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THE SPECTRAL SEQUENCE OF A FIBRATION IN GENERALIZED

COHOMOLOGY EXISTS FOR AN ARBITRARY MAPPING
Richard N. Cain

As shown by! DOLD, ATIYAH-HIRZEBRUCH, and DYER [1969], any
fibration p:E—*B (B a simply-connected simplicial complex) and
generalized ‘cohomology theory h*¥ have a corresponding spectral

sequence EE*(p), E§*(p),... with

23 (p) = " (e;n3 (F) (F the fiber),

d?’J a map of the form E?’J(p)——+E2+r’J'r+l(p)

If B has dimension k < o then the sequence converges to the
bigraded group associated with a length-<-k filtration of h*(E) .
We shall show in this paper that an analogous spectral
sequencgﬁagﬁer the following more general conditions: £f:X—»Y
is an arbitrary continuous function from a given space X to any
paracompact hausdorff space Y, and h* is a generalized cohomology
theory defined on the category of pairs of prespaces® of X and
their maps. Our spectral sequence reduces to the one above when
p is substituted for f. (Cf. also Section 2 below.)

1. By a prespace of X we here mean any space M Swith an

(0.. take M =X ond wp e incinsion wmop!

associated map uM:M——ﬁXA; by a prespace pair we mean a pair

(M,N) of prespaces,with N a subspace of the space M and Uy = Uy ;
N

by a map of one prespace pair (M',N') to another (M,N) we mean a

2

continuous function ¢ from the space M' to M such that ¢N' C N

and uM¢ = uM, .

1 ¢cf. also BECKER.

2 A relative cohomology version of this spectral sequence is also
given by DYER [1969]. Moreover, by reversingappropriate arrows

the spectral sequence of p can be seen to exist equally well for
generalized homology. However, the general spectral sequence of
this paper (section 4) probably fails to exist for generalized
homology, because passage to inverse limits is not an exact functor.

Snprespace" = a notion more general than subspace and convenient
for this particular paper; defined in section 1.
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Standard cohomology on the category of pairs of prespaces of
X can be given by the formula h* (M,N) = H* (M,N; uﬁS), where 8 is
some sheaf over X independent of (M,N) and uﬁg is the pull-back
of 8 to a sheaf over M.

Generalized cohomology (i.e., cohomology that does not satisfy
the dimension axiom) is described in BECKER for prespace pairs that
are polyhedral. Denoting by h'¥ any one of BECKER's theories, we
may define another theory h*¥ on all prespace pairs by setting
h* (M,N) = h'*(PM,PN) fere PM designates the singular polyhedron
of M,and the associated map uPM:PM——ﬁx is Unty 2 where M is
the associated weak homotopy equivalence PM—>M, Fo; (M,N)

polyhedral, there is a natural isomorphism h*(M,N)-:oh'*(PM,PN)
induced by uM ..
g 7;1'*(M,N)

s So h*¥ may be regarded as an extension

of h'*
Both examples of h* satisfy the axiom below:

Infinite Product Axiom: Given a pair (M,N) of prespaces of

X, and given subspaces {Ml|ie1} of M such that
o:

UMt = M ,

M*MM? = N whenever i,jeI are unequal,

the homomorphism
h* (M,N) —> T'T h* (Mi,N)
lel
induced by inclusion is an isomorphism.

(To verify this for the above generalized cohomology theory,
note that h'* (UPM", PN) ———*-ET h'*(PMi,PN) is an isomorphism and
that URMl-Jzé PM is a homotopy equivalence. The verification
for the sheaf cohomology theory follows from the usual definitions,
as given, e.g., in BREDON.)

