
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



SPECTRAL THEORY OF MONOTONE

HAMMERSTEIN OPERATORS

by

Charles V. Coffman

Report 70-4

January, 1970

(Contract) Acknowledgement

This research was performed at the U.S.A.F. Aerospace
Research Laboratories while the author was there in the capacity
of an Ohio State University Research Foundation Visiting Research
Associate under Contract F33615-67-C-1758.

HUNT LIBRARY
CARNEGIE-MELLON UNIVERSITY



Spectral Theory of Monotone

Hammerstein Operators

Charles V. Coffman

1. Consider the linear integral equation,

(1) y(t) = \il K(t,s)p(s)y(s)ds,

0

where K(s,t) is a real-valued symmetric positive definite

kernel and p(s) is a positive function. Let L denote

the inverse of the integral operator u—y- K(#,s)u(s)ds,

and for a function y in the domain of L, y # 0, (all

functions are assumed to be real valued) define the Rayleigh

quotient J(y) for (1) by,

J(y) = J y(t) [Ly] (t)dt/f P(t)y
2(t)dt.

If y, ^ 0 and y, is in the domain of L and if

yo = K(•5s)p(a)y1(s)ds, then several applications of the

Schwarz inequality show that,

J(y2) £ J(y±)s

with equality only if y^ is an eigenfunction of (1)• On

the basis of this fact, when the integral operator in (1)

is compact, one can develop the complete spectral theory

of (1).

We wish to show here that the approach indicated above



for the study of (1) has a simple and natural extension for

the study of the non-linear integral equation,

(2) y(t) = |if K(t,s)f(s,y(s))ds,

where K(t,s) is as above and f(t,y) is an odd function of

Y,

f(t,y) = -f(t,-y),

and satisfies,

yf(t,y) > 0, y / O ,

and

f(t,y2) ^ f(t, y i), y2 ± yr

We cannot define a Rayleigh quotient for (2), but the

problem of minimizing the Rayleigh quotient J(y) for

(1) can be generalized to either of the dual variational

problems,

y(t) [Ly] (t)dt = min., f(t,T7)dTjdt = const.,

= max., f

By studying the first of these two variational problems, we

shall prove here a variant of a theorem of Sobolev, [17],

concerning (2); Sobolevfs work treats the second of the above

variational problems. For a discussion of Sobolev!s theorem

and related results see [8] .

The Lyusternik-Schnirelman theory upon which the

theorem of Sobolev is based has undergone considerable

development in recent years, see [14],[16], with fruitful

applications to the theory of non-linear elliptic boundary



value problems, see [1],[2]. The methods employed here

differ substantially and in several respects from the

standard methods of the Lyusternik-Schnirelman theory.

We believe that for the problem at hand these methods

are simpler and more natural, and therefore should be

of interest. The central idea of using an iteration

operator in the variational study of a non-linear problem

was suggested by the work in the series of papers [11],[12],

[13]. The notion of !genus1 which we use was introduced

by KrasnoselTskii, and is treated in [8]? see also [4].

§2. Let X be a real infinite dimensional Banach space,

X* its dual space, and let the value of a linear functional

yeX* on an element xeX be denoted (y,x). Let A : X->-X*

be a compact linear operator, take

(3) Y = AX,

and assume that A is symmetric,

(4) (Ax1,x2) = (Ax2,x1). x1,x2eX,

and positive definite,

(5) (Ax,x) > 0, xeX\{0}.

Note that if X is reflexive then (5) implies that Y = X*.

Let $ : Y->~X be a continuous nonlinear mapping and

assume that $ is the gradient (Frechet derivative) of a

real valued even functional y(y) on Y satisfying



y(0) = O. (The gradient of a functional on Y is actually

an operator from Y to Y*, however, X is canonically

isometric to a subspace of Y* so that $ determines in

an obvious way a mapping of Y into Y*, it is this

mapping which, properly speaking, is the gradient of y;

clearly this problem does not arise when X is reflexive.)

The fact that y is even implies that $ is odd,

(6) *(y) = -*(-y),

we assume also that 4> is positive definite,

(7) (y,*(y)) > o, yeY\{o},

and monotone,

(8) (y2 - y1,»(y2) - •(y1)) 1 o, y ry2eY.

The result which we shall prove is the following.

Theorem 1. Under the above assumptions concerning

A and *, the eigenvalue problem,

(9) y = iiA*(y),

has infinitely many eiqenvectors satisfying,

(10) y(y) = c,-

for every c > 0.

