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Spectral Theory of Monotone

Hammerstein Operators

Charles V. Coffman

l. Consider the linear integral equation,

(1) y(t) = uf K(t,s)p(s)y(s)ds,
Q

where K(s,t) is a real-valued symmetric positive definite
kernel and p(s) 1is a positive function. Let L denote
the inverse of the integral operator u-— f K(*,s)u(s)ds,
and for a function y in the domain of L, 5?# o, (all
functions are assumed to be real valued) define the Rayleigh

quotient J(y) for (1) by,

J(y) = fﬂy(t)[Ly](t)dt/fﬂp(t)yz(t)dt.

If Yy # O and ¥ is in the domain of L and if
Y, = Iéﬁ(.,s)p(s)yl(s)ds, then several applications of the

Schwarz inequality show that,

J(Yz) < J(Yl):

with equality only if y; 1is an eigenfunction of (1). On
the basis of this fact, when the integral operator in (1)
is compact, oné can develop the complete spectral theory

of (1).

We wish to show here that the approach indicated above




for the study of (1) has a simple and natural extension for

the study of the non-linear integral equation,
(2) y(t) = ufg‘zx'(t‘;s)f(s,ws))ds,

where K(t,s) is as above and f(t,y) 1is an odd function of
Y,
f(t,y) = -£(t,-y),
and satisfies,
yE(t,y) > 0, y # 0,
and

f(tyyz) 2> f(t:Yl)’ Yy 2> Yq-

We cannot define a Rayleigh quotdent for (2), but the
problem of minimizing the Rayleigh quotient J(y) for
(1) can be generalized to either of the dual variational

problems,

y(t)
[y(ery eyl ()@t = min., fﬁf £(t,n)dndt = const.,
Q 0

y(t) : -
fgf f(t,n)dndt = max., fﬂg(t)[LY](t)dt = const.
(0]

By studying the first of these two variational problems, we
shall prove here a variant of a theorem of Sdbdlev, [171,
concerning (2); Sobolev's work treats the second of the above
variational problems. For a discussion of Sobolev's theorem
and related results see [8].

The Lyusternik-Schnirelman theory upon which the
theorem of Sobolev is based has undergone considerable
development in recent years, see [14],[16], with fruitful

applications to the theory of non-linear elliptic boundary




value problems, see [1],[2]. Yhe methods employed here
differ substantially and in several respects from the
standard methods of the Lyusternik-Schnirelman theory.

We believe that for the problem at hand these methods

are simpler and more natural, and therefore should be

of interest. The central idea of using an iteration
operator in the variational study of a non-linear problem
was suggested by the work in the series of papers [11],[12],
[13]. The notion of 'genus' which we use was introduced

by Krasnosel'skii, and is treated in [8]; see also [4].

§2. Let X be a real infinite dimensional Banach space,
X* its dual space, and let the value of a linear functional
yeX* on an element xe€X be denoted (y,x). Let A : X—X*

be a compact linear operator, take

(3) Y = AX,

and assume that A is symmetric,

(4) (Axl,xz) = (Ax2,xl). xl,xzex,
and positive definite,

(5) (Ax,x) > O, xeX\{0]}.

Note that if X is reflexive then (5) implies that Y = X*,.
Let @ : Y->X Dbe a continuous nonlinear mapping and
assume that & is the gradient (Fréchet derivative) of a

real valued even functional +y(y) on Y satisfying




v(0) = 0. (The gradient of a functional on Y is actually
an operator from Y to Y¥, however, X is canonically
isometric to a subspace of Y*¥ so that & determines in
an obvious way a mapping of Y into Y¥¥*, it is this
mapping which, properly speaking, is the gradient of y?
clearly this problem does not arise when X 1is reflexive.)

The fact that vy 1is even implies that ¢ is odd,
(6) o(y) = -®(-y),

we assume also that & is positive defindte,

(7) (y,®y)) > o0, yey\{0},
and monotone,

(8) (yy - yl,¢(yz) - ¢(yl)) 2 0, yy,¥,€Y.

