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Abstract

A special class of electromagnetic fields in the interior

of a cylinder is studied, assuming finite conductivity. Two

problems are considered. In one the tangential magnetic field

is given on the boundary and in the other the tangential elec-

tric field is given. In each case the boundary values tend to

limits as time tends to infinity. It is shown that the solution

of the magnetic problem tends to the corresponding steady state

field while the solution of the electric problem can grow lin-

early with time.
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1. Introduction.

A basic problem in the study of dynamical systems is that of

approach to steady state. The problem can be phrased as follows:

Consider an evolution equation,

(1.1) u(t) + A(t)u(t) = f(t)

on some Banach space B. Suppose A(t) ~* A (in some sense) and

f (t) - f as t - oo . Is it true that u(t) -• u ? Roughly

speaking it will be true, with u = A" f , if A has a bounded

inverse (see for example [1]) .

The present paper considers a special case of this problem

arising in the study of Maxwellfs equations. The goal is to il-

lustrate what can happen if A~ fails to exist as a bounded

operator. We show, in the special case, that u can grow linearly

with timeo

In order to keep the computations simple we have restricted

ourselves to a special geometry. The techniques are those of [2] .

They relate large time behavior to the study of monochromatic

fields, as the frequency tends to zero. For our problem the

necessary results are contained in [3]. One can obtain similar

results for more general electromagnetic fields by using the work

of [4].
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2. Statement of Results,

We consider Maxwell?s equations in a bounded region ft, under

the assumption of finite conductivity o. The equations are,

(2.1) 7 X H - 6 ^ = Og, € > 0,

V.E = 0, V-H = 0.

We study two problems for these equations. These are denoted by

(P.I) and (P.2). In each we require the initial condition,

E(x,0) = f(x) v-f = 0
(c) in O .

S(x,0) = <j(x) V-a = 0

For (P.I) we have the boundary condition,

(B.I) H X n = <£ on

and for (P.2) ,

(B.2) E X n = £ on

Here n is the exterior normal to

It is well known that (P.I) and (P.2) have unique solutions

which we denote by Ek(x;£) and ET (&;&) respectively. We are

going to study problems in which ft is not bounded but consists

of a cylinder of cross section D and axis along the z-axis. We

seek solutions g, and H which depend only on x and y

and accordingly we take the boundary functions £ to have the form,
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(2.2) £ = ̂ (x.y.tjr + <P2(x,y,t)&

where T is the unit tangent to dD.

We make three further assumptions which will simplify the

calculations. First we assume D to be simply connected. Sec-

ond we take f and g in (c) to be zero. Finally we assume that,

(2.3) £ = £O(x,y) + 4)(x 2

where ij) (x,y,t) = 0(e~a ) uniformly in (x,y) as t "* ao .

We consider also the steady state problems corresponding to

(P.I) and (P.2). We denote these by (P.1)Q and (P.2)Q. They in-

volve finding a solution of the equations,

v x & = q
(2.4) V X Jj = OE

V*E = 0, V-H = 0,

subject to (B.I) or (B.2) respectively, when £ = £°j£° as in (2.3)

We can now state our results. In all of them the assumptions list-

ed above are to be understood.

Theorem (1) (i) Problem (P.I) has a unique solution

(ii) There is a P > 0 such that

E 1^^) - E ̂ fc 0) = 0(e"Pt)
(2.5) ais_ t "* oo .

H 1 ^ ^ ) - H^Cs^ 0) = 0(e"et)
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Our results for (P.2) require that the following additional con-

dition be satisfied:

(2.6) ^^(x^y) = N, N a constant.

Theorem (2) Let A denote the area of D, L the length of

d D and set,

a = J (p^ ds.o
2

(i) If a = o there exist solutions of (P.2) . The solution is

not unique but there exists one solution E (&;<£ ) , H (&;<£ )

such that (2.5) holds with one replaced by two.

(ii) If a ^ o then there exists no solution of (P.2) . There

does, however, exist <a solution of (P.2) with (B.2) replaced by,

(B.2)Q' E X a = % ° _

Again this solution is not unique but there exists one solution

V o « ° ) such that,

E2(x;£) - l2(S,<e°) = 0(e-
Pt)

(2.7) as t - co .
2 J-tfc - ^ O

2( S^°) = 0(e"
3t)

3. Steady State.

The special solutions arising in this section and the next

derive from the general idea of "Hertz Potentials" [5]• We seek

first to find all solutions of (2.4) which are functions only of

1 2
x and y. For ^ = A jL + A i we introduce the notation



6.