§3. We begin the proof of the theorem stated above by

establishing several results concerning the linear operator Ac

If we let ft denote the range of A then, by (3), ft is



dense in Y, and by (5), A has an inverse L :ft—*-X.

From (4), (5) and the Schwarz inequality there follows

(9) ( A x p x 2 )
2 £ (Ax-^x^) (Ax2,x2) •

and thus, since

||Ax||x* = sup{(Ax,x<) :||x'||x £ 1},

we have

||Ax||^

and for yeft, we have,

(10)

If we complete ft with respect to the inner product

^Y> = (y*ky) we obtain a Hilbert space H c Y with

( ID l|ir?llx* <1 INI ^

where i denotes the inclusion mapping H c X*. It is

clear that for r^Tj'eH and ±77 =

(12) <T?T )

Hence i f we de f ine B : X—*-H by iBx = Ax, then

<Bx^Bx> {AX)X) ^ ]|A||HX|| t

BO that B is a continuous linear mapping of X into H.

Moreover, upon taking 77 = Bx in (12) we get

<77! ,Bx> = (irjf ,x) ,

from which it follows that



(13) B* = i.

We next show that the compactness of A imples the

compactness of both B and i.

Lemma 2. The mapping B : X •>• H JLss compact.

Proof, Let [x } be a bounded sequence in X. There

is no loss of generality in assuming that fAx
n] converges

strongly in X*, since A is compact, but then,

HB(xn " xm>i|2 " <B<ach " X m ^ B ( x n " xm»>

= (A(xn - xm),(xn - xm)) o,

as n,m-*»oo, and thus B is compact.

By standard results, the compactness of B implies the

compactness of i = B*, thus we have the following.

Lemma 3. The imbedding i : H c x* J.S compact,

§4. We turn our attention now to the non-linear operator

$, and observe that, for y-^y^Y we have

r 1
y(y2) - yCy^ = J (Y2 - Y 1 .*(y 1+t(y 2-y

( s e e [ 1 8 ] ) , b u t b y ( 8 ) ,

( y 2 - Yi^(Y1 + t ( y 2 - y 1 ) ) ) ^ ( y 2 - y ^ L

s o t h a t

(14 ) y ( y 2 ) - y ( y i ) ^ ( y 2 - y^^iy^)).

Next we define cp : H-^R, ̂  : H-+-H, by

(15) cp = y. i, # = B.$. i;

then the continuity of y and $ and the compactness



of i imply the following result.

Lemma 4. The mapping cp jus continuous and ^ j_si completely
continuous.

From (7), (15),.(14), and (13) we get

(16) <?),*( 77) > 0, r?€H\{0},

and

(17) <77' - T 7 , ^ ( T ? ) > £ cp(T7f) - 9(77), r?f

Lemma 5. Let c > O, then for rj€H\fO}, there exists

_a unique a > O such that cp(ar]) = c. Moreover, a is

a continuous function of 77 on H\{0}.

Proofo By hypothesis, y(0) = O, thus, from (15)

it follows that cp(O) = O. By taking 77! = a 77 in (17)-

we get

(18) cp(aT7) ̂  9(77) + Ca-1) < r?,*(r?)>,

hence (16) implies that 9(0,77) -• 00 as a -• 00, for 77 / 0#

The existence of a then follows from the continuity

of "9; uniqueness follows from (16) and (18). The con-

tinuity follows from the continuity of 9 and the uniqueness of a.

Let c > 0 be fixed, put

(19) E = Ec = (??eH : 9(7?) = c),

and def ine a : H\{0] - £ c by

(20) (7(77) = d

where a > 0 i s chosen so that cx(77)eE.

Lemma 6. The mapping a : H\{0} - £ i s odd arri

completely continuous. I f TJGE, then
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(21)

with equality only if y\ JLs jan eigenvector of

(22): r\ =

Proofs The oddness and continuity of cr follow

respectively from (6), and the definition of % and

Lemmas 4 and 50 If T]r = o{r\), then since cp(7jr) = cp(7j),

(17) implies

<r?f - 7?, #(??)> £ 0,

but by (20), this is equivalent to

<r?T - i7,Tf f> £ 0 ,

o r

r)>*<v}

which implies (21) . From the way in which the Schwarz in-

equality was used, it is clear that equality can hold in

(21) only if 77f and tj are proportional, i.e. only if

77 is an eigenvector of (20).

