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Linear Differential Equations with Delays:

Admissibility and Conditional Stability

by

C. V. Coffman and J. J. Schaffer

1. Introduction

In Perron1s classical paper on stability [3], a

central concern is the relationship, for linear differen-

tial equations, between the condition that the non-homo-

geneous equation have some bounded solution for every

bounded "second member" on the one hand, and a certain

form of conditional stability of the solutions of the

homogeneous equation on the other. This idea was later

extensively developed, by Massera and Schaffer among

others; their work is collected in a monograph [2]. In

a previous paper [1], the present authors examined linear

difference equations and provided for them the analogues

of the central results for differential equations in [2].

The important new difficulty encountered was, of course,

the irreversibility of the process described by a difference

equation, and new conceptual tools were developed to over-

come it.
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The present paper is an initial attempt to apply the

methods in [1], [2] to the type of linear systems "next in

order of complexity11,, viz., linear functional-differential

equations or linear differential equations with delay.

We lean heavily on [1] and, less heavily, on [2] for moti-

vation and techniques; we must assume familiarity with [1J

at least.

Specifically, we consider an equation of the form

(1.1) u + Lu + Mu = r

where u and r take values in a Banach space E (which

will often be finite-dimensional), L has operators in E

as its values, and M, the "memory functional", takes a

function u linearly into a function Mu in such a way

that the value of Mu at any given value of the argument t

depends on the values of u at preceding values of t.

The detailed definitions and assumptions are discussed

in Sections 4 and 5.

In this initial attempt, some rather severe restric-

tions have been imposed on the " scope<f of the memory

functional. Roughly speaking, M "remembers" only values

of u at arguments that lag behind t by at least 1

(this "gap" has been normalized) and at most a fixed bound,
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taken for convenience to be an integer p. Among many

other cases covered despite this restriction is the case

of a finite number of fixed delays. The technical form

adopted for this restriction in Section 4 actually

gives each "slice" of length 1 with integral endpoints

of Mu in terms of the preceding "slice" of length p

of u; it is thus slightly less severe. TTiis technical

form avoids a statement on how the dependence of Mu(t)

on u varies locally with t ; it thus allows the theory

to cover such cases as that of a single continuously

varying delay, which would otherwise be excluded by mea-

surability complications.

Rather than apply the previously developed methods

afresh to equation (1.1), we prefer transforming the

equation into an equivalent difference equation in a func-

tion space. Values of solutions of the difference equation

correspond to slices of solutions of (1.1), and the proper-

ties of (1.1) to be investigated are reflected in corres-

ponding properties of the difference equation. It will be

seen that, so far as the behaviour of slices of solutions

of (1.1) is concerned, the previously established theory

for difference equations, with its built-in irreversibility,

is sufficient to yield analogous results for (1.1). It is

true that only slices with integral endpoints are primarily
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accounted for; this blemish is implicit in the assumptions

on M; we feel it is minor,, and it can in fact be removed

in most respects with some additional effort.

•The technical core of this paper is Section 6, where

we show how knowledge about (1.1) can be translated into

analogous knowledge about the difference equation. The

difficulty in this translation, and the method used to

overcome it, were foreshadowed, in a simpler form, in [4J;

that paper was in fact first written to give a technique

for a cruder approach to our present problem. In Section 6

we have tried to keep the discussion at a high level of

generality in such matters as the function and sequence

spaces involved, so as to make the results available for

future developments.

In Sections 7 and 8 we sketch the main results

obtained by our method; these are the desired theorems

that relate "admissibility" properties of (1.1) with the

behaviour of the solutions of the homogeneous equation.

Here it turns out that the results are very clear-cut

for finite-dimensional E , and we impose this restric-

tion for the pertinent results. In contrast to the

generality aimed at in Section 6, the function spaces
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appearing in this sketch have been kept within a small

class of well-known ones; there is no difficulty in exten-

ding this class to include Orlicz spaces and many others

with the appropriate translation invariance properties.

Throughout the paper, we deal simultaneously with the

"Caratheodory case", in which Mu and r are measurable

and locally integrable, and the "continuous case", in which

they are presupposed to be continuous. We should properly

speak of "continuous case" only when L is also continuous--

so that solutions are continuously differentiable and (1.1)

is satisfied pointwise, not merely locally in L --, but

these additional restrictions do not make as significant

a distinction of cases as the one we have adopted.

Future efforts will be directed to removing the

assumption of the short-range "gap" in the memory, and to

formulating an adequate concept of "dichotomy" for our

functional-differential equations, perhaps in the framework

of a more inclusive concept of "transition systems".

2. Spaces

Throughout this paper, E will denote a real or complex

Banach space. The norm in E, as in all normed spaces ex-

cept the scalar fields and the sequence and function spaces

mentioned below, is denoted by II • II . If X,Y are Banach
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spaces, [X -» Y] denotes the Banach space of operators

(bounded linear mappings) from X to Y , and we set

x = [x -> x] .

In this paper, spaces of sequences occur together

with spaces of functions on certain intervals of the real

line. For the former, we adopt without further elabora-

tion the terminology and notation described in [1; Sections

2,3], with which we assume the reader to be familiar.

Hie intervals that serve as domains for measurable

functions will be of two types: firstly, intervals of

the form [ - m, 0] for some (here usually integral)

m > 0 and, secondly, intervals of the type [m, ao ) for

some (here usually integral) real number m. We shall

generally adopt the notations and terminology in [2; Chapter 2]

for functions on these intervals and for spaces consisting

of them; some exceptions will be noted here.