From this axiom for the case of I a two-member set it
follows that an excision map (M—V,N—V)—E;%M,N) induces an h*
isomorphism for arbitrary (i.e., not necessarily open) sets V
of M which satisfy the usual condition V < ﬁ . For example, if
UUW = M for U and W open, then h* (UUW,W)—>»h* (U,UNW) is an isomor-
phism. (Take V = W-U.)
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2. 1In constructing the spectral sequence of this paper, we
shall first prove the statement below by the lemmas which succeed
it (some of whose proofs are standard and are therefore omitted).
‘This proposition is simply a generalized cohomology analogue of
the spectral sequence of GODEMENT [1957, p.212].% .

Proposition 2.1. Let (X,A) be a space pair, U = {Ullielg an
open covering of X , and h*¥ a generalized cohomology theory on the
pairs of prespaces of X. Suppose that h* satisfies the infinite

product axiom. Then there is a corresponding spectral sequence
Ei*(h), Eﬁ*(u),... with
E?’j(u) = nd (g%, anu)
cell
‘where for o=(ig,...,1ip) € "
vion. . .nuin )

+1 ) u® designates

d?’J: E?’J(u) —_— E?+l’J(U) the standard coboundary

operator (which sends a member ¢ = €60'061n+l} € E?’J(u)
into the member 1 = {ncioeln+22 that has the formula

n+l
,nd' = E (-1) q giO;"-s iq—]_:iq-!-]_:'-': in+1
= Uo,ANUC
for o = (igse.,in+l) € In+2 ).

If the order k of U is finite, then the sequence converges to the
bigraded group associated with a length-<-k filtration of h* (X,A).
For reference we state: '
Lemma 2.2. Let ...KnXn+1<... be subspaces of a space K

such that UKp = K and MK, is a given subspace L of K. There is

1 Compare with LERAY [1950, p. ]. MCCORD (unpublished) has also
worked on this question and is thanked for +he wfeemation
that DYER [1957], and originally P. CONNER (unpublished),

conceived of the space G of this section. UYnaware of these
possible sources for G,+he?““¥defined G and proved Proposition 2.1
in @ doctoral thesis at New York University (1969). Cf CAWN [19681.

"Also proved in +#he thesis is that when h* (M,N} = H*(M,N; u*$)
for some sheaf g over X, the spectral sequence of Proposition %1
is the same as that of GODEMENT [1957, p.212], while the one of
Proposition 4 is the same as that of LERAY [1950, p. ] and
of BREDON [1967, p.1l40].
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then a spectral sequence Ei*, Eﬁ*,... with

+3 +3
gl J - Im{h"™" I (RKn+r-1,Kn-1) —* h"" I (Rp+r-1,Kn-r) ]
r Im[h?+ ] (Kptr-1,Kn) — h?+ I (Kpn4r-1,Kn-r) ]
9

The homomorphism hM*J (Knt+r-1,Kn-1) —— h?r 13 (Rpior_1,Kptr-1)
induces the required map dBsJ: Eg:j-—%>E§+r:j'r+l in the spectral
sequence, while the homomorphism hn+j(Kn+r,Kn_])-—*-hn+j(Kn+r_1,Kn_1)
(induced by inclusion) induces the required isomorphism E?‘% -éi;

¥R, JE¥* ., If the filtration of (X,L) has length k < oo, then the
spectral sequence converges to the bigraded group associated with

a length-<-k filtration ...FPh* (K,L)oFPtlnx (K,L)>... of h*(K,L),
where FPh* (K,L) = Im[h* (K,K,_7) — h*(X,L)] .

.. {Fox the proof, see J.T.SCHWARTZ.)

In what follows let N denote the nerve of the given open
covering U, where in this context N is by definition a triangulated
space, For each finite set sCI for which the associated set{}éﬁ-
= US is non-empty, let [s] denote the corresponding simplex of N,
and let (s) denote the interior [s]-3[s] of [s]. (In particular,
(s)=[s] if s 1is a singleton.)