§5. Let S denote the class of closed subsets of

H\{0} which are symmetric through the origin. For a non-

empty set F G S , the genus of F, p(F), is the supremum of the set

of non-negative integers n such that every odd continuous map

of F into R " has a zero in F; here we understand

R = {0}. The genus of the empty set is zero.

Below, the letter !F T, with or without subscript,



will always denote a set in the class S. The genus has

the following properties,

1. If there exists an odd continuous map h : F- —>

then p(F-i) <* p(Fo^9 "*"n Particular5 if Fi Sz Fo*

P(FX) £ p(F2).

2. p ^ U P2) £ p(F1) + p(F2).

3. If F is compact then p(F) < oo and F has

a neighborhood U such that UeS and p(U) = p(F).

4. If (Fn} i-s a decreasing sequence of compact sets
oo

and if F = 0 FM then F€S and
n=l n

p(F) = lim p(F ).
noo

5. If there exists an odd homeomorphism of F onto

the n-sphere then p(F) = n + 1.

For a proof of the above assertions see [4]#

§6. In this section we complete the proof of Theorem 1.

Let the number c > 0 be fixed, and let S be defined

by (19). We shall call a set F admissible if F is

compact, FeS, and F c £. The class of admissible sets

will be denoted by ff, and we shall take, for n = 1,2,...

3* = [FG3 : p(F) ̂  n}.

Lemma 7. For any positive integer n, the class

5 is non-emptyo
n —— ———

Proof. Let M be a subspace of H of dimension n,
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then it follows from Lemma 5 that the mapping n -* ||i?||Z r\

on Jfl M is a homeomorph ism onto the unit sphere in M.

It thus follows from property 5 of the genus that p(£ fl M) = n,

and thus £ D

We now define the numbers A = ^n(
c)

A = — ir?f maX

n 2c

inf^fdiam F ] 2 ,
8c

for n ^ 1̂  and for convenience we define AQ = 0. Since

£ is closed and does not contain zero, and because of the

definition (23), it is clear that the sequence A,,A2*...j

is a non-decreasing sequence of positive numbers. We say

that A has multiplicity m if,

\ - l < \ = Ak+1 = ••• = Ak+m-l < Ak+mv^

for some k ̂  1, where k ̂  n <̂  k+m-1. We also make the

definitions, for A J> 0,

S1(A) =

and note that because S(^) is closed and symmetric, and

because of Lemma 6,

(24) ^(AJC S(A),

and £ (A) is compact and symmetric, i.e.,
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(25) S1(A)e55 (diam T^Ch})2 £ 8Ac.

On the other harid, by property 1 of the genus, since

Q is odd, and because of (24),

= p(£(A)).

Since ZJ (A) is compact, it follows from property 3

that p(S(A)) < oo for any A > O.

If we introduce the !spectral function!

T(A) = p

then T(A) is a monotone integer valued function of A

for A ̂  0,

T(A) = 0 , 0 £ A < A1,

and since,

^ = fl

it follows from property 4 that T(A) is right continuous.

Finally from (2 3) and (24) and the right continuity of T

it follows that,

(26) T(A) = n, An £ A <

Thus the discontinuities of T(A) occur only at the numbers

A given by (2 3) and

(27) T(An) - T(An - 0) = multiplicity of An.

It follows from (26) that no finite A-interval can contain
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more than finitely many of the numbers A , thus

(28) lim A = oo,
n-*oo

Now let E denote the set of solutions r? inn '

E = S c of (22) such that j|rj||̂  = 2cAn, (clearly 2^ is

admissible and E c JJ (^n))*
 an(^ choose, by property 3,

a neighborhood U of E such that UeS and p(U) = p(E )

It then follows from Lemma 6 that

[diam (a(E1(An)\U))]
2 < n

so that from the definition of T and (27),

p(cT(E1(An)\U)) ^ T(A n- 0)

<1 T(^n) - mult, of A .

Using this last inequality, property 1 of the genus, and

the definition of T, we obtain,

p(S1(An)\ U) £ p(S
1(An)) - mult, of An.

It then follows from property 2 of the genus that

p(En) = p(U) ^ mult, of An,

in particular, E n is not empty. We have thus proved the

following.