Whenever the fact that the interval [ - m, 0] is the

domain of the functions is to be recorded, a subscript m

to the left will be added. Thus, e.g., L (E) is the

Banach space of (equivalence classes modulo null sets of)

Bochner-integrable functions f : [ - m, 0] -* E , with the

norm J ||f (t)||dt ; m C(E) is the Banach space of continuous
-m ^

functions f : [ - m, 0] -* E with the norm sup{j!f (t)|j :

t G [ - m, 0] ) . We further agree to denote the norms in
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such spaces with thick hollow bars and the appropriate

subscript (or none if the (essential) supremum norm is

involved), as DfDn * DfD in the precedingly specified

examples. This convention permits the following arrange-

ment: suppose that, e.g., g € f(m L
q(E)), where 1 £ q ^ GD ,

and f is a sequence space, say f e b # . Then jjg|j is

the element of f ( Lg) (argument R omitted, as usual)
***•> m ~

given by ||g|| (n) = ||g(n)|| , n = 0,1,... (where ||g(n)||(t) =

||g(n) (t)||--the latter being the norm in E--for all t € [-m,0]);

\\g\\ is the element of f given by []gO (n) = Dg(n) U =

D||g(n)||Dq , n = 0,1,...; thus QgQ q = D||g||Dq ; and

|g|f =IflgD I f is the norm of g as an element of f(m L
q(E)).

We recall that (with our present convention) b3 is the

class of all Banach spaces F of (equivalence classes of)

measurable functions <p : [ - m,0] -* R such that

(a): F is stronger than L , i.e., F is algebrai-ze m ^ r*>

cally contained in L and there exists a number a_ > 0
m ~ F

s u c h t h a t Q<pDn £ c t_ DcpO^ f o ^ a l l <p e F 7

(b) : i f (p e F a n d \b : [ - m , 0 ] •* R i s m e a s u r a b l e ,

w i t h | 0 | ^ |<p| , t h e n 0 e F a n d Q ^ 0 F < Q <p Q •

Similarly, b^C is the class of all Banach spaces F of

continuous functions [ - m,0] -• R such that
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(ac) : F is stronger than C, i.e.,, there exists a
m

number yp > 0 such that Q <p Q ^ yp Q <p IIF for all <p e F ;

(be) : if (p e F and i/) : [ - m,0] -• R is continuous,

with |i|)| £ |<p| , then ip e F and O0D p ^ D<pDp •

For further details, see [2 ; Sections 22,24; esp. 24.Dj.

We observe that <p e C implies cp e w L with DcpQn ^
A>^ m ^ ^ l —

m D<pD; t h e r e f o r e , i f F € m
b3(C , we have D<pD 1 ^ mypD<pDF

f o r a l l (p e F ; so t h a t t h e r e e x i s t s a_ > 0 such t h a t

DoDn ^ o t ^ n c p n ^ f o r a l l <P e F in t h i s c a s e t o o . We

shall in every case specify a , y to be the least

numbers having the stated properties.

If F e b5 [if F e b3C] then F(E) denotes, as~ m ~ m ^

usual, the Banach space of all measurable [continuous]

functions f : [ - m,0] - E such that |! f || eF , with DfD« =

DllflD F #

In considering functions defined on intervals of the

type [m, OD ), we borrow a notational device from [1] : the

subscript [m] will denote, in some sense, "restriction to

[m, OD) ff. Specifically, suppose m,m! are real numbers

and f is some function defined on [m, OD ). Then fr t, ,

defined on [m!, OD ), is given by
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f (t) t > m
fTmM(t) =

[ m J ' rs mi ^ t < m

and is thus an actual restriction if m! ^ m .

The subscript [m] is also used when the fact that

[m, OD) is the domain has to be recorded (these usages

are compatible). Thus £rmi(
E) denotes the space of all

(equivalence classes of) measurable functions f : [m, OD) •* E

that are Bochner-integrable on each compact interval (the

"full11 notation in [2] would be , *L(E)), and similarly

for, say, ^ m ](E) , 1 ^ q £ OD , M [ m ] (E) , C [ m ] (E) , etc. A

new notation is K. 1 (E) , which stands for the space of all

continuous functions f : [m, OD) -* E ; this is a vector

space; it may be thought of as provided with the topology

of uniform convergence on compact intervals, thus becoming

a Frechet space, but this aspect will not be used in this

paper. As usual, the argument is omitted if E = R .

In all these uses, the subscript [m] is retained

even when m = 0.

Norms in Banach spaces of functions defined on [m, <x>)

will be indicated, as in [2], by thick bars with the appro-

priate subscript as, e.g., | f | p .

3. Slicing maps

From now on and throughout the paper, p will always

denote a fixed positive integer and m,mT will be used
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only to denote non-negative integers.

For given m, let f be a function defined on

[m, OD) . For each integer n > m we define the function

Win) f on [-1,0] by

(3.1) («(n)f)(t) = f(t + n), t e [-1,0].

Thus intn) maps f into the "slice11 of f between n- 1

and n , transplanted to [- 1,0] for convenience. Then

denotes the sequence (-cn(n) f) , i.e., the function

on cor , n whose values are the s l ices of f : (Zfff ) (n) =[m+1]

tff(n)f , n = m+l,m+2,.... In particular, for the given

Banach space E, -nKn) maps Lr ̂  (E) onto , L (E) and

Kr i (E) onto ,C (E) ; and vr maps Lr , (E) onto Srm+n (iJi (
E))

and Kr , (E) into (but not onto) sr ,nl (nC(E)) . These~lmj /̂ [m+ij 1/̂

and similar restrictions of 7r(n) , w shall be denoted by

the same symbols. In particular, the mapping W: L 1 (E) -»

(iL (E)) is a Frechet-space isomorphism.

