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Uniform Convexity of Banach Spaces l{{Pj})

K. Sundaresan

The class of Banach sequence spaces l{{p^})studied

originally by NakanO [4] has received attention in some

of the recent papers. Klee [3] studied bounded summability

property in the spaces £([p.}) while Waterman et all [6]

characterised reflexive I({p.})spaces. In the present

note we sharpen the main theorem in [6] by showing that

the hypothesis in that theorem provides a characterization

of Uniformly Convex £(fp.}) spaces and that a reflexive

^ ( { P J } ) space is uniformly Convex. We accomplish the

proofs of these results without appealing to the theorem

in [6].

Let {p.} be a sequence of real numbers 1 <£ p. < oo •

Then £({p.}) is the set of all real sequences x such that

i

for some a > 0 depending on x. It is verified that with

the usual definition of sum of two sequences and scalar

multiple of a sequence the set £({p.)) is a real vector

space. Further if for xel({p.})

(*) M(x) = L £- |x.|pi
pi 1

then M is a modular on ^({p^}). For a detailed account



of modulars on vector spaces we refer to Nakano [4]. If

M is a modular on a vector space the norm induced by the

modular M is given by the formula

= inf [±\Z > 0, M(£x) <; 1}.

The spaces £(p.}) under the norm induced by the modular

M defined in (*J is a Banach space.

Before proceeding to the main result of this note

we recall some terminology from Naka.no [5] concerning

modulars and state a theorem useful in the subsequent

discussion.

Let M be a modular on a vector space E and let

the norm induced by M be denoted by || • ||. A vector

xeE is said to be finite if M(Ax) < oo for all real

values of A. The modular M is said to be finite if

every vector xeE is finite. The modular M is said

to be uniformly finite (uniformly simple) if

The modular M is said to be uniformly convex if cor-

responding to any pair of positive real numbers r,e

there exists a 6 > O such that M(x) <£ r,M(y) <̂  r,M(x-y)J!>€=*

^ £ \ [M(x) + M(y)] - 6

For a definition of Uniformly Convex Banach spaces, see

Day [2]. The theorem which is stated below relates the

uniform convexity of the modular M with the uniform Con-

vexity of the norm induced by M.



Theorem [Nakano] If a modular M is uniformly convex,

uniformly finite and uniformly simple, then the norm

induced by M is uniformly convex. For a proof see

Theorem 3 on page 227 in Nakano [5].

We proceed next to the main theorems of this note.

Let P be the set of positive integers• If Q c p we

denote by Mo the function on ^({p^}) defined by

M (x) = S -i- |x |
pn .

g neQ Pn n

We note M is a convex function. We further recall

the following inequalities. (i-) If p ̂> 2 then

|a+b|p + |a-b|p £ 2 P~ 1 [|a|
p+|b|p] for any two real

numbers a5b. (i2) If 1 < p £ 2 then

Ia+b|p p(p-l)- | a-b t 2-p .a-bip 1 a|p+1bIp

1 2 I + 2 I |a| + |b| I !~F"I ̂  2

with a,b as in (in). For a proof of (i1) see

Clarkson [1]. (io^ follows from the Taylor expansion

of (l+t)p for small t.

Theorem 1. The Banach space £((p.}) is uniformly convex

if and only if

(*) 1 < inf p. £ sup p. <
i^l x i^l x oo.

Proof. Let the sequence (Pî -ĵ x s a t i s fY thL^ inequality

stated in (-*). Thus there exist real numbers A and B

such that l < A ^ p i ^ B < o o . We proceed to verify

that the modular M is uniformly convex, uniformly finite
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and uniformly simple. Let r,e be two positive numbers and

x, yet ({p .}) such that

M(x) <̂  r,M(y) £ r and. M(x-y) j> e.

Let us partition the set of positive integers into sets

E,F defined by neE if p n J> 2 and neF if p n < 2.

We note that M(x) = ^(x) + Mp(x) for all xe>t({pi)).

Thus M(x-y) J> e implies either JVLCx-y) j> e/2 or

^(x-y) ^ e/2.

