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Uniform Convexity of Banach Spaces 4({p;})

K. Sundaresan

The class of Banach sequence spaces 4({p;})studied
originally by Nakan@ [4] has received attention in some
of the recent papers. Klee [3] studied bounded summability
property in the spaces L((pi]) while Waterman et all [6]
characterised reflexive L({pi})spaces. In the present
note we sharpen the main theorem in [6] by showing that
the hypothesis in that theorem provides a characterization
of Uniformly Convex &({pi}) spaces and that a reflexive
L({pi]) space is uniformly Convex. We accomplish the
proofs of these results without appealing to the theorem
in [6].

Let [pi} be a sequence of real numbers 1 < Py < oo.
Then L({pi}) is the set of all real sequences x such that

T 1

P
iS1 piv‘axil i< oo

for some a > O depending on x. It is verified that with
the usual definition of sum of two sequences and scalar
multiple of a sequence the set &({pi]) is a real vector
space. Further if for xeL({pi})

(¥) M(x) = Z 1

|xil Py
i>1 Pi

then M 1is a modular on L({pi}). For a detailed account




of modulars on vector spaces we refer to Nakano [4]. 1If
M is a modular on a vector space the norm induced by the

modular M is given by the formula

lxll = snf (§l€ > 0, M(gx) < 1),

The spaces L(pi}) under the norm induced by the modular
M defined in (x) is a Banach space.

Before proceeding to the main result of this note
we recall some terminology from Nakano [5] concerning
modulars and state a theorem useful in the subsequent
discussion.

Let M Dbe a modular on a vector space E and let
the norm induced by M be denoted by ||-||. A vector
xXcE 1is said to be finite if M(AX) < oo for all real
values of A. The modular M is said to be finite if
every vector xcE is finite. The modular M is said

to be uvniformly finite (uniformly simple) if

Sup, M(€x)<oo (Inf M(€X)>O) for every real number €.

M(x)<1 M(x)>1

The modular M 1is said to be uniformly convex if cor-
responding to any pair of positive real numbers r,e¢

there exists a 6 > O such that M(x) < r,M(y) < r,M(x-y)>e=
mEY) ¢ 2 M) + MY - 6

For a definition of Uniformly Convex Banach spaces, see
Day [2]. The theorem which is stated below relates the

uniform convexity of the modular M with the uniform Con-

vexity of the norm induced by M.




Theorem [Nakano] If a modular M is uniformly convex,
uniformly finite and uniformly simple, then the norm
induced by M is uniformly convex. For a proof see
Theorem 3 on page 227 in Nakano [5].

We proceed next to the main theorems of this note.
Let P be the set of positive integers. If Q ©€ P we

denote by M.Q the function on &({pi]) defined by

1 p
M. (x) = T —— |x_|Pn .
Q neQ pn n

We note MQ is a convex function. We further recall

the following inequalities. (il) If p > 2 then

la+b|P + |a-b|P < 2P-1 [la]P+|p|P] for any two real

numbers a,b. (iz) If 1< p< 2 then

|a+b|p +‘p(p‘1)‘l I"a—b |2—p |a—b|p_§ |a|p+|b|p
2 2 lal+|b] 2 2

with a,b as in (il). For a proof of (il) see
Clarkson [1]. (iz) follows from the Taylor expansion

of (1+t)P for small t.

Theorem 1. The Banach space L({pi]) is uniformly convex
if and only if
() 1 < inf pi_g sup Pp; < oo,
i>1 i>1
Proof. Let the sequence {pi}izl satisfy the inequality
stated in (%x). Thus there exist real numbers A and B

such that 1 < A L P; B ®. We proceed to verify

that the modular M is uniformly convex, uniformly finite




and uniformly simple. Let r,e be two positive numbers and

x,ye&({pi}) such that
M(x) < r,M(y) < r and. M(x-y) > €.

Let us partition the set of positive integers into sets
E,F defined by neiE if P, > 2 and neF if P, < 2.
We note that M(x) = ME(x) + MF(x) for all xe&({pi}).
Thus M(x-y) > € implies either ME(X—Y)‘Z €/2 or
MF(x—y)_Z /2.
Case 1. Let M,(x-y) > €/2. Since p, < B

M, (25Y) 2iB M (x-y) > 5r

Further since for necE P, > 2 it follows from the

inequality (il) that

My (B + oy (55D < M () + M(y)]

Now noting that MF is a convex function it is verified

using the above inequalities that

M) +M(y)] > M () (5T + (Y

X+y €
2M(2)+2B+1‘

Case 2. Let MF(x—y).Z €/2. Let G be the subset of F

consisting of the neG such that

lx, ~ ¥ >cdx | + ]y D

where C = Min(%-, %f)' wWith G, = F~G it is verified that,




g st lxy,Pag =
ne_Go n. neGo

Lz

neG

Lz
neGO
< 3im

Since

1
Pn

2Pn el l+ly Dyp,
Pn 2

(cPn(]x |+]y,1)Pn)

=2 [lcx |Pn + |cy, [Pn]

(2cx) + M(2cy)]

0 2c <1 and M(x), M(y) L r

M(2cx) + M(2cy) < 4cr.

