. Hence

there must exist for sufficiently large k points s, and

s2 in an interval [x.. ,x. .] such that y(s.) = z(s.)*

i = 1,2,0 < z(x) < y(x) for xe (S;L, s2) ,y' (s^ > z
T(s1)

and y1(s2) < z
!(s2). Now consider the Wronskian of y(x)

and z(x), defined by W(y,z)(x) = y(x)z!(x) - z(x)yT(x).

Using (2) and (4), we find, for s, <̂  x <̂  s2,

(44) -^- W(y,z) (x) = y(x)z(x) (F(y2(x),x) - F (z2 (x) , x) ) £ 0.

Integrating (44) from s.. and s2, we obtain

W(y,z) (s2) - W(y,z) (S;L) £ 0,

or

(45) y(s2)(z'(s2) -y
l(s 2)) - y(sx)(z»(sx) - y t ( s 1 ) ) ^ o .

However, the left hand side of (45) is positive, which is

impossible. This contradiction proves that all solutions

of (1) are nonoscillatory.

Remark 1, It is clear that Theorem D follows from the

result above. In fact, we have relaxed the positiveness assump-

tion on q(x) to that of non-negativeness, a hypothesis
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crucial in HeidelTs proof.

Remark 2. The technique used in connection with the

derivation of inequality (42) has been introduced in Moroney

[7] in treating a similar problem arisen from a different

context.

3. In this section, we first prove another generalization

of Theorem D for the general equation (2), and then in

accordance with the duality described in section 1 we obtain

a dual result in the superlinear case

THEOREM 4. Assume that F(t,x) satisfies (4) and

(i) F(t,x) > 0 for all t,x > 0,

(ii) For each c > 0, (10) holds,

(iii) There exists <a nondecreasing and bounded contin-

uous function h(x) such that for every t > 0,

(46) log P(t,x2) - log F(t,x1) £ h(x2) - M x ^ ,

for x2 ^ xx,

(iv) There exists â  strictly increasing differentiable

function cp(t) with cp(O) = 0 such that cp1 (t)F(cp(t) 5x) is

nondecreasing in t for each x > 0.

Then all solutions of (2) are nonoscillatory.

PROOF. We assume first that F(t,x) is of class C and

then proceed in much the same manner as in Theorem 3. Let

y(x) be an oscillatory solution of (2) with {x, : k = 1,2,3,...)

denoting the sequence of consecutive zeros of y(x). In

view of the discussion at the beginning of the proof of
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Theorem 3, we have that (40) holds. Introduce a function

G(t,x) defined by

(47) G(t,x) = J F(u,x)du = 2 J vF(v2,x)dv,
o o

and an energy function $(x) defined by

(48) *(x) = y'2(x) + G(y2(x),x).

Because of assumption (i) , we may, for fixed x > 0, define

T(w,x) implicitly by

(49) S(t,x) = w, T(w,x) = t,

where

(50) G(t,x) = G(9(t),x),

with cp as given in assumption (iv) 9 so that G(t,x) is a

convex function of t.

The function F(w,x) obeys the following rules of dif-

ferentiation
-1

(51) r
w(

w* x) = (<p'(r(w,x))F(<p(r(w,x),x)),

(52) r (w,x) = - <yr<w,x),x)
(r(w,x))F(q)(r(w,x)),x).

If y(x) i s a solution of (2), then differentiating (48)

we f ind

(53) <t\x) = G v ( 9 - I (y 2 (x ) ) ,x ) .

Denote *(x) = T(*(x),x). Using (51^(52) and (53), we obtain

(54) ty (x) = '•
- Gv(cp-1(y2(x)),x))

X



21

Note that ?Z(ttx)> as defined by (50)^ may be rewritten as

»cp(t) rt
(55) G(t,x) = | F(s,x)ds = F(cp( s) ,x) cp' (s) ds.

1 o J o

Differentiating G(t,x) ; as given by (55), with respect to x,

we have
rt

(56) G (t,x) = I F (cp(s),x)cp< (s)ds.
o x

Using (56 ) , we may r e w r i t e (54) as

r*(x)
(57) # ' (x) = ^1 - 1 2 F (<D(S) x l co ' f s^ds

c p ' ( * ( x ) ) F ( c p ( * ( x ) ) , x ) J cp """ty2 (x) )Fx (Cf>( S ) ' X ) * ( S ) d S

Since F(t,x) is positive for all t,x > 0, S(t,x) is

strictly increasing in t for every x, therefore

$(x) ̂  G(cp~1(y2(x)) ,x) and (48) implies

(58) tf(x) = r(*(x),x) ̂  cp~1(y2(x)).

For fixed x, the assumption (iv) implies for 0 £_ s < ^(x),

(59) cp'(^(x))F(cp(^(x)),x) ̂  9'(s)F(cp(s),x).

2

Thus for those x such that y (x) > 0, we have, upon sub

stituting (58),(59) into (57), that

* T , [Fx(cp(s),x)l+cp'(s)dS
i(yz(x)) F(cp(s),x)cp'(s)

Here for any function m(x), m (x) = Max(m(x),0). Using

assumption (46) in the above estimate, we obtain

-*(x)
(60) ^ ' ( x ) ^ - , h'(x)ds 2 -h'(x)*(x),

> x(yz(x))



and since

Thus,

22

2
(x) is continuous, (60) holds also for y (x) = 0.