The graph of U is the subspace G of XXN with the formula

G = UUSx(s),
where, in taking'the union,s ranges through the collection of subsets
of I for which US # § . To regard G as a prespace of X, take
GgiG¢—X to be the restriction of the coordinate projector XXN—X.
Then, for subspaces BCX and KON write GB to denote (BxN) NG, Gk to
denote (XXK)NG , and Gﬁ to denote GBﬂGK .

Definition 2.3.ktG_ = 6" U Gy (nez); let

n

u

n+3j n+j
Im[h (Gn+r—1’Gn-l) —*h (Gn+r_1’Gn—r)]

En’j(U)

Im[h™ I (G c) —h™I(

n+r-1° n+r-l’Gn-r)]
for n,j,reZ and r > 2; dE’J and the isomorphism E?;i(u):an’JE;*(u)
are to be as in Lemma 2.2.
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(Note that when the order k of W is finite, the filtration of
(G,GA) has length < k, so this spectral sequence converges to the
bigraded group associated with a length-<-k filtration of h*(G,GA).
See Lemma 2.9, though.)

Lemma 2.4. For each n-simplex [s] of N the pair
Usﬂ(X,A)x([s],a[s]) is contained in (Gn,Gn_l), and there is an

induced isomorphism®

h* (Gn,Gn-1) =, | [ n* (USN(x,8) x([s],3ls])) .

dim[s]=n

wWe Lirsh congvruact o deformation Mdtwil be wselul in Yhe prwp:
PROOFvNFor n-1<a<n let [s]; Dbe the closed set
for ieI and xeN,

{xe[s] | min xig_-?-;—é%—i)—} < [s]
. 1les x1 designates the

a _ . .i_a-(n-1 ith barycentric
let [s]” = ixe[s]lﬁég-x ZfﬁéTf_l'g < [sl, coordinate of x

and for n-1<b<a<n let [s]g = [s]bn[s]a . One can deform [s]; into

d[s] by a deformation that leaves each point of 3[s] invariant;

2

this deformation can be extended to a deformation of [s] (into
itself) ; as [s] ranges through the n-simplexes of N we piece
together theig deformations to get a deformathgmefdﬁadinto itself;
extendingpa simplex at a time, we obtain flnallyAa.deformatlon Dt

N — N (0<t<1l) that leaves invariant each p01nt of N -1 and each

simplex of N and that deforms the set N = N (U{[s]a|d1m[s] n})
invariontly xeision and
,\1ntoN£\T“r_1t lwe note the¥ certain inclusisn maps \n&\-\cc b~ Isou\wphnsms by *@A‘u;}oﬁ:;y

AOne open set of the space G, is = Gp-GN, » Wwhere we now

assume n<a<n+l ; since Np-Ng = ¢ we have V = GA-G 'implying

- Na’
that v < GA—GNa_e < interior of Gp_1 (for small positive ¢).

Therefore, the homomorphism

h* (Gp,Gp_1) —> h*(G,-V, Gp_1-V)

A A
h*(GNaUGNn » Gng Y On,_4)

induced by inclusion is an isomorphism. But IXXD: (0<t<1) is a
family of maps of the prespace XXN of X into itself, and it deforms

Gga into G%n, keeping invariant the points of GNn . Thus, we so

1 Notation: LN(M,N) designates (LM,LNN) , and (K,L) x(M,N)
designates (KXM, KXNULXM) .
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far have an isomorphism

axiom)

(excision l ™

h¥ (GNaUGNn, GNaUGNn 1)

(homotopy ~
axiom)

A
h* (G, ON,Yon,_1)

which is induced by inclusion.
For n-l<a<n the family of maps 1XXD: (0<t<1) of the

prespace XXN (of X)into itself deforms GN Aln% GNp_1 and keeps

. . A . . .
invariant GN,, > GNp 2 and the points of GNp_1° This impdies

that the homomorphism
A
h¥ (GNn’ GNnUGNa)