Thus it is verified that

T i,l—-
n€Go n

Since MF(x—y) > e/2

. 1
(%) Z =
neG Pn

Then from inequality (12

(erx)  FMG(R) + Mo(¥)] > MgEFY) + M (35T LB

Since for neG, pn’< 2

P £ i £
[xn—yn| n g 2cr 4 since C < go .

Ixn-yn|pn > e/4.

) it follows that

it follows from the definition of

1)C

it is verified

Mc;(x_izé >z Mg (%-y) .

But from (xx) it follows

X-¥, €
that M.(%5Y) > 1p

Thus the inequality (xxx) Yields

2

%

that




Limg(x) + M ()] > m Y o LBHlec

Noting that the function M is convex it is deduced

Q
from the above inequality that

FM(x) + M(y)] > M B M o (B
+ (A-1)ce
32

= M(E%Y) + ié:%%gi , where P is the set of

positive integers.
. oaps € (A-1)ce ey
Thus choosing § = M1n(2B+l , 32 ) it is verified

that the modular M is uniformly convex.

The modular M is uniformly finite for if S 1is the
function defined on the real line by setting S(§) =|g|B
if |&] > 1 and s(&) =|&|® if |£| < 1.it is verified that

M(€x) < S(£)M(x). Thus Sup M(Ex) < S(£).
M(x)L1

Next we proceed to verify that M is uniformly simple.
Let L Dbe the function defined on the real 1ine by setting
L(g) = |€|® if |g] > 1 ana n(&) = |&|® if |g] < 1.
Then it follows that M(£x) > L(§)M(x). Hence M is uniformly
simple. Thus it follows from Nakano's theorem the norm in-
duced by M 1is uniformly convex.

We next proceed to the Converse of the above theorem.
Theorem 2. If &({pi}) is uniformly convex then
1 < 1lim inf p; £ lim sup p; < .
Proof. 1If possible let &({pi}) be uniformly convex and

lim inf pP; = 1. Thus there exists an infinite subsequence




{pi'] of {pi} such that p, - l. By considering the

J J
vectors xe&([pi}) such that x, =0 if n # ij for some
j it is seen that the Banach space &({pi.}) is isometrically
isomorphic with a subspace of &({pi}). T%us &({pi.])
is uniformly convex. Hence it is a reflexive Banachjspace.
However since p; - 1 Dby the Theorem 2 in Nakano [%] the
weak sequential convergence and norm convergence coincide in
&({pi'}). Since i({pi‘}) is reflexive the unit cell in
&({Pi?}) is a weakly cgmpact. Thus it follows readily from

J
Eberlein theorem (see page 51 [2] that the unit cell in L({p, })
i.

J
is compact in the norm topology. Hence &({pi }) is finite

dimensional contradicting that {pi.} is an infinite sequence.
Hence 1 < inf p;- -If 1lim sup Py 3 o it is verified as
in Lemma 1 in [6] that L({pi}) contains a subspace
isomorphic to 4° contradicting that the space L([pi})
is reflexive. The proof of Theorem 2 is complete.

In conclusion we note that from the theorem 1 and proof
of theorem 2 in this note it is readily inferred that the
Banach space L({pi]) is uniformly convex if and only if it

is reflexive.
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FRRATA on ' Fixed Point Theorems for
Suma of operators ', James S, W. Wong.

iine 1 Ax < Ay should read Ax - Ay,

3 line 2 vompletaly sticuld read sirongly.

line 6 Insert after Note thai the words ' for large i
iibe 8 Bxiﬁ should read HBxiﬁﬁ

line 7 The whole line should read ' Let « > 0, we obtain
from above with x = X, ¥ ik,

line 2 from bottom. The whule iine should read

© 1 lumsup lipxil . limsup [[(1-A)7 ‘B0l
1-qg xleco iy xlbon i




FIXED POINT THEOREMS FOR

SUMS OF OPERATORS

James S. W. Wong

Let T be a mapping from a Banach space X into
itself and K be a closed bounded convex subset. The
celebrated Schauder fixed point theorem states that if
T(K) € K and T is completely continuous then T has
a fixed point in K. We are here concerned with extensions
of Schauder's theorem to sums of operators. An operator

A defined on X 1is called a contraction if there exists

some constant O < g < 1, such that ||ax < Ay|| < q|lx-y||
for all x,yeX. The following is a generalization of
Schauder's theorem due to Krasnoselskii for sum of operators.

