
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



ON £2 - SOLUTIONS OF LINEAR

ORDINARY DIFFERENTIAL EQUATIONS

by

James S. W. Wong

Report 70-3

January, 1970

UUASY
BUYERS1K



On Si* - Solutions of Linear Ordinary Differential Equations

James S. W. Wong

1. Consider the second order self-adjoint linear differen-

tial equation:

(1) (p(t)x')1 - q(t)x = 0, t > 0,

where p(t) is absolutely continuous and positive, and q(t)

is locally integrable. We are here concerned with the exis-

tence of a non £2[0, OD ) solution to equation (1), i.e.

whenever equation (1) is not of limit circle type. When

p(t) s 1, two well known criteria due respectively to

Weyl [12] and Hartman [6] state that if (i) q(t) > 0 or

(ii) q e £~[0, OD ) , then equation (1) is not of limit circle

type. In fact, their results remain valid for general p

which is absolutely continuous and positive, see Dunford and

Schwartz [3] . Tlie purpose of this note is to extend these

results to the more general n order equation

(2) p n ( p n - l ' • • { p l [ p o x ] ! } f •••)! - q ( t ) x = °> fc^0'

where p , p.., . . . , p are continuous and sufficiently

smooth so that equation (2) admits a solution for every

choice of initial values. Analogously, we say equation (2)
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is not of limit circle type if not all solutions belong

to <£- [0, CD ) •

Our proposed extensions are the following two theorems:

THEOREM 1. Let p. be positive i = 0,1,2,...,n cm

[0, GD ) . if q (t) > 0 for t ̂  0 and p^1 { 2>2l0, CD) ,

then equation (2) ̂ is not of limit circle type.

THEOREM 2. Let P . = P., i = 0, l,2,...,n. If q(t)

€ £o[0, OD ) and p positive non-increasing for t > 0,

then equation (2) jLs, not of limit circle type.

For convenience,, we introduce, the differential operators

D., i = 0, 1,2, . . . ,n, defined inductively by D x = p x ,

D.x = p.(D. , x ) !
3 i = l,2,...,n . In this notation, equation

(2) takes the simple form D x = qx.

PROOF OF THEOREM 1. Consider the solution x(t) of (2)

defined by the initial conditions D.x(0) = 1, i = 0, l,2,...,n-l.

Since D Q X ( 0 ) = 1 and (DQX)
!(0) 2 0, hence D x(t) Ĵ  1 in

some right neighborhood of t = 0. We first prove that

D x(t) J> 1 for all t > 0. Assume the contrary, then

there must exist T > 0 such that D x(t) J> 1 for all

t e (0,T] and DQx(t) < 1 to t > T. Denote the compact

interval [0,T] by I and let 77 = inf q(t) and p. =

sup p, (t) , k = 1,2, . . .,n. From equation (2), we obtain
tel K
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(D ^(t)) 1 ^ •? 2 0 . for all t e I. Thus Dn_1x(t) ^ 1
n

on I. Using the definition of Dt s , we obtain inductively

(D.x(t))! J> —- , i = n-2, .. .,2,1,0 for all t e I. In
1 P

particular (D x(T))f j> 0 contradicting the fact that

DQx(t) < 1 for t > T . Thus, DQx(t) > 1 for all t J> 0 ,

and x(t) ̂ > p~ . By hypothesis p" 4 ^9 ̂ °' ^ ^ * s o d o e s

x(t) ^ £2[0, CD ), proving the theorem.

PROOF OF THEOREM 2. Denote {x , x9,...,x } the set

of linearly independent solutions of (2) satisfying the

initial conditions D.^x^O) = 6.. . Consider the genera-

lized Wronskian function $(t) = det (D. -.x.), 1 <̂  i , j <^ n .

An easy computation using (2) shows that $(t) = 1 . Consider

the Laplace expansion of det (D. ,x.) with respect to the

last row:

n i
(3) i s * (t) = I (-1)D (Dn .x. (t)) X. (t), .

j=l n""1 3 J

where X. is the cofactor of D ,x. , j = l,2,...,n. In

view of the "adjointness11 conditions that p . = p. i =

0, 1, ... , n; we can prove by differentiating inductively

that the functions p" X. , j = 1, 2, ..., n, are agair

solutions of (2). Integrating (2), we obtain
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(4) Dn.lX.(t) =Dn_lXj(0) + f 0 ^ - x.(s) ds .