(homotopy L
axiom)

h* (G, GN UGN, ;)
that is induced by inclusion is a third isomorphism. gor a fourth,
note that one open set of the space GNn is V = GNn' gb where
n-1<b<a and KP = Uils]bldlm[s]—ﬂ} Thus, we get an isomorphism

h* (GN,, > G UGN )

(excision >
axiom)
. A
n* ey -v, (ch_Ucy,)-v)
ZI\I

induced by 1nc1us1on, because B = Gy, - Grb = GNg,- Kb implies that
V c GNa' Kb+€ C interior of GN UGN (for small positive ¢).
The isomorphisms and maps that are of interest here form a

commutative diagram:
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m

h* (G n ,Gn-1)
b \

A . s
h* (GunﬁfgnUGNn-l) —_— dl im[s]=|nh* (U°n(x,8) x([s],3[s]))
(homotopy | g*(homotopy
axiom) axiom)

h¥ (G, CN,Uon,)  — T | m*(u°n(x,a) x([s], [s]a))
dim[s]=n

(excision 8 3 (excision
axiom) $ axiom)

~

= S b b
h*(GNnﬂKb,GNnnKbUGNanKb) — gim[s]lnh*(v N(X,a)x([s]™,[s])))

(The maps in the right column are analogues of those in the left

cloumn; the map at the bottom is the isomorphism

A
h* (G _ngbs Gy, nkPYsy  nkb)

(infinite product
axiom)

ne

v

A A
h* (G o 1bUGY bUGy nkbs Gy axbYCy_ kb
dim[s]=n ( [s]P" NRMRP""NaMRP? “NLRNKP™ Nz MK )

e

(excision axiom)

\ §
A
w* (S (a1bs Gpa1bU(512)

| [ nx (U0 (x,2) x([s1°, [s1D))

dim[s]=n

dim[s]=n

all maps here are induced by inclusion.) By the commutativity
and the indicated isomorphisms, it follows that the upper diagonal
map is an isomorphism. Q.E.D.
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Lemma 2.5. If (M,N) is any pair of prespaces of X, then a
generalized cohomology theory h'* on the category of CW complex-
subcomplex pairs is defined by setting h'* (K,L) = h* ((M,N)x(K,L)),
where the required map u : MXK—=X is taken to be ‘

MXK*
. uM
coordinate proijector - M >x .

MXK

(The proof is elementary and is omitted.)

Lemma 2.6. The group hn J(G 1) is :|.somorph1c to the sub-~
group of alternating non- degenerate membcrs of E ’J(U) (C? Peop- M)

PROOF: Take the isomorphism to be +bhe :i wag

4
hn J (G ,Gn_]_)

(Lemma 2.4)

T T n™3(u®nx,a) x([s],3[s]))

dim[s]=n

£.

lhm[s]—n (esn'[l (ps’c)

. Y
T (T _Lrwonxa))

dim[s]=n o€es
1y
E?:J(u) ,

where for each n-simplex [s] of N and member ¢ = (ig,.,ipn) of shtl
we define a homomorphism ¢°> c'hn"'J (U n(x, A)x([s] a[s])) —_—

hJ (U N(x,a)) as follows: if io,...,:.n are not distinct then <ps’°

= 0; otherwise, we set oq = (iq’iq+1"win) for = 0,1,.,n and
we define ¢5:9 to be the isomorphism below, where h'* () gtards e

h* (USN(X,A) x(-)) :



[9]

w3 (050 (x,2) x ([s],31s]))

h ™3 ([65],3100])

n® I ([0 1,301041)

(by the exact sequence for the
N E :i;gée ( ?] a[o?] a[oq] (oq+1))
Gq a[o (cq+1 is
homotopy-equivalent to
([inl,[inl) )

h'n‘(q*1)+j(a[cq],B[Gq]-(cqil))

~ (excision for
polyvhedral pairs)

h,n—(q&l)+j([aq+1]’B[Gq*ll)

3 ([o,1,300nl)

|

nJ (U9n(x,A) [in])

R

h3 (un(x,a))