The result which we shall prove is the following.

Theorem 1. Under the above assumptions concerning

A and &, the eigenvalue problem,

(9) y = WA®(y),

has infinitely many eigenvectors satisfying,

(10) y(y) = c,-
for every c¢ > O.
§3. We begin the proof of the theorem stated above by

establishing several results concerning the linear operator

If we let R denote the range of A then, by (3), R is




dense in Y, and by (5), A has an inverse L :R—¥X.

From (4), (5) and the Schwarz inequality there follows

(9) (Axy,%,)% < (Axg,%;) (Ax,,%,).

and thus, since

[ax|l o = sup{(ax,x') :lx'|, < 13,
we have
Iax|2, 2 la]l(ax,%),

and for yeR, we have,
2
(10) Iyl < llall(y,zy).

If we complete R with respect to the inner product

<y,y> = (y,Ly) we obtain a Hilbert space H c Y with

(11) linllZe < llal YnlZ

where i denotes the inclusion mapping H ¢ X*. It is

clear that for mn,n'eH and in = AxeR,

(12) n'sm> = (in',x).

Hence if we define B : X—H by 1iBx = Ax, then
HBtz = <BX,Bx> = (Ax,X) 1AHH‘”2
: H— ’ > = X,XS" XX’

so that B 1is a continuous linear mapping of X into H.

Moreover, upon taking 7 = Bx in (12) we get
<n',Bx> = (in',x),

from which it follows that




(13) B* = i.

We next show that the compactness of A imples the
compactness of both B and 1i.

Lemma 2. The mapping B : X->H 1is compact,

Proof. Let {xn} be a bounded sequence in X. There
is no loss of generality in assuming that {Axn} converges

strongly in X*, since A is compact, but then,
IB(x_ - x )]|2 = <B(x_ - x_),B(x_ - x )>
n m n m’’ n m” 7’
= (A(Xn - xm),(xn - xm))—+0,

as n,m->» o, and thus B 1is compact.
By standard results, the compactness of B implies the
compactness of i = B*¥, thus we have the following.

Lemma 3. The imbedding i : H & X* is compact.

§4. We turn our attention now to the non-linear operator
®, and observe that, for Ys¥o€Y we have

1 .
y(y,) - ¥y, = fo (v, - ¥p, @y +t(y,-y,)))at,

(see [18]), but by (8),

(Y2 - Yl,‘I’(Yl + t(Yz - Yl))) > (Yz - Y1’¢(Y1)):
so that

(14) vY(yy) - v(yy) 2 (v - vq,®(yq)).
Next we define ¢ : H—>R,¥ : H—H, by
(15) Q= y.i, ¥ = B.P.i;

then the continuity of ¥y and @ and the compactness




of i imply the following result.

Lemma 4. The mapping ¢ is continuous and V¥ is completely

continuous.
From (7), (15), (14), and (13) we get

(16) <n,¥(n)> o, neH\( 0},
and
(17) <n' - n,UN> L 9(n') - o(n), n',neH.

Lemma 5. Let ¢ > O, then for neH\{O}, there exists

unique a > O such that o(an) = ¢. Moreover, o is

v

a continuous function of n on H\{O].

Proof. By hypothesis, y(0) = 0, thus, from (15)
it follows that ¢(0) = 0. By taking 7' = an in (17%

we get
(18) olan) > o(n) + (a-1) < n,¥n)>,

hence (16) implies that ¢(an) = oo as o =+ .00, for 7 # O.

The existence of o then follows £rom the continuity

of “¢; uniqueness follows from (16) and (18). The con-

tinuity follows from the continuity of ¢ and the uniqueness of

Let ¢ > O be fixed, put

(19) =3, = {neH : o(n) = ¢},

and define @ : H\{O} - Z. by
(20) a(n) = a¥(n),

where o > O 1is chosen so that o(n)eZ.