(*) The eigenvalue problem (22) has infinitely many

eigenvectors r) satisfying

(29) cp(T7) = c#
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The set E (c) c>f eigenvectors 77 jof (22) satisfying (29)

and

TT = 2cAn.

H '

where A jls. given by (2 3), JL£ a. set of genus J> multiplicity

of A .— n

It is clear from (15) and the definition of B that

if 77 is an eigenvector of (22) satisfying (29) then

y = ±77 is an eigenvector of (9) and satisfies (10). Thus

(*) implies Theorem 1. Moreover, the following is valid.

(**) The set of eigenvectors y ĉf (9) which satisfy .•

(10) and

(30) (y*Ly) = 2cAn(c),

is a set of genus > multiplicity of A . The numbers A fc)
1 —•" • — — ^ — — * — — n ' • n

can be determined as follows

_ JL_ inf sup
" 2c

where Q^ is the class of symmetric subsets G of &\fo}

which are closed in 3f, have genus ^ n and satisfy

G c {Y€Y : y(y) = C}.

Here the genus is to be understood to be relative to the

Y-topology.

Proof. First we observe that the H and Y topologies

coincide on compact subsets of Ho Thus the genus of E

relative to the H topology and the genus of i(ER) relative

to the Y topology are the same. Since the set of eigenvectors

HUNT LIBRARY
CARNEGIE-MELLON UNIVERSITY.
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of (9) satisfying (10) and (30) is just i(En), the first

assertion above is proved. To prove the second assertion,

let GeQ and let A = 2^sup(y,Ly) < oo, then G = i(F),
yeG

where F is a closed symmetric subset of H and

F c £(A). From (15) and (20), and the continuity of a

in (20) it follows that cr(F) is the image, under an odd

completely continuous transformation, of G. Thus cr(F)

is compact and has genus, >̂ n. However, we clearly have

[diam (a(F))]2 £ 8cA and thus it follows from (23) that

i n f sup (y,Ly) .
Q

x s L- p
An ^ 2c GeQn yeG

Making use of the observation at the beginning of the

proof we conclude that i(cr(£ (A )))eQ , and this, together

with the above inequality, implies (31).

Remark. The existence of an infinity of eigenfunctions

y of the problem (9) satisfying

(y,Ly) = c,

for an arbitrary c > 0, follows by applying Theorem 4.3

of [8] to the operator % provided that ^ is uniformly

differentiable on bounded sets; it is not required that

4> satisfy (8). The theorem of Sobolev, [17], quoted

earlier, follows from this result. For a discussion of the

multiplicity of solutions in this case, when the associated

critical values are repeated, see [3].

§7. It is of interest to show that the above results do

include the complete spectral theory of (9) in the linear
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case. Thus suppose that $ is linear and observe that in

this case,

r 1
r(y) = J (y,*(ty))dt

O

= j (y,*(y)).

Thus, for y,heY,

= (y

while on the other hand the definition of the gradient gives

y(y + h) = y(y) + (h,#(y)) + o(||h||),

as j|h|| -+ 0. Comparison of these two formulas shows that

$ is symmetric,

Using this together with (7), (15) and Lemma 2 we conclude

that $ is a compact self-adjoint positive definite

operator and 9(77) = j <r?, >!*?>; see the discussion of the

operator x1 in section 8 below.

Let 0 < |ii <1 M-2 <* • • • denote the characteristic values

of >£ and let M- c M2 c .. . be the corresponding

sequence of invariant subspaces for >£, i.e. M is spanned

by those eigenvectors of ^ corresponding to the first

n characteristic values. Suppose that \x < \x 1 and
n n+-L

for some c > o let L (A) be defined as in section 6.
c
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If l̂ n £ * < ̂ n+1
 then for

2
= A

Thus if P denotes the orthogonal projection of H onto

M then Pnr] ̂  0 for T)e£c(A), since

for 77 in the kernel of P . It follows that the map

7} - (2c) ̂ <Pnf7,*(i?)>~
2 PnT? maps £C(A) onto £c 0 Mn«

Since this mapping is odd and continuous on c

follows that n = p(£c fl Mn) ^ p(Sc(A)). On the other hand,

for

and thus Lc 0 M c Ec(|Jin) £

from which we conclude that

= n, ^n £ A <

Combined with the results of section 6, this yields the

following.

(***) For the linear problem and for any c > 0,

the number ^ n (
c ^ Jy=L Just the n characteristic value,

in increasing order, of the operator \|/.

