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THE SPECTRAL SEQUENCE OF A FIBRATION IN GENERALIZED

COHOMOLOGY EXISTS FOR AN ARBITRARY MAPPING

Richard N. Cain

As shown by1 DOLD, ATIYAH-HIRZEBRUCH, and DYER [1969], any

fibration p:E—*B (B a simply-connected simplicial complex) and

generalized "cohomology theory h* have a corresponding spectral

sequence E** (p) , E** (p) , . . . with

[ E ! J ' J ( P ) = Hn(Bjh j(F)) (F the f i b e r ) ,

l ^ j a map of the form E £ ' j (p) •EjJ+r^ j " r + 1 ( p ) .i:
If B has dimension k < GD then the sequence converges to the

bigraded group associated with a length-<-k filtration of h*(E) .*

We shall show in this paper that an analogous spectral
0£CU«»<S

sequence^under the following more general conditions: f:X—*Y

is an arbitrary continuous function from a given space X to any

paracompact hausdorff space Y, and h* is a generalized cohomology

theory defined on the category of pairs of prespaces3 of X and

their maps. Our spectral sequence reduces to the one above when

p is substituted for f. (Cf. also Section 2 below.)

1. By a prespace of X we here mean any space M with an

associated map U
M * M — * ^ A J ky a prespace pair we mean a pair

(M,N) of prespaces,with N a subspace of the space M and u = u

N

by a map of one prespace pair (M!^N!) to another (M,N) we mean a

continuous function <p from the space M1 to M such that pN? cz Nand uM<p = u
M I

1 Cf. also BECKER.

2 A relative cohomology version of this spectral sequence is also
given by DYER [1969]. Moreover, by reversing appropriate arrows
the spectral sequence of p can be seen to exist equally well for
generalized homology. However, the general spectral sequence of
this paper (section 4) probably fails to exist for generalized
homology, because passage to inverse limits is not an exact functor,
3"prespace11 = a notion more general than subspace and convenient
for this particular paper; defined in section 1.
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Standard cohomology on the category of pairs of prespaces of

X can be given by the formula h*(M,N) = H*(M,N; u*S) , where S is

some sheaf over X independent of (M,N) and u*g is the pull-back

of S to a sheaf over M.

Generalized cohomology (i.e., cohomology that does not satisfy

the dimension axiom) is described in BECKER for prespace pairs that

are polyhedral. Denoting by hT* any one of BECKER1s theories, we

may define another theory h* on all prespace pairs by setting

h*(M,N) = hf*(PM,PN)t H e r e PM designates the singular polyhedron

of M^and the associated map u_ *PM—*X is U..H.. , where * is

the associated weak homotopy equivalence PM—>M. For (M,N)

polyhedral, there is a natural isomorphism h*(M,N) —~*hT"*(PM,PN)

induced by KM »hi*(M^N) ^ s o h* m a y b e regarded as an extension

of h»* .

Both examples of h* satisfy the axiom below:

Infinite Product Axiom: Given a pair (M,N) of prespaces of

X, and given subspaces {M1|i6l\ of M such that

UM1 = M ,

M1nM-J = N whenever i,J€l are unequal,

the homomorphism

h*(M,N) > 77hMMX,N)
iel

induced by inclusion is an isomorphism.

(To verify this for the above generalized cohomology theory,

note that h»* (uPM^PN) >JJ h'MPM^PN) is an isomorphism and

that UPM > PM is a homotopy equivalence. The verification

for the sheaf cohomology theory follows from the usual definitions,

as given, e.g., in BREDON.)

From this axiom for the case of I a two-member aset it

follows that an excision map (M-V,N-V) *(M,N) induces an h*

isomorphism for arbitrary (i.e., not necessarily open) sets V

of M which satisfy the usual condition V <z N . For example, if

UUW = M for U and W open, then h* (UUW,W)—>h* (U,UDw) is an isomor-

phism. (Take V = W-U.)
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2. In constructing the spectral sequence of this paper, we

shall first prove the statement below by the lemmas which succeed

it (some of whose proofs are standard and are therefore omitted).