THEOREM I. (Krasnoselskii [8], Sadovskii [11])

Let T = A + B, where A is a contraction and B completely

continuous, and T(K) € K. Then T has a fixed point in K.

The operator A 1is called non-expansive if

lax - Ayl < ||x - y|| for all x,yeX. We call the operator

B strongly continuous if for every weakly convergent sequence

{xk}, with limit x, there exists a subsequence {Bxk } such that
i
Bka—» x strongly. Recent interests in the theory of non-
i

expansive mappings led to the following analogue of Theorem I:

THEOREM II. (Zabreiko, Kachurovskii and Krasnoselskii

[12]). Let X be a real Hilbert space, T = A + B, where A

is nonexpansive and B is strongly continuous, and T(K) < K.




Then T has a fixed point in K.

When the operator B = 0O, Theorem IIlreduces to the recent
well known result of Browder [1l], Kirk [7] and Gohde [4],
establishing the existence of fixed points of nonexpansive
mappings on Hilbert spaces.

In a number of applications of Schauder's theorem, it
is sometimes difficult to find a desired bounded convex
set K which is mapped into itself by T. One is thus led
to impose other conditions directly on the operator T
which ascertains the existence of some large closed ball
being mapped into itself by T. For this purpose, the notion

of quasi-norm of T is introduced which is defined by

(1) IT|| = 1im sup T
|| ¢[| o0 x

By requiring that ||T|| is small, we have the following an-
alogue of Schauder's theorem concerning the solvability

of functional equations.

THEOREM III, (Dubrovskii [2], Granas [5]). £

T
is completely continuous,and ||T|| < 1, then R(I-T) = X,

where R(T) denotes the range of T.

The purpose of this note is to prove analogues of Theorems
I and II by imposing quasinorm conditions on A and B

in place of the condition T(K) C K.

THEOREM 1. f T=A+ B, where A is a contraction

and B is completely continuous, and ||a]| + ||B|| < 1, then

R(I-T) = X.




THEOREM 2, Let X be a real Hilbert space. If

T = A + B, where A is nonexpansive and B 1is completely

continuous, and ||A|| + ||B]| < 1, then R(I-T) = X.

Roughly speaking, Theorems I and II remain valid when
the condition that T(K) € K is being replaced by the
quasinorm condition that ||a|| + ||B|| < 1. Of course,
in Theorems I and II the operator T need only to be de-
fined on K rather than the entire space X. However,
the conclusions of Theorems 1 and 2 are also stronger.

As an immediate consequence of Theorem 1, we obtain

the main theorem of Nashed and Wong [10] as a corollary:

COROLLARY 1. f T=A+ B, where A is a contraction

and B is completely continuous, and ||B|| < 1 - g, then

R(I-T) = X.

Note that if A 1is a contraction with contractive constant

g, then we have

lall = ﬁiﬁ&‘p ax

< lim sup Jlax - ao| + ||ao|l
[[xl| =00 I

< lim sup gllx|| + ||ao]
X

[ %[|~00 - @

Thus if ||B|l < 1 - ¢ then ||a| + ||B]| < 1, and the result

follows from Theorem 1.

PROOF OF THEOREM 1. For each yeX, define Ayx = AX + Vv

for every xeX and Ty = Ay + B. It is easy to see that

Ay is a contraction with the same contractive constant q,




and the operator Ty satisfies the same hypothesis as that
of T. Moreover, OeR(I-Ty) if and only if vyeR(I-T).
Thus, it suffices to show that O0eR(I-T). For any fixed

element 2zeX, let Lz denotes the unique solution of
(2) Lz = ALz + Bz,

which is possible because A is a contraction. For any
pair of elements u,veX, we deduce from (2) the following

inequality

ltw - il < 755 IBu - Byl

from which and the complete continuity of B it follows
that L 1is also completely continuous. For each positive
integer n, denote B_ = {x : [x| < n}. We wish to show
that there exists a positive integer N such that

L(BN) - BN' Suppose not, there must exist a sequence

{u }eB  ~such that |Lu || > n for all n. Since L is
completely continuous, so HunH - o0 as n - . Note

that from (2), we have

(3) lu ll < n < llzull < llava |+ [IBu ]l

For each € > 0O, we may choose ng such that for all n > n,,

lacu Il < (lall + 5w |l, and also (Bu |l < Bl + 5)llu |

.

Using these estimates, we can obtain from (3)
lu ll2-lla)l - ) < lBu|

which implies




a-lal - § < I2ol ¢ Bl ey 4 5

|z, flu_ll

from which it follows 1 < ||Al| + ||B]| + €. Since ¢ > 0 is

arbitrary, this provides the desired contradiction and proves

the theorem.