We require also the following result concerning

the linear case.

Lemma 8. Let F be. â  compact symmetric subset of
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H\{0}, with p(F) ^ n, then

thwhere a JLs the n characteristic value, in increasing

order, of the linear operator ^.

Proof. Let Ff be the image of F under

c)l<77,*)7>277, where

p(F') ̂  n* t^s by (*),

rj ->(2c)l<77,*)7>277, where c > o. Then FT c Lc and

max N I H = ̂  max 1̂1(
<77,*»7> 2c

§8. In this section we shall derive a !principle of

linearization1 for the problem (9); cf. [Ch. VI, §2,8] .

What we shall prove is the following.

(*j~) Let $ have ja Frechet derivative % at y = 0,

and suppose that the continuous linear operator ^ : Y - X

is symmetric,

(32) (Y1

and positive definite,

(33) (Y,xy) > °̂  Y€Y\{0}

Let IC-i, Ko, tco, . . ., be the characteristic values, arranged

in increasing order, of the linear operator Ax, then the

numbers ^ n(°)* given by (31) satisfy
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(34) lim A (c) = K .

Moreover, given e > 0, there exists c.(e) > O such that

for O < c < c,, the characteristic numbers p, cor re spond ing

to those eigenvectors 77 o»f (9) which satisfy (1O]T and

(30) all lie jLn the interval (K̂  - e , Kn + e) . Finally, if

N is the eigenspace of Ay corresponding to< the
n —— ——— —— —— — —

characteristic number K 9 and if E (c) ^ the set of

eigenvectors of (9) satisfying (10) and (30), then

lim max d i s t ( y ^ n } _ ft

c-o yeEn(C) nvn "
Remark, The above assertion implies that, in the

terminology of [8] , each characteristic value of AX is

a bifurcation point for the problem (9), compare Theorem 2.2,

[8,p.332].

Proof,of (+). From the definition of the Frechet

derivative

*(y) = XY + co(y),

where

IMy)|| = o(||y||), as y r 0.

Thus, for yeY,

y(y) = J (y,*(ty))dt,

= j(y,XY) + o(||y||2), as y - 0,

and consequently, from (15), (12) and (13), for rjeH,
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(35) cp(r?) = f<r?,x1r?> + o ( | | i r j | | 2 ) , a s 77 - O,

where xx =

If we make the natural identification of X with a subspace

of Y*, then (32) implies that X* 2 X- Since the range

of i is contained in the domain of X it follows, using

(13), that the operator Xi = BXi is self-adjoint. Since

it follows from (33) that x* is positive definite, and

from Lemma 2 it follows that X-, is compact. Clearly the

characteristic values fKn} °f AX are also characteristic

values of Xi* thus, Xi ^ a s a n invariant subspace M of

dimension n such that

(36) UTJII^ ̂  K n < T7,X1T7>, ?7€M.

Let e > 0 be given and, on the strength of (35), choose

Cj > 0 such that

(37) |cp(f|) " JO?.*!^! ^ T ^ I I ^ H H

for

(38) \\n\\l £ 2(l-e)-1K Ci

From (36) and (37) we then have

from which, it follows, by the use of (18), that for

0 < c < C ,
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|[diam](M8

Hence, from (2 3) and since p(M fl S(c)) = n,

Letting € tend to zero, we obtain finally,

(39) lim sup A (c) £ K .
c-0

Suppose now that

(40) lim inf A (c) < K < K
c-0

and then choose e > 0 so that

(41) d-€)"1K < Kn .

With this choice of e, let cf > 0 be chosen as above

so that (37) holds when 77 satisfies (38). In view of the

above supposition, there exists a number c and a set F

such that 0 < c < cf, F is admissible for the given choice

of c, /8(F) J> n and

(42) i_ m a x \\n\\
2c

l
From (37), (42) and the fact that F c Z ^ there follows,

for 776 F,

c(l-e).

Hence, by (42) and (41), (since K < K ) ,
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max HflH \ max ||ij|| ,

In view of Lemma 8 this is impossible, we conclude

therefore that (40) cannot hold, and thus from (39) we

have (34).

Since for an eigenvector r\ of (22) the corresponding

characteristic value \i is given by

we have, for r\e2

thus if

cp(t?)A (c)
(43) n = *- -

By definition

[diam En(c)]
2 = n

so that from (35) and (34), for rjeE^c), the characteristic

value \i which is given by (4 3), satisfies

p. = P(T?) = Kn(l + o(c)), as c _o,
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from which follows the second assertion of (*f) ; notice

that En(c) = i(En(c)).