By the following argument the map ¢S’c changes sign when the
order of o undergoes an odd permutation: if :[s]—P»[s] is
a simplicial homeomorphism that carries ¢ into a new ordering o',
then ¢s,c' = ws’coh'n+j(v) = S50 @egree(v) 1dent1ty)— +¢
depending upon whether Vv is even or odd,

The statement of the Lemma now follows. Q.E.D.
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Lemma 2.7. The diagram

L (GnsCn_1) ___8_,,hn+l+3 G

G.)

n+l’ " n
l (Lemma 2.6) (Lemma 2.6)
. n,j .
23w —4L > EXT 13 ()
commtes,

PROOF: Let £ ¢ hn*j(Gn,Gn_l) s, and let [s] be an (n+l) -
simplex of N with o a total ordering of s . Let ht*(-) =
h* (USN (X,A) X(°)) . Let ¢£' denote the image of £ wunder the
homomorphism hn+J(Gn,Gn_1) -———*'hn+j(Usﬂ(X,A)x([s]n,[s]n_l) =

h'n+j([s]n,[s]n_l) (induced by inclusion); let n = 3¢ for d
as above, and let 7' denote the image of 7 under an analogous
map B (6,60 — n ™I (s],[s])) . Then 1 = drgr
where J' is the map h'n+3([s]n,[s]n_1) ——Q‘hvn+1+j([s],[s]n) .

The condition
n+1l

-1)9 [o°3:°
g( 1) (cp q(§-|USqn(X,A)><([Sq]’a[sqn))

usN(x,A)

s,0
¢ (nlUsﬂ(X,A)X([S],a[S]))3

a8y 0°°7 (1)

is what we want to prove, where Sq = s-{ig} and og = (iosmeesig-1,
iq+1”",in+1) . Evidently the gth term (g=0,1,..,n+1) on the left-
hand side is (-1)9 ¢S9°99 (?' s -and there is a

| 1sql,30sq] )
corresponding isomorphism (d)

n ™3 ([sq],30sq]) +F5— 0 ™I (351,03 151- (s9) £ 1+ ([s],3(s])

with the property that <psq’ od ad(BY -1 = ‘PS’(1‘5'1"’11’“’1%"’1;“""1'\11)
= (-1)4 ws,c. In the commutative diagram
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n 3 ( [s]n’ [s] n-]_) -5 pe T ([sl,[s] n)

I
]

(direct sum

property |Z z B4
for polyhedra) d

n+j v q Bo_qq‘ ' n+j
éﬂh' ([s9],d(s ])*"‘"‘F’;""‘—(Zlbh’ (0[s],o([s]-(s9))

one deduces that Jd' = (g ;3q(¢:tq)-1 ) . This completes the
proof, for we have
6% 7y = % argr = 50 A 6 g
= 3§ (-1)¢ ¢sQ,cq
4 ‘[sql,a[sq]

as required. Q.E.D.

Lemma 2.8. The isomorphism of Lemma 2.6 induces an
. g . v e .
isomorphism EE’J(h)-————$ un’JEE’J(U) .

(This is a standard result on the equivalence of alternating
non-degenerate cochains to all cochains in determining standard
cohomology groups. The proof is in GODEMENT.) '

Lemma 2.9, If the order k of U is finite, then the prespace
map uG.G—-*X induces an isomorphism H* (X, A)-——+ h* (G,G ) .

PROOF: If the statement were true for A = @, then it would
be true for A # #§ by the diagrammatic 5-lemma for the diagram

h9 1 (x) —»h 21 (a) —»n 9 (x, ) —>h T (x)—>n D (a)
LVE lr= v \= \E
L G@)—+nT 1 (P)—sn9(c, @ )-—’hq(G)—-’hq(G ) .
Therefore, assume A = g, Set XP = U{US|dim[s]=n} for neZz .
It suffices to prove that for O0O<n<k the map 6* h*(xn n+l)
-——»h*(Gxn GXn+l) induced by ug is an 1somorph1sm, for an

inductive use of the diagrammatic 5-lemma would then lead from
the validity of the isomorphism h*(Xk) —Ea-h*(GXk) to the validity
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0]
oy
of the required isomorphism h*(Xp) --"—-"h*(GX ) in k steps.