Lemma 6. The mapping o : H\{0} - ¥ is odd ard

completely continuous. If mneZ, then

.




(21) lotm g < lnlly -

with equality only if 7 is an eigenvector of

(22} n = u¥n).

Proof. The oddness and continuity of ¢ follow
respectively from (6), and the definition of ¥, and
Lemmas 4 and 5. If 7' = o(n), then since o(n') = o(n),

(17) implies

<77' - 77,‘1’(17)> S O:

but by (20), this is équivalent to

<n' - n,n'> L0,

or

1 1
<n'Lm'> L <Mn'> L <nam>Eint ,n' >3,

which implies (21). From the way in which the Schwarz in-
equality was used, it is clear that equality can hold in
(21) only if 7' and 7n are proportional, i.e. only if
n 1is an eigenvector of (20).
$5. Let S denote the class of closed subsets of
- H\{0} which are symmetric through the origin. For a non-
empty set FeS, the genus of F, p(F), is the supremum of the set
of non-negative integers n such that every odd continuous map

of F into Rn"l

has a zero in F; here we understand
RO = {0}. The genus of the empty set is zero.

Below, the letter 'F', with or without subscript,




will always denote a set in the class S. The genus has

the following properties.

1. If there exists an odd continuous map h : F,—>F,,
then p(Fl)_g p(F,), in particular, if F, ¢ F,, then

2. p(Fy UF,y) L p(Fq) + p(F,).

3. If F 1is compact then p(F) < co and F has

a neighborhood . U such that UeS and p(U) = p(F).

4, 1If ({F_} 1is a decreasing sequence of compact sets

F then FeS and

p(F) = lim p(Fn).
n-00
5. If there exists an odd homeomorphism of F onto

the n-sphere then p(F) = n + 1.

For a proof of the above assertions see [4].

§6. In this section we complete the proof of Theorem 1.

Let the number c¢ 3 O be fixed, arnd let Y bDbe defined

by (19). We shall call a set F admissible if F is
compact, FeS, and F < 3. The class of admissible sets

will be denoted by &, and we shall take, for n = 1,2,...,
F = (FeF : p(F) > n}.

Lemma 7. For any positive integer n, the class

3n is non-empty.

Proof. Let M be a subspace of H of dimension n,
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then it follows from Lemma 5 that the mapping 7 - ”ﬂnﬁlﬂ
on ¥ N M is a homeomorphism onto the unit sphere in M.
It thus follows from property 5 of the genus that p(ZX N M) = n,

and thus g N Me&n.

We now define the numbers Ay = An(c) by,
(23) \ = 1l inf max H'n“;
n 2c Fed neF ’
. . 2
_ 1 inf.[diam F]",
" 8c Fed
for n > 1, and for convenience we define Ag = O Since

¥ 1is closed and does not contain zero, and because of the
definition (23), it is clear that the sequence xl,xz,...,
is a non-decreasing sequence of positive numbers. We say

that xn has multiplicity m 1if,

el S M Mey1 T 000 T Meme1l < M,

for some %k > 1, where k < n { k+m-1. We also make the

definitions, for A > O,
T = (nez & [nl2 < 2003,
1 ——
z(N) = o(Z(N)),

and note that because YF(A\) is closed and symmetric, and

because of Lemma 6,

(24) 7:1(7\)<= z(N),

and zl(x) is compact and symmetric, i.e.,
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(25) s (0 3, (diam £H(A))? < 8hrc.

Oon the other hard, by property 1 of the genus, since

o 1is odd, and because of (24),
1
p(T " (N)) = p(T(N)).

Since z}(x) is compact, it follows from property 3

that p(Z(N)) < co for any A > O.

If we introduce the 'spectral function'

TN = p(Z(N),

then 1(A) is a monotone integer valued function of A

for N > O,

T(A) = O, 0$7\<7\1’
and since,

sty = o hw,
US>

it follows from property 4 that t(A) is right continuous.
Finally from (23) and (24) and the right continuity of T

it follows that,
(26) T(A) = n, An.g A< An+l .