*m reduces to "natural" mappings between certain normed

function spaces: e.g., 'OT: l5 , (E) - l^,,, (nL
q(E)) is a

congruence (linear isometry) for 1 <£ q ̂  oo ; -tu: Mr -. (E) -•

^f +11 ̂ ife (E)) ^ s a n isomorphism (with norm 1; the norm of
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the inverse is 2) ; TU : T,, (E) -» ̂"rm+1i (it™ (
E) ) another

(with norm 2 ; the norm of the inverse is 1). Indeed, we

might thus define new normed spaces on [m, <x>) , but we

shall not do this here.

We require another lfslicing map11, which we only define

in a more restricted setting. For the given p and E , and

for any integers m,n, n > m > 0 , we define II (n) : Kr _ (E)

= ~[m-p] '
pC(E) by

(3.2) (n(n)f)(t) = f(t+n), t e [-p,0] , f e K [ m_ p ] (E) ,

and H: £[m-p](E) - £[m](p£(E)) b^ (nf)(n) =n(n)f,

n = m,m+l, ... . Thus, if p = 1, m > 0, II is just (the

restriction to Ŝrm-11 of^ "^ ^ t s e l f -

4. The memory functional

We now make precise the assumptions on the "memory

functional" M that appears in (1.1). It must in any case

be defined on K, .(E)9 and the crux of the conditions

on M as described in the Introduction is that, for any

u e Kr •. (E) , the "slice" of Mu between .n-1 and n de-

pends only on the slice of u between n - 1 - p and n-1
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We must distinguish the "Caratheodory case11 and the

"continuous case" in further specifying the assumptions.

Throughout the paper, the deviations pertaining to the

continuous case are stated in angular brackets { ) .

We assume given a space F e JD3 ( F e ..bJJC) , F ̂  {0}.

We then assume that M is a linear mapping from Kr T(E)
~l-pj

to Lr̂ T (E) ( to Kr̂ T (E) \ and that there exists a

sequence (M(n) ) of mappings M(n) e [ C (E) -•

A

n = 0,1, . . .--i.e., a function M e s([ C(E) -• F(E)])--

such that

(4.1) (-UTMU) (n) = xc(n) (Mu) =M(n-l) II (n-1) u = M II u(n- 1),

n = 1,2,...; u € Kr , (E)

Obviously, (4.1) permits, for every m, the restriction

of M to a mapping M, , from Kr , (E) to L > , (E)

to Kj. , (E) } , by means of

(4.2) TD(n)(M.jU) = M(n- 1) n (n- 1) u , n = m+l,m+2, . . . ;

U

so that, for m1 ̂  m ̂  0 , we indeed have
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(4.3) M [ m l ]u [ m l ] = (M
[m]u>[m'] ' U € £[m-p]< E ) '£

Let us determine the significance of the continuity

requirement on Mu in the continuous case; since F(E)

consists of continuous functions, (4.1) already accounts

for the fact that the slices of Mu are continuous;

beyond this, all that is required is, clearly,

(4.4) TD(n) (Mu) (0) = (Mu) (n) = w(n+l) (Mu) (-1) , n = 1,2, . . .

Combining (4.1) and (4.4) we obtain the following statement.

4.1. Lemma. If v,,vo e C(E) and v,(t+1) =v o ( t ) ,

-p £ t £ -1 , then (M(n)v2) (-1) = (M(n-l)v1) (0) , n = 1,2, ....

Proof. For a fixed n, there exists a function u e Kr , (E)

such that TI(n-l)u = v^3 II(n)u = v2 . Then (4.1), (4.4) yield

(M(n)v2)(-1) = (M(n)n(n)u) (-1) = -a?(n+l) (Mu) (-1) = w(n) (Mu) (0) =

(M(n-UII(n-l)u) (0) = (M(n- 1) v±) (0) .)

5. Solutions

We recall [2; Section 30] that a function f e Kr , (E)
-̂[mj

is a primitive (function) if there exists g e Lf , (E) such

pt
that f(t) - f(m) = J g(s)ds for a l l t e [m, ao) ; then g

m
.

is unique, is denoted by f , and is the derivative of f.

HUNT LIBRARY
CARNEGIE-MELLON UNIVERSITY
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Assume that we are given the space F and the memory

functional M as specified in Section 4, and, in addition,

L € L [ o ] (E) and r € L [ Q ] (E) < r € K [ Q ] (E) > , with

1F(n)r e F(E), n = 1,2,..., i.e., TErr e s ^ , (F(E)) . A

solution of the "differential equation with delay11

(5.1) u + Lu + Mu = r

is a function u e Kr -. (E) whose restriction uroi
 t o

[0, OD) is a primitive that, together with its derivative

, satisfies u ^ . + LUj.Q, + Mu = r in LrQj (E) (strictly

speaking, this is the way the equation should be written).

More generally, for every m, a solution of (5.1) r -, is
Li"J

a function u e K f -, (E) whose restriction ur i t o

[m, OD) is a primitive that satisfies u r , + Lr -iurmi +
M r m i

u = rr i -̂n Lr 1 (E^ • I n P a r t i c u l a r ^ i f m! ^ m ^ 0

and u is a solution of (5.1) r ,, then u r ., is a solu-
[m] [m! ]

tion of (5.1) r t,, on account of (4.3). These definitions

and statements of course also apply to the homogeneous

equation

(5.2) u + Lu + Mu = 0 .
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We define V e Kp , (E) as the solution of the operator

equation V + LV = 0 (in Lr~, (E)) that satisfies V(O) = I
~LOJ

(I is the identity on E). We refer to [2; Section 31J for

details. V is invertible-valued, and as usual we write

-1 ~ -1 -1
V e Kr_, (E) for the function such that V (t) = (V(t))

t ^ 0 . We also have

(5.3) exp( J s,t £ 0

With this notation and the use of (4.1), every solution

of (5.1),, satisfies (cf. [2; Section 31])

