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THE ORDINALS OF THE SYSTEMS OF SECOND ORDER ARITHMETIC WITH
THE PROVABLY A;—COMPﬁﬁHENSION AXIOM AND WITH THE A;—
COMPREHENSION AXIOM RESPECTIVELY

*
Gaisi Takeuti and Mariko Yasugi

Introduction.

We shall present our work in three parts: namely, the
ordinal of second order arithmetic with the provably Aé—
comprehension axiom (Chapter I), the ordinal of second order
arithmetic with the A;-comprehension axiom (Chapter II), and
some applications of the reduction method which is adopted
in Chapter I (Chapter III). We may remark here that all the
systems which we are concerned with have the full induction.

Technically, Chapter I is a further development of the
consistency proofs of some systems of second order arithmetic
in [5]. We shall first introduce a new notion of blocks and by
the help of it carry out the reduction of the proofs of second
order arithmetic with the provably Aé—comprehension axiom (let
us call this system PA%), and then prove that the reduction
process halts, by transfinite induction along the well
orderings of 0(uP+1,uP) for n < w, where O(I,A) represents

the system of ordinal diagrams (abbreviated to o.d.s. as usual)

with the basic sets I and A.

*
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The well-ordering of O(QP,QP) is formally provable in a

system with the H%-inductive definitions (cf. [5]) along the

canonical ordering of «f'. On the other hand it can be shown
by a routine calculation that the H}—inductive definitions

can be defined in PA;. Thus, we can conclude that the ordinal

1
2

Chapter II starts with a revised version of the consis-

of PA is the 1limit of the order types of O(up,ap) for all n.

tency proof of second order arithmetic with the Hi—compre—

hension axiom @&nd the ﬂi-inductive definitions, which was

first presented by Takeuti in the last chapter of [5]. As a

consequence, the consistency of the system with the H}—
w

”s

inductive definitions along w_ = uﬁyl n (let us call this
system IDn) can be proved by the system of o.d.s O(wn,wn).

Now combining Friedman's result (cf. [1]) and a simple
computation, we can claim that the A;—comprehension axiom
and the Hi—inductive definitions along L (see above) are
interdeducible in second order arithmetic with the H}-compre—
hension axiom. According to the remark on the o.d.s és
quoted above implies that the ordinal of second order arith-
metic with the A;-comprehension axiom is the limit.of the
order types of O(wn,wn) for all n.

For Chapter III, we shall briefly remark that one significance
of our reduction method which was adopted in Chapter I exists
in that, just as any previous consistency proofs, it supplies
us with useful informations about the structure of the formal

proofs of the concerning system. In fact by going through

almost the same arguments as the case of the Hi—comprehension
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axiom, we can easily extend the results in [6] and [7] to the
case of the provably A;-comprehension axiom, by exploitation
of our consistency proof.

Throughout this article,.the acquaintance with the content
of [5] is presupposed. Also we shall not repeat the references
which are quoted in [5] but shall list only the more recent
works in the related area.

Finally, we would like to take this opportunity to change
some technical terms which were defined in [5]. Here is the
glossary (the old terms are cited in the parentheses):

sequent (sequence)

abstract (variety)

auxiliary formula (subformula)

¥V in the succedent (y right) etc.

initial sequent (beginning sequence)

second order variable (f-variable)

and first order variable (t-variable).







CHAPTER 1

The Ordinal of Second Order Arithmetic with the Provably A;-

Comprehension Axiom.

§1. A formulation of second order arithmetic with the provably

A;-comprehension axiom. We shall define a formal system of

second order arithmetic with the provably A;-comprehension

axiom, say PA%, in the following manner. Let P be a (formal)

proof of PA% which is defined by the successive uses of the

provably Al-comprehension axiom at most n times, so to

2
speak. Then we say that P is of dimension n (or, for short,
dim n), and define D, as the system of all proofs of PA%
which are of dim n. PA; is then obtained as U Dn‘ Notice

n
that D0 is actually the system with the Hi-comprehension

axiom (or SINN in [5]). Since all the proofs we deal with in

this chapter are those of PA;, it is justifiable to simply talk
about a proof of dim n, instead of somewhat lengthy expression
1

like 'a proof of dim n with respect to the provably Az

comprehension axiom'.

Definition 1.1. The system Dn which is the collection of the
proofs of dim n, and the subsidiary proofs of dim i,

0 < i< n-1, are defined by induction on n. Do is the system
SINN in Chapter 2 of [5], except that here we assume the
quantifier & on an f-variable as well as the related rules

of inference. No subsidiary proof is involved in Do’ We




assume that there is no substitution.
Suppose Do""’Dn have been defined in a manner that
9;5 c... < Dn and suppose that for any given Dn-proof its

subsidiary proofs of dim i, O < i < n-1, are defined. Then

we shall define D the system of provably—Aé-proofs of

n+1’
dim n+1.
Dn+1-proofs are defined similarly to Do-proofs except the
non-semi-isolated comprehension axiom (i.e. vy left and &
right on an f-variable). The end sequent of such a proof is
also called a main sequent.
Let Po be a proof of Dn+1 which has been already defined
and which has the end sequent A(V),I' = A (T - A,A(V)), where
V is a H; or Z%-abstract, say {x} V ¢ ¥ G(p,¥,x) or
{x} & ¢ V YyF(p,¥,x) respectively. Suppose Q is a D,-proof where
0 < i< n-1 and whose end sequent is V x(yv ¢ & ¥G(p,¥,x) =
I ¢ V pH(p,Y,x)), where H is arithmetical, or V x(¥ ¢ v ¥F(p,¥P,x) =
Vo & YH' (0,¥,x)), where H' 1is arithmetical, respectively.

Then a figure which is defined as

P) PO ] ( [Q’ Po ])
¥ xA(x), T - & - 4,3 xa(0) I

is a proof of Dn; This is also called a proof of dim n.

Note. More precisely the Q consists of two proofs Ql and
Q,, where the end sequent of Q, is V x(V ¢ & yG(p,9,x) 2

2 ¢ V H(p,P,x)) for the former case and V x(Z ¢ V YPF(p,¥,x) 2
Y ¢ EZYH' (,P,x)) for the latter case, while the end sequent of

Q, is V x(2 ¢ V PpH(p,¥,x) 2V 0 & PG(p,¥,x)) for the former




case and V xA(Y), T = A (T = A,3 xA(X)) is called the end
sequent of P, It is also called a main sequent of P. The
main part of P consists of exactly the main sequents of P.

If i 1is the smallest number such that the Q above
belongs to Di (this can be decided effectively from @), then
Q 1is called a subsidiary proof (of P) of dim i. A subsidiary
proof of Q of dim j 1is also called a subsidiary proof of P
of dim j. Notice that for a Q as above, as a proof of Di’
we can talk about the main part of Q and the subsidiary proofs
of Q, etc.

In the above definition, we may assume that G and H,
and F and H', respectively contain exactly the same second
order free variables (i.e. they actually occur). Also, we may
assume that the eigen variables in subsidiary proofs do not occur
in the main parts. Thus, we shall assume those restrictions

on the variables throughout.

A proof of PA% = U D, is called a PA;-proof.
n
Note. It is adequate to restrict the comprehension abstracts

to semi-isolated ones and strictly H;- and Eé-ones.

§2. Transformations of the PAé—proofs. Given a PA%-proof,

say P, we shall transform it gradually in four steps, say Pl,

Pz,Ps,P4 into a more convenient form for the reduction in a

manner that PA% is consistent if and only if the system

which consists of P4's as above is consistent. In most of
those definitions we shall only outline how to carry out the

transformations and list some consequences of the transformations.




This will be sufficient and convenient since the meaning of the
transformations is intuitively clear but the precise definitions

are lengthy and complicated.

Definition 1.2. Let P be a PA;-proof. The first transfor-

mation of P is defined as follows; we shall denote the

resulting figure by P1

or Tl(P)’
1) Change the proof so that all logical symbols are

introduced by inferences.

2) The main part of P, say M(P), is transformed in a

manner that if A A - Bl""’Bn is in M(P), then it

1728
is changed to A‘,...,A& - B',...,Bh, where A' 1is A or

is obtained from A by changing some 4 ¢ into =V ¢o7.
Namely, suppose there is a 4 on an f-variable in the ante-
cedent such that the last descendent of its principal formula

is not a comprehension-abstract. Let P be of the following

form

'
Vot

P, AG),T = A

E A(p), T ~ A

1}

where 1 1is the inference described as above, and suppose the
main part of Po has been already transformed so that the end
sequent of P_ has turned to A'(a),I'"" = A'. Then change I

to:




’
b

A (a)’rl —o At

I - AY, 7A'(G.)

T" = A, ¥V o — A (o)

7V @ 7 A' (@), I - A

Similarly for & on an f-variable in the succedent. Notice
that if the auxiliary formula of I in P is A(V), then the
corresponding formula in the transformed sequent is A' (V)

(V unchanged). Thus, for example,

’

P‘O sl I 'i; AI’AI(VI)

7A‘ (Vt)’I‘I - A!

Qs
AR 7Al((p),rl = At

I - A, 7V ¢7Al(¢)

3) Let Q be a subsidiary proof of P. Then the main
part of Q 1is changed as in 2) except that if the last descendent
of ¥ @pA(p) is in the end sequent of Q, then do not change 1I.

With 1) - 3), the transformation of P, Tl(P) is completed.

Corollary. For any D _-proof P, Pl

, or Tl(P), satisfies the
following properties.

(1) The comprehension abstracts are semi-isolated, H;
or Z%. The relation between the comprehension abstract V
and the end sequent of the related subsidiary proof satisfy

the relation as for P. Therefore, P1 is a special case of

Dn-proofs.




(2) The second order & is introduced by an inference.

(3) If a & @A(p) occurs in the main part of Pl, then
either A(¢p) is of the form V ¥B(¢,¥), where B(p,y) is arith-
metical, and there is a descendent of & @A(p) which has the
identical form as ¥ @A(p) (up to some terms) and is used as
a comprehension-abstract, or A(p) is arithmetical and is of
the form A(V,p) and there is an introduction of second
order V,  thus resulting in v ¥ ¥ @A(p,¥) and there is a
descendent of it which is used as a comprehension abstract.

(4) If a E @A(p) occurs in the main part of a subsidiary
proof Q' of ©P', then a similar situation as in (3) holds
except that the last descendent of H @A(p) may occur in the
end sequent of Q'. The end sequent of Q' is the same as
that of Q.

Proof. First prove a number of Tl-invariant properties of P

and Q according to the definition of T;. Then (1), (3) and

(4) follow as the corollaries. (2) is obvious.

Proposition 1.1. Let (PA%)1 be the system of Tl(P)'s for

all P of PAL. Then pal

. . . 1,1 .
2 o 1is consistent iff (PAz) is

consistent.

Definition 1.3. Second transformation, i.e. the transformation

of Pl, or Tl(P), say T,. We shall denote T2(P1), or T2(T1(P))

by P2.