Thus the discontinuities of 1T(A) occur only at the numbers
%n given by (23) and

(27) T(A) - T(A - 0) = multiplicity of A .

It follows from (26) that no finite A-interval can contain
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more than finitely many of the numbers %n, thus
(28) lim Ay = 00,
n-00
Now let E, denote the set of solutions 7 in
2 .
T =%, of (22) such that HnHH = 2cA,, (clearly g is
admissible and E, S zl(hn)), and choose, by property 3,
a neighborhood U of E, such that UeS and p(U) = p(En).

It then follows from Lemma 6 that
. 1 2
[diam (o(Z (A)\U))1° < 8en,
so that from the definition of T and (27),
1 \
plo(z (A )\!)) < T(A °- 0)

Using this last inequality, property 1 of the genus, and

the definition of T, we obtain,
(zl(x N U) < (z;l(x )) - mult. of A
P n P n : n’
It then follows from property 2 of the genus that
p(En) = p(U) > mult. of Xn,

in particular, E, is not empty. We have thus proved the
following.

(¥) The eigenvalue problem (22) has infinitely manvy

eigenvectors m satisfying

(29) p(n) = c.
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The set En(c) of eigenvectors m of (22) satisfying (29)

and

Inll2 = 2chn,
where A is given by (23), is a set of genus > multiplicity
of A,

It is clear from (15) and the definition of B that
if 7n is an eigenvector of (22) satisfying (29) then
y = in 1is an eigenvector of (9) and satisfies (10). Thus
() implies Theorem 1. Moreover, the following is valid.

(x*) The set of eigenvectors vy of (9) which satisfy.

(10) and
(30) (y,Ly) = 2ch(c),

is a set of genus > multiplicity of A . The numbers xn(c)

can be determined as follows

_ 1 inf sup (y,Ly),
(31) kn(c) - 2c GeQn yeG

where G is the class of symmetric subsets G of R\{0}

which are closed in ¥, have genus > n and satisfy

G c {yeY : y(y) = C}.

Here the genus is to be understood to be relative to the

Yétogology.

Proof. First we observe that the H and Y topologies
coincide on compact subsets of H. Thus the genus of E,
relative to the H topology and the genus of i(E,) relative

to the Y topology are the same. Since the set of eigenvectors

HUNT LIBRARY
CARNEGIE-MELLON UNIVERSITY
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of (9) satisfying (10) and (30) is just i(En), the first
assertion above is proved. To prove the second assertion,
let Geqn and let )\ = %:sup(y,Ly) < oo, then G = i(F),
where F 1is a closed sy%;gtric subset of H and

F € ©(A\). From (15) and (20), and the continuity of a
in (20) it follows that o(F) is the image, under an odd
completely continuous transformation, of G. Thus o(F)

is compact and has genus. > n. However, we clearly have

[diam (c(F))]2 < 8ch and thus it follows from (23) that

2\ il_ inf sup (y,Ly).
n 2c GeQn yeG

Making use of the observation at the beginning of the
proof we conclude that i(o(z}(xn)))eqn, and this, together
with the above inequality, implies (31).

Remark. The existence of an infinity of eigenfunctions

y of the problem (9) satisfying
(y,Ly) = @,

for an arbitrary c¢ > 0O, follows by applying Theorem 4.3

of [8] to the operator W, provided that V¥ is uniformly
differentiable on bounded sets; it is not required that

® satisfy (8). The theorem of Sobolev, [17], quoted
earlier, follows from this result. For a discussion of the
>multiplicity of solutions in this case, when the associated

critical values are repeated, see [3].