(5.4) (Ilu(n)) (t) = u(t+n) =

u(t+l + n-l) = (Eu(n-l) ) (t+1) -P < - 1

V(t+n)V~1(n-l)u(n-l) - I V(t+n)V 1 (s+n) (Mu(s+n) -r (s+n) )ds =
-1

" 1= V(t+n)v"1(n-l) (II u(n-l) ) (0) -

P* -1- J V(t+n)V (s+n) (MEu(n-l) - vr (n) ) (s) ds - 1 <; t ^ 0 ,

n = m+l,m+2j) ... ;
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and, conversely, every function u e Kr T (E) such

that II u satisfies (5.4)--more precisely, the equality

between leftmost and rightmost sides--is a solution of

6• The associated difference equation

The relation (5.4) is a difference equation for

II u ; we proceed to make explicit the form of this equa-

tion. For this purpose, we define A e sri1 ( C(E)~) and
— L -LJ P~

B € sril ([F(E) - C(E)]) as follows.
/*-' l ± J ~ p~

(6.1) (A(n)v) (t) =

- P

- V(t+n)v"1(n-l)v(O) + f V(t+n) V -1 (s+n) (M(n- 1) v) (s) ds
-1

n = 1,2, . . . ; v e C(E) ,
P~

- 1 ^ t £ 0

(6.2) (B(n)g)(t) =

-l
V(t+n)V (s+n)g(s)ds-1

n = 1,2, . . . ; g € F (E) .

-P

- 1 £ t 1 0
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We no te t h a t t he func t ions A(n)v, B(n)g thus def ined

a re indeed con t inuous , even a t t = - 1 . We observe

t h a t QM(n-l)v[], £ a « QM(n-1) v 0' £ a IJM(n-l) |! Q v [J,

and we t h e r e f o r e f ind , us ing ( 5 . 3 ) ,

(6.3) DA(n)vfl £ max {QvD, ( D vfl •+ flM(n- 1) v Q ) exp(J | |L (s) Ijds) } ^
n - 1

^ D v f l d + a p | | M ( n - l ) | | e x p ( J | |L(s) | |ds) 3

(6 .4 ) DB(n)gD ^ D g \ e x p ( J | |L ( s ) | | d s ) ^
n

n -1

r n
^ a p QgD F exp(J | |L ( s ) | | d s )

n -1

This shows that A(n), B(n) are indeed bounded linear

mappings as claimed.

We consider the difference equations in C(E)

(6.5) x(n) + A(n)x(n-1) = f(n) n = 1 , 2 , . .

(6.6) x(n) + A(n)x(n-1) = 0 n = 1 , 2 , . .

and their restrictions (6-5)rmi^ ^
6'6^rml t o n =

Here f e s M 1 ( C (E) ) .— L J-J P^
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In what follows, A and B are defined by (6.1), (6.2).

6.1. Lemma. Let m be given. A function x e s r , ( C (E))

is a solution of (6.5) r , with f = Burr if and only if

x = n u for some solution u £f (5.1) r,. l£ particular,

x is a solution £f (6.6) . , _if and only _if x = n u for

some solution u of (5.2) r , .

Proof. If u is a solution of (5.1) p-., then II u

satisfies (5.4); together with (6,1), (6.2) this implies

that Ilu(n) + A(n)IIu(n-l) = B(n)ZPr(n) , n = m+l,m+2,..., i.e.,

that II u is a solution of (6.5) r , with f = Bror .

Conversely, if x is a solution of (6.5) f -. with f = Btrr ,

(6.2) implies (f(n))(t) = 0 , - p g t ^ - 1 , n = m+l,m+2,...,

and this together with (6.1) implies that (x(n))(t) =

(x(n-l) ) (t-fl) for all such t,n; therefore there exists

a continuous u, i.e., u e Kr n (E) , such that x = II u ;
~lm-PJ

and using again the fact that x is a solution.of (6.5) r ,

with f = B-oar , we conclude that II u satisfies (5.4);

thus u is a solution of (5.1) r , .
[m]

It is clear that not every f e srnl ( C (E) ) is of

the form f = Btor ; we intend to show, however, that we
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can still relate equation (6.5) with arbitrary f to

equation (5.1). This will be done here only under certain

boundedness assumptions on L^M.

Specifically, we assume

(6.7) L € M[Q] (E) , Me IJl] ( [ p £ ( E ) "* £ < E ) H '

the latter condition is exactly |M| = sup ||M(n)|j < ao .
TJ

(6.3) and (6.4) now yield

A e I™ ( C ( E ) ~ ) , B e I™ ([F(E) - C(E)] )
— L1J P~ ~ l U ~ P~

(6 .8 )

( l + c c F | M | ) e x p | L | M | B | ^ a p exp

6 . 2 . Theorem. I f L̂ M s a t i s f y (6 .7 ) and i f

f € s , ( C ( E ) ) , t h e r e e x i s t s r € L r n l (E) ( r e K r ^ (E)) w i t h

-wr e s ^ , (F (E) ) , such t h a t

P+l
(6.9) D ( « r ) [ 0 ] D £ ^ kx I D ^ ' f ^ D

^ i=l

and such that the solution w jof

(6.10) w(n) + A(n)w(n-1) = f(n) - BTOr(n) n = 1^2,,..
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with w(0) = 0 satisfies

P

(6.11) QwQ £ k2

i=0

where k, ,ko > 0 depend on F , | L | „ , |M| only

Proof. We can select y e s^, (F(E)) in such a way

that

(6.12) J (y(n))(s)ds = (f [Q] (n-1) ) (0) n = l,2,

( r e c a l l that f ,Q , (0) = 0 ) (and a l s o

(6.13) ( y ( n ) ) ( - l ) = (Mf [ Q ] (n-1)) ( - 1 ) , ( y ( n ) ) ( 0 ) = 0

n = 1 , 2 , . . . / ,

and

(6 .14) 0 y [ o ] 0 F £ kQ D T + f [ 0 ] D

for a number k > 0 that depends only on F ( and on

a construction of y will be given later.
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We next define w e s( C(E)) by

(6.15) (w(n))(t) = V(t+n)V •L([t]+n)J (T m y r . (n)) (s)ds
J t [t] 1 l O Jt- [t] -1

+ ) (T f. , (n) ) (t+i) 3 -p £ t £ 0

i=0

n = O^ 1, . . .