PROOF OF THEOREM 2. As in the proof of Theorem 1, it

suffices to show that O0eR(I-T). To this end, weé define

\ = AA,BX = AB and Tx = AT. First note

that A nonexpansive implies Ay is a contraction with

contractive constant A. Next, since B 1is strongly con-

for 0O<< AN < 1,A

tinuous and X 1is reflexive, B is also completely con-

tinuous so does B for every A. Thus, an application of

A
Theorem 1 to the operator TA shows that there exists
xxex satisfying
(4) Xy - (Ak + Bx)xx = 0,

for each 2A,0 ¢ A € 1. We claim that the set {xx : 0O A< 1)

is bounded. For otherwise, there exists a sequence {%i}

such that ”xx.H -+ 00 as i = oo. Using (4), we observe
i
that
1= UEL"H Heay -+ 3y )%l
A i i i

1

AL

1l
S'ﬂ;;fﬂ ”Axxi + Bx%iu

1

1
ST T (HAxAiH + HBXxiH):
1




which upon letting i = oo, gives a contradiction. Now-

since the set {xx] is bounded, there exists a subsequence

{xx }, %i t 1, which converges to an element xoeX. Since
i

B is strongly continuous, there exists a subsequence {An ]
i

such that Aot 1 and Bx, converges strongly to BX,.
i n,
We write X, = %X for short. Note that
"y
e | = llax; + Bl

< llax; - aoll + [lao|l + Bx,]

< gl + 2flaoll + (liBx ll + 1),

from which it follows that the sequence {Txi} is also

bounded independent of i, say |Tx,|| < M. Now, we observe

that by (4)
I, - xgll = llrwg - 2
<@g =l < (1 - Mo Mo
hence lim HTX.1 - x,|| = 0. Also the strong convergence of
i=oo

Bxi to on may be used to prove that the sequence {xi - Axi}

converges strongly to on, since

llx; - Ax; - Bx |l < Ilx; - x| + [IBX, - Bx ||
Finally, let xeX; and obtain from the nonexpansiveness of
A the following inequality

(5) (x - Ax - x; + Axi, X - xi) > 0.




Note that

| (x - Ax - x; + BX,, X - x;) - (x - AX - on, x - xo)l
< |(—xi + Ax, + BX_, X - xi)1 + | (x - Ax - BX_, X, - xi)l,

which tends to zero as i - oco. Thus passing the limit in

(5), we obtain

(x - Ax - Bx_, X - xo) > O.
Since t > O, we obtain from above

(xo - A(xo + th) - on,h) > O.

Letting t - O in the above inequality, we find

(xO - Ax_ - Bx., h) > 0. The fact that h is arbitrary yields

X, = TX - This completes the proof of the theorem.

Remark 1. We note that the original proof of Corollary 1
is similar to that of Theorem 1. However, by a direct applica-
tion of Theorem III, we can now provide a shorter proof.
It is well known that if A is contraction then (I - A)_l
exists and is Lipschitzian with Lipschitzian constant (1 - q)_l.
Since B 1is completely continuous and (I - A)_1 Lipschitzian,
it follows that (I - A)_lB is completely continuous. Now
we observe that

l(z-2) 18] < 1im sup IL(z-a) Y (Bx-Bo) || + |l(z-a) B0
x||-~0c0 |E3l

S.“l— lim sup [|Bx|| + l|BO| + H(I—A)_lBO“
l-g x||~00 Il

<L lel < 1




Applying Theorem III to the operator (I—A)'lB, we obtain

R(I-(I—A)’lB) = X. Thus,
R(I-T) = R((I—A)(I—(Io—A)_lB)) = (I-A)X = R(I-A).

Again since A 1is a contraction, we have R(I-A) = X.

Remark 2. -‘As a historical remark, we wish to point
out that in [8], Krasnoselskii assumed the stronger condition
that Ax + ByeK for every pair x,yeK. The stronger result
was first given in Sadovskii [11]. An alternative proof of
Theorem I in case X is a Hilbert space was also given in
Zabreiko, Kachurovskii and Krasnoselskii [12]. We remark
also that under the above stipulated stronger condition,
Theorem II was first proved by Kachurovskii [6]. Dubrovskii
[2]) originally proved Theorem III under the stronger hypothesis
that |T|| = 0, such an operator is also called asymptotically
zero. The introduction of quasinorm and the present improve-
ment was due to Granas [5]. Extensions of Theorems I and II
in a different direction may also be found in Fudik [3].
For applications of fixed point theorems for sums of operators
to the study of nonlinear integral equations we refer to

Krasnoselskii [9] and Nashed and Wong [10].

Remark 3. Although Theorem 2 is stated and proved for
a real Hilbert space it obviously remains valid for Hilbert
spaces over complex numbers. In particular, inequality (5)
and the following arguments remain valid if .one simply

replaces the inner product by its real part.
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