A-1- = A 4, - A x» W e n o t e t h e following formulas:

(3.1) V x (V<p(x,y))x = -Acp^

(3.2) V x (</)(x,y)k) = (V0)J-

Observe also that a harmonic function <P(x,y) and its conjugate

satisfy,

(3.3) (V<p)J- = V0

It is not difficult to check, using (3.1) - (3.3), that the

expressions,

(3.4) £ = V</) + Nk ; H =

will be solutions of (2.4) if N is a constant and 0, Y and x

are functions of (x,y) satisfying,

(3.5) &/) = 0, Vx = (V</))-L , Ay = -CTN.

When D is simply connected, as we assume, then it can be ver-

ified that (3.4), (3.5) in fact yield the only solutions of (2.4)

which depend only on x and y. We note that if E and H are

as in (3.4) then,

£ X n = NT + vx-nk;

S X n = OXl + (VY-n)k,

where T is the unit tangent to
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We seek solutions of (P.1)Q and (P.2)Q in the form (3.4).

For (P.l)o we must have, by (B.I), (3.5) and (3.6),

(3.7) Ax = 0 in D, X = on

(3.8) Ay = -CTN in D, on

Equations (3.7) uniquely determine x« If we choose N by the

condition,

-j (TNdA = -CTNA =

then (3.8) has a solution, unique up to a constant. Let X

the conjugate of $. Again $ is unique up to a constant. Then

(3.4) yields a solution of (P.1)Q.

For (P.2)Q, (B.2), (3.5) and (3.6) yield, (rote (2.6)),

(3.9) Ax = 0 in D, vx«n = on c)D.

The problem (3.9) has no solutions unless

(3.10) a = J <P2°ds = 0.
s

If (3.10) is satisfied then (3.9) does have a solution, unique up

to a constant. Note also that if the second condition in (3.9) is

replaced by,

(3.11) Vx-n = <po° - £

then the resulting problem has a solution unique up to a constant.
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We conclude that if (3.10) is violated (P.2V has no so-
o —

lution of the form (3.4). If (3.10) holds then (P.2)Q does have

a solution of the form (3.4). However this solution is not

unique since X is undetermined except for the condition Ax = -crN,

Note that the non-uniqueness is represented by a magnetostatic

field.

Remark: We remark that for multiply connected domains the degree

of non-uniqueness is greater. We hope to return to this question

at a later time.

4* Time-dependent Problems.

The special solutions of the last section are capable of

generalization to problems (P.I) and (P.2). Suppose that u(x,y)

and v(x,y) satisfy the equations,

Au = Tu.
(4.1) Tw = jLtew. + /i(7w.

Av = Tv

Then one can verify that the expressions,

E = -Tu.k - M(Vv ) x

(4.2)

g = (Tu)x - Tvtk

will yield solutions of (2.1). Accordingly we seek solutions of

(P.I) and (P.2) in the form (4.2).

For (P.I), (B.I) (4.1) and (4.2) yield,

Au = Tu in D, Tu = -<p, on BD
(4.3) ±

Av = Tv in D, HVv.'n =-<P2
 o n ^D*



For (P.2) we obtain,

Au = Tu in D, Tv = -<p, on <to
(4.4) L

Av = Tv in D, (TVu) *n = -<pn on dD.

We observe that (c) (with £ = cj = 0) is satisfied if,

(4.5) u,ut,v,vt = 0 at t = 0.

The problems (4.5) and (4.3) or (4.4), which we denote by

(P.1)T, (P.2)! have unique solutions.* When substituted into (4.2)

these yield solutions Ek(x,y;£), H^x^yjcg) of (P.I) and (P.2) .

We are going to discuss these problems by means of the Laplace

transform techniques of [2]. We outline the ideas here and pre-

sent more detail in the next section.

We form the Laplace transform of (P.I) ! and (P.2) f. This

yields boundary-value problems for the transforms U and If of

u and v. The methods of [2] show that these are meromorphic

functions of the transform variable s in R.e s> -p«, where

P1 > 0 is some number less than the a in (2.3) . The results of

[3] can be invoked to show that U and V have poles of order at

most three at s = 0 and no other poles in &e s > -P!. From

these results and (4.2) it will follow that the transforms

6k and « k of E k and H1* satisfy the relations,

* Here certain compatability conditions on & ( X J Y J ° ) a r e needed.
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(4.6)
s2

= £k(x,y) + Dk(x,y) + Sk(x,y,s)

where R and S are regular in &e s > -P!.

The equations (4.6), together with the inversion formula for

the Laplace transform yield the estimates,

{47) Bk(x,y,t) = Ak(x,y)t + gk(x,y) + 0(e"Pt)

fifrx^t) = Ck(x,y)t + Dk(x,y) + 0(e"pt),

for any p < p! •

The next section is devoted to establishing the formulas

(4.6) and identifying the various coefficients with the cor-

responding steady-state solutions in order to complete the proofs

of theorems (1) and (2). We refer to [2] for the steps necessary

to verify that (4.6) implies (4.7). The only problem is to es-

timate the quantities U and V, and hence 6 and &, for

large values of s and this question is discussed in [2].