Case 1. Let lyL(x-y) ̂ > e/2. Since P <1 B

v 1KB

Further since for neE p > 2 it follows from the
•̂ n —

inequality (i,) that

Now noting that M is a convex function it is verified

using the above inequalities that

•|[M(x)+M(y)]

£
B+1 *

Case 2. Let M^x-y) ^ e/2. Let G be the subset of F

consisting of the neG such that

where C = Min(~ , §• ) . With G = F~G it is verified that,



E
neG_

neGQ
 p n

i[M(2cx) + M(2cy)l

Since O £ 2c ^ 1 and M(x), M(y) £ r

M(2cx) + M(2cy) ^ 4cr,

Thus i t is verified that

S F~ |xn-ynlPn ^ 2 c r ^ 4 s i n c e C ^ I? *neGo n̂

Since NL,(x-y) ^ e/2 it follows from the definition of G that

(**) E ^ lx
n-Yn lPn > e/4.

Fn

Then from inequality (i2) it follows that

(*•*) y[MG(x) + MG(y)] ̂  M

Since for neG, p n < 2 it is verified

But from (**) it follows that M

Thus the inequality (***) yields



MG(y)]

Noting that the function M is convex it is deduced

from the above inequality that

|[M(x) + M(y)] ^ M G ^

. (A-l)ce
+ 32

_ M(2£tY) + ( A- 1) C € , where P is the set of

positive integers.

Thus choosing 6 = Min( ., , A—r^ ) it is verified

that the modular M is uniformly convex.

The modular M is uniformly finite for if S is the

function defined on the real line by setting S(£) =|£l

if Ul ^ 1 and S(£) =|4fA if |£| < Lit is verified that

M(£x) £ S(4)M(x). Thus Sup

Next we proceed to verify that M is uniformly simple.

Let L be the function defined on the real line by setting

L(£) = | £ | A if | € | ^ 1 ^ d L(€) = | 4 | B if \i\ < 1.

Then it follows that M(£x) ^>L(£)M(X)* Hence M is uniformly

simple. Thus it follows from Nakano!s theorem the norm in-

duced by M is uniformly convex.

We next proceed to the Converse of the above theorem.

Theorem 2. If £({p.)) is uniformly convex then

1 < lim inf p. <£ lim sup p. < oo .

Proof. If possible let £({p.}) be uniformly convex and

lim inf p. = 1. Thus there exists an infinite subsequence



{p. } of {p.} such that p. -» 1. By considering the

vectors xe£({p.}) such that x = 0 if n ^ i. for some

j it is seen that the Banach space £({p. }) is isometrically
Xj

isomorphic with a subspace of £({p^J). Thus £({p. })

is uniformly convex. Hence it is a reflexive Banach space.

However since p. -» 1 by the Theorem 2 in Nakano [•!] the

weak sequential convergence and norm convergence coincide in

£({p« })• Since £({p. )) is reflexive the unit cell in

j J
. }) is a weakly compact. Thus it follows readily from

Eberlein theorem (see page 51 [2] that the unit cell in I ({p. ))

is compact in the norm topology. Hence £({p. }) is finite

dimensional contradicting that {p. } is an infinite sequence.

Hence 1 < inf p.. If lim sup p. = oo it is verified as

in Lemma 1 in [6] that £({p-}) contains a subspace

isomorphic to <t°° contradicting that the space £(fp.})

is reflexive. The proof of Theorem 2 is complete.

In conclusion we note that from the theorem 1 and proof

of theorem 2 in this note it is readily inferred that the

Banach space £({p.}) is uniformly convex if and only if it

is reflexive.
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FIXED POINT THEOREMS FOR

SUMS OF OPERATORS

James S. W. Wong

Let T be a mapping from a Banach space X into

itself and K be a closed bounded convex subset. The

celebrated Schauder fixed point theorem states that if

T(K) c K and T is completely continuous then T has

a fixed point in K. We are here concerned with extensions

of Schauderf s theorem to sums of operators. An operator

A defined on X is called a contraction if there exists

some constant 0 < q < 1, such that ||Ax < Ay|| £ q||x-y||

for all x5yeX. The following is a generalization of

Schauderfs theorem due to Krasnoselskii for sum of operators.

THEOREM I, (Krasnoselskii [8], Sadovskii [11])

Let T = A + Bj where A jLs a. contraction and B completely-

continuous, and T(K) c= K« Then T has _a fixed point in K.

The operator A is called non-expansive if

||Ax - Ay|| <2 ||x - y|| for all x^yeX. We call the operator

B strongly continuous if for every weakly convergent sequence

{XTJ, with limit x, there exists a subsequence {Bx. } such that

B xk"—* x strongly. Recent interests in the theory of non-

expansive mappings led to the following analogue of Theorem I:

THEOREM II. (Zabreiko, Kachurovskii and Krasnoselskii

[12] ) . Let X be ji real Hilbert space, T = A + B5 where A

is nonexpansive and B jls strongly continuous, and T(K) <z K.