This proposition is simply a generalized cohomology analogue of

the spectral sequence of GODEMENT [1957, p.212].1

Proposition 2.1. Let (X,A) be a space pair, U = ^U1|i€ll an

open covering of X , and h* a generalized cohomology theory on the

pairs of prespaces of X. Suppose that h* satisfies the infinite

product axiom. Then there is a corresponding spectral sequence

E**(U), E**(U),... with

h^ (UC

{where for <j= (io, ..., in) e I
n ) U a designates

ulon...nuin ~

j d j ^ : E J ^ ( U ) > E J + 1 ^ ( U ) the standard coboundary

/ operator (which sends a member £ * ^ a | aeln+1j e E ^ ^ (U)

/ into the member r\ = <77a|aeln \ that has the formula
/ n+1

I jf = \ (-

1 ^
^ f o a = (io^..,in+l) e I n + 2

If the order k of U is finite, then the sequence converges to the

bigraded group associated with a length-<-k filtration of h*(X,A).

For reference we state:

Lemma 2,2. Let . . .KnQCn+l01. . . be subspaces of a space K

such that UKn = K and flKn is a given subspace L of K. There is

1 Compare with LERAY [1950, p. ]. MCCORD (unpublished) has also
worked on this question and is thanked for -rt\£. \̂ \-fe*mCi1rio*

that DYER [1957], and originally P. CONNER (unpublished),
conceived of the space G of this section. "Unaware of these
possible sources for G^+he^fdefined G and proved Proposition 2.1
in tl doctoral thesis at New York University (1969). Cf*CA*NO*(t>0$.

Also proved in +ke thesis is that when h*(M,N) = H*(M,N; u;*§)
for some sheaf g over X, the spectral sequence of Proposition z.l
is the same as that of GODEMENT [1957, p.212], while the one of
Proposition 4 is the same as that of LERAY [1950, p. ] and
of BREDON [1967, p.140].
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then a spectral sequence E**, Ei|*,

n,j = lm(hn+j (Kn+r-l,Kn-l)

r lm[hn+j(Kn+r-l,Kn) + h*+J(Kn+r-l,Kn-r)1

The homomorphism h^+j(Kn+r-l,Kn-l) — — + hn+l+j(Kn+2r-l.Kn+r.1)

induces the required map dg*J: E*}* 3 >E£+rjJ~r+l in the spectral

sequence, while the homomorphism hn+j(Kn+r*Kn-3) — * hn+3(Kn+r-ljKn-1)

(induced by inclusion) induces the required isomorphism El£fJ ~£L*

»n,JEf* . if the filtration of (K,L) has length k < oo9 then the

spectral sequence converges to the bigraded group associated with

a length-<-k filtration . • .Fnh* (K,L)=>Fn+1h^ (K̂ L)=>. .. of h*(K,L),

where Fnh*(K,L) = lm[h* (K,Kn-1) •h^(K,L)] .

. (For the proof, see J,T • SCHWARTZ.)

In what follows let N denote the nerve of the given open

covering U, where in this context N is by definition a triangulated

space. For each finite set s Q for which the associated set .fl U^
les

* U s is non-empty, let [s] denote the corresponding simplex of N,

and let (s) denote the interior [s]-d[s] of [s]. (in particular,

(s)={s] if s is a singleton.)

The graph of U is the subspace G of XXN with the formula

G = UusX(s) ,

where9in taking the union>s ranges through the collection of subsets

of I for which U s ̂  0 . To regard G as a prespace of X, take

uQ:G >X to be the restriction of the coordinate projectorThen^for subspaces BCX and KQST write GB to denote (BxNjflG, GK to

denote (XXK) PIG , and G^ to denote GBnGTr .

Definition 2.3.tetG = GA U G.T (neZ) ; Jet
n w

Bn.J ( u )
 I m' h 'Gn+r-l'

Gn-!> h ' G n , r - 1 'Bn-r>

(Gn+r-l'Gn> — ^ «Vr-l'Gn-r> \
for n,j,reZ and r > 2; d"'3 and the isomorphism En* J (U)«»n^E** (U)

•"- r r+ x r
are to be as in Lemma 2.2.
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(Note that when the order k of U is finite, the filtration of

(G,G ) has length <. k, so this spectral sequence converges to the

bigraded group associated with a length-X-k filtration of h*(G,G ) .

See Lemma 2.9, though.)