1 as follows. Let I1

1) First change the main part of P
be a second order V (in the antecedent or the succedent)

such that its principal formula is of the form V YF(V,d), where




F(a,¥) is arithmetical and there is a descendent of the form

4 ¢ V F(p,9). Take, as an example, V in the succedent:

0} ’
’

I' - A F(V,0)

T ~ A,V $F(V,9)

Change Ii as follows.

’
v’

I' = A, F(V,)

JF(v,a), I = A?
7 F(V,),I - a0

Let I, be a second order q (in. the antecendent or the
succedent) such that the principal formula of 12 is of the
form & ¢ V YF(¢,¥), where F(p,¥) is arithmetical. Consider

the case where 12 is a d in the succedent:

T 0,7 YF(V,9) '
1, ol, ] .
T - 0,8 ¢ V $F(p,d)

Notice that the upper sequent of 12 has been changed to

¢ 7 F(V,p),T" = A'. Then define a proof as:

g9 7FV,P),0~ 5
Vo iy 7F(o,¥), I =~ n )
' = A 5V o & Y 7 Flo,¥)

(Of course we must prove that 12 has the above form. Actually

we should define T2(R) for every subproof R of Pl, and show

that except the cases I, and I, Tz(R) is a 'copy' of R.)




2) Let Q1 be a subsidiary proof of Pl. Then the

transformation on the main part of Ql is defined as in 1)
except that the ancestors of the formulas in the end sequent

of Q1 are untouched. P2, or T2(P1), is defined as the figure
which is obtained from P1 by i) and 2) above. Tz(Ql), or Q2,

is called a subsidiary proof of Pz.

1

Corollary. For any (PAé)l-proof P, Tz(Pl), or P2, satisfies

the following properties.
(1) The comprehension abstracts are either semi-isolated,

;-form or of the form 7A, where A is of

the strictly H;-form.

of the strictly 1II

(2) A second order & is introduced by an inference.
2

(3) 1f a & @A(V,9) occurs in the main part of P“, then
A(a,p) is arithmetical and there is a descendent of & @A(V,p)
of the form V ¥ ¥ oA(¥,0) or 7YV ¥ @A(Y,0) which is used
as a comprehension abstract.

(4) If a & @A(p) occurs in the main part of a subsidiary
proof Qz of P2, then either the same situation as in (3)

holds or the last descendent of ¥ @A(p) occurs in the end

sequent of Qz. The end sequent of Q2 is the same as that

of Ql.
Proof. First prove a number of T2—invariant properties of P1

and Ql according to the definition of T,. Then (L, (3)

and (4) follow as corollaries.

Proposition 1.2. Let (pA;)2 be the system of all DP2's for

all Pl in (PA;)l. Then (PA;)l is consistent iff CPA%)Z is

consistent.




Definition 1.4. The third transformation, T3. Transform each
subproof R in the main part of a proof P2 of (PA;)2 into
R as follows by induction on the number of inferences in R.
If S is a sequent in R and A(V) is a formula with indicated

occurrences of V, then § and A(V) in R are defined in a

R

manner that S consists of the formulas B corresponding to
~~

the formulas of S, say B, and A(V) is A(V), where V is

vV if V is semi-isolated and a Zé-abstract if V is H;.

Moreover B and B have exactly the same free variables, and

2 is the same as that of Pz. First we

the end sequent of P
define ~ operation to all subsidiary proofs, say X, of dim i
in P2 by induction on 1i. i =0. X 1is a SINN proof.
Therefore define X as X itself.

Assume that ~ has been defined for i < m. Suppose X
is a subsidiary proof of dimm + 1 in Pz. Let R be a
subproof of the main part of X. Define R by induction on
the number of inferences in R in the same manner as was
described for P2. Recall that for any subsidiary préof
in X, ~ has been already defined, since its dimension is
less than the dimension of X.

1) The initial sequents remain unchanged.
Suppose R 1is of the form
Ry R,R,

2) I 1is not second order Y or Z. Then & is
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respectively.

3) I is second order V in the antecedent and R

is of the form:

’
v, !’

R, { AC(V),T = A

v o A(p),T"' = &

QZ,
L

ﬁl is already defined and its end sequent is A(V),I' - % .

First define R' as
Ry
¥ oA(p), T = &

If v oA(p) is of the form V ¢ & YB(p,¥,s) and there is a Q*

in X whose end sequent is of the form V x(Z ¢ V ¥C(o,¥,x) =
Vo & B(p,9,x)) or ¥V x(L o V ¢B1(¢,¢,x) =V ¢ & ¥D(p,¥,x)),
where B is  7B;, then define R as follows. Recall that
Q* consists of two proofs, Q% and Q¥s and 5{ and 63

have been defined. For the first case R is defined as

.

VoIYB (0, ¥, s) , T <A

’
Vet ot Ve o#
.

RS gurpcle,b,s) - ToIpBle,b,s)

2oV ¥clo,¥,s),T = &

where Qz(s) is determined from Q2 in an obvious manner.
Recall that B and C have the same second order free

variables. For the second case, R is defined as follows.

First change the main part of QI?S), i.e.

\'I
v

TV By (p,9,8) = ¥ o & D(p,¥,8)
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- in order to obtain

¢

oV $7D(p,9,8) ~ ¥ ¢ & Y7B (04,9

by copying 61(5). Call the resulting figure 61(5)' R is

now defined as

’
\ ¢

") VouyB(@,$,s), It ~ Al

Q)| agry7mio,4,) & VoIB (p,8,8)

oV D((P,‘/J,S),r' - A

If the above condition is not satisfied, then define R
to be -R'.

4) 1 1is second order YV in the succedent:

1 T~ A, ACQ)

T'= A, V oA(®)
First define R' as
R1
I' - %, Vv oA(p)

Suppose YV @A(p) is of the form V ¢ % YB(p,¥) and there is
a Q* in X as in 3). For the first case (see 3)) R is
defined as:

- .
.

RO g, (s) ’
Tt = A",V ¢ & ¥B(p,¥,s)

v 0 E $B(p,b,8) - & @ ¥ pC(p,¥,s)

~

T~ 0,8 ¢V 9C(0,¥,s)
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For the second case R is defined as:

f ‘. . ~ . ' )
R! gi 0 Qz(s) ! ol
At yodYB e, ¥, 8) ToIPB (0, P, 8) ~Toyd 7D(P, P, s)

F'-%207 y7D(0,0,s)

3 ~
where Qz(s) is obtained from QZ(S) as in 3). If this is not

the case, then define R as R'.

5) I is second order { (in the antecedent or

the succedent).

Recall that any Z%—formula has a descendent in the end sequent

of X 1in the same form. Let R be of the form

1T~ 8,aW)

T~ 2,3 @A(p)

for example. Then define R as

ﬁz, i.e. the transformation of the main part of P, is

defined just as the transformation of X above, except that here

. 3 2
the 'if' clause necessarily holds. Define P, or T3(P ), to

2-proofs

be B2 and call the system of T3(P2) for all (PA;)
p? (pal)3.

Corollary. The proofs of (PA%)3 satisfy the following properties.
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(1) P3 is a proof of second order arithmetic in the

ordinary formulation.

(2) The second order existential quantifiers are intro-
duced by inferences. _

(3) A formula of the form V ¢ & YG(p,d) is cut out in
the same form, while a formula of the form ¥ ¢ V yF(¢,y) has
a descendent which is a comprehension abstract.

(4) The comprehension abstracts are semi-isolated, or
of the form {x} & ¢ V yB(p,¥,x) or {x}7% ¢ ¥V ¢B(®,¥,x), which
is determined by P2 (hence by P).

Proof. Notice that the main part of a P (a PA;—proof) or

of one of its subsidiary proofs is a proof of second order
arithmetic with formally Z%— and Hé—comprehension abstracts.
This implies that the main part of a P2 or Q2, where Q is
a subsidiary proof of P, is a proof of second order arithmetic
with formally Hé-comprehension abstracts. Also, the second
order existential quantifiers are introduced by inferences in
Pz. |

(1) and (2): From the above remark: by induction onthe
number of inferences in R.

(3) and (4): 1In the first sequent in which a formula of
the form V ¢ ¥ ¥G(p,¥) is introduced, it is cut out by the
definition of ﬁ, and is replaced with a formula of the form
¢ ¥V yF(p,9). If a formula B has a part V ¢ & G in P,
then its corresponding formula in P3 has a part 4 ¢ V YF
correspondingly. The Z%-form does not occur in any other way.
All this is proved by induction on the number of inferences in R.

HUNT  LIBRARY
CARNEGIE-MELLON UNIVERSITY
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Therefore, comprehension abstracts in P3 are semi-isolated
or Z% or ‘729, since those in P2 are semi-isolated or

H; or '7H1. Also, as every Hé—formula in P2 except those
in the end sequents of subsidiary proofs has a descendent
which is used as a comprehension abstracf, every Z%-formula

. 3 . .
in P has a descendent which is used as a comprehension

abstract.

Proposition 1.3. Call the system of T3(P2)'s for all P2

of (PA%)Z, (PA§)3. Then (PA%)2 is consistent if and only if

(PAé)3 is.

Definition 1.5. The fourth transformation T4, i.e. the trans-

formation of the (PA;)3—proofs, say P3, changes a formula of .

the form V ¢ & ¢B(p,d) to V ¢ 7v »7B(p,¥) throughout P3.

How to change P3 to fit this condi tion should be selfevident.
Recall that second order & are introduced by inferences
only. The system of T4 (P3)'s for all P3 is called (PA;)4.

Proposition 1.4. (PA%)3 is consistent if and only if (PA%)4 is.

Theorem 1.1. In order to prove the consistency of PA% it

suffices to prove the consistency of (PA;)4.

§3. The reducible proofs with degree.

In order to prove the consistency of (PA;)4, we shall

first abstract the characteristic properties which the proofs -

of (PA%)4 possess. We end up with the notion of reducible

proofs with degree.
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Definition 1.6. Let & be a set of abstracts such that no
abstract in & contains any first order free-variable and &
contains all atomic abstracts. An abstract or a formula A

is called an &-abstract or an 3-formula if one of the following
is the case.

1) A 1is an abstract of & or, if A is a formula of the
form A(sl,sz,...,sn), where {xl,...,xn}A(xl,...,xn) is an
abstract of & and Sl”"’sn are terms respectively.

2) A is semi-isolated.

3) A is obtained by several applications of substitution,

starting from formulas and abstracts of 1) and 2).

Note. For the sake of simplicity we deal with abstracts of one

argument only.

Definition 1.7. For each i such that 1< i <n let 3,
be a finite set of Z%-abstracts. Let & = 31 U ... U 3n'
Then an J-formula or an &-abstract is called &-reducible

(of dim n).

Definition 1.8. A formula or an abstract A is called &-
admissible if it satisfies one of the following.

1) A is J-reducible.

2) A contains no second order {.

3) Let A(a) be JF-admissible and V be &-reducible.