The final assertion of if) follows from the second

assertion of (-f) and a result from [8,pp. 194-195] .

§9. We conclude with several examples to which the above

results are applicable. First, for the verification

of condition (5), the following result will be useful.

Lemma 9. The compact symmetric operator A : X -• X*

satisfies condition (5) JLf and only jlf Y = AX JLS total

for X and

(44) (Ax,x) J> 0, xeX.

Proof. Condition (5) clearly implies (44), and if

xeX and (y,x) = 0 for every yeY, then in particular

(Ax,x) = 0, and hence x = 0, so that Y is indeed total

for X. Conversely, suppose that (44) holds and that Y

is total for X. Then if X€X, x ^ 0, there exists yeY

such that (y,x) ^ 0. Since AX is dense in Y it

follows that there exists xTeX such that (AxT,x) ^ 0.

But from the symmetry of A, (44) and the Schwarz inequality

there follows,

0 < (Ax',x)2 £ (Ax',x») (Ax,*),

and thus we conclude that (5) holds.

Now let Cl be a bounded region in Euclidean n-space,

let K(t,s) be a symmetric kernel defined for (t,s)eO X ^

and let f(t,y), defined for (t,y)eO x R satisfy the

Caratheodory conditions, [8]. Assume moreover
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that f(t,y) satisfies the conditions set down in section.1,

namely

(45) f(t,y) = -f(t ,-y), teftyeR,

(46) yf (t,y) > 0, tcCi,yeR,y t 0,

and

(47) f(t,y2) ^ f (t,yx) t€ 0, y ,̂ #2
 e R'y2 ^ y l #

With X and Y yet to be specified, we take A to be

the integral operator

Au = f K(«,s)u(s)ds,

and $ to be the Nemytsky operator

*(y) = f(-,y(-)),

finally we take

r ry(t)

(48) y(y) = J J f(t,u)du dt.

ft o

We consider first the case where K(t,s) is con-

tinuous on fl x fl and f(t,y) is continuous on ft X R.

In this case we take X = L (Qj, and Y is then deter-

mined and will be a subspace of C(Q) c L°°(Tl) = (L (^))^.

The complete continuity of A : L (Q) -• C(?2) and the con-

tinuity of 0 : C(Ti) -• L (Q) are easily verified; weaker

conditions on f(t,y) suffice for the latter continuity.

The symmetry of A follows from the symmetry of K(t,s).

The operator $, which can be regarded as an operator from

G(0) into (C(Q))*5 since the latter contains a subspace

naturally isomorphic to L (ft), is the gradient of y, given by
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(48). The properties (6),(7) and (8) for * follow

from (45),(46) and (47). If K(t,s) is non-negative

definite in the ordinary sense, i.e. if A|L (Q) is

non-negative definite, then A satisfies (44), thus the

applicability of Theorem 1 hinges on the totality of

Y for L (ft). This depends on more special properties

of the kernel K(t,s). However, if 0 is a bounded

interval and if K(t,s) is the Green1s function for a

regular self-adjoint two-point boundary value problem

on 0, then Y will contain all continuous functions

which vanish identically near the endpoints of Q, and
i ——

consequently will be total for L (0). Thus Theorem 1

implies the following.

Theorem,2. Let

m ,k ,k .
(49) ^ = E — k Pm % m 3k m k % ^

k=l dt* m~* dt* 3

be ja formally self-adjoint,regular differential operator

of order 2m on [a,b], let

(50) Mk(y) =
2S"1 (akj y

(j)(a) + fi^ y(j)(b)) = 0, k=l,...,2m,

be self-adjoint boundary conditions for I, and suppose that

If yeC2m([a,b]), y ̂  0 in [a,b], and y satisfies (50)

then

(t)dt > 0.r
a

Let f(t,y) be continuous on [a,b] x R and satisfy (45),

(46), .and (47).

Then if c > 0, the problem
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(51) £(y) = jif(t,y), M, (y) = 0, k = l,...,2m,

has infinitely many eiqenfunctions y satisfying

y (y) = J J f(t,u)du dt = c.
a o

The principle of linearization derived in section 8

applies to the problem (51), provided there exists a

positive function q(t) on [a,b] such that

lim y" f(t,y) = q(t), uniformly with respect to t,
y->0

0

Substantially weaker conditions actually suffice for the

Fr^chet differentiability at zero of the Nemytsky operator

from C to L .