Then T has ji fixed point in K.

When the operator B = 0, Theorem II reduces to the recent

well known result of Browder [1], Kirk [7] and Gohde [4],

establishing the existence of fixed points of nonexpansive

mappings on Hilbert spaces,,

In a number of applications of Schauder's theorem, it

is sometimes difficult to find a desired bounded convex

set K which is mapped into itself by T, One is thus led

to impose other conditions directly on the operator T

which ascertains the existence of some large closed ball

being mapped into itself by T. For this purpose, the notion

of quasi-norm of T is introduced which is defined by

By requiring that ||T|| is small, we have the following an

alogue of Schauderfs theorem concerning the solvability

of functional equations.

THEOREM III, (Dubrovskii [2], Granas [5]). JEf T

is completely continuous,and ||T|| < 1, then ft(I-T) = X,

where &(T) denotes the range of T,

The purpose of this note is to prove analogues of Theorems

I and II by imposing quasinorm conditions on A and B

in place of the condition T(K) c K.

THEOREM 1. If T = A + B, where A JLs a. contraction

and B _i£ completely continuous, and ||A|| + ||B|| < 1, then

ft(I-T) = X.



THEOREM 2. Let X be a real Hilbert space. If

T = A + B, where A JLs nonexpansive and B JLS, completely

continuous, and ||A|| + ||B|| < 1, then ft(I-T) = X.

Roughly speaking, Theorems I and II remain valid when

the condition that T(K) £ K is Jbeing replaced by the

quasinorm condition that ||A|| + ||B|| < 1. Of course,

in Theorems I and II the operator T need only to be de-

fined on K rather than the entire space X. However,

the conclusions of Theorems 1 and 2 are also stronger.

As an immediate consequence of Theorem 1, we obtain

the main theorem of Nashed and Wong [10] as a corollary:

COROLLARY L If T = A + B, where A JLS ci contraction

and B JLS completely continuous, and ||B|| < 1 - q, then

ft(I-T) = X.

Note that if A is a contraction with contractive constant

q, then we have

| |A|| = l im sup llAxIl
||x||-oo ||x||

< l im sup [[Ax - AOll + HAOH
||x||-oo Rt

£ lim sup q||x|| + 1|AO|| _ „
||x|hco ||x|| - q -

Thus if ||B|| < 1 - q then ||A|| + ||B|| < 1, and the result

follows from Theorem 1.

PROOF OF THEOREM 1. For each yeX, define A x = Ax + y

for every X€X and T = A + B. I t is easy to see that

A is a contraction with the same contractive constant q,



and the operator T s a t i s f i e s the same hypothesis as that

of T. Moreover, Oeft(I-T ) if and only i f yeft(I-T).

Thus, i t suffices to show that O€ft(I-T). For any fixed

element zeX, l e t Lz denotes the unique solution of

(2) Lz = ALz + Bz,

which is possible because A is a contraction. For any

pair of elements u,veX, we deduce from (2) the following

inequality

||Lu - Lv|| £ yjL ||Bu - Bv||,

from which and the complete continuity of B it follows

that L is also completely continuous. For each positive

integer n, denote B = {x : ||x|| ̂ n} . We wish to show

that there exists a positive integer N such that

k(B>J 5E B • Suppose not, there must exist a sequence

fu }GB such that IILU II > n for all n. Since L is

n n " n11 •*-

completely continuous, so liu
nll "* °° a s n -• oo. Note

tha t from (2) , we have

(3) UuJ £ n £ | |LUJ| ^ ||ALun|| + ||Bun||.

For each e > 0, we may choose n such that for a l l n J> n ,

I £ (||A|| + f)||Lun||, and also ||Bun|| ^ (||B|| + f ) | |u j | .