Then A(V) is admissible.

Note. 1) We omit '¥~' once we shall have fixed ¥ and say

simply 'reducible (of dim n)' or 'admissible'.
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2) Notice that in 3) above, V must be reducible. This
means that a non-reducible abstract cannot be substituted
into a reducible formula.

3) We did not require that 31 and 3j be mutually
exclusive when i and j are distinct. In order to distinguish
3i's for distinct i's, we assume that an abstract of Ei is
indexed by i; (i,V), for example, although we do not write the

indices explicitly.

Assumption. In the following we shall consider only the
admissible (relative to some &) formulas and abstracts. Thus
we shall not mention it at each time. A proof of second order
arithmetic with (¥-)admissible formulas only is called an (&-)
admissible proof.

Now we can relate those definitions to the system (PA;)4

in §2. Let P be a proof of D . We shall define %,,...,3
as follows. For every i such that 1< i< n, let Q be a

subsidiary proof of dim i whose end sequent is, say,

v x(% o ¥ PF(p,¥,x) =V ¢ & YG(p,¥,x)). Then {xy;...y } T o ¥ vF (0, ¥, x)
and {le...zn] ¢ v »7G(p,¥,x) belong to 31, where F(op,¥,x)

is obtained from F(p,¥,x) by replacing all first order free

variables by (distinct) bound variables NATRERPS A similarly

with G(o,d,x). Only those kinds of abstracts

belong to 31. Define & = 31 U ... U En.

Proposition 1.5. Given a proof P of D, and let ¥ be the
4 .

related set of abstracts defined as above. Then P consists

of J-admissible formulas only and the comprehension abstracts

are J-reducible.
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Next we shall define some functions from quasi- or semi-

formulas to numbers (natural or ordinal).

Definition 1.9. The function 51 from quasi-formulas to
natural numbers is defined as1f0110ws for each i such that
1<i< n.
1) 6i(A) =0 if A does not involve any abstract from 31.
2) 6i(A A B) = max(éi(A),éi(B)); 61(7A) = 6i(A);
65(¢ X A(x)) = 6, (A(x)); 65(V oA(p)) = 5;(A()).
3) 61(3 PA(p)) =0 if E ¢ A(p) is of the form
i oy ¢F(¢,¢,V1,...,Vk,s), where
{(x} 2oV wF(¢,¢,31,...,Bk,x) for
some Bl""’Bk’ x belongs to 3j

for j such that i + 1< j < n.

6i(A(¢)) + 1 if the above abstract

belongs to 31,

I

6i(A(¢)) if the above abstract belongs to

3j for a j such that 1< j < i.

Note. We shall call such an abstract as in 3) the type of

g oA(e).
4) 5, ((xJA(x)) = 8, (A(x)).

Note. The above definition is complete, since we deal with
admissible formulas only and we assume that each abstract of
an 3j is indexed by j, so that in defining 6,(Z @A(p)) we
can uniquely determine the j such that the abstract which

is mentioned there belongs to 3j.
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Definition 1.10. The function A from quasi-formulas to

natural numbers is defined as follows. A(A) =0 if A is

atomic; AN(A A B) = max(A(A),A(B)) + 1; AC A) = A(A) + 1;

AT X A(x)) = MA(X)) + 15 My @A(@)) = AMA(Q) + 1; ME oA(p)) = O;
M {xJA(x)) = MAx)).

Note. We may regard A as a O of dim O, or 50.

Definition 1.11. 1) The function & is defined as
— . -1. .
5(a) = o 5. (8) + o 5.1 (A) +...+ wd (A).

2) The function 1 from quasi-formulas to ap+1 is

defined as 1(A) = 6(A) + A (A).

Definition 1.12. Let i be any number such that 1 < i < n.
The function dpi from (second order free variables; quasi-
formulas) to natural numbers, is defined as follows.
1) Let B be an indicated occurrence of B in a quasi-

formula A. Then dpi(ﬁ;A) is defined as follows, where we
assume that B actually occurs in A; otherwise dpi(Q;A) = 0.
dpi(ﬁ;A) =0 if no abstract of 31 is invelved in A.
dp, (B; 74) = dpi(E;A); dp, (8;7 X A(x)) = dp, (B;A(x));
dpi(é;A(¢)); dpi(é;B AC) = max(dpi(ﬁ;B),dpi(é;C));

0 if T @A(p) is of the form I ¢ v YPF(p,d)

dp, (B;V A(e))

and the type of ¥ @A(p) belongs to 3j

]

dp; (B;% oA (@)
: for some j such that i + 1< j < nj;

dpi(é;A(w)) + 1 if the type of & @A(p)

belongs to 31;




dp, (8;A(@)) if the t

to &, f
J
1<3K<
2) dpi(B;A) is now defined as
dpi(B;A) - § for a%%xoccu
ol B oA A
3) dp, (B;{x]JA(x)) = dp, (B;A(x))
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ype of & @A(p) belongs

or some j such that
i.
rrences dpi(E;A)'

, of B in A.

4) dp(B;A) = aP-dpn(B;A) + aP'l-dpn_l(ﬁ;A) +...+ w-dp, (B;4).

Definition 1.13. Fix an admissible p

occurrence of a formula is defined as

1) The Y~-degree (relative to a

formulas) is defined similarly to the

class of semi-isolated formulas. Nam

reducible. Suppose now that the conc

non-reducible. Then Y(A A B) max (

Y(V xA(x)) Y(A(x
Y(A(x)) .

Y(74A) = v(A) + 1;
Y(A(p)) + 1. vY({x}JA(xX))

this completes the definition since w

admissible formulas only.

2) v(pP;A), or v(A),

of a second order y in the succeden

the antecedent which occur under the occurrence of A

3) The grade of A, g(A;P), or

be of*2-va) + fTLv(a) + L(a).

roof P. The grade of an
follows.
class of reducible

Y-degree relative to the

ely Y(A) O if A is
erning quasi-formulas are
Y(A),Y(B)) + 1;

)) + 1; Y(V oA(p)) =
Notice that

e are concerned with the

is the number of eigen variables

t, a second order 4 in

in P.

g(A) for short, is defined

to
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Definition 1.14. Some terminologies. The following are all
considered in an admissible proof.

1) Let V ¢@A(p) be the principal formula of a second
order V in the succedent, say I. I 1is called semi-isolated,
non-semi-isolated, reducible or non-reducible, according as
V oA(p) is semi-isolated, non-semi-isolated, reducible or non-
reducible respectively. .

2) Let

I'-0,v yr(u,)

'~ 8,8 oV yF(p,¥)

be an inference (in a proof) 'second order ¥ in the succedent'.
K 1is then called a key inference and U 1is called a key
abstract. We may also call the V YF(U,y) and the & ¢ ¥V YF(op,d)
a key auxiliary formula and a key principal formula respectively.
Notice that we are talking about the occurrences of K,U,V yF(U,d)
and Z ¢ V yF(p,¥) in an admissible proof.

3) If the type of the principal formula of an inference

I belongs to 31, then I 1is said to be of dim 1i.

Proposition 1.6. 6, (A(U)) = max (5, (A(Y)), 5, (U) + dp; (v;4))
if vy actually occurs in A and dpk(y;A) =0 for all k
such that i + 1 < k < n. (In the following we shall often
omit the upper bound n for such Kk.)
Proof. By induction on the construction of A(Yy).

If A(y) is vy (or y(t)), then 6i(A(U)) = 6i(U) and

6i(A(Y)) =0 = dpi(Y;A).
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If A(y) is B(Y) A C(Y), then
5, (A(D)) = max(éi(B(U)),éi(C(U))) . (*)

Since dpk(Y;A) =0 for k>i+ 1, dpk(Y;B) = dpk(y;c) =0
for all such Kk.

Case 1) Yy occurs both in B and in C.
(*) = max(max(4,(B(v)),5,(U) + dp;(v;B(Y))),

max(éi(C(Y)),éi(U) + dpi(Y;C(Y))))

by induction hypothesis,

max(6, (B(Y)), 5, (C(V)), 6, (0) + dp; (Y;B(1)),5;(0) + dp, (¥;C(1)))

I

max(max (6, (B(v)), &, (C(v))),
5i(U) + max(dpi(Y;B(Y)),dpi(Y;C(Y)))) (*%)
Case 2) B contains Y but C does not.
(*) = max(max(éi(B(Y)),éi(U) + dpi(Y;B)),éi(C))
by induction hypothesis,
= (**) (without Y in C), since dpi(Y;A) = dpi(y;B).
Case 3) C contains Yy but B does not. Similarly.
In any case (*¥*) = max(éi(A),éi(U) + dpi(Y;A)).
For other logical symbols, the proposition follows immediately
from the induction hypothesis.
If A(Y) is of the form & ¢ V YA(o,¥P, Y), then the type
of A(Y) does not belong to an & for k > i + 1, since otherwise
dpL(Y;A) > 0 for some j > k > i + 1, contradicting the

assumption. Suppose A(Y) is of the form ¥ ¢ V YA(p,d,Y) and
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its type belongs to 31, Then

5i(A(U))

]

6; (v ¥A(p,3,0)) + 1
maX(éi(V VA(p,),Y) + 1),
6;(0) + dp; (v;V PA(@,¥,Y)) + 1)

]

by induction hypothesis,
= max(éi(A) ,6i(U) + dpi(Y;A))-

Suppose the type of A as above belongs to a 3k’ where
1 <k < i. Then a similar argument as for the case k =i
goes through without '+1'.
For any other case, the proposition is proved easily.
The following-proposition is proved similarly to Proposition

1.60

Proposition 1.7. dpi(B;A(U)) = max(dpi(B;A(Y)),
dpi(B;U) + dpi(Y;A(Y)))

if ¥y actually occurs in A(y), B actually occurs in U and
dp, (¥;A(Y)) =0 for i+ 1< k< n.

Let us now fix n and an & = 31 U ... U 3n’ a finite

L}

set of Z%—abstracts (cf. Definition 1.7).

Definition 1.15. A proof of second order arithmetic in the

1 L C as its logical basis (see

tree form formulation with G
[5] for the precise definition) (including substitution as one of
the rules of inference) is called (F-) reducible if it satisfies

the following.
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1) The proof consists of (&-) admissible formulas only.
2) The comprehension abstracts are reducible.
A reducible proof is said to be of dim n if

F = F1 u ... U Fn as above.
Corollary. In a reducible proof, every second order & in

the succedent is a key inference.

Definition 1.16. Consider a (reducible) proof P. A formula in

P, say A, is called a direct descendent of B if A 1is a descendent

of B and no logical inference applies to any descendent of

B above A.
We shall now define the proofs with degree.

Definition 1.17. The notion of the proofs with degree consists
of two conditions which are imposed on the reducible proofs;
the condition on blocks and the condition on degree. 1In the
following 1i,j, etc. denote any number < n.

1) The axioms on blocks. (A block is mostly denbted by B.)
A set of (occurrences of) formulas in a reducible proof (of dim n)
is called an i-block if it satisfies the following conditions
B1-BS.