5• Laplace Transforms.

Let U and lx denote the Laplace transforms of the solutions

(u,v) of (P.I) ! or (P.2) » and let * k denote the transforms

of <Pk in (2.2) . Let

(5.1) k2 = -Ms (or + GS) .

Then (P.I) ! and (P.2) ! are transformed into the following two

problems:
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AU + k2U = O in D (a+€s)vU.n » -*, on
(P.l)ff

Air + k2V = O in D -k2V = -*2 on dD

(P.2)fl
AU + k2U = O in D k2U = - ^ on bl

AV + k2lf = O in D /LisW.n = -* o on

Consider the two problems:

( I ) A W + AW = O i n D W = 0 on bD

(II) AW + AW = O i n D V Wft = 0 on 3 D .

where 0 < ?u < A2 < ••• • (II) has a unique so lu t ion

(I) has a unique solution D(x;0;A) for any

for A / A j A ^ A ^ . . ., where O = AQ < /C, < Â ., . •. . It follows

easily then from (5.1) that (P.l)lf and (P.2)ft have solutions for

all s ̂  O in &e s > -£! for some p« > O. Moreover it is easy

to see that these solutions are analytic functions of s in

Re s > -pi.

We observe that in general the solutions of (P#l)
ff and (P.2)11

will be singular at s = 0. These singularities reflect those of

D and N at s = 0. The singularities of D and N were the

subject of [3] and we summarize the results here.

00

Lemma, Suppose ^(x,k) = S f (x)k m. Then we have
m=o

 m
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00

(5.2) D(5;*;k
2) = S dm(5)k

2m,
m=o

where

A dQ = o, A dm = - d ^ , m > 1, in D,
(5.3)

on

00

(5.4) N(x;#;k2) = S n (x)k2m,
m=-l

where

n , = £ A n = -n , , m > O in D: a = |
-1 A m m-1* — Ji

f«ds

( C. r \ ~"JL j r a U l Xll — J- *» O

Vnm*n = f ori S D .

The series are all to converge uniformly (except for the singular

terms) in 0 < |k| ;< r for some r > 0.

We observe that (2.3) shows that,

(5.6) * (x) = 5 L _ _ + \(x,s)
s

where *k is analytic near s = 0. We note next that from (5.1)

2 2

we can define s as an analytic function s(k ) of k such

that S(o) = 0. It is clear then that each of the functions

U and \s in (P.l)lf or (P.2)", when multiplied by either s or
2

s 3 will be a solution of (I) or (II) , with a 0 which is a power
2

series in k . Thus our lemma will show that each of these has a
pole of order at most three at s = 0.



13.

Now let us take the Laplace transform of (4.2) . If & and

denote the transforms of E, and g we have,

(5 .7) ~ 2

UL + k

From the remarks of the preceding paragraphs and (5.7) one sees

that £ and & can have at most poles of order three at s = 0

(actually they are of order two). The calculations are tedious,

but straightforward, and we omit them. It turns out that equations

(4.6) are indeed satisfied and we merely list the results here.

Define dQ,nQ by,

A d = O i n D d = -<P-.° on dD
(5.8) ° o 1

A n = -— i n D Vn *n = -cpo i n eft),
o A o ~ 2

Then we have:

= O, D 1 ( x , y ) = (VnQ)J- - dQk,

and,

A2(x,y) = 0; B2(x,y) = - (Vn U - d k

(5.10) C2(x,y) = ^

In (5.10) d. is a solution of Ad, = -d . Its boundary values

on SD can be computed but they do not really concern us.

M
CARNE6IE-MEU0N UNIVFRSJIY
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Equations (5.9) and (5.10) together with (4.7) yield the

asymptotic behavior of g, and g for large t. In order to

complete the proofs of theorems (1) and (2) we have only to iden-

tify the terms in (5.9) and (5.10) with the steady state solutions.

Consider first (5.9), that is (P.I). Let x = -y dQ. Then,

A X = 0 in D, X = -~- on dD.

Let X be the harmonic conjugate of */). Set N = - and Y = n ,

Then A y = -7- = -aN in D, V y #n = <p ° on dD. Thus we have,

and (4.7) then yields the formula (2.5) of theorem (1) .

Next consider (5.10), that is (P.2) . In this case recall we

were to take <P1° = N, a constant. It follows that d = -N and

Vd = 0. Now let x = -n and let X be the conjugate of 0.

Then (5.10) yields,

B2(x,y) = V 0 + Nk.

Next let Y = -crd.. . Then A Y = -or A d, = a d = -aN in D and
1 1 o

thus, by (5.10),

D2(x,y) = (V Y ) X + crXk.

These results, together with (4.7), yield the estimates stated in

theorem (2) .
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