Lemma 2.4. For each n-simplex [s] of N the pair

USn(X,A)X([s],3[s]) is contained in (Gn*
Gn-l) > a n d there is an

induced isomorphism1

h*(Gn,Gn-l) ~^-*l f
dim[s]=n

d l be
let [s]a be the closed set

i!?"1^ ? c [s] , Cfcpr i€l and ,
x * Jx1 designates the

let rsla - Ix.rai Imin x i> a" (?" 1 ) I c Tsl i i t h b a r Y c e n t r i c
let LSJ - }xelsj|]£inx >.—J5=FI ^5 c lsJ * (^coordinate of x

and for n-Kb<a<n let [s]a = [s]
bn[s]a . One can deform [s]a into

&[s] by a deformation that leaves each point of d[s] invariant;

this deformation can be extended to a deformation of [s] (into

itself); as [s] ranges through the n-simplexes of N we piece

together these deformations to get a deformation of N n into itself;

extending^a simplex at a time, we obtain finally^* deformation D •

N • N (CKt<l) that leaves invariant each point of N 1 and each

simplex of N and that deforms the set N a = N , U (u [[s]a| dim[s]=n$l

y^One open set of the space G is V = Gn-Gjj , where we now

assume n<a<n+l ; since Nn-Na = 0 we have V = G -Gw , implying

that V <z G -GNa c interior of Gn_i (for small positive e) .

Therefore, the homomorphism

A A
•-»-*• in Mr1 n II r» \
n*^GNa

UGNn ' GNa U ^n-l*

induced by inclusion is an isomorphism. But lx*0*- (P^-—1) ^s a

family of maps of the prespace XXN of X into itself, and it deforms

G^ into Gjj , keeping invariant the points of Ĝ j . Thus, we so

1 Notation: Lfl(M,N) designates (LnM,LDN) , and (K,L)x(M^N)
designates (KXM, KXNULXM) .
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far have an isomorphism

h*«VGn-l>
(excision

axiom)

(homotopy
axiom)

„> GNn
UGNn-l>

which is induced by inclusion.

For n-l<a<n the family of maps x t

prespace XXN (of x)into i tself deforms GN /Jfn&o GN , and keeps
lxXDt

invariant G N

)

GN ,

that the homomorphism

and the points of GN , . This implies

(homotopy
axiom)

that is induced by inclusion is a third isomorphism, por a fourth,

note that one open set of the space is V = G N -note that one open set of the space GN is V GN -G
Kb 9 where

n-KtKa and Kb = u£[s]b | dim[s]=nj. Thus, we get an isomorphism

(excision
axiom)

induced by inclusion, because B = G^ - G^b = G^ -G**b implies that

V c GNa"
Gvb+e CI interior of GN UGJSJ (for small positive e) .

The isomorphisms and maps that are of interest here form a

commutative diagram:
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h*(Gn,Gn-l)

(homotopy
axiom)

| |
dim[s]=n

h*(trn(x,A)x([s],3[s]))

(homotopy
axiom)

n

(excision
axiom)

•> f [ h*(U°n(X,A)x([s],[s]a))
dim[s]=n

(excision
axiom)

b r.-.b.
adim[s]=n

(The maps in the right column are analogues of those in the left

cloumn; the map at the bottom is the isomorphism

(infinite product
axiom)

dim[s]=n

(excision axiom)

f h^(usn(X,A)x([s]b,
d i [ ]dim[s]=n

all maps here are induced by inclusion.) By the commutativity

and the indicated isomorphisms^ it follows that the upper diagonal

map is an isomorphism. Q.EIDI
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Lemma 2.5. If (M5N) is any pair of prespaces of X5 then a

generalized cohomology theory h!* on the category of CW complex-

subcomplex pairs is defined by setting h'*(K,L) = h*((M,N)x(K,L)),

where tlje required map u M X K*
 M X K — * K is taken to be

coordinate projector - UM
MXK M

(The proof is elementary and is omitted.)

Lemma 2.6. The group h n ̂  (Gn*
Gn-l) -*-s isorn°rphic to the sub-

group of alternating non-degenerate members of E?**'(U) (C?•

PROOF: Take the isomorphism to be -*V»e

(Lemma 2.4)

dim[s]=n
f hn+j(uSn(X,A)x([s],9[s]))

dim[s]=n

dim[s]=n

where for each n-simplex [s] of N and member a = (io,.,in) of s
n + 1

we define a homomorphism <ps>G:bn+:1 (usn(X,A) x ([s] ,3 [s])) *•

h:i(UCTn(X,A)) as follows: if io,w,in are not distinct then <p
S'a

= 0; otherwise, we set crq = (iq,iq+i,..vin)
 f o r % ~ O,l,...,n and

we define <ps>a to be the isomorphism below, where h'*(»)

h*(Usn(X,A)x(O) :
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n + j(U S(USn(X,A)x([s],5[s]))

/by the exact sequence for the
~ * triple ([CTg],S[ag],a[CTq]-(aq+i)),

since ([cTqf, 3 [oqT- (crq+l)) is
homotopy-equivalent to f
([in],fin!) )

A# (excision for
~~ polyhedral pairs)

h3(uCTn(X,A)x[in])

By the following argument the map <ps>c changes sign when the

order of a undergoes an odd permutation: if v: [s] H s ] is

a simplicial homeomorphism that carries a into a new ordering a'

then <ps'CT' = <ps'CT*h'n+j(v) = <ps*CT»£legree(v) -identity) = +<pS'c,

depending upon whether v is even or odd.