(here [t] denotes the greatest integer £ t ; the notation

using translation operators is required to avoid the appearance

of negative arguments for y,f).

(6.15) indeed yields a continuous function w(n),

for by (6.12) we have, for k = 0, . . .,p- 1 ,

k-1

(w(n))(-k) = V(n-k)V~1(n-k)J (T^y [ Q ] (n)) (s)ds +£ (T^f [Q](n)) (i-k)
"-1 i=0

k-1

= (Tkf [Q] (n) ) (0) + £ (Tif [Q] (n) ) (i-k) =
i=0

k

i=0
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(w(n))(-k-O) = V(n-k)v"1(n-k-l) J (Tk y [Q] (n)) (s) ds +

k k
+ I (^fjQjtnJJd-k) = I (T

i=O i=O

This computation yields, in particular,

(6.16) (w(n))(O) = (f[Q](n))(O) .

A l s o , s i n c e T ^ y , ^ ( 0 ) = O , T 3 f [ Q ] ( 0 ) = 0 f o r j = 0 , 1 , . . . ,[O]

(6.15) yields

(6.17) w(0) = 0 .

Further, [t + 1] = [t] + 1 , -p _ t £ - 1 , and therefore

(6.15) also yields

(6.18) (w(n-l)) (t+1) = V(t+n)V 1([t]+n)J (T~ [ t ] " 2 y . . (n-1) ) (s)ds+
J t - [ t ] - l l 0 J

i = 0
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= V(t+n)v"1([t]+n) f (T"rtl"1yrnl (n)) (s)ds
J t - [ t ] - l [ 0 ]

{T±f[o]

-P <. t £ - 1

F i n a l l y , ( 6 . 1 5 ) , ( 6 . 1 4 ) , (5 .3 ) y i e l d

exp | L | M + ^ D T x f [ o ] ( n ) D
[ o ]

i=O

Q D T - [ t ] f [ 0 ] ( n ) D exp | L | M

i=O

- [ t ]

£ D T l f [ o ] ( n ) D -p
i=O

n = 0 , 1 , . . . ,

w i t h k 2 = max { l , a p k e x p | L | M ) , and ( 6 . 1 1 ) f o l l o w s .

We now d e f i n e r e L [ Q ] (E) < r e K [ Q ] (E)> b y
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(6.19) (wr(n))(t) = - (M w(n-l)) (t) + V(t+n) v"1 (n-1) (y (n)) (t)

- 1 ^ t £ O ,

n = 1,2,... ;

Since V(* + n)v"1(n-l) e ,C(E) and Mw(n-l) , y(n) e F (E) ,

we have wr e srn1(F(E))«

{The slices of r are thus continuous. To show that

(6.19) defines a continuous function, we use (6.13) and

compute, for n = 1,2,... ,

r(n-O) = (tpr(n))(O) = - (M w(n-l) ) (0) + V(n) v" 1 (n-1) (y (n)) (0)

= -(M(n-l)w(n-l)) (O)

r(n+O) = tor(n+l))(-l) = - (Mw(n)) (- 1) + V(n) v"1 (n) (y (n+1)) (-1) =

= -(M(n) (w(n)-f(n))) (-1) ;

by (6.18), v, = w(n-l) and v~ = w(n) - f(n) satisfy

the assumption of Lemma 4.1; by that lemma, we find that

r(n-O) = r(n+O), so that r is continuous, i.e., r e K, , (E) ./
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From (6 .19) and ( 5 . 3 ) ,

Qtor(n)Q <; QM(n- l )w(n- l ) Dp + Dy(n)O p exp | L |

- 1 ) | | Qw(n-1)D + Q y ( n ) Q p e x p | L | M ,

n = 1 , 2 , . . . ;

then ( 6 . 1 1 ) , (6 .14 ) y i e l d

p+1

D ( - w r ) [ 0 ] D F £ | M | Q T + w D + OYO F exp | L | M ^ k x ^ QTX

i . e . , ( 6 . 9 ) , w i t h k x = k 2 | M | + kQ exp | LIM .

In v i e w o f ( 6 . 9 ) , ( 6 . 1 1 ) , ( 6 . 1 7 ) , i t o n l y remains t o

prove t h a t w i s a s o l u t i o n o f ( 6 . 1 0 ) . Now ( 6 . 1 ) , ( 6 . 2 ) ,

(6 .18 ) show t h a t

(w(n) + A ( n ) w ( n - 1 ) ) ( t ) = ( w ( n ) ) ( t ) - (w(n- l ) ) (t+1) =

= ( f ( n ) ) ( t ) = ( f (n ) - B t o r ( n ) ) ( t ) ,

n = 1 , 2 , . . . ;
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so that (6.10) remains to be verified for - 1 <£ t £ 0

only. We use (6.15) (and the continuity of w(n) at 0) ,

(6.1), (6.16), (6.12) in turn to obtain, for - 1 £ t £ 0 ,

n = 1,2,... ,

(6.20) (w(n) + A(n)w(n-1)) (t) =

-1 P°= v(t+n)V (n-l)J (y(n))(s)ds

^n-l) (w(n-l)) (0) + J Vft+nJv'V+n) (Mw(n-l)) (s)ds

- l r°
= ( f ( n ) ) ( t ) + V(t+n)V •L(n-1) (J (y (n)) ( s )ds - (f [Q] (n-1)) (0)) +

r -l
+ V(t+n)V (s+n) (Mw(n- l ) ) (s) ds =

- 1

- V ( t + n ) v " 1 ( n - l ) f ( y ( n ) ) ( s ) ds

+ J V(t+n)V (s+n) (Mw(n-l) ) (s) ds
- 1

and ( 6 . 1 9 ) , ( 6 . 2 ) y i e l d
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(6.21) (f(n) - B«r(n)) (t) =

. • Pt ,
= (f(n))(t) +J V(t+n)v"x(s+n) (Mw(n-l)) (s) ds -

-1

pt _ i _i

- J V(t+n)V (s+n)V(s+n)V (n-1) (y (n)) (s)ds ,
-1

and the rightmost sides of (6.20) and (6.21) are

obviously equal.