(x) ̂  -h' (x)tf(x)

or
rx

-J h'(x)dx)
(61) - h(x))

where 7v = e~ and M = s ^ |h(x) | . The computation given

in (60) and (61) is carried out under the assumption that

h(x) is differentiable. However, due to the non-decreasing

character of h(x), we know that h1(x) exists almost

everywhere and clearly (61) remains valid in this slightly

more general case. The assumption that F(t,x) is of class C1

can also be dropped; see the discussion of similar problems

in [4] . At x = x, , where y1 (x, ) = 0, we have

from which it follows that

(62) lim.inf y2 (x, )
k - oo K

c = cp(A#(x)) > 0.
°

The conclusion in (62) allows us to repeat the argument given

in the proof of Theorem 3 following statement (4 3).

Remark 3. If we assume in Theorem 3 certain monotonicity

conditions on F(t,x) with respect to t, e.g. the condition

that for each x > 0,

(63) y2F(y^x) y2
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then we can show in these cases that Theorem 4 is stronger

than Theorem 3. in fact condition (63) implies assumption
2

(iv) in Theorem 4, with the function cp(t) = t (cf. (47)).

Also if assumption (i) of Theorem 4 fails, i.e. if F(t ,x ) = 0

for some t > 0, then (4), (14) and (63) imply that

F(t,x) =E o for x J> x and all t > 05 in which case (2)

is obviously nonoscillatory.

The superlinear analogue is the following.

THEOREM 5. Assume that F(t,x) satisfies (3) and for

each c > 0, (11) holds. If in addition, we assume that

there exists ja non-decreasing bounded continuous function

h(x) such that for each fixed t > 0,

(64) log G(t,x2) - log G f t ^ ) £ h(x2) - h ^ ) ,

for all 0 <2 x, <£ x2. Then all solutions of (2) are non-

oscillatory,

PROOF• We may assume that F(t,x) is of class C .

The general qase is again treated by a standard approximation

argument, see e.g. [4]. Suppose that y(x) is any solution

of (2) and consider the energy function $(x) defined by

(48). Differentiating $(x) we obtain from (64),

$ ! ( x ) = G x ( y 2 , x ) £ h ' ( ?

and consequently, for x J> x ,

(65) *(x) £ <S>(x )exp f h'(x)dx.

It follows from (65) that there exists a constant K > 0 such



24

that

(66) |y'(x)| £ K, x J> xQ.

It follows from a result of Nehari [9,Theorem II], mentioned

in section 1, that (2) has a solution u(x) satisfying

(67) lim u(x)
X-*OD X '

for some c > K. Thus, for x sufficiently large, we have

(68) |y(x) | £ Kx < u(x) x ^ X Q .

Condition (4) and (68) together imply

(69) F(y2(x),x) £ F(u2(x),x) x ̂  X Q .

It then follows from '(69) and the Sturm comparison theorem

that y(x) is nonoscillatory. This completes the pr<nof.

Remark 3. The above theorem improves another result of

Nehari [9;Theorem III], mentioned earlier in section 1, in

that condition (14) is weakened to that of (64). We note

also that condition (46) always implies (64). In case of

equation (1), these two conditions are equivalent.

We now apply Theorems 4 and 5 to the following equation

(70) y" + q(x)f(y) = 0

where f(y) is continuous and satisfies

(71) yf (y) > o, y $6 o.

Corollary 2. Assume that q(x) Jus positive and dif-

ferentiable and satisfies (15). JIf y~ f(y) is nonincreasing
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in y for y ^ 0, and q(x) satisfies (7), or _if y~ f(y)

is nondecreas ing in y for y / 0, and q(x) satisfies

(8) * then all solutions of (70) are nonoscillatory.

PROOF. Condition (71) and q(x) > 0 imply hypothesis

(i) of Theorem (4). Condition (7) implies (10) holds for

every c > 0. The assumption on q(x) that (15) holds

guaranties the existence of a nondecreasing bounded function

h(x) defined by

fx q|(x)
h(x) = , . dxJ q (x;

for which condition (64) is satisfied. In this case G(t,x)

as defined by (47) is given by

r t 2 r t

G(t,x) = 2 vF(v ,x)dv = 2q(x) f(u)du,
o Jo

which in view of (71) is strictly increasing in t for all x.

rfc -i
Define S(t) = J f(u)du and 9(t) = £ (t) . We find

o
x) = G(cp(t),x) = 2q(x)t which is clearly convex in t.

y f(y) nonincreasing is the required condition of sub-

linearity. Thus, the first part of the Corollary follows

from Theorem 4. The second part follows from Theorem 5 in

a similar way.

Finally, to see that condition (15) in fact improves upon

the stronger hypothesis that qf (x) «£ 0 and is yet compatible

with the remaining assumptions,we consider

q(x) = X (1 + 3

In this case q(x) > 0 and satisfies (3) but q!((2n)27r) > 0

for all n = 1,2,.... On the other hand, for large x,
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1 V COS TTX

which gives

q(x)

satisfying (15).
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