§7. It is of interest to show that the above results do

include the complete spectral theory of (9) in the linear
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case. Thus suppose that & is linear and observe that in

this case,

1
y(y) = | (v,@(ty))at
o

L (v.em.
Thus, for y,heY,

y(y+h) = 2(y,8(y)) + 2(h,&(y)) + 2(y,8(h)) + 1(n,eh)),
while on the other hand the definition of the gradient gives

y(y) + (h,®(y)) + o(||n|),

y(y + h)

L(y,®(y)) + (h,&(y)) + o(|n]),

as |h|| = 0. Comparison of these two formulas shows that

® is symmetric,
(Yl:q’(YZ)) = (Yz:q’(yl)), Y1:Y2€Y~

Using this together with (7), (15) and Lemma 2 we conclude
that ¥ is a compact self-adjoint positive definite
operator and o(n) = %-<n,¢n>; see the discussion of the

operator X in section 8 below.

Let 0O K ul‘g My L oo denote the characteristic values

of ¥ and 1let M, c M, € ... Dbe the corresponding

1 2
sequence of invariant subépaces for V¥, i.e. M is spanned
by those eigenvectors of ¥ corresponding to the first
n characteristic values. Suppose that My < S and

for some ¢ > O 1let ZE(%) be defined as in section 6.
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If My < AL R then for neZE(%),
2
nlly < 22 = A < 7, ¥(n)>
< Mpeq <N WM >.

Thus if P, denotes the orthogonal projection of H onto

M, thgn P.M # 0 for ne{é(%), since

2
lnllyg > Bpyq<ms ¥ >

for 7 in the kernel of P . it follows that the map
1 _1
n - (2c)2<P N, ¥Un)> 2 P.m maps T_(A) onto T N M.
Since this mapping is odd and continuous on Z%(A) it
follows that n = p(Zé N Mn)~2 p(Z%(A)). On the other hand,

for neMn,
Inl2 < u_<n, Um>
H n>'"’
and thus T, N Mc T (W) & 5 (M),
from which we conclude that
p(Z.(N) = n, by <N < WL -

Combined with the results of section 6, this yields the
following.

(¥x%) For the linear problem and for any c¢ > O,
th

the number An(C) is just the n characteristic value,

in increasing order, of the operator Y.

We require also the following result concerning
the linear case.

Lemma 8. Let F Dbe a compact symmetric subset of
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H\{O0}, with- p(F) > n, then

2
max Il L,

neE 2 >

where is the nth characteristic value, in increasing

order, of the linear operator V.

Proof. Let F' Dbe the image of F under
1
n «(2c)%<n,¢n§2n, where ¢ > 0. Then F' c T, and
p(F') > n, thus by (),

2
max 1Ml _ 1 max nlf2
NeF <n,¥m>  2c neF!

> hy -

§8. 1In this section we shall derive a 'principle of
linearization' for the problem (9); ¢f. [Ch. VI, §2,8].
What we shall prove is the following.

(1) Let & have a Fréchet derivative ¥ at y =0,

and suppose that the continuous linear operator ¥ :Y¥~X

is symmetric,
(32) (Yl,v%Yz) = (Yz:‘xyl), Y1:Y2€¥,

and positive definite,

(33) (y,xy) > O, yeY\{O]}.

Let KisKp5€35..., be the characteristic values, arranged

in increasing order, of the linear operator Ay, then the

numbers A (c), given by (31) satisfy
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(34) lim Kn(c) = K

c-0 n

Moreover, given € > O, there exists cl(e) > 0 such that

for 0< c« s the characteristic numbers < corresponding

to those eigenvectors n of (9) which satisfy (10} and

(30) all lie in the interval (K - €,k + €). Finally, if

ﬁn is the eigenspace of Ay corresponding to:the

characteristic number K , and if En(c) is the set of

eigenvectors of (9) satisfying (10) and (30), then

lim max diSt(Y’Nn) =0
c=0 yeE_(c) lyll ’

Remark. The above assertion implies that, in the
terminology of [8], each characteristic value of AY is
a bifurcation point for the problem (9), compare Theorem 2.2,
[8,p.332].

Proof.of (T). From the definition of the Fréchet

derivative

®(y) = xy + wly), YyeY,
where

lwx) )i = olllyl), as y - O.