Using t h e s e e s t i m a t e s , we can o b t a i n from (3)

- f ) ^ ||Bun|

which implies



INI + §

from which it follows 1 £ ||A|J + ||B|| + G. Since € > 0 is

arbitrary, this provides the desired contradiction and proves

the theorem,

PROOF OF THEOREM 2. As in the proof of Theorem 1, it

suffices to show that Oeft(I-T). To this end, w£ define

for 0 < A < 1*A. = AA,B. = AB and T. = AT. First note

that A nonexpansive implies A. is a contraction with

contractive constant A. Next, since B is strongly con-

tinuous and X is reflexive, B is also completely con-

tinuous so does B. for every A. Thus, an application of

Theorem 1 to the operator T. shows that there exists

satisfying

(4) xA - (AA + BA)xA = 0,

for each A,0 < A < 1. We claim that the set {x^ : 0 < A < 1}
A

is bounded. For otherwise, there exists a sequence {A.}

such that ||x. || •* + oo as i -* oo. Using (4), we observe
i

that

<IK.II.I
 +



which upon letting i -• oo, gives a contradiction. Now

since the set {^O ^s bounded, there exists a subsequence

{x. }, A. t 1, which converges to an element x
o^

x» Since

B is strongly continuous, there exists a subsequence {A }

such that A t 1 and Bx. converges strongly to
i n±

We write x. = x- for short. Note that
1 ni

., ±.. = llAx. + x..

£ ||Ax._ - A0|| + ||A0|| + B x J

£ HxJ + 2||A0|| + (||Bxo|| + 1 ) ,

from which i t fo l lows that the sequence {Tx.} i s a l s o

bounded independent of i , say ||Tx. || <£ M. Now, we observe

that by (4)

- xill = ll^i - ^n. Txill

^ (1 - An ) | |Tx i | | £ (1 - A )M,
i i

hence lim ||Tx. - x.|| = 0. Also the strong convergence
i-*oo

of

^̂  to B X Q may be used to prove that the sequence {x. - Ax.}

converges strongly to Bx , since

t - BxQ|| ̂  || x£ - TxJ + ||Bxi - BxJ|.

Finally, let XGX; and obtain from the nonexpansiveness of

A the following inequality

(5) (x - Ax - x. + Ax., x - x .) J> 0.



Note t h a t

(x - Ax - x., + A x ^ x - x . ) - (x - Ax - , x - XQ )
Q)

£ | ± t + BX Q, x - X i ) | + | (x - Ax - BX Q, X Q - x±)\,

which tends to zero as i - oo. Thus passing the limit in

(5) , we obta in

(x - Ax - BX Q, x - xQ) J> 0.

Since t > 0, we obtain from above

(xQ - A(xQ + th) - BxQ,h) ̂  0.

Letting t - 0 in the above inequality, we find

(x - Ax - Bx , h) J> 0. The fact that h is arbitrary yields

x = Tx . This completes the proof of the theorem,o o

Remark 1, We note that the original proof of Corollary 1

is similar to that of Theorem 1. However, by a direct applica-

tion of Theorem III, we can now provide a shorter proof.

It is well known that if A is contraction then (I - A)"

exists and is Lipschitzian with Lipschitzian constant (1 - q)

Since B is completely continuous and (I - A)"* Lipschitzian,

it follows that (I - A)" B is completely continuous. Now

we observe that

£ lim sup |l(I-A)~1(Bx-B0) II + II (I-A) "-""BOH
INI-CD H

, JL_ lim sup ||Bx|l + HBOII + ||(I-A)"1B0ll
^ 1-q ||x||-oo Ijl̂ l

<
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Applying Theorem III to the operator (I-A)~ B, we obtain

ft(I-(I-A)"1B) = X. Thus,

R(I-T) = R((I-A)(I-(I-A)"1B)) = (I-A)X = R(I-A).

Again since A is a contraction, we have ft(I-A) = X.

Remark 2. As a historical remark, we wish to point

out that in [8] , Krasnoselskii assumed the stronger condition

that Ax + ByeK for every pair x,yeK. The stronger result

was first given in Sadovskii [11]. An alternative proof of

Theorem I in case X is a Hilbert space was also given in

Zabreiko, Kachurovskii and Krasnoselskii [12].. We remark

also that under the above stipulated stronger condition,

Theorem II was first proved by Kachurovskii [6]. Dubrovskii

[2] originally proved Theorem III under the stronger hypothesis

that ||T|| = 0, such an operator is also called asymptotically

zero. The introduction of quasinorm and the present improve-

ment was due to Granas [5]. Extensions of Theorems I and II

in a different direction may also be found in Fuc'ik [3] .

For applications of fixed point theorems for sums of operators

to the study of nonlinear integral equations we refer to

Krasnoselskii [9] and Nashed and Wong [10].

Remark 3. Although Theorem 2 is stated and proved for

a real Hilbert space it obviously remains valid for Hilbert

spaces over complex numbers. In particular, inequality (5)

and the following arguments remain valid if .one simply

replaces the inner product by its real part.
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