We conclude the proof with a construction for y.

In the Caratheodory case, let <p € F be such that <p ̂  0 ,

D <pD x , and set y(n) = <p - (f[Q] (n-1)) (0) ; then y(n) e F(E),

(6.12) holds, and Oy(rt)0F £ D <pDp D f [Q] (n- 1) D , so that

(6.14) holds with kQ = Q<pOF •

In the continuous case, we have to distinguish

two subcases. If */)(-l) = 0 for all if) e F , we proceed

as in the Caratheodory case, merely requiring, as we may,

that (p(0) = 0 . Then (6.13) also holds, since M f f , (n-1) e

F(E) , so that (Mf[0](n-l))(-l) = 0; and (6.12), (6.14)

still hold, the latter with k = Q <pg .

Otherwise, we may choose <p e F with (p >: 0 , <p(-l) = 1 ,

(p(0) = O, and then D<pD-i > 0 • We set
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y(n) = <p-(il)1 • ( f [ 0 ] (n-1)) (0) + 02 • (Mf [ 0 ] (n-1)) ( -1)) ,

-2 ?t

where ii)n (t) = 2QoQ, <p(s)ds , jAo (t) = 1 -
1 x J _ i 2

f°Then 0.. (-1) = 0 , $2(-l) = 1 > J <p(t)0, (t)dt =

-2 r° rfc r°
2 D (pD-L j <p(t)dt J <p(s)ds = 1 , J <p(t)^)2(t)dt =J J

= 0 , Q^D = 2D<pO^1 , D 02 D = 1 . There-

fore (6.12), (6.13) are sat i s f ied , and

Dy(n)DF £ D<pDF (2D<pDi1 D f [ 0 ] (n-D 0 + DMf [ 0 ] (n-1) D )

^ D<pDF (

so tha t (6.14) holds with kQ = OcpDp (2 fl <pfl ̂  + 7F 1^1 ) • )

7. Admissibility

When we are studying equation (5.1) with given L,M

(satisfying the boundedness conditions (6.7)), the discus-

sion in the preceding section allows us to replace considera-

tion of the differential equation with delay (5.1) by analysis

of the associated difference equation (6.5). In this section
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we describe a significant instance of this.

We assume the space F G nb 3 / F € ^b^cN given,

M a. memory functional as described in Section 4, and L,M

satisfying (6.7). A,B are then defined by (6.1), (6.2).

For the concepts of k-pairs and jt -pairs of sequence

spaces and their admissibility for difference equations, we

refer to [1; Section 8] .

7.1 Theorem. For each given £ -pair (or, in particu-

lar, ;fc-pair) (b,d), the following statements are equivalent;

(a) : b is stronger than d; and for every r e L r^T (E)

^ r G Kr , (E)\ with wr e br,, (F (E) ) equation (5.1) has a

solution u with II u e d ( C (E) ) ;
^ p<-

(b): (b,d) is admissible for A ; i.e.. for every

f e b M 1 ( C(E)), equation (6.5) has a solution x e d( C(E))
^LiJ P~ ^ p^

Proof. (a) implies (b) . Let f e br.,( C (E)) be
— * [I] p

given. Since b e b^"*, we have T 1 f - . G b ( C (E) ) , i = 0,1, .

Let r,w be as provided by Theorem 6.2. Then r e Lf - (E)

G K.Qj (E)), and (6.9) implies *ocr̂ r01 eb( C(E)) , i.e.,

€ b^j (p£(E)) . Further, (6.10) implies w G b( C(E)) ,

and, since b is stronger than d, w G d( c(E))
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By the assumption, (5.1) with this r has a solution u

such that IIu€d( C(E)) ; but by Lemma 6.1 we have Ilu(n) +

+ A(n) II u(n-l) = B-Wr(n), n=l,2,... ; since w is a

solution of (6.10), we conclude that x = II u + wed( C(E))
^ p^

is a solution of (6.5). Thus (b,d) is admissible for A .

(b) implies (a). The admissibility of (b,d), together

with (6.8), implies that b is stronger than d [4; Lemma 4.1].

Let now r be given as specified in (a); then (6.8) implies

DBirr D £ |B| Q^cr 0 p , so that B-ror e bflj ( C(E)) . By

(b) , there exists a solution x e d( C(E)) of x(n) +

+ A(n)x(n-1) = B-Tirr (n) , n = 1, 2, . . . , and by Lemma 6.1

there exists a solution u of (5.1) with II u = x e d( C(E)),
~ p~

so that (a) is verified.

If B is a subset of Lrrx1 (E) ( of Kr^, (E) \ and D is

a subset of Kr , (E), respectively, it is in keeping with
~L-pj

earlier terminology to say that the pair (B,D) is admissible

with respect to L,M--more loosely, with respect to (5.1)--

if for every r e B there exists a solution u e D of

(5.1). B will here be specified to be such a space as

| (E), 1 £ q < OD , M^oj (E), TJ-QJ (E) , etc., and similarly

for D , but the choices can easily be extended in the spirit

of [2; Chapter 2] . Following earlier practice, the name of
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the pair (L^ , (E), Cp j(E)) , etc., is abbreviated to

(L ,C) in this context, since there is no ambiguity.