In examining 9; we have the commutative diagram

(direct £ (exci- o -
n+1 - T-—r S, N+l  n+l =;T—T R{17S WS
e (X" ) product =~ !s h (UTUXT, X0 sion s "‘U ENX )
axiom) l axiom) lyeﬁ

rty
h* (Gxn Gxn+l)_(_)._;l—r h* (GUSUXn+1’ GXn+1)‘-L_prrh( U "nx )

(all direct products taken over the collection of n-simplexes ([s]
of N) , which implies that it suffices to show that 6}: h*(US,USﬂXn+l)
—=5 h* (GUS, GUSNXA*tly £+ 211 n- simplexes [s] of N.

In examining 6%, note first that

GUS = (USxn)nG = (USyN) N(U{US"x(s") | s" € 1))
= U{uS s"x(s") | s" 1} = U{UuS'x(s" | st €1, s'os s"}
= U{usS'x[s'] | sc st €1}, (%)

and secondly, that
" "
gusnxtl -y gUSNUS" | gim[s")=n+1} = U(U®' | s g s"c 1}

U{U{US'x[s'] |§'ICStCI} | sgs"r}

= U{us'x[s'] | s g st €1} . . (%)

Recall also that Star[s] is by definition the set U{[s'] | scst}
and possesses a (non-unique) simplicial retraction r:EEE;[S]——ﬁb[S],
which in turn provides a deformation Dy: §E3;fs]——5§E§;[s] (0<tL1)
by the formula Dt(x)i = (l-t)xi + tr(x)i ,where x1 (ieI) denotes
the itP barycentric coordinate of a point xcStar[s]. This
deformation keeps invariant each simplex of EE;;[S] and point of [s]
and deforms Star[s] into [s] .

Then 1ysXDe (0<t<1) is a family of maps of the prespace
USxStar[s] of X that deforms each term of (%) into the corresponding
term of U{US'x[s] | s © s'} = USx[s], and that deforms each term

HUNT Ligppgy

CARNERIF. -MELLON UNIVERS)TY
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of (xx) into the corresponding term of U{US'x[s] | s 3 s'} =
Usﬂxn+1x[s] . Thus, we have Og an isomorphism by the commutative

diagram 6%
h* (US,usnxhtl) =  h*(GUS, GUsﬂXn+1)
(1nduced (homotopy (induced
(homotopy by ug) aXlOz) ggo;?clu-

axiom) o

h*(USx[s],USﬂxn+1x[s]) .
The statement of the lemma now follows. Q.E.D.

These lemmas suffice to prove Proposition 2.1, for the
required groups E?:j(U) and maps dg:j: E?’j(u)———aﬁg+r:j‘r+l(u)
(n,j,rez; r>1) are given in Definition 2.3 and in the statement of
the Propqsition, while the required isomorphisms r+1(u) HPJE**(M)
and Ep3I(W = FORR+] (xa) /FPF NI (% a), as well as the filtration
...FOh* (X,A) oFn+lhx (X, A)D.,. can be deduced immediately from
Lemmas 2,2, 2.8, and 2.9.

It can easily be shown that the spectral sequence E§*(p),.“
of the introduction is the same as the spectral sequence E§*(u),.",
where U = (p'lstar(v)lveBo}. The proof: the map ug:G—»E carries
the filtration of G into the filtration ..p~ s Cp‘an+1Cu. of E
by whlch E2 (p)””. is defined as in Lemma 2.2, and the induced
map E2 (p) — E2 (U) is an isomorphism.