Bl. An i-block B has certain closure properties.
Namely:

Bl.1. If a formula belongs to B, then all its ancestors
belong to B.

Bl.2. Let D and D be a pair of formulas which satisfies

1 2

the following: D1 and D2 are the left and the right D
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respectively in a logical beginning sequent D — D, the
A(s) and the A(t) respectively in an equality axiom s = t,
A(s) - A(t), or the left and the right auxiliary formula
respectively of an induction. .Then D1 belongs to B if
and only if D2 belongs to B.
B1.3. 1If a (the) auxiliary formula of a logical inference
belongs to B, then its principal formula belongs to B.
B2. An i-block B excludes some formulas. Namely:
B2.1. If i < j, then the auxiliary formula of a second
order ¥ in the antecedent of dim j (cf. Definition 1.14)

does not belong to B.

B2.2. Let j be any number such that i + 1< j < n.

The auxiliary formula of a key inference of dim j (cf. Definition
1.14) does not belong to B.

B2.3. Let G be the auxiliary formula of a key inference
of dim i and C be a descendent of G such that C 1is the
auxiliary formula of a strong inference (i.e. a logical inference,
an induction, a cut or a substitution). Then C does hot
belong to B.

B3. Suppose a second order eigen variable @ which is
not a substitution variable occurs both inside and outside an
i-block B. If the key principal formula, say F, of a key
inference of dim i, belongs to B then & occurs in F.

B4. 1In an i-block B, some inequality relations hold
for & and dp. Let A be any semi-formula in B which is
not a key principal formula of dim i or a descendent of a

key principal formula of dim i, and which is not in the end
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piece of P. It should be noted that A may be a (proper)
subformula of a key principal formula of dim i. Suppose F
is a key principal formula of dim i which belongs to B.
Then the following three conditions hold.

B4.1. 6,(8) < 6,(F) and 6j(A) < 8;(F) for all j such
that i + 1 < j < n.

B4.2. Suppose o is a substitution variable which occurs
in F. Then dpi(a;A) < dpi(a;F) and dpj(a;A) < dpj(a;F)
for all j such that i + 1< j < n.

B4.3. Suppose that o 1is the eigen variable of a second
order V or & or o is a substitution variable which does
not occur in F. Then dpj(a;A) =% 0 for all j such that
i<j<n.

BS. For any i-block B, there is a subset of B, denoted

by E or E which satisfies certain closure properties. Such

B’
an E 1is called the entrance of B. Namely, E is the entrance
of B if the following five conditions hold.

B5.1. The auxiliary formula of a key inference of dim i
which is in B belongs to E.

B5.2. If a formula belongs to E, then all its ancestors
belong to E and all its descendents which belong to B
belong to E.

B5.3. Let us denote the complement of E relative to B
by B - E. If a formula belongs to B - E, then all its descendents
belong to B.

B5.4. Let D and D be the left and the right cut

1 2
formula respectively of a cut. Then D1 belongs to B - E
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iff D2 belongs to B - E.
B5.5 If a non-reducible formula belongs to E, then it
occurs in the antecendent of a sequent and is of the form

v @ 7V9 7G(p,9), where 7V 7 G(p,9) is reducible.

Note. E may be empty.
2) Now, a reducible proof P is called a proof with blocks
if it satisfies the following Cl1 - C3.
Cl. For every key inference K of dim i in P, there
is an i-block B such that the principal formula of K
belongs to B.
C2. The blocks of the same dimension do not intersect
one another.
cC3. If B is an i-block, B2 is a j-block, where i < j,

1

and B

and B are not disjoint, then B1 is included by B2.

1 2

3) Let P be a proof with blocks (of dim n). If there
is a function d from semi-formulas and substitutions of P to
o1 + 1 which satisfies the following conditions D1 - D6,
then d 1is called a degree function of P.

D1. d(A) =0 if A 1is explicit in P.

Assume that A is implicit in P.

p2. d(a) = o1 if A is not reducible.

D3. Let Af(J,A;P) express the fact that a substitution J
affects A in P and let dp(J;A) be dp(a;A) where a is the

eigen variable of J. Then

d(a) = max (d(J;P) + dp(J;A),5(A)) + A(A)
Af(J,A;P)

if A 1is reducible.
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D4. Let J be a substitution in P. Then d(A) < d(J)
if A is an implicit formula which occurs in the upper sequent
of J.

D5. 0 < d(d) < ™! for any substitution J in P.

D6. Let B be an i-block of P and let F be a key
principal formula of dim i which belongs to B. If the eigen
variable of a sﬁbstitution J occurs in B but not in F, then
d(J) < da(F).

Note. We may denote d(J) and d(A) for a J and A in P by
d(J;P) and d(A;P) respectively, as d depends on P, although
d is not necessarily uniquely determined for a P.

4) A proof with degree (of dim n) is a proof with blocks
(of dim n) for which a degree function can be defined and in
which all substitutions are under any logical inference and

induction.

Proposition 1.8. For every proof of Dn’ say P, its fourth
transformation P4 is a proof with degree of dim n.
Proof. By Proposition 1.5 there exists an & (= FpU ..U 3)
for a P4 as above such that P4 consists of J-admissible
formulas only and the comprehension abstracts are J-reducible.
Also, a P4 as above does not involve substitutions. Therefore
we may define a degree function for P4 according to D1 - D3.
In particular, D3 is simplified as d(A) = 6(A) + A(A) = 2(A).
Thus, we only have to show that P4 is a proof with blocks.

Let i be any number such that 1 < i < n. Let Q bea

subsidiary proof in P of dim i. 1In P4 let us call a
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T4(§1(s)) or T4(62(s)) (of dim i) a key subproof (of dim i)
(cf. Definitions 1.4 and 1.5). If a key subproof of dim i
occurs in P4, then the set of all formulas in it is defined to
be an i-block of P4. Only sugh a subproof of P4 determines
an i-block. The formulas in the end sequent of a key subproof
Q as well as all their ancestors form the entrance of Q. We
must prove that all conditions on blocks are satisfied.

Suppose there is a key inference K of dim i in P4.
Then it can happen only in a key subproof of dim i. (See the
process of the transformations of P to P4, i.e. Definitions
1.2 - 1.5.) Therefore there is an i-block which the principal
formula of K belongs to. Since no pair of key subproofs of
the same dimension intersect each other, the blocks of the same
dimension are mutually disjoint. Suppose Q is an i-block
and Q' is a j-block, where i < j, and Q and Q' intersect.
Then from the definition Q 1is included by Q'. This proves
Cl - C3.

We now proceed to the proof of Bl - BS. As before,'i,j,
etc. denote any numbers < n.

Bl.1. Any key subproof is closed with respect to ancestry.

Bl.2. Any key subproof is closed with respect to those
formulas as D1 and D, in the condition Bl.2.

B1.3. The first inference under a key subproof (i.e.
the inference whose upper sequent (or one of the upper sequents)
is the endsequent of the concerning key subproof) is a cut by

definition (cf. Definition 1.4). Therefore if the subformula

of a logical inference belongs to a key subproof, then its
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principal formula also belongs to the same key subproof.

B2.1. Suppose j > i p? is so defined that a second
order ¥ in the antecedent of dim j does not occur in any
key subproof of dim i. 1In fact it occurs only in a T4(61(s))
or T4(§2(s)) (which we denote by Q¥*) of dim j. Then such
a subproof does not intersect with any key subproof of dim j.
Therefore if i = j, then B2.1 holds. If i < j, then a key
subproof of dim i, say Q4, may be contained in a Q* (as the
sets of occurrences of formulas). However, we may assume that
the auxiliary formula of a second order d in the antecedent
in Q*¥ is introduced outside Q4, since in P Q 1is a sub-
sidiary proof of a Q' of dim j such that Q* = T4...T1 Q',
and the first inference under Q4 is a cut (cf. the proof of
B1.3 above).

B2.2. Suppose j > i. Suppose that Q and Q' are key
subproofs of dim i and of dim j respectively and that Q
and Q' intersect. (This implies, as was already proved, that
Q is included by Q'.) Suppose Q is T4...T1(Qo) ahd Q'
is T4...T1(Qé), where Q, and Qé are subsidiary progfs of
dim i and dim j respectively. in P. Then Qo is a sub-
sidiary proof of Qé, and the subformula of a key inference of
dim j in Qé cannot belong to Qo, and this property is pre-
served under four transformations.

B2.3. Let G be the auxiliary formula of a key inference
of dim i. Then a descendent of G occurs in the end sequent of

the key subproof (of dim i) which G belongs to. To the end
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sequent of it a cut, where the cut formula is not a descendent
of G, applies. Therefore no strong inference applies to a
descendent of G within the key subproof.

B3. Let Q4 be a key subproof of dim i and an eigen
variable & occurs both inside and outside Q4. Then we may
assume that in P a occurs both inside and outsidé Q.
Recalling that Q 1is a subsidiary proof of P, we may assume
that a occurs in the end sequent of Q. Therefore, as the
end sequent of Q and the end sequent of Q4 are essentially
the same, & occurs in the end sequent of Q4, or a occurs
in the key principal formula of any key inference of dim i
in Q4.

B4. Let Q% be a key subproof of dim i in PY. Let A
be any semi-formula in Q4 which is not a or a descendent of a
key principal formula of dim i and is not in the end piece
of P4. Then by definition A does not involve any formula
of dim j if j > i, since the only formulas whose types
belong to 31 are the key principal formulas and their direct
deséendents and no 3&’ where 4 > i + 1, are involved.
(Therefore the last condition on A is actually irrelevant.)
Suppose F is a key principal formula of dim i in Q4.

By definition, F belongs to 31.

B4.1. 6,(A) =0< 1< 6,(F) and 5j(A) = 0 = 6,(F)
for all j such that i + 1< j < n from the above remark.

B4.2. There is no substitution.

B4.3. Let & be an eigen variable. Then from the above

remark dpj(a;A) =0 if i< j < n.
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B5. We have defined the entrance of a block (of dim i).

B5.1. Suppose a key auxiliary formula (of dim i) belongs
to a key subproof (of dim i), say Q4. Then its descendent
occurs in the succedent of the end sequent of Q4; that is,
it is an ancestor of a formula in the end sequent of Q4.
Therefore by definition it belongs to the entrance of Q4.

B5.2. If a formula belongs to an entrance, then by
definition all its ancestors belong to the same entrance.
Suppose A belongs to the entrance of a Q4 and A' is a
descendent of A which belongs to Q4. Then A and A’
are both the ancestors of a formula in the end sequent of Q4
(or A' itslef occurs in the end sequent). Therefore by
definition A' belongs to the same entrance.

B5.3. Consider a block, i.e. a key subproof, of dim i,
say B, and its entrance E. Suppose a formula A belongs to
B - E. Then A belongs to B but it is not an ancestor of
a formula which occurs in the end sequent of B. From this
it follows immediately that all descendents of A beiong to B.