We next consider the case where the kernel K(t,s)

is singular. We are primarily interested in the particular

case where K(t,s) is the GreenTs function associated with

an elliptic boundary value problem, thus, of the various

conditions on K implying complete continuity of A we

shall consider only the one which is satisfied by such a

GreenTs function, namely,

(52) &**£, , i v/4. ^^ i^^^, ̂  ^^ a > 1

for some a > 1. Concerning f(t,y) we then assume

(53) |f(t,y)| ^ c|y|b + d,

for some b such that

(54) 1 < b < 2a - 1,
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and we take X = Lq(ft), where,

(55) q > 2a/(2a - 1).

If — + — = 1, we have by [7, Theorem 95.6, p. 658],

that A : Lq(0) -+ Lp(fl) is completely continuous, and

by [18; Theorem 19.1, p. 154] that $ : Lp(fi) -> Lq(0)

is continuous, Also, <& is the gradient of the functional

y on Lp(Q);see [18, §6.3, p.63]. Assume that K(t,s)

is positive definite in the ordinary sense, then since,

(because of the reflexivitjy of LP(Q)), no proper subspace

of lP(Q) is total for Lq(f2) , the applicability of

our main result hinges in this case on the density of

the range of A in LP(Q). We note however that in any

case, in the presence of conditions (52),(53),(54) and (55)

and when — + -*• = 1, any Lp-eigenfunction of (2) actually

belongs to L°°(n); see the proof of Theorem 3, [5].

In order for the Nemytsky operator from Lp(Q) to

Lq(Q) (p > 2, — + — = 1) to be Frechet differentiable

at 0 it suffices that

f(t,y) = y(P(t) + q(t,y))

where PeLr(Q), r = p/(p - 2) ,q(t,y) satisfies the

Caratheodory conditions, q(t,O) = 0, and

(56) |q(t,y)| £ m1fyl
6 + m2,

where m1,m2 > 0, 6 = (p-2)"
1. if p(t) is positive
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almost everywhere on 0, then the principle of linearization

is applicable in this case. In the presence of (52),(53),

(54), the small Lp-solutions of (2), (p > 2a), can be

shown to be shall in the L norm also, and thus the

growth condition (56) on g(t,y) can be dropped when

these conditions hold.

.* We will not state a general theorem concerning the

equation (2) with a singular kernel but rather we state

the following result, which is a principal application

of such a theorem.

Theorem 3. Let Q be a. bounded region of class

C 2 m In Rn, .and let

II ax a
w h e r e D = d ' ' / 3 t , . . . B t , l a l = ou + . . . +

l n l

and for some |j : 0 < p. < 1,

Moreover assume that T Ĵ S formally self-adjoint and that

there exists k > 0, such that
—————— , Q ' —————

J a ,(t)Da y(t)D^ y(t)dt ̂  k S f|Day|dt,

lor all

Let f(t,y) be uniformly Holder continuous on 0 x R and

satisfy (45),(46),(47) and (5 3) with
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(57) 1 £ b, b(n-2m) < n + 2m.

Then for any c > 0 the eigenvalue problem

(58) Ty=|jf(t,y), D*| ̂ Q = 0,

has infinitely many eigenfunctions yeC (Q) n C (O)

and satisfying

r Py(t)
y(y) = J I f(t,u)du dt = c.

Proof, It follows from results of [6] that (58) is

equivalent to an integral equation of the form (2), and

where (52) is satisfied for a(n-2m) < n. The theorem

then follows from the remarks above, preceding its

statement, and with the use of the arguments employed in

the proof of the main theorem in [6]«. The sharpness of the

condition (53),(56) is shown by an example in [15].

For the special case where T = -A, the hypothesis can

be weakened slightly, compare Theorems 4 and 5 in [5].

We remark finally that X and Y in Theorem 1

can also be taken to be Orlicz spaces other than L^.

Continuity conditions for the integral operator A and

the Nemytsky operator $, when X and Y are Orlicz

spaces, are given in [9]. In particular, by taking X

and Y to be Orlicz spaces one can replace the growth

condition (53),(56) in Theorem 3 by an exponential growth

condition w!ien T = -A and n = 2; see for example the

hypothesis of the main theorem of [10] .
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