Thus, for yeY,

1

f (y,®(ty))adt,
o

v(y)

%(Y,Xy) + O(Hyllz), as y - O,

and consequently, from (15),(12) and (13), for meH,




19

(35) o(m) = xnxym> + olllin|®), as n-o,

where Xq = Bx1i.

If we make the natural identification of X with a subspace
of Y*, then (32) implies that x* o X. Since the range
of 1 1is contained in the domain of X it follows, using

(13), that the operator Xy = BXi is self-adjoint. Since

<‘n,X1n> = (117,X1T)) ’

it follows from (33) that X1 is positive definite, and
from Lemma 2 it follows that Xy is compact. Clearly the
characteristic values {Kn} of AX are also characteristic
values of X1 thus, X1 has an invariant subspace M of

dimension n wsuch that

2
(36) ”n”H < Kn < n’xln>’ neM.

Let ¢ > O be given and, on the strength of (35 ), choose

cq > O such that

(37) lo(n) - %—<n,x1n>l < setelnll
for
(38) H'n”}zI < 2(1-6)_1Kn°1 :

From (36) and (37) we then have

1

o(m > 2L (o) ml2 nem, |Inlly < 2(1-¢) "tk e,

from which, it follows, by the use of (18), that for

O e ¢y,




£{diam] (M N 5(e))]? ¢ K (1-¢) e,

Hence, from (23) and since p(M N E(c)) = n,
A (c) < K_(l-e)™L
n n *

Letting € tend to zero, we obtain finally,

(39) lim sup A _(c) < k_ .
C-0 n n
Suppose now that
(40) lim inf An(c) <K K,
c-0 n

and then choose ¢ > 0 so that

(41) (1-¢) Lk < k.

With this choice of ¢, let c¢c' > O be chosen as above

20

—r e —

so that (37) holds when 7n satisfies (38). In view of the

above supposition, there exists a number ¢ and a set F

such that 0 < ¢ < ¢', F is admissible for the given choice

of ¢, P(F) > n and

(42) max Hn”; < K.

1
2¢c meF

From (37), (42) and the fact that F E.Ec’ there follows,

for neF,

F<MxM> > e (1-e).

Hence, by (42) and (41l), (since K < Kn),
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2 .
max gl ., maxml3,
meE x> X (1-e) M°F

< 1
l-¢ K

s

< Ky e
In view of Lemma 8 this is impossible, we conclude

therefore that (40) cannot hold, and thus from (39) we

have (34).
Since for an eigenvector 1 of (22) the corresponding
characteristic value u is given by
Inllz
u = ___—I-l——-— k]
<n, ¥(n) >

we have, for M€ T

. e(m . 1y 2
M= + gallnlly
%<n,@(n)> 2c H
thus if neEn(c),
o(mA,(c)
(43) M= " .
5<m, Wn) >

By definition
[diam E (c)]2 = 8ch_(©)
n n ’

so that from (35) and (34), for neEn(C), the characteristic

value u which is given by (43), satisfies

M= u(n) = Kn(]_ + Q(C)), as C —tO,




from which follows the second assertion of (T); notice
that En(c) = 1(En(c)).
The final assertion of (}) follows from the second

assertion of (1) and a result from [8,pp.194-195].

§9. We conclude with several examples to which the above
results are applicable. First, for the verification
of condition (5), the following result will be useful.

Lemma 9. The compact symmetric operator A ¢ X - X*

satisfies condition (5) if and only if Y = AX is total.

for X and
(44) (Ax,x) > O, xeX.

Proof. Condition (5) clearly implies (44), and if
xXeX and (y,x) = O for every vye¥Y, then in particular
(Ax,x) = O, and hence X = 0, so that Y is indeed total
for X, Conversely, suppose that (44) holds and that Y
is total for X. Then if =xeX, x # O, there exists yeY
such that (y,xX) # O. Since AX is dense in Y it

follows that there exists =x'eX such that (Ax',x) # O.