B5.4. Let D and D be the cut formulas of a cut.

1 2

Suppose D1 belongs to a B - E. This means that D1 is

in B and is not a or an ancestor of a formula in the end

sequent of B. Therefore D2 must satisfy the same condition,

or D2 belongs to B - E. The converse is proved with the

same reasoning.
B5.5. The only non-reducible formulas which belong to the
entrance of a B are either the formula C in the antecedent

of the end sequent of B or its ancestors. But C 1is of the
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form V @7y ¥7G(p,¥), where G(p,¥) is arithmetical. Therefore
the only ancestors of C which are non-reducible have the same
form as C and occur in the antecedent of the sequents.

As a corollary of Proposition 1.8 we have the following.

Theorem 1.2. If the system of the proofs with degree is consistent,
then so is PA;.

Proof. By Proposition 1.8 and Theorem 1.1 in §2.

§4. Some Corollaries of the Definition in §3.

Corollary. Consider a proof with degree (of dim n), say P,
and let i be any number such that 1 < i < n.

1) We may restrict Bl.1l to the immediate ancestor(s).

2) If a formula belongs to a B - E, then all its descendents
belong to B - E.

3) The principal formula of a second order & of dim i
(and its descendents) does (do) not belong to any block of
dim < i. |

4) The auxiliary formula of a key inference of dim i
belongs to the block which its principal formula belgngs to.
Furthermore those formulas belong to the same entrances.

5) Let B be an 1i-block, F be a key principal formula
of dim i which occurs in B and G be a key auxiliary
formula of dim i which occurs in B. Then B,F and G
satisfy the condition in B.4.

6) lLet G and F be the auxiliary formula and the principal

formula of a key inference (of dim i). Then <(G) < 4(F).
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7) lLet G and F be as in 5). Then d(G) < d(F).
Proof. ©6) Suppose F belongs to an i-block B. Then by
4) in the corollary G also belongs to B. B,F and G
satisfy the condition in B4 by 5) above. Therefore by B4.1,
6,(6) < 6,(F) and 6j(G) < 6j(F) if i+ 1< j < n. Therefore
5(G) < 8(F), and hence 2(G) = 6(G) + A(G) < 8(F) + A(F) = 4(F)
by definition of & and A.

In order to prove 7), we shall first prove the following.

Lemma. Let B be an i-block, F be a key principal formula
of dim i which belongs to B and A be any semi-formula
in B. Suppose B,F and} A satisfy the following conditions.
1°) Let o be a substitution variable of a substitution
J in P. If o does not occur in F, then dpj(a;A) =0
for all j > 1.
2°) Let a be as above. If «a occurs in B but not
in F, then d(J) < d4(F).
3°) Let o be as in 1°). If o occurs in F, then
dpi(a;A) < dpi(a;F) and dpj(a;A) < dpj(a;F), for all j > i + 1.
4%)  8,(A) < 8,(F) and 6,(8) < 6,(F) for all j > i + 1.
Then d(A) < d(F).

Proof. From the definition of d we have

(1) dF) = max (a(J.) + dp(Jl;F),é(F))
A£(J,,F;P) 1
and
(2) d@) = max (a(Jdy) + dp(J,;A),6(A)) + A(A).

(1) is of the form
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(3) aP~mn +ooot wemy, where m, > 0,
by 3°) and 4°). Also from 4%)
4) 5(A) + AA) < 8(F).

Case 1) d(A) = 5(A) + A(A).
Then from (4) d(A) < &6(F) < d(F).

max (d(Jz) + dp(Jz;A)) + A(A)
Af(J,,A;P)

Case 2) d(A)

d(Jo) + dp(Jo;A) + A(A), say.

This means that the eigen variable a of Jo occurs in A,
and hence in B.
Subcase 2.1) o occurs in F. Then dp(a;A) < dp(a;F)

by 3°), and d(J_) + dp(J_;F) is counted in d(F) (cf. (1)).

Hence

(5) d(J)) + dp(Jo;A) < d(3) + dp(3;F) < d(F).

From (3) and (5), d(A) = d(Jo) + dp(Jo;A) + AN(A) < d(F), since

AA) < w.
Subcase 2.2) a does not occur in F. Then by 19)

dp,(J ;A) = O for all j > i. Also d(J_) < d(F) by 29)

since @ occurs in B.

a(a) = ) + o ldp;_;(@58) +...+ wdpy(a;A) + A(A) < d(F)

by (3). This completes the proof of the lemma.
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Proof of 7). B,G and F satisfy the condition in Lemma.

Hence, if 1°) - 4° in Lemma are satisfied, then d(G) < d4d(F)
follows immediately from Lemma. Notice that F and G satisfy
the conditions on F and A Ain B4. (G is not a key principal
formula of dim i or a descendent of such, and G is not in the
end piece of P.) Therefore: 1°) follows from B4.3, 29 is

exactly D6, 3°) is B4.2, and 4°) is B4.1.

§5. Theorems.

Theorem 1.3. The system of the proofs with degree of dim n
(for every & and n) is consistent. Furthermore, the
consistency of such a system is proved by using the system

of ordinal diagrams O(«™! + 1, 2D 4 4y,

Note. Although the theorem is stated relative to &, the proof
of it which is carried out in the following sections is uniform
in &,
The proof of Theorem 1.3 will be carried out in the following
two sections.
One direction of our main theorem of this chapter now

follows from Theorems 1.2 and 1.3.

Theorem 1.4. Let v be the order type of O(up,up) (the
system of ordinal diagram with both basic sets uP and ordered
by <J).

Let V = 1lim V_. Then the consistency of PA1

n<w 2
by transfinite induction up to V.

is proved
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§6. Reduction of the proofs with degree (of dim n) of the
sequent ~, where we assume that an & = 31 u... U 3n is
fixed. At each step it is easy to see that the reduction from
P to P' preserves the E-reducibility, hence P{rhf dim n.
This is due to the fact that the &-reducibility is preserved
under the replacements of first order free variables by some
terms, of second order free variables by other second order
free variables, and the substitutions of abstracts. Therefore
we shall not mention it at each time. We shall first show
that the reducts are the proofs with degree. In the next
section we shall assigh the ordinal diagrams to the proofs and
prove that with the reductions the ordinal diagrams decrease.

We may remark here that by changing some eigen variables
in an appropriate manner, we can always avoid the clash of
free variables. We assume that we do this alteration whenever
it is necessary.

In this section and the next section we follow more or
less the consistency proof in Chapter 2 of [5] and quote the
corresponding numberings there with * whenever it is possible
to do so. We assume that we are given a proof with degree
(of dim n), say P, of the sequent =, and carry out reduction
to P, obtaining another proof of -, say P'. After the
definition of P', we shall define the blocks of P' and their
entrances in a manner that for each i such that 1< i< n
an i-block in P , say B, and its entrance, say E, induces
an i-block in P', say B', and its entrance, say E'. We

then show that P' is a proof with degree, assuming that P
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is. We shall observe the above notational conventions throughout.
A condition on a proof with degree, for example B3, for a proof

P will be denoted by [B3,P].

6.0. Preliminary operations. See 8.1* and 8.2%¥. Notice that
replacing a first order free variable by O preserves the

property that a formula is an 3i-formu1a.

6.1. The end piece of " P contains an induction. (See 8.3*% for
the detail.) Let J be an under-most induction in the end

piece of P:

Q(a)
s, A(),T & A,A(ar)
J ,
S2 A(O),P - A,A(t)

where t does not contain any free variable. The reduct P!

is defined as follows according to two cases.

1° t equals O (8.3.1%).
S} A(0) - A(O)
*
sy A(0),T ~2,A(0)
s} AO),T = A,A(L)

where * 1indicates that there may be several uses of weak

inferences between Si and Sf.

Since this is an easy case, we shall explain the typical,
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routine parts of the argument in some detail so that, for the
less obvious cases, we can avoid such and yield to the crucial
points only.

Let B be an i-block of. P and E be its entrance.
Then the induced i-block B' (entrance E') of P' is defined
as follows: the explicitly indicated A(O)'s in the antecedents
of Si,...,S{ belong to B' (E') if and only if the induction
formula A(a) in S1 belongs to B (E); the explicitly indicated
A(O)'s in the succedents of Si,...,Sf belong to B' (E') if
and only if the induction formula A(a') in S1 belongs to
B (E); the A(O) in the antecedent of S, belongs to B!’ (E")
if and only if the A(O) in S, belongs to B (E); the A(t)
in Sé belongs to B' (E') if and only if the A(t) in So
belongs to B (E); a formula in T’ or A in one of Si,...,Si
belongs to B' (E') if and only if the corresponding formula
in T or A in S1 belongs to B (E) respectively; a formula
in T or A in S, belongs to B’ (E') if and only if the
corresponding formula in I' or A respectively in Sq belongs
to B (E). Any other formula in P' belongs to B' (E') if
and only if the corresponding formula in P belongs to B (E).
The blocks of P' are only those which are defined as above.
We should note that for every (occurrence of every) formula
in P', say A', there is a corresponding formula in P, say A,
such that A' belongs to B' (E') if and only if A belongs
to the corresponding B (E) .for every block B' of P', and
that A and A' are identical up to some terms.

We shall first show that P! 1is a proof with blocks.
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We assume that 1 < i < n throughout.

Cl. Suppose that there is a key inference of dim i,
say K', in ©P'. Then there is the corresponding key inference
of dim i in P and it follows from [C,P] that the principal
formula of K belongs to an i-block B. Therefore from the
above definition, the principal formula of K belongs to B',
the i-block which is induced from B.

C2. From the above note, it is easy to see that the blocks
of the same dimension of P' do not intersect, since [C2,P]
holds.

CS also follows from the above note and [C3,P].

Bl.1. Suppose that the A(O) in Sé belongs to an i~
block B'. Then by definition the A(O) in S, belongs to the
corresponding B. Hence by [B1l.1,P] the induction formula A(a)
(in Sl) belongs to B. Therefore, by definition, the A(O)'s
in the antecedent of Si,...,Sf belong to B'.

If A(O) in the antecedent of one of Si,...,SE belongs
to a B', then by definition the A(a) in S1 belongs to B;
hence by definition any ancestors of A(0O) as above belong
to B'. For a A(O) or A(t) in the succedent of a sequent,

a similar argument as above goes through.

For a formula in I’ or A, Bl.1 is obvious from the
definition and [B1.1,P].

Since a formula in Sé belongs to a B' if and only if
the corresponding formula in S2 belongs to B, Bl.l.for

other formulas in P' follows immediately from [B1.1,P] and the

definition.

K
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Bl1.2. If the A(O) in the antecedent of Si

belongs to the

belongs to
a B', then by definition, the A(a) in S1
corresponding B and hence, by [B1.2,P] A(a') belongs to B.
Therefore, by definition, the A(O) in the succedent of Si
belongs to B'. The converse is proved similarly. For any other
B1.2 follows from [B1.2,P].

pair of the D and D

1 2’
B1.3. A (the) auxiliary formula A' of a logical inference,

say I', in P' occurs in a thread which Sé does not belong

to. Therefore the corresponding formula A in P 1is a (the)

auxiliary formula of the corresponding inference I in' pP.