The statement of the Lemma now follows. Q.E.D.



[10]

Lemma 2.7. The diagram

n'

(Lemma 2.6)

3n,

(Lemma 2.6)

EJ'-UU)

PROOF: Let £ e h"'J(Gn,Gn x) , and let [s] be an (n+1) -

simplex of N with cr a total ordering of s . Let h' * (•) =

h*(UsH(X,A) X(»)) . Let £• denote the image of £ under the

homomorphism h n + j (G n,G n l) * h n + j (usn (X,A) x ([s] , [s] ±) =

h'n+:3([s] *fs] ^) (induced by inclusion); let y\ = d£ for 5

as above, and let 77' denote the image of 77 under an analogous

map h n + 1 + j(G n + 1,G n) »-h.n+1+3([s],[s]n) . Then r?' - &•«• ,

where 3' is the map h' n + j ([s]n, [s]n_!) —^htn+l+j ([s], [s]n) .

The condition
n+1

q=0

<P '

is what we want to prove, where s g = s-{iq} and a g = (io**».,iq_i,

• Evidently the qth term (q=0,l,...,n+l) on the left-

[sq]
hand s ide i s ( -1 )3 <psq>CTq

corresponding isomorphism

h'n+j([sq],d[sq]) » jf*

with the property that <psq'CTq a<I(i$q)-1 = <p£

and there is a

(by

*a<p *a. In the commutative diagram
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(direct sum
property

for polyhedra)

* q

one deduces that d! = (

proofy for we have

"1 6) . This completes the

as required, Q.E,D.

Lemma 2.8, The isomorphism of Lemma 2.6 induces an

isomorphism E 9 *

(This is a standard result on the equivalence of alternating

non-degenerate cochains to all cochains in determining standard

cohomology groups. The proof is in GODEMENT.)

Lemma 2,9, If the order k of U is finite9 then the prespace

map u *G *X induces an isomorphism H* (X,A) h* (G,G )

PROOF: If the statement were true for A = 0, then it would

be true for A ^ 0 by the diagrammatic 5-lemma for the diagram

^ 1 > h q ( X , A ) — > h q ( X j — * h q ( A )

Therefore^ assume A = 0, Set X n = U{US|dim[s]=n} for neZ .

It suffices to prove that for 0<n<k the map 0£: h^(Xn,Xn+1)

*h*(Gx ,Gxn ) induced by u G is an isomorphism, for an

inductive use of the diagrammatic 5-lemma would then lead from

the validity of the isomorphism h*(X ) -—> h*(Gx ) to the validity
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0 » XO
of the required isomorphism h* (X ) » h* (G ) in K steps.

In examining 0* we have the commutative diagram

axiom) I axiom)

r
s s

(all direct products taken over the collection of n-simplexes [s]

of N), which implies that it suffices to show that 9*: h*(Us,Usnxn+1)

-=*h*(GUs,GuSnxn+1) for all n-simplexes [s] of N.

In examining 8|, note first that

GUS = (UsXN)nG = (UsXN)n(U{U
s"x(s") | s" C I})

= U{US s"x(sM) I s" c i} = U(Us'x(s") | s' c i, s'=s s11}

= U{Us'x[s<] | s c s« c i) , (̂ )

and secondly, that

s | s c 8m c 1}

= U{U{Us?x[s»] |#tcs'-ci) | scs"' }

= U{uslx[s'] | s c st c i} . (##)

Recall also that Star[s] is by definition the set tiffs'] | .sQs'}

and possesses a (non-unique) simplicial retraction r:Star[s] > [s]>

which in turn provides a deformation Dt: Star[s]—•Starfs] (0<t<̂ l)

by the formula Dt(x)i = (l-t)x
i + tarfx)1 ,where x̂ ^ (iel) denotes

the i t h barycentric coordinate of a point xeStar[s]. This

deformation keeps invariant each simplex of Starfs] and point of [s]

and deforms Starfs] into [s] .