22

But from the symmetry of A, (44) and the Schwarz inequality

there follows,
2
0 < (Ax',x)” £ (Ax',x') (Ax,x),

and thus we conclude that (5) holds.

Now let £ be a bounded region in Euclidean n-space,

let K(t,s) be a symmetric kernel defined for (t,s)eQ x &,

and let f(t,y), defined for (t,y)efd X R satisfy the

Carathébdory conditions, [8]. Assume moreover
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that f£f(t,y) satisfies the conditions set down in section 1,

namely

(45) f(t,y) = -f(t,-y), teQ), yeR,

(46) vE(t,y) > O, teQ,yeR,y # O,

and

(47) £(t,y,) > £(t,y;) teQ v, P5eR, ¥y > ¥;.

With X and Y yet to be specified, we take A to be

the integral operator
Au = f K(*,s)u(s)ds,
Q

and & to be the Nemytsky operator

o(y) £(-,v()),

finally we take

y(t)
(48) v(y) Ig'[ f(t,u)du dt.
(o}

We consider first the case where K(t,s) is con-
tinuous on § X © and f(t,y) 1is continuous on 0 x R.
In this case we‘take X = Ll(?», and Y is then deter-
mined and will be a subspace of C(Q) < L@ = (Ll(?»)*.
The complete continuity of A : Ll(S» - ¢(©®) and the con-
tinuity of .é : Cc(Q) - Ll(sn are easily verified; weaker
conditions on f(t,y) suffice for the latter continuity.
The symmetry of A follows from the symmetry of K(t,s).
The operator ¢, which can be regarded as an operator from
C(Q) into (C(?B)*, since the latter contains a subspace

naturally isomorphic to Ll(?h, is the gradient of ¥, given by
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(48). The properties (6),(7) and (8) for & follow
from (45),(46) and (47). 1If K(t,s) is non-negative
definite in the ordinary sense, i.e. if A|L2(§» is
non-negative definite, then A satisfies (44), thus the
applicability of Theorem 1 hinges on the totality of
Y for Ll((». This depends on more special properties
of the kernel K(t,s). However, if  1is a bounded
interval and if K(t,s) 1is the Green's function for a
regular self-adjoint two-point boundary value problem
on , then Y will contain all continuous functions
which vanish identically near the endpoints of ), and
consequently will be total for Ll(?ﬁ. Thus Theorem 1
implies the following.

Theorem, 2. Let
: _ m dk dk m-7j .
(49) 2 _kza E;k pm—k(t)ng s pjeC (la,b)}),j=1,...,m,

a formally self-adjoint-reqular differential operator

IU
I (]

order 2m on [a,b], let

(50) M, (y) =gl (a5 vy (a) + By v ®)) =0, ¥1,...,2m,
3=0 |

be self-adjoint boundary conditions for 4, and suppose that

if yec®™(la,b]), y # 0 in [a,b], and y satisfies (50)

then

J’b y(£) [4y] (t)at > o.

a

Let f(t,y) be continuous on [a,b] x R and satisfy (45),

(46), and (47).

Then if ¢ > O, the problem
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(51) X:(Y) = Uf(t:Y): Mk(Y) =0, k=1,...,2m,

has infinitely many eigenfunctions y satisfying

y(t)
y (y) = jbf f(t,u)du dt = c,
a o

The principle of linearization derived in section 8
applies to the problem (51), provided there exists a
positive function qg(t) on [a,b] such that

lim y_l f(t,y) = q(t), uniformly with respect to

y-0

y# O
Substantially weaker conditions actually suffice for the
Fréchet differentiability at zero of the Nemytsky operator
from C to Ll.