If A' is in a B', then, by definition, A is in B, and,

by [B1.3,P], the principal formula of I belongs to B; hence,

by definition, the principal formula of 1I' belongs to B'.
B2.1. Suppose i < j < n. The auxiliary formula of a

second order & in the antecedent of dim j in P', say A', occurs in

a thread which S does not belong to. Hence there is the

2
corresponding formula, A, in P, which is the auxiliary formula
of a second order ¥ in the antecedent of dim j. Thuslby
[B2.1,P], A does not belong to any i-block, which implies
that A' does not belong to any i-block.

B2.2. Let j be any number such that i + 1< j<n
and A' be the auxiliary formula of a key inference of dim j.
Then the corresponding formula A in P is the auxiliary
formula of a key inference of dim j, and hence, by [B2.2,P],
does not belong to any i-block. This implies that A' does
not belong to any i-block.

B2.3. If there is such a formula C in P', then it occurs
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in a thread which does not contain Sé. (There is no induction
under S,.) So, this follows from [B2.3,P].

B3. We may assume that A(a) (hence A(0), A(t) and
A(a')) does not contain any second order eigen variable except
substitution variables. If & occurs elsewhere in P' inside
of (outside) a B', then o occurs in P inside of (outside)
B in the corresponding formula. Also if F' 1is a key principal
formula of dim i in P' and belongs to a block B', then the
corresponding F in P is a key principal formula of dim i
which belongs to B. Therefore if a situation in B3 arises
in P' for B', then the same situation in P arises for B
and, by [B3,P], @ occurs in F, which implies that a occurs
in F'.

B4. Suppose B',A' and F' satisfy the conditions on B,
A and F in B4 for P'. Then there are the corresponding
formulas A and F and the corresponding block B in P,
satisfying the same condition. Since neither F' nor A' is
in the end piece of P', this situation happens in the untouched
part of the proof. Recall also that A' is A itself and F!'
is F. Next, for any substitution in P', say J', there is
the corresponding substitution in P, say J, and, if J!
affects a formula in P', then J affects the corresponding
formula in P. Based on all this, B4 follows from [B4,P].

B5. For every i-block B' of P', we have defined the
entrance of B', say E', which is induced from the entrance
of B, say E.

B5.1. The subformula of a key inference of dim i in P!




42

occurs in a thread which does not contain Sé. Therefore the
situations for P and for P' are exactly the same.

B5.2. First part: Suppose, for example, that the A(O) in
the antecedent of Sé belongs to E'. Then by definition A(O)

in S belongs to the corresponding E and hence A(a) belongs

2
to E by [B5.2,P]. So, by definition the A(O)'s in the
antecedents of Si,...,S{ belong to E'. For other A(O)'s
and A(t) and the formulas in I' and A, similar arguments
go through. For any other formulas, this follows from [B5.2,P].
Second part: Suppose, for example, the A(O) in the
antecedent of Si belongs to an E' and the A(O) in the
antecedent of Sé belongs to the related B'. Then in P the
A(a) in S; belongs to E and the A(0) in S, belongs to B.
Therefore by [B5.2,P] A(O) belongs to E; hence in P' the

A(0) in S} belongs to E'. For other A(0)'s and A(t)

2
similar arguments go through. For any other formulas, this

follows from [B5.2,P]. A

B5.3. Suppose, for example, the A(O) in the left hand
side of one of Si,...,Sg belongs to a B' - E'. Then the
A(a) in S, belongs to B - E. Hence by [B5.3,P] the A(O)
in S2 and its descendents belong to B. Hence in P' the
A(0) in S, and its descendents belong to B'. For any other
A(O)'s and A(t) similar arguments go through. For any other
formula this follows from [B5.3,P].

B5.4. Suppose Di and Dé satisfy the condition on D1

and D in B5.4. They are not above Sé. Suppose Di belongs

2
toa B' - E'. Then its corresponding formula in P, Dl’
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belongs to the corresponding B - E by definition and hence
the other cut formula, D2’ which corresponds to Dé, belongs
to B - E, and hence Dé belongs to B' - E'.

B5.5. This follows from [B5.5,P], in virtue of the note
after the definition of blocks, and entrances.

Next we must show that P' is a proof with degree. Define
the degrees of substitutions as d(J';P') = d(J;P), where J!'
is a substitution in P' and J 1is the corresponding sub-
stitution in P. Notice that, by definition, for every substitution
J' in P' there exists a corresponding substitution J in P.
d(A) is defined as D1 - D3.

Recall that if A corresponds to A', then A and A
are identical up to some terms; and hence Af(J',A';P') if and
only if Af(J,A;P), where J corresponds to J'. Therefore
by definition d(A';P') = d(A;P) for any formula A' in P'.

d(A;P) (See above.)

]

D4. d(A';P')
< d(J;pP) (By [D4,P].)
= d(J';P') (By definition.)

D5. By definition and [D5,P].

D6. For any B',F' and J' of P' which satisfy the

condition in D6, there are corresponding B,F and J of P.

Therefore
d(J';P') = d(J;P) < d(F;P) by [D6,P]
= d(F';P) (See above.).
2°. t is equal to an n which is not O (8.3.2%). Define

p! as follows.
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Qo) Qo)
1 A(0),T%0,4001) §2 A(01),T=0,A(00)
s, A(0),T,I-4,8,A(0" Qo
s, A(0),T=s,A(0") | s:i A(O"), T8, A (0™
S, A(0),T,T = 4,4,A(0™)
Sg AC0),T = A,A0™)
Szn A(0),T' = A,A(n)
Sé A(0),T = AA(Y)

The i-blocks and the entrances of P' are induced from those

of P as follows. The A(O) in the antecedent of one of the
SgseeesSyse0es8g5000585, belongs to an i-block B' (E!')

if and only if the A(a) in Sy belongs to B (E); the A(O)

in S} belongs to B' (E') if and only if the A(O) in‘ S
belongs to B(E); a formula in a Q(k), say A', belongs to B!'
if and only if its corresponding formula A in Q(g) belongs

to B. (Notice that one A in Q(a) corresponds to an A'

in any of Q(0),...,Q(n - 1).); the A(k) in the succedent of one
of 83,...,S,, belongs to B' if and only if the A(a') in Sy
belongs to B. A formula of I'(A) in one of Sgs 589, belongs
to B' (E') if and only if its corresponding formula of I'(d)

in S, belongs to B (E). A formula in S belongs to B!

1
if and onlyif its corresponding formula in 82 belongs to B.
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Any other formula belongs to a B' if and only if its corresponding

formula belongs to B.

Let A(k) be the cut formula in S2k or S%k_l (or Si
or Sf if k is O", k= 2,...,2n - 1. A(k) does not

belong to any entrance. If an ancestor of A(k), say C',
belongs to a block B', then C' belongs to its entrance if
and only if A(k) does not belong to B'. A(n) in Son and
its ancestors belong to E' if and only if A(a') belongs to E.
Any other formula belongs to an E' if and only if its
corresponding formula in P belongs to E. It should be noted
that for every formula, say A', in P', and every i-block B',
there is a corresponding formula A in P and A' belongs
to B' if and only if A ©belongs to B.

Cl. If there is a key inference of dim i in P', say K!',
then its principal formula A' is in one of the Q(k)'s or in
a thread which does mt contain Sé. Therefore its corresponding
formula A (as well as the corresponding inference K) is
in Q(a) or in a thread which does not contain Sq- So, by
definition A' belongs to B' if and only if A belongs to B.
Therefore, by [Cl,P] for every key principal formula A' in P!’
there is a block B' such that the corresponding .A belongs to
B, or A' belongs to B'. C2 and C3 follow from [C2,P] and
[C3,P]. (See the note after the definition of the blocks and
the entrances.)

Bl1.1. If the A(O) in the antecedent of one of Si,SS,...,S2n
belongs to a B', then, by definition, A(a) in S1 belongs to B,

and hence by [B1.1,P] all ancestors of the A(a) belong to B.
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This implies that all ancestors of the concerning A(O) belong
to B!'. If the A(O) in 5, belongs to B', then the A(0)
in 82 belongs to B, and hence all its ancestors belong to B
by [B1.1,P], which implies that all ancestors of the A(O)
in Sb belong to B'.

Suppose, for example, the A(O") in Sq belongs to B'.
Then by definition A(a') belongs to B. Hence all its ancestors
belong to B, and so the A(O") in S% and all its ancestors
belong to B'. If, as another example, one of the formulas
in Sé, say C', belongs to B', then the corresponding formula
in Sz belongs to B, and hence the corresponding ancestors
belong to B. This implies that all the ancestors of C!
belong to B'.

Bl1.2. In a Q(k) a formula belongs to B' if and only
if the corresponding formula in Q(a) belongs to B, and so the
formulas in the beginning sequents and the equality axioms,
and the induction formulas in a Q(k) correspond to the formulas
in the same kind of sequents in Q(a). Hence for thosé formulas
B1.2 follows from [B1.2,P]. For other sequents Bl.2 follows
from [B1.2,P] trivially.

B1.3. The auxiliary formula and the principalvformula
of a logical inference occur in a Q(k) or in a thread which
does not contain Sj). Hence this follows from [B1.3,P].

B2.1. Let j be a number such that i < j < n. Then
the auxiliary formula of a second order ¥ (or dim j) occurs
within a Q(k) or in a thread which does not contain S}.

Therefore this follows from [B2.1,P].
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B2.2. This is shown by a similar argument as in B2.1.

B2.3. Suppose there is a C' which satisfies the condition
on C in B2.3 in a Q(k) or in a thread which does not contain

L. Then this follows from [B2.3,P]. Let C' be a cut formula
A(k) which is a descendent of a key auxiliary formula of dim i.
Then in P the corresponding C (A(a) or A(a')) is a descendent
of a key auxiliary formula of dim i and is the auxiliary
formula of a strong inference (i.e., an induction). Therefore C
does not belong to any i-block, which implies that C' does not
belong to any i-block.

B3. Suppose that in P! a' is a second order eigen
variable of an inference I' and occurs in a formula C'.

Then in P there is a corresponding inference 1 whose eigen
variable o occurs in C, the formula which corresponds to C!'.
In virtue of this fact and the note after the definition of the
blocks and the entrances, B3 follows from [B3,P].

B4. Let A' be a semi-formula in an i-block B' of P!
which is not a key principal formula of dim i or ité descendent
and which is not in the end piece. Then the corresponding
formula A in P belongs to B and satisfies the same
condition as A' does. Let F' be a key princip#l formula of
dim i and belongs to B'. Then the corresponding formula F
in P 1is a key principal formula of dim i and belongs to B.
Recall that A and A' and F and F' respectively are
identical up to some terms. Therefore B4 follows directly
from [B4,P].