Applying Schwarz1s inequality to (4), we obtain

(5) |D , x . ( t ) | ^ 1 + ( J q
2

( s ? ds) (J x2 (s) d s ) 1 / 2

o pQ(s) o J

Suppose that equation (2) is of limit circle type., hence

there exists a constant M > 0 such that
o

00 1/2
(6) (J x? (s) ds) £ M Q, j = 1, 2, ..., n.

o

Using (5) and (6), we can estimate $(t), given by (3), as

follows:

i .| po(t)| D ^ ^ .

(7)

i [poct> +M O(P^ (t> Jo y^ as) j z^ | PO

Recall that p (t) is non-increasing and q € X2[0, OD ) , hence

from (7), we obtain

(8) |*(t) | 1 M L | p " 1 X. (t) | ,
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with some appropriate positive constant M, . Since p~ X. ,

j = 1, 2, ..., n are again solutions of (2) and thus belong

to £2 t°j
 CD ) ky hypothesis. Hence,, (8) produces the desired

contradiction.

2. We next show how Theorems 1 and 2 may be used to

obtain other results of this type. Consider the following n

order equation:

(9) L y = y
( n ) + £ a. (t)y(k) = b (t)y ,

k=0 K

Following Polya [10]3 the differential operator L is said

to have property (W), if the differential equation:

(10) L z = 0 , t 2 0 ,

has n solutions zn3 z0, ..., z such that
l cL n

W, (t) }4 0 , t > O , for k = 1, 2, . . ., n ,

where Wk(t) = W(t; z^ ..., z^) is the Wronskian of the

set of solutions [z^, ..., z^} of (10). Define the adjoint

operator of L by

k=0
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In the following we assume that the operator L have

property (W) with respect to solutions {z.., z2^ . .., z }

of (10).

THEOREM 3. JTf z± $ £>2[0, <x>) and b(t) ;> 0, then

equation (9) is, not of limit circle type.

THEOREM 4. Let L be .a self-adjoint differential

operator, i.e. L = L . If b e £o [0, <x> ) . and z, (t)
• -—— z — — j_

positive and non-decreasing for t J> 0; then equation (9)

is not of limit circle type.

Suppose that the linear differential operator L has

Polya1s property (W)9 then by the Frobenius factorization

theorem ([7], p. 67), equation (9) can be written in the

following form:

(ID rn(rn-l ••• Cr2[r1(roy)M
!}?...)1 = b y ,

W.2

where 0 < r. = W - ^ W ^ W ± t h Wo = W-l = Wn+1 =
 X •

Since rQ > 0 , so is z1(t) > 0 for all t > O , If

z, \ £p[0, OD ) 3 then Theorem 3 follows immediately from

Theorem 1 . On the other hand^ if L is self-adjoint

then W. = W . , j = 0, 1, 2, ...3 n 9 (for a simple proof,

see [16 ] .) Thus, r _. = r. for i = 0, 1, 2, ..., n.
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The assumption that z,(t) is positive and non-decreasing

then allows us to apply Theorem 2 to equation (11) and obtain

Theorem 4.

We make a few remarks relating this work to others.

Remark 1. Theorems 1 and 2 are immediately appli-

cable to the following self-adjoint equation

(12) (p(t)x(m))(m) - q(t)x = 0 ,

which is a natural extension of equation (1). In this case,

we have: if q(t) j> 0 or q e £2 [0, OD ) , then equation (12)

is not of limit circle type. Asymptotic results concerning

(12) may be found in Hunt [8].

Remark 2. For other proofs of Weyl1s limit point crite-

rion concerning equation (1), we refer the reader to Codding-

ton and Levinson [2], Dunford and Schwartz [3], Everitt [4]

and Wong [15]. For another proof of Hartman!s theorem,

see Putnam [11] and Naimark [9]. Extensions of these results

concerning equation (1) to second order systems may be found

in Hartman [7], Chapter XI, section 9.