With this terminology, Theorem 7.1 covers, among

many others, the special cases we now record.

7.2. Corollary. With F, (B,D) , (b,£) as specified

in the tables, the admissibility of (B,D) for L,M is

equivalent to the admissibility of (b,d) for A.

F B b D d

L q lq 1 ^ q ^ oo

M

<iS SXO XO

Proof. Theorem 7.1 and the remarks in Section 4 on

the "slicing operator" tr. (Similarly, if u e Kr (E)

then u e Cr , (E) if and only if II u e t0® ( C (E) ) , etc.)
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8. Admissibility and the solutions of the homogeneous equation

The results of the preceding section have enabled us

to translate admissibility of certain pairs of function

spaces with respect to the differential equation with delays

(5.1) into admissibility of certain related pairs of sequence

spaces with respect to the associated difference equation

(6*5). This enables us to apply the theory developed in

[1J to obtain conclusions about the solutions of the homo-

geneous difference equation (6.6) and, via Lemma 6.1,

about those of the homogeneous equation (5.2).

The behaviour envisaged for the solutions of (6.6)--

or, rather, of (6.6) r , , m = 0,1,... --is either an ordinary

or an exponential dichotomy, as defined in [1; Section 7],

types of conditional uniform stability, simple and asymptotic,

respectively. In order to develop fully the programme out-

lined above, it would be necessary to translate the concept

of a dichotomy, in the most general case, into a description

of the behaviour of the solutions of (5.2); in particular,

we should supply the analogue of a covariant sequence of

subspaces. (Observe, at all events, that Lemma 6.1 ensures

that information on all solutions of (5.2) corresponds to

information on all solutions of (6.6).) Further, in order

to take full advantage of the "direct theorems11 in [1; Sections

9,10], we should require that any admissibility be "regular",
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and translate this in terms of (5.1); and we should con-

sider, in addition^ (b^d)-sequences for (6.5) and their

translation in terms of (5.1).

All this can be done; at present,, however, it would

take us too far afield without involving or illustrating

any new idea,, and it fortunately turns out to be unnecessary

in the fundamental case of finite-dimensional E (note

that the associated difference equations of course belong

in the infinite-dimensional space C(E)). We therefore
p-

restrict our attention to this case here.

We assume, then, in the remainder of this section,

that E is finite-dimensional, that the space F e ..b 5

{ F e .,b 3 C ) _is given^ M j ^ _a memory functional as des-

cribed in Section A, and L e Lr -, (E) . A and B are

defined by (6.1) and (6.2).

As regards equations (6.5), (6.6), we define•, as

usual, the transition operators U(n,n ) e C(E)~ for

integers n ^ n ^ 0 by

(8.1) U(no,no) = 1 , U(n,nQ) = (-l)
n"n0 A (n)A(n- 1) . . .A (n +1) ,

n > n Q ^ 0 .
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The following propositions show why the assumption

that E is finite-dimensional is significant.

8.1. Lemma, U(m + p,m) JLS ja compact operator

for m = 0,1, . . .

Proof. By (6.1), (6.2), A(n) = - J + K(n) + B(n)M(n-l),

n = 1,2,... , where J,K(n) e C (E) ~ are given by

- v(0) - p

(Jv) (t)

- 1

v e C(E)p-

- v(0)

(K(n)v) (t) =

- V(t+n)v"1(n-l)v(O) - 1 ^ t ̂  0

v e C(E)

Since E is finite-dimensional, K(n) has finite-

dimensional range, hence is compact; and B(n) is the
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restriction to F(E), with its stronger topology, if the

linear mapping nL(E) -• C(E) given by (6.2), which

is itself clearly compact for finite-dimensional E . We

conclude that A(n) + J is compact; it follows from (8.1)

that U(m + p,m) - J^ is compact. But induction shows

that (Jk v) (t) = 0 for - k < t < 0 , k = l , . . . , p , s o

that jP = 0 , and U(m + p,m) is compact.

8.2. Theorem. Assume that the ;t-pair or jt -pair

(b,d) is admissible for A. Then the covariant sequence

( C (E) ) - is regular , its terms have constant finite co-
lClr^ C J Q ' • •" " • ' ' ' — — — — — L ' " "

dimension in C(E) , and it induces a dichotomy for A.

If (b,d) is not weaker than {I1,1^ ) , then (
— — <-s/ r^ — — — " ""—'— /-— /-̂VJ — — — . p^^ Q Q

induces an exponential dichotomy for A .

Proof. By [1; Lemma 3.5], supp (b) is an infinite

set,, so that statement (d) of [5; Lemma 4.2] holds for

(b^d) with respect to A . Since U(p,,O), say, is compact

by Lemma 8.1, we conclude from [5; Theorem 4.3,(b)] that

the covariant sequence ( C(E))^. is regular and that its

terms have constant finite co-dimension in C(E) . This

sequence induces a dichotomy for A , by [1; Theorem 9.2];

and an exponential dichotomy if (b,d) is not weaker than

(t1 I™ ) , by [1; Theorem 10.2].
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We are now able to prove a fundamental "direct11

theorem by combining the preceding result with Theorem 7.1,

8.3, Theorem. Assume that L,M satisfy (6.7), and

that the ;b - pair or k- -pair (b,d) is given. Assume

further that for every r e Lrnl (E) ^r e Kr , (E) \ with

W r e b n i (F(E)) equation (5.1) has a solution u with

Hue d( C(E)). Then, with respect to the difference equa-

tion (6.6), the covariant sequence ( C(E)) , is regular,

its terms have constant finite co-dimension jln C (E), and

it induces a dichotomy for A. If (b,d) is not weaker

than (I , t^ ), then ( C(E)) induces an exponential

dichotomy for A.