B5. We have defined the entrance E!' for each i-block B!’
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B5.1. The auxiliary formula of a key inference of dim i
occurs either within one of the Q(k)'s or in a thread which does
not contain Sé. Therefore it belongs to E' if and only if
its corresponding formula in P belongs to E, except the case
where it is one of the cut formulas A(k)'s and their ancestors.
Hence, except the latter case, this follows from [B5.1,P]. As
for the cut formulas A(k)'s and their ancestors, recall that to
a cut formula A(k) corresponds A(a) or A(a') of P. Suppose
an A(k) as above is the descendent of a key auxiliary formula
of dim i, say G'. Then, in P, A(a) or A(a') is the descendent
of a key auxiliary formula of dim i, say G, and A(a) or A(a')
respectively is the auxiliary formula of a strong inference.
Therefore [B2.3,P] implies that A(a) or A(a') respectively
does not belong to B. Then, according to our definitions A(k)
does not belong to B'. Therefore, by definition of E', an
ancestor of A(k) belongs to E' if and only if its corresponding
formula belongs to E. But by [B5.1,P] G (see above) belongs to
E. So G' belongs to E'.

B5.2. First part: Suppose the A(O) in the antecedent
of one of Si’SS"“’S4""’SZn belongs to E'. Then, according
to the definition, A(a) in S1 belangs to E. Hence all its
ancestors belong to E by [B5.2,P]. Therefore all the ancestors
of the A(O) belong to E'. Similarly for the A(O) in S, -

The cut formulas A(k)'s do not belong to any E' by definition.

For A(n) in S a similar argument goes through. For any

2n
other formula this follows from [B5.2,P], according to the
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definition.
Second part: Suppose the A(O) in the antecedent of one

of S!'...,S belongs to E' and one of its descendents C!

2n
belongs to B'. Then A(a) in S belongs to E and C

1

(corresponding to C') belongs to IB. So, by [B5.2,P] C belongs
to E, and hence C' belongs to E'. If an A(k) belongs to
B' then by definition no ancestor of A(k) nor A(k) itself
belongs to E'. Suppose A(k) does not belong to B', and let ('
be an ancestor of A(k). Then the C' belongs to E' if and
only if A(k) does not belong to B'. On the basis of the above
facts, it is easy to see that the second part holds for any
formula bundle which contains a cut formula A(k). For any other
formulas, this follows from [B5.2,P].

B5.3. Suppose an ancestor C' of a cut formula A(k)
belongs to B' - E'. Then, by definition of E', A(k) belongs
to B', and hence by definition all ancestors of A(k) belong
to B' - E' by definition. Therefore all descendents of C(C!
belong to B'. |

For any other formula this follows from definition and
[B5.3,P].

B5.4 Suppose a left cut formula A(k) (also called D,)

1
belongs to B' - E'. This means that A(a') belongs to B.

Then by [B1.2,P] A(a) belongs to B. So, the right cut formula
Dz (corresponding to A(k)) belongs to B'. This together with
definition implies that D2 belongs to B' - E'. For other cut

formulas, this follows from [B5.4,P].
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B5.5. There is no formula in E' such that its corresponding
formula in P does not belong to E. By [B5.5,P] the corresponding
formula of a non-reducible formula in P in the succedent of
a sequent does not belong to E; hence in P! a non-reducible
formula in the succedent of a sequent does not belong to E!'.

If a non-reducible formula C' belongs to E', then its
corresponding formula C belongs to E and is of the form
Vo7V y7G(p,¥), where >V »7G(p,P) is reducible. Then C'
is of the form YV ¢o7v ¥ 7G(p,d) where 7V y 7 G(op,d) is
reducible.

Now consider the conditions D1 - D6. It is easily seen
that in P' all substitutions are under any logical inference
or induction. For each substitution in P!, say J', define
d(J';P') as d(J';P') = d(J;P), where J 1is the corresponding
substitution in P, and define d(A';P') as D1 - D3 for all
semi-formulas A' in ©P'. Since substitutions do not occur
in Q(a), it is easy to see that d(A';P') = d(A;P) for any
A' in P', where A is its corresponding formula in P.

D4- D6 are proved just as in 1°.

6.2. The end piece of P does not contain any induction
but does contain an equality axiom. (See 8.4* for the detail.)

Let P be of the form
S s = t,A(s) = A(t)

where s and t are equal to the numerals m and n respectively.
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1°. m =n - is true (8.4.1%). The reduct P' is defined

as follows.

-

Sl m=n -

i X
St m = n,A(m) = A(n)
Sm s = t,A(s) = A(t)

The blocks and the entrances are defined as follows.

m=n or s =1t in one of S',...,8",...,S" belongs to
a B' (E') if and only if s =t in S belongs to B (E).
A(m) and A(s) belong to B' (E') if and only if A(s) in S
belongs to B (E). A(n) and A(t) belongs to B' (E') if and
only if A(t) in S belongs to B (E). Any other formula in
P' Dbelongs to B' (E') if and only if its corresponding formula
belongs to B (E).

In order to prove that P' is a proof with degree, just
regard_the set of occurrences of m = n and s =t as one
unit corresponding to the s =t in S and similary the set
of occurrences of A(m) and A(s) (A(n) and A(t)) as one unit
corresponding to A(s) (A(t)). Then everything follows from

the condition on P.

2°, - m=n is true (8.4.2%).

Define P! as

A(m) - A(n)

*

A(s) = A(t)

s = t,A(s) 7 A(%)

-
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The blocks and the entrances are defined similarly to 1°.

6.3. The end piece of P contains neither induction nor
equality axioms, but does contain a logical beginning sequent

(8.5%).

D-D

(s)

where (S) stands for any sequent under S1 and S3 (hence S

may be S4). Define P' as

sy - A,D

Sé'l r’n - A:Al’ﬁ’Az

(s1) -

/

The D in §S! belongs to a B' if and only if the D

1
1
in S; belongs to B. The descendent of the D in a s',

say C', belongs to B' if and only if both the D in S;

and the corresponding C in S belongs to B. A formula of T
or A in Si belongs to B' if and only if its corresponding
formula in S1 belongs to B. A formula of P,H,A,A1 or A2

in a sequent between Si and S', including Sa, belongs to B!

if and only if the corresponding formula in S, belongs to B.
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Any other formula belongs to B' if and only if the corresponding
formula in P belongs to B.

The definition of the entrances of P' is kind of compli-
cated. Let B' be an i-block of P'. We shall define the
entrance of B', say E'.

Case 1) The lowermost descendent of the D in sy, say

C,, which is naturally a left cut formula, does not belong to

1

any block (of P'). Then any ancestor of C1 belongs to E!'

if and only if it belongs to B'. Let C2 be the right cut
formula for Cl' Then all ancestors of C2 as well as C2
itself which belong to B' belong to E'.

Case 2) The C as in Case 1) belongs to B'. (This

1

implies that all ancestors of C belong to B', and hence

1
all descendents of the D in Si belong to B'.)
Subcase 2.1) The C, as above belongs to B'. Then
neither C nor C nor their ancestors belong to E'.

1 2
Subcase 2.2) Cy does ot belong to B'. All ancestors

of C1 as well as C1 belong to E' and all ancestérs of C2
as well as 02 which are in B' belong to E'.

Any other formula belongs to the entrance of a B' if
and only if the corresponding formula in P belongs to E,

where E 1is the entrance of B.

Corollary. To each formula A' in P! there correspond
one formula, say A, or two formulas, say A1 and Az, in P
in a manner that A' belongs to a B! if and only if A
belongs to B 1in the former case, and if and only if both A1

and A2 belong to B in the latter case.
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Now we can proceed to the proof that P' is a proof with

degree.

Cl. As far as the key inferences are concerned, no new
situation arises in P'. Therefore this follows from [C1,P]
and the definition.

By Corollary above, for each formula C' in ©P' which
belongs to a B' there is at least one corresponding formula

C which belongs to B. Therefore C2 and C3 follow from [C,P].

Bl.1. Suppose the descendent of D in a S', say C',
belongs to B'. Then the D in S1 and the corresponding C
in S both belong to B. Hence by [B1.1,P] all ancestors of
D and cC belong to B, from which follows that all ancestors
of the C' in S' belong to B'. For any other formulas,

this follows from [B1l.1,P].

Bl1.2. Such D1 and D, occur above (including) Si or
in a thread which does not contain S&; hence there is no

change from P.

B1.3, B2.1 and B2.2 follow directly from the cqnditions on P.

B2.3. Consider a C' which satisfies the condition. If
such a (! is not a descendent of the D in Si, then this
follows from [B2.3,P]. Suppose C' is a descendent of the D.
Then there is an ancestor of the D which is a key principal
formula of dim i; hence there is an ancestor of the D in S1

of P which is a key principal formula of 'dim i. Therefore
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by [B2.3,P] the D in Sy (which is a cut formula) must lie
outside any i-block. Then, by definition, C' lies outside

any i-block. For any other formulas this follows from [B2.3,P].

B4. Let A',B' and F' satisfy the condition on A,B
and F in B4 for P'. Since A' is not in the end piece,
those A' and F' occur either above Si or in the threads

which do not contain S&. Therefore there are corresponding
formulas A (to A') and F (to F'), where A and A' are

identical and F and F' are identical. Therefore B4 follows

from [B4,P] immediately.

B5. We have defined the entrance E'!' for each (i-)
block B'. From the definition it is evident that E! is a

subset of B'.

B5.1. We should first remark that a key auxiliary formula
(of dim i), say G, in P' occurs either above 8] or in a
thread which does not contain S&. Suppose G belongs to an

i-block B' and let E' be its entrance. If G 1is an ancestor

of C1 or C, (see the definition of the entrances for C1
and Cz), then C1 or C, respectively does not belong to B!
since C1 and C2 are the auxiliary formulas of a strong

inference (cut) of P' and [B2.3,P'] has already been verified.
Therefore if G is an ancestor of C1 then only Case 1) can
hold.. If G is an ancestor of Cy, then either Case 1) or
Subcase 2.2) holds. 1In any case, G belongs to E' by definition

since G belongs to B'. For any other case, this follows from

[B5.1,P].
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B5.2. 1If C1 or CZ’ or an ancestor of one of them belongs
to E', then in the definition of E' either Case 1) or Case
2.2) holds. 1In either case any ancestors of C1 and C, as
well as C1 and C2 themselvgs belongs to E' if it belongs
to B'. From this fact and [B1.1,P'] B5.2 is easily proved for
the formulas which belong to the formula bundles which contain

C1 and 02 respectively. For any other formulas this follows

from [B5.2,P].

B5.3. Suppose, for example, an ancestor of Cl’ say C,
belongs to B' - E'. This is possible only by Case 2.1).
But Case 2.1) holds only if C1 belongs to B'. Then by

[B1.1,P'] all ancestors of C,, hence all descendents of C,

1’
belong to B'. A similar argument goes through for Cz. For

any other formula this follows from [B5.3,P].