Then luSXDt (0<t<l) is a family of maps of the prespace

UsXStarfs] of X that deforms each term of (*) into the corresponding

term of U{UsfX[s] | s c s»} = Usx[s], and that deforms each term



[13]

s c st} =of (**) into the corresponding term of U{Ustx[s]

US0Xn+-'-X[s] . Thus, we have 9* an isomorphism by the commutative

diagram

h*(us,usnxn+1)

(induced
(homotopy " ^ - ^ y UG)

axiom) #*

h*(GuS,

(homotopy
axiom)

h*(USX[s],

(induced
by inclu-
sion)

The statement of the lemma now follows. Q.E.D.

These lemmas suffice to prove Proposition 2.1, for the

required groups E£*3(U) and maps d ^ 3 : E£*J (U) *E£+r* 3- r + 1 (U)

(n,j,reZ; r>.l) are given in Definition 2.3 and in the statement of

the Proposition, while the required isomorphisms E r + i ^ = M ̂ E**

and E ^ f U ) = Fnhn+3(x,A)/Fn+1hn+:'(X,A) , as well as the filtration

. * .FnhMX,A)3Fn+lh* (X,A)=>## # can be deduced immediately from

Lemmas 2.2, 2.8, and 2.9.

It can easily be shown that the spectra^, sequence E|* (p) ,...
y y

of the introduction is the same as the spectral sequence E2 (U) , ...,

where U = {p"~ star(v) |veBo}. The proof: the map Ug:G—>E carries

the filtration of G into the filtration ...jd~ B n
c P Bn+1 C | M °^ E

by which E2 (p) ,%̂ . is defined as in Lemma 2.2, and the induced

map E2 (p) > E2 (U) is an isomorphism.

3. Suppose that U' = £ui3 |jelf } is a refinement of the u?

open covering U of section 2, and let 7r:If—^1 be any refinement

projector. Then there is a corresponding homomorphism TTJ :E!?*-̂  (U)

— > E1'-'(U
!) given by the standard formula: TT, sends a member

^ 1 1 4 1 ^ j a n +of El (U) into the member £* = {4' a| eel t n + 1]

of with
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Furthermore, the following proposition is true:

Proposition 3.1. TT^ is part of a unique spectral sequence

homomorphism {7Tr:E**(U)—>E**(U<) | r > 1 ] . If both U and Ut

have finite order, then the filtrations {Fnh*(X,A) | neZ} and

(F'nh*(X,A) | neZ} that are induced by them satisfy the condition

Fnhq(X,A) CF'nhq(X,A) ,

and the diagram

oo (U) (induced by 7^) Eoo

(induced

Fn+lhn+j (x A ) identity) p , n+lhn+j {XA)

is commutative.

PR(X)F; Clearly, if ir, is part of such a spectral sequence

homomorphism, then the latter is unique, because its portion ir .

is fully determined by the portion irr for r = 1,2,...#
7T determines a simplicial map i/:Nf-^N , where Nf denotes

the nerve of li'. Moreover, if [s] is any simplex of Nf , then

1XXV maps U'sx(s) into U^(S)X(TTS) , so the restriction of lxxv

to the graph G! of U1 defines a map y:Gf—*G . Since

Y(G'^) C G^,KX holds for subspaces B of X and K of N
! , it follows

in particular that Y(Gf
n) <= Gn for all neZ . We conclude thus

far that there is a homomorphism from the spectral sequence of

Lemma 2.2 for .+.G ^G .••••• to the spectral sequence of Lemma 2.2

for .••GTGGI ,..., this homomorphism being induced by y •

Add to this the fact that the isomorphism of Lemma 2.6 has

the following commutative diagram:
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induced by y

dim[s]=n

dim [ s]=n

(usn
dim[s]=n

~ J h n + j (usn (X,A) x( [s ] ,d [s1]

<ps>°)

dim[s]=n\(T€sn+l
[hJ(uu,

induced
by 7fi ^

(Simply examine Lemma 2.6 and its proof.) There is thus a homomor-

phism from E** (U) , E** (U) , .>. to E** (U ') , El** (U») , ... that is in

effect induced by IT.

Suppose that U and U* both have finite order. The commutative

diagram

n*iv».G n; ^xl^iG.G )v JT* (X.A)

>h*(G' , -h* (X,A)

(left vertical maps induced by y* left horizontal maps by inclusion,

right horizontal maps by U Q and uG?) implies that the rest of

Proposition 3.1 is true. Q.E.D.