We next consider the case where the kernel K(t,s)
is singular. We are primarily ihterested in the particular
case where K(t,s) 1is the Green's function associated with
an elliptic boundary value problem, thus, of the wvarious
conditions on K implying complete continuity of A we
shall consider only the one which is satisfied by such a
Green's function, namely,

(52) sup

iy QlK(t,s)Iads<oo, a>1

for some a > 1. Concerning f(t,y) we then assume
b
(53) [ £(e, )| < elyl™ + a,

for some b such that

(54) 1<b<2a-1,

t,
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and we take X = 1.9(Q), where,
(55) a > 2a/(2a - 1).

if %-+-é = 1, we have by [7, Theorem 95.6, p. 658],

that A : Lq(fn - LP(SD is completely continuous, and
by [18, Theorem 19.1, p. 154] that & : LP(Q) - 1.9
is continuous, Also, ® is the gradient of the functional
y on LP(Q) ;see [18,86.3, p.63]. Assume that K(t,s)
is positive definite in the ordinary sense, then since,
(because of the reflexivibty of LP(§)), no proper subspace
of LP(KD is total for Lq(c» , the applicability of
our main result hinges in this case on the density of
the range of A in LP(Q). We note however that in any
case, in the presence of conditions (52),(53),(54) and (55)
and when é-+-% = 1, any Lp—eigenfunction of (2) actually
belongs to LP(Q); see the proof of Theorem 3, [5].

In order for the Nemytsky operator from LP() to

9@ (p >2, 2 +1=1) tobe Frechet differentiable

P q
at O it suffices that

f(t,y) = y(P(t) + q(t,y))

where PeLr(S», r = p/(p-2) ,q(t,y) satisfies the

Carathébdory conditions, q(t,0) = 0, and

(56) late,v) | < mylyl® + my,

where my,m, > 0, § = (p-2)-1. If P(t) 1is positive
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almost everywhere on ), then the prdinciple of linearization
is applicable in this case. In the presence of (52),(53),
(54), the small LP_solutions of (2), (p > 2a), can be

shown to be shall in the L° norm also, and thus the
growth condition (56) on g(t,y) can be dropped when

these conditions hold.

3 We will not state a general theorem concerning the
equation (2) with a singular kernel but rather we state

the following result, which is a principal application

of such a theorem.

Theorem 3. Let  be a bounded region of class

sz in Rn, and let
T=3 (-1 lelpe 2,8 (£)0P,
lal, |Bl<m
a a
1
where D% = B|a|/6tl....atnn,|a‘ =0y F ... FoQp,

and for some u : O< U < 1,

aaﬁ ecmax(|al,|ﬁ|)’“, all gq,RB.

Moreover assume that 1 is formally self-adjoint and that

there exists k0 > 0, such that

J

for all vyeC

[ 0% at,

a_o(£)D% y(£)pP y(t)at > x
B 2 %o f&lgm “Q

z
lal,|Bl<m “Q

Zm(

o (8.

Let f(t,y) be uniformly HSlder continuous on £ X R and

satisfy (45),(46),(47) and (53) . with
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(57) 1 < Db, b(n-2m) < n + 2m.

Then for any ¢ > O the eigenvalue problem

(58) Ty = pE(t,y), DSlaq = O la] <m - 1,

has infinitely many eigenfunctions. yesz(CD n Cm—l(?»

and satisfying

y(t)
y(y) = ICJ £(t,u)du dt = C.
o

Proof. It follows from results of [6] that (58) is

equivalent to an integral equation of the form (2), and
where (52) is satisfied for a(n-2m) < n. The theorem
then follows from the remarks above, preceding its
statement, and with the use of the arguments employed in
the proof of the main theorem in [6].. The sharpness of the
condition (53),(56) is shown by an example in [15].

For the special case where T = -A, the hypothesis can
be weakened slightly, compare Theorems 4 and 5 in [5].

We remark finally that X and Y in Theorem 1
can also be taken to be Orlicz spaces othgr than 1P,
Continuity conditions for the integral operator A and
the Nemytsky operator ¢, when X and Y are Orlicz
spaces, are given in [9]. 1In particular, by taking X
and Y to be Orlicz spaces one can replace the growth
condition (53),(56) in Thearem 3 by an exponential growth
condition whien T = -A and n = 2; see for example the

hypothesis of the main theorem of [10].
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