Remark 3. Results concerning property (W) and dis-

conjugate solutions of (10) were discussed in Polya [10] and
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a summary of these results may be found in Hartman [7] ,

Chapter IV, section 8. It was shown that if Lz = 0 is

disconjugate on [0, OD ) then the operator L has prop-

erty W on (0, OD ) with respect to a system of solutions

{z..,...,z } where zfD'(O) = 6 . . , i,j = l,2,...,n.
x n i ii— JL, j

Here by disconjugacy of L , we mean that no solution of

Lz = 0 can have more than n zeros on [0, OD ) counting

multiplicities.

Remark 4. There are X analogues of Theorems 2

and 4. The same argument given in the proof of Theorem 2

provides the following extension: If p _ . = p. , i = 0,l,2,...,n,

and q(t) e Z [0, a> ) , p > 1 ; then not all solutions of

(2) belong to £ [0, CD ) , where — + — = 1.

Remark 5. Finally, we note that Wintner [13] contains

results on non-existence of any £2 solutions of equation (1).

Extensions of Wintner1s theorem to nonlinear and n order

equations may be found in Burlak [1], Wong [14], and Ha11am [5].

These results complement those discussed in this note. A simi-

lar result to Theorem 2 may also be found in Zettl [17] under

slightly different hypothesis.

We close our discussion with a few examples by demonstra-

ting how Theorems 3 and 4 may be used to obtain results

for equations not of the form (12).
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Example 1. Consider the fourth order equation

(13) Ly = y i v - y" = b(t)y ,

where the operator L is self-adjoint and Lz = 0 is

clearly disconjugate on [0, CD ) . Using Remark 3, the

operator L has property (W) with respect to a system

of solutions {z,,...,z } on (0, CD ). In particular

z, (t) = -t+Tj-e - 2*e~ which will satisfy the hy-

pothesis of both Theorems 3 and 4 on [e 3 CD ) , for

e > 0 . Thus if either b(t) 2 0 or he £2 [0, CD )

then not all solutions of (13) can belong to ^ofe * 0° ) *

hence equation (13) is not of limit circle type.

Example 2. Consider the third order equation

(14) Ly = y m + y' = b(t)y

We note that third order equations cannot be self adjoint

so Theorem 4 is not applicable. Since Lz = 0 is dis-

conjugate on [0, CD ), Theorem 3 is applicable. The

solution z1 of Lz = 0 satisfying zj-1" ' = 6
-L J- nj

j = 1, ...,n is easily determined to be z^(t) = -1 + -̂ -(e + e )

which is positive and nondecreasing on [e , CD ). Thus

it follows from an application of Theorem 3 that if
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k(t) >̂ 0 for t ̂ > 0 then equation (14) is not of limit

circle type.

Example 3. Consider the fourth order equation

(15) Ly = y u v ; - 2y - y + 2y = b(t)y ,

which is not self adjoint. Following Example 2, we find

1 -x 1 1 2xthe solution in question is z. (t) = -T- e ~ T + T e

which is positive and nondecreasing on [e, OD ) . Ihus

k(t) 2. ° > t 2 0 implies that equation (15) is not of

limit circle type.

Example 4« Consider the second order equation

(16) Ly = yM + p(t)y = b(t)y

where p(t) j> 0 and Lz = 0 has non-oscillatory solu-

tiony say z,(t). By definition, z,(t) > 0 on [T , GO)

for some T > 0 . Since p(t) ^ 0 , we must also have

zi (fc) 2. ° • Thus,, in this case conditions on z, both in

Theorems 3 and 4 are satisfied on [T, OD ). Consequently,

if b(t) _> 0 or b e ^2 ̂
Oj> ^ ^ > then equation (16) is

not of limit circle type. Various conditions for nonoscilla-

tion of the second order equation z!t + p(t)z = 0 may be

found in [7], Chapter XI.

Thanks are due to A. Zettl for helpful discussions.
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