Proposition 3.2. The (convergent) spectral sequence of

Proposition 2.1 depends functorially upon U 3 if by a morphism

of open coverings we mean a refinement projector. If instead we

mean merely a refinement, then the (convergent) spectral sequence

E2**(U),E**(U),w depends functorially upon U .
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PROOF: E#* (U) alone dependsfunctorially upon

U in the first sense«

V Proposition 3.1 insures that a refinement projector

induces not simply a map of E** (U) but of the entire spectral

sequence, and since this map is unique, the entire spectral

sequence cannot be anything but functorial in U.

If U and U' are two open coverings, and U' refines U , then

it is known that for each jeZ the chain map ^i'E\? 3 (^)—^E^ 3 (U*)f

which is induced by a refinement projector v3 is, to within chain

homotopy, independent of the choice of w. (Cf. GODEMENT [1957].)

It follows that ir2 is altogether independent of the choice of ir,

and the same must therefore be true for all TT , r > 2, by the

fact that ir determines 7rr+, . The second conclusion of Proposition

3.2 now follows. Q.E.D*

4. We now conclude by proving the proposition below:

Proposition 4. Let (X,A) be a space pair, f :X-*Y a map into

a paracompact hausdorff space Y, and h* a generalized cohomology

theory on the pairs of prespaces of X. Suppose h* satisfies the

infinite product axiom. Then there is a corresponding spectral

sequence E** (f) ,E|* (f) , ... with E * ^ (f) = H n (YjL^ (f) ) , where

L-1 (f) is the induced sheaf of the presheaf

Pj(f) = (h j(f"V Aflf"^) | V open e x } .

If the covering dimension "k of Y is finite then the sequence

converges to the bigraded group associated with a length-<^-k

filtration of h*(X,A) .

PROOF: For each open covering V = {V1|iGl} of Y let f

« {f~ v1 I iel } . By Proposition 3.2 the spectral sequence

" 1 f " 1 V ) ^ . . . depends functorially upon V , if by a

morphism of open coverings we mean merely a refinement. Define

the required E**(f) to be lint E** (f ~1V) (as usual, we allow I;
JL [J JO

to vary only through a set of open coverings that is cofinal in

the class of all open coverings of Y ) .
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It follows that E ^ f f ) = Hn(Y;P:'(f)) , the ?ECH cohomology

group of Y with coefficients in the presheaf P-1 (f) . This group is

isomorphic to the required Hn(Y;LD(f)) (Cf. GODEMENT [1957, p. ].)

Define the required d"^:E^j(f)—»E*+I'J~X+1 (£) to be the

Tim of eP'iiE^'iif'hs) «sn+r»J-i^-l(f-lV) . It follows that
If r r B i

the property d*J*J d*2""r'3+r~1 = 0 is preserved, since passage to

direct limits is an additive functor. This functor is in fact

exact, so there is an isomorphism
j

(f) 15? « E
r V r

(Cf. CARTAN-EILENBERG [195 , p. ]). This isomorphism, together

with the llm of the isomorphism E^j(f~1V) = ){n^E** (f ~\) ,

provides the required isomorphism E^^(f) = ttn>lE^* (f) , to complete

the first conclusion of the proposition.

In proving the second conclusion of the proposition, note that

the operation lim depends only on If of order <̂  k .

Considering only such \s , then, we have that the filtration of

h* (X,A) that is induced by f"1!/ , to be denoted here [F^h* (X,A) |

neZ}, has length <_ k . As noted earlier, the condition

F^hq(X,A) c F^fh
q(X,A) holds if V» is a second open covering that

refines lr , so we define the required filtration {F^h* (X,A) |neZ]

by the formula F^hq(X,A) = UF?hq(X,A) (where the union is taken
r \f u

over a set of order-<^k coverings lr that is cofinal in the class of

all order-<-k coverings).

Since lim is an exact functor it follows easily that there

h

lim(F£hq(X,A) /F£+1hq(X,A))

is an isomorphism

Combining this with the lim of the isomorphism

E n , j ( f - l v ) ^ E n , j ( f - 1 ^ * Fghn+3<X-A> ,
\ ^ h> ~ Eco ( f ^) - F n+± h n+: ( X , A )

we obtain the required isomorphism
pnv,n+j (v T\\

Fn+ihn+j(xeA) '

to complete the proof of the second conclusion of the proposition.

Q.E.D.
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