3. Suppose that Uu' = {U'j IjeI'} is a refinement of the x
open covering U of section 2, and let 7:I'—®I be any refinement
projector. Then there is a corresponding homomorphism K ?’J(u)

—_> E?’J(U') given by the standard formula: Ty sends a member
= (£%)0e1™?!} of EMJ(W) into the member &' = (£1%|ce1' ™)
of El’J(u!) with
£1° = €W(G) (ceT' B+l |

‘U'U,AﬂU'G
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Furthermore, the following proposition is true:

Proposition 3.1. T, - is part of a ?niQpe spectral sequence
homomorphism {vr5E§*(ur——)'E§*(u') | r> 1} . If both u and W
have finite order, then the filtrations {FBh*(X,A) | nez} and
(F'Ph* (X,A) | nez} that are induced by them satisfy the condition

F'he(x,a) < r'Ph9(x,a) ,

and the diagram

n,j T oo R
Exo (u) (induced by vl) " Ex (ur)

l (induced J

. h .
Fnhn+J(X,A) by the . F,nhn+J(X,A)
Fn+lhn+J(X,A) identity) F’n+1hn+J(X,A)

is commutative,.

PROOF: Clearly, if Ty is part of such a spectral sequence
homomorphism, then the latter is unique, because its portion Tl
is fully determined by the portion T, for r =1,2,...,

m determines a simplicial map V:N'—N , where N' denotes
the nerve of uU'. Moreover, if [s] is any simplex of N', then
lxxv maps U'sx(s) into UV(S)X(WS) , so the restriction of lXxv
to the graph G' of W' defines a map Y:G'—»G . Since

Y(G'g) c GE(K) holds for subspaces B of X and K of N', it follows
in particular that Y(G'n) c Gn for all nez . We conclude thus

far that there is a homomorphism from the spectral sequence of

Lemma 2.2 for '"GnCGn+1“' to the spectral sequence of Lemma 2.2

for ‘”GﬁCGﬁ+l‘"’ this homomorphism being induced by vy .

Add to this the fact that the isomorphism of Lemma 2.6 has

the following commutative diagram:




"
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hn+J(Gn’Gn_1) induced by vy - hn+j(G

!
n’
2 l

n™ 3 (SN (x,2) x ([s1,30s1))—] ] n™ 3 (0% (x,2) x([<],31<1))

dim[s]=n ' dlm[s]—n l

[ . .
I l <Ps’c) l 1! [ 0%

| I
dim[s]=n geshtl dim[sﬁ—n oegntl

l )induced

L / . ,
T T ] T hJ(U JANU _EBLﬂ]_,‘ T (T T hj(ﬁo:AﬂUo
dim[s]=n\cesn+1 dim[€]=n|ocdntl

E?’J(U) :J(u, .

(Simply examine Lemma 2.6 and its proof.) There is thus a homomor-
phism from E (4),E3* (W), .. to EX* (Uur) ,E4* (Ur), ... that is in
effect induced by 7.
Suppose that U and U' both have finite order. The commutative
diagram -
h*{G,G  )—> h* G,y e———n*(X,A)

~
h* (G',G) ;)= h¥ (G ,erye—=——nx (x,A)

(left vertical maps induced by y, left horizontal maps by inclusion,
right horizontal maps by ug and ug:) implies that the rest of

Proposition 3.1 is true. Q.E.D.

Proposition 3.2, The (convergent) spectral sequence of -

Proposition 2.1 depends functorially upon u , if by a morphism

of open coverings we mean a refinement projector. If instead we

mean merely a refinement, then the (convergent) spectral sequence
Ez**(u),E§*(u),." depends functorially upon Uu .
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PROOF'; Ei*(u) alone depends functorially upon
U in the first sense,
% . Proposition 3.1 insures that a refinement projector

induces not simply a map of Ei*(u) but of the entire spectral
sequence, and since this map is unique, the entire spectral
sequence cannot be anything but functorial in u.