Proof. Theorems 7.1 and 8.2.

The significance of the conclusion lies in the fact

that, by Lemma 6.1, the solutions of (6.6) are exactly

the sequences of slices of solutions of (5.2). We might

now define a "dichotomy" (ordinary or exponential) of the

solutions of (5.2) in such a way as to translate the

corresponding behaviour of the solutions of (6.6). We

do not wish, however, to explore all the implications of

such a definition at this time, or to complicate future work

by an inadequate definition. We shall therefore merely set
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down one description of the conclusion of Theorem 8.3 in

terms of the solutions of (5.2). We shall consider only

the cases d = I and d = l^ . Since a complete proof

would imply a purely technical reworking of a large part

of the proof of [1; Theorem 7.1], we merely indicate the

results used.

8.4. Theorem. The following statements are equivalent;

(a): With respect to equation (6.6), the covariant

sequence ( C(E)) is regular and its terms have constant
1̂ ^ f^J ^^J • • • ' • • • • • • • • • ' • • ^

M
^ *

H
*

N
* " ' * * * * *

<
*

B
" *

B
"

-
*

> <
* '

<
 • • • • • • • • • • • • • • • • • I ^ B V M n M M M M M a M n a n M H M M M I

finite co-dimension in C(E), and it induces a dichotomy

[an exponential dichotomy] for A;

(b): There exists [a number v > 0 and] a number

N > 0 such that, for every m e cc, every bounded solution

v of (5.21 , satisfies

(i) : Onv(n)D £ N Dnv(no)D [ DIIv(n)Q

n ^ n 0 ^
 m ;

there further exists ja finite-dimensional linear manifold

W of solutions of (5.2), and numbers [v} > 0,]N! > 0 ,

^ n > 1 such that every solution u jDf (5.2) - , for

any m e cc satisfies u = v + Wr , with v JL bounded
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solution and w e W , and such that every solution w e W

satisfies

( i i ) : QIlw(n)Q ^ N l ~ 1 Q n w ( n o ) 0 [ DIIw(n)[J ^
v1 (n-n )

N ' " 1 e ° Q nw(nQ) D ] n ^ nQ ^ 0 ,

( i i i ) : DHw(n) Q £ AQ fl II w(n) - II v(n) fl , n ;> m

for any bounded s o l u t i o n v of (5.2) r , . m e cc •

— imj

The equivalence of (a) , (b) holds if ( C (E) ) ̂

is replaced by ( C ( E ) ) ^ in (a) 9 and "bounded" by"tending to 0 .as n -• oo " .in (b) . [!£ L^M satisfy

(6.7) , condition (iii) în (b) is redundant in the

"exponential" case.]

Proof, Lemma 6.1 is used to pass from solutions of

(5.2) r , to solutions of (6.6) r , and vice versa. To[m] [m]

establish that (a) implies (b), we observe that, in

[1; Theorem 7.1], the finite co-dimensionality of the

terms of the covariant sequence allows us to establish

statement (c) with the splitting chosen to be a (linear)

projection onto a finite-dimensional complement Z of

( C(E))n(O) in C(E). If W is the set of solutions w

of (5.2) with IIw(O) e Z , the present statement (b)

follows via Lemma 6.1 from [1; Theorem 7.1, (c)]. For the



[39]

converse implication, Lemma 6.1 is combined with [1;

Theorem 7.1]; condition (i) together with [1; Lemma 6.5]

is used to show that the covariant sequence ( CfE))^ is
p^ 0

closed. The proof for the "tending to 0" case is the

same. [The redundancy of (iii) when L,M satisfy

(6.7) in the exponential case follows from [1; Lemma 7.2J.J

8.5. Corollary. Assume that L,M satisfy (6.7).

If F = , L and (L ,C) or (L ,C ) J-£ admissible for

L,M , or JLf F = ^L00 and (T,C) £r (TJ£0) JLs admissible

for L,M, then the solutions of (5.2) have the "ordinary"

behaviour described in Theorem 8.4, (b) . _I£ F = _L and

(Lq,C) or (Lq,C ) is admissible for L,M/ 1 < q < <x> ,

_or JJf F = -L and (M,C) or (M,C ) jLs admissible for

L,M ( 2L ±L F = 1C and (C>O ££ ^n^0^ — ^Cj>C0^ —

(C^,C ) is admissible for L,M^ , then the solutions of

(5.2) have the "exponential" behaviour described in Theorem

8.4, (b).

Proof. Corollary 7.2, Theorems 8.3, 8.4.

We conclude by stating, in a form corresponding to

Theorem 8.3, a "converse" theorem. Theorem 8.4 and Corollary

7.2 provide some consequences in terms of solutions of (5.1),

(5.2) .
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8.6. Theorem. If some regular covariant sequence

induces a dichotomy for A, then, for every r e Lrn,(E)

(r £ Krol(E)> with wr e £* (F(E)) equation (5.1)

has a bounded solution. If some regular covariant sequence

induces an exponential dichotomy for A, and the space d £ b Jt

is given, then for every r e Lr^n (E) Cr £ Kr^, (E)^ with

or r € d r i l ( F ( E ) ) equa t ion (5.1) has a s o l u t i o n u wi th

I u e d ( C(E)) .
^ P ̂^

Proof. fl; Theorems 9.2, 10.3], and the implication

(b) —> (a) in Theorem 7.1. In the proof of that implica-

tion, the assumption that L,M satisfy (6.7) was used

only to establish that b is stronger than d; since

here b is assumed to be d itself, the assumption on

L,M can be dispensed with.
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