If W and U' are two open coveripgs, and U' refines U , then
it is known that for each jecZ the chain map vlei’j(u)—aﬁi’j(u')’
which is induced by a refinement projector 7, is, to within chain
homotopy, independent of the choice of 7. (Cf. GODEMENT [1957].)
It follows that m, is altogether independent of the choice of 7,
and the same must therefore be true for all Ty > r > 2, by the
fact that T determines T The second conclusion of Proposition

3.2 now follows. Q.E.D.

r+l °

4, We now conclude by proving the proposition below:

Proposition 4. Let (X,A) be a space pair, f:X—»Y a map into
a paracompact hausdorff space Y, and h* a generalized cohomology
theory on the pairs of prespaces of X. Suppose h* satisfies the

infinite product axiom. Then there is a corresponding spectral
sequence E§*(f),E§*(f),.u with Eg’j(f) = Hn(Y;LJ(f)) , Wwhere
LJ(f) is the induced sheaf of the presheaf ’

pl(f) = {hj(f'lv, Anf‘IV) | Vv open € X } .

If the covering dimension k of Y is finite then the sequence
converges to the bigraded group associated with a length.<.k
filtration of h* (X,A) .

PROOF: For each open covering U = [VllieI} of Y let f“lu
=-{f—1Vl | ieT } . By Proposition 3.2 the spectral sequence
Eg*(f'lk),E§*(f’lU),u“ depends functorially upon U , if by a

morphism of open coverings we mean merely a refinement. Define
. —n -

the required E;*(f) to be 1§m E?*(f 1V) (as usual, we allow U

to vary only through a set of open coverings that is cofinal in

the class of all open coverings of Y).
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It follows that E, ’J(f) = g (v, PJ(f)) , the ¥EcH cohomology
group of Y with coeff1c1ents in the presheaf Pj(f) This group is
isomorphic to the required g (Y Lj(f)) (C£. GODEMENT [1957, p. 1.)

Define the required d n,J, :E ’J(f)——+E2+r’j‘r+1(f) to be the
llz}m of df n,J, ;ED J(f'IU)——»En’fr,J -r+1(g-1y) ., It follows that
the property dg:] dn -X¥,J*r-1 - o is preserved, since passage to
direct limits is an addltlve functor. This functor is in fact
exact, so there is an isomorphism

un’jE;*(f) =4 T%_r?un’jE;;*(f’lu)
(Cf. CARTAN-EILENBERG [195 , p. 1. This isomorphism, together
with the ng of the isomorphism Er+1(f v) £ 0y ’JE**(f k) ,
provides the required isomorphism En+i(f) ¥, JE**(f), to complete
the first conclusion of the proposition.

In proving the second conclusion of the proposition, note that
the operation Tim depends only on b of . order < k .
éonsidering only such U , then, we have that the flltratlon of
h* (X,A) that is induced by £y , to be denoted here {th*(x,A)l
nez}, has 1ength < k . As noted earlier, the condition
Fnh (X,A) < F hq(X A) holds if VU' 1is a second open covering that
reflnes t , so we define the required filtration {th*(X,A)IneZ}
by the formula F?hq(X,A) BFShq(X,A) (where the union is taken
over a set of order-<-k coverings U that is cofinal in the class of

all order-<-k coverings). ,
Since 1lim is an exact functor it follows easily that there

is an isomorpkism
—*f_n n+l
lﬂ.m(FUhq(X,A) /E  nd(x,a))

rohd(x,n) FE he(x,) .

Combining this with the 1lim of the 1somorphlsm
F{}hn J(x,A)

Fn+ Ihn+3 (X,A)

-1 - -
Epr ety 2B I(s Lyy =

we obtain the required 1somor§hlsm
o hn+J (X,R)

’J(f) = ’J(f) ‘Fgﬂhnﬂ(XeA) ?

to complete the proof of the second conclusion of the proposition.

Q.E.D’
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