B5.4. Let D1 and D2 be the C1 and C2 in the definition.

C, Dbelongs to B' - E' if and only if Case 2.1) holds, and
C, belongs to B' - E' if and only if Case 2.1) holds. For
any other cut formula, it belongs to B' - E' if and only if its

corresponding formula in P belongs to B - E.

B5.5. Suppose, for example, a non-reducible formula C'
is C1 or an ancestor of C1 and belongs to E'. Then Case 1)
or Case 2.2) holds. Notice that in particular C' Dbelongs to
B'. By virtue of [B5.2,P'], all ancestors of C' belong to E'.

Hence we may assume that C' occurs above Sa since no logical

inference applies to C' or to any of its descendents under S&.
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Then D's and C1 are also non-reducible. The formula C
in P, corresponding formula to C', belongs to B and C
and C' are identical. If C belongs to B - E, then all its
descendents, in particular the D in S,, belong to B - E.
(See Corollary 2 of §4.) Then the D in the antecedent of S35
and hence the D in the antecedent of S2 belong to B - E.
(See [B5.4 and B5.2,P].) The D in the succedent of Sq
belongs to B by [Bl1.2,P].

If Case 1) holds, then C1 in P' does not belong to B'.

This means that in P (since the in S belongs to B) C1

D 1

does not belong to B. Hence in P any ancestor of C1 which
is in B does not belong to B - E ([B5.3,P]), i.e. it must
belong to E. Then by [B5.5,P] it must occur in the antecedent
of a sequent and has the required form. This is impossible, since,
for example, the D in the succedent of SZ belongs to E and
is non-reducible, contradicting the condition. Therefore this
case cannot happen. If Case 2.2) holds, then C1 belongs to B'.
This implies that in P C1 and all the ancestors of C1 belong
to B. If C1 belongs to B - E, then C2 must belong to B - E
by [B5.4,P], which in turn implies that in P! C, belongs to
B', contradicting the condition of 2.2). Therefore C1 must
belong to E. But this contradicts [B5.5,P]. Therefore neither
case holds; that is neither C1 nor its ancestors can belong
to E'.

Suppose, as another example, C is a non-reducible formula

which is C2 or its ancestor and which belongs to E'. Notice

that the latter case implies that C2 is non-reducible, and hence
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C1 as well as the D's are non-reducible. By definition C
belongs to B. If in P C belongs to E then in P (C

occurs in the antecedent of a sequent and has the required form
by [B5.5,P], and hence C satisfies the same condition in P'.
Suppose C does not belong to E. Then C belongs to B - E,
and hence C2 and C1 as well as all their ancestors belong

to B - E. (See Corollary 2) of %4, [B5.4,P] and [B5.3,P].)

This implies that the D in the antecedent of S2 belongs to B
([B1.2,P]). 1If this D belongs to E, then [B5.5,P] applies to
and C and C

it and, by the definition of C C

1 20 “1 2
have the form YV ¢V $7G(p,P) where 7V ¥ 7G(p,yP) is reducible.
Thus, C can be non-reducible if C 1is in the antecedent of a
sequent and has the form V p—y $7G'(p,d), where —v ¥ 7G'(p,¥)
is reducible. If the D in the antecedent of S2 belongs to

B - E, then so do the D in the antecedents of S; and the D
in 8§, (see Corollary 2) of §4 and [B5.4,P].) Therefore both

the D in S, and C, belong to B. This implies that in P!

1 1

both C and C belong to B', and hence by definition no

1 2
ancestors of C1 and C2 belong to E', contradicting the
assumption that C belongs to E'. Thus the 1atter_case does

not arise.

For other formulas, [B5.5,P'] follows from [B5.5,P] and
the definition.

Now define d(J';P') = d(J;P) for every substitution J'
in P', where J is the corresponding substitution in P.
d(A';P') is defined as D1 - D3. Notice that if a substitution

J!' affects a formula A' in P', then the corresponding substitution

J in P affeets the corresponding formula A. Also A and A'
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are identical and hence dp(J;A) = dp(J';A'). Moreover, if
there is a substitution above S3, we may assume that the
substitution variable is different from any other eigen
variable. Therefore d(A';P') = d(A;P). So D4 follows from
[D4,P] and D5 follows from [D5,P]. If there is a key principal
formula (of dim i) F' in an i-block B' and the eigen
variable of a substitution J' occurs in a formula in B',
say C', but not in F', then the corresponding formula F
belongs to B and the eigen variable of the corresponding J
occurs in the corresponding formula C in B but not in F.
So follows D6 from [D6,P]. (Here by the corresponding formula
of a descendent of D in P', we mean the same formula in P,
1)

All substitutions in P' are under any logical inference

not the 5 in S

or induction since P satisfies the condition.

2°, (8.5.2%) Suppose P is of the form

Sz D.T,D ‘
Sg rl,ﬁ,rz '_'.' 4,D 8, p,n . A
S4 rl,ﬁ,rz,n = AA
(s) ';’
Define P' as
S! b,n -» A
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Define the blocks and their entrances just as in 1°. C1 is
now the last descendent of the D which is a right cut formula

and C is its left cut formula. It is easily seen that the

2
same Corollary as for 1° holds, and the same argument as in 1o
goes through. The only concei?able trouble exists in B5.5.
Suppose, for example, there is a non-reducible formula C!
which is C1 or an ancestor of C1 and belongs to E'. Then
Case 1) or Case 2.2) holds. Notice that in particular, C'
belongs to B'. Since by [B5.2,P'] all ancestors of C' belong
to E', we may assume that C' occurs above S). (see 1°).
The 5's, D and C1 are also non-reducible. The formula C
in P which corresponds to C' 1is identical with C' and
belongs to B. If C belongs to B - E, then all its descendents,
in particular the D in S,, belong to B - E. Then the D in
the succedent of 83 and hence the D in the succedent of S2
belong to B - E, which implies that the D in the antecedent
of S2 belongs to B.

If Case 1) holds, then C1 in P' does not beloné to B'.
This means that C in P does not belong to B, and hence

1
any ancestor of Cl’ in particular the D 1in the antecedent
of Sz, does not belong to B - E, which implies that it belongs
to E. Thus [B5.5,P] applies to the D in So. Therefore D
is of the form V o7V $—7G(p,P), where 7V Y7 G(p,d) is
reducible; hence C as well as D have the same form. As C
is an ancestor of the D in the antecedent of S,, C must

occur in the antecedent of a sequent, and the same applies to

cC' in P'.

-
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If Case 2.2) holds, then C, belongs to B'. This implies

1

that in P C1 and all its ancestors belong to B. If C1
belongs to B - E, then C2 must belong to B - E, which implies
that in P! C2 belongs to B', contradicting the condition
of Case 2.2). Therefore C1 must belong to E. C1 is non-

reducible. So C1 should satisfy the condition and hence C, its
ancestor, also satisfies the condition.

Suppose, as another example, that C 1is a non-reducible
formula which is C2 or its ancestor and which belongs
to E'. If in P C belongs to E, the entrance of B, then
it satisfies the condition of [B5.5,P], and hence it satisfies
the same condition in P'. Suppose C does not belong to E.
Then C 'belongs to B - E, and hence Cz and C1 as well as
all their ancestors belong to B - E. This implies that the D
in the succedent of 82 belongs to B. Since D 1is non-reducible,
this D cannot belong to E by [B5.5,P]. Therefore this D
belongs to B - E. Then the D in the antecedent of S,
belongs to B - E, which implies that the descendents of the 5,

in particular C belong to B - E. This implies that C2

1’
belongs to B - E. Therefore by definition both C_1 and C2
belong to B' in P'; then no ancestor of Cz’ in particular C',
can belong to E', contradicting the assumption. Thus this case

does not arise.

For any other formula, this follows from [B5.5,P].

6.4 The elimination of the weakenings from the end piece
(8.6%). Let Q be any subproof of P such that the end sequent

of Q Dbelongs to the end piece of P. Following 8.6%, define Q¥*
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by induction on the number of inferences (in the end piece)

of Q, according to the last inference. P' is then defined

as P¥*¥, We should remark here that we may assume that if the
last substitution, say I, is eliminated, it means that all the
ancestors of the substitution formulas of 1 are weakening
formulas or the direct descendents of such. Therefore we may
assume that in such a case I does not affect any other formulas
in Q. This remark is useful when we later prove the condition

D for DP!'.

Corollary. Q* is defined in a manner that for every formula
C' 1in Q* there is a naturally corresponding formula C in
Q, and P and P' (which is P¥*) differ only in that all the
weakenings in the end piece of P are eliminated in P'; other-
wise P' 1is a copy of P.

Define a block of P', say B' and its entrance E',
corresponding to a block B of P and its entrance E as
follows. A formula in P', say C', belongs to B' (E') if
and only if its corresponding formula C in P belongs to
B (E).

The conditions Cl1 - C3 and Bl - BS follow directly from
the above corollary and the definition of blocks of P' and those
for P, since the properties and the relations of the formulas
described in C and B do not change. For.-every substitution
J' in P', define d(J') as d(J';P') = d(J;P), where J is
the corresponding substitution in P. Define d(A';P') for

every semi-formula A' in P' as D1 - D3. If a substitution J
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in P disappears in P', then its eigen variable does not occur
in P'. Therefore for any formula A' in P', d(A;P') = d(A;P)
holds, where A corresponds to A'. Thus D4 - D6 follow from
[D,P]. |

Now we shall assume that the end piece of a proof with degree,
P, contains one of the logical inferences, induction, beginning
sequents other than the mathematical beginning sequents or
weakenings. We also assume that the proof is different from its
end piece. The existence of a suitable cut is proved as in 9%
of Chapter 2, [5]. We can now proceed to the essential reductions.
(Cf. 10* of Chapter 2, [5].) Let J be a lower-most suitable
cut and let # stand for the outer-most logical connective of

the cut formulas of J.

6.5 # is 'second order d!'. Recall that the cut formula

is of the form & ¢ V YH(p,¥). Suppose P is of the following

form:
So Iy ™ &v vH (V.9) S3 v ¥Hy(@, 9,0, = A
I, I,
s; Ty N by» TOVYH, (@, ) 8,  FeWdHy (0,9, 0, = A
S, Ty = b,, TpTyH (0, $) S BoVPH(p, P) , I, = A,
J
S r,o, = A A2

6 2272 | "2

- -

where Hl’HZ and H are identical except some terms. This is

because of [D3,P], since any substitution which influences H_, (H

1 2)
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affects 4 o vy ¢H1(¢,¢) (L oV ¢H2(¢,w)). Therefore in the

following we may omit the subscripts of H and H,.

1 2
Define P' as follows. Due to the limit of space, we

first define subproofs P1 and P2, and then define P' 1in

terms of P1 and P2.

VOV, 9), 0, = A

wW-

. Sy ZovdH(e,¥), 1, , VPH(V,P) ~ A

Sg Ty = b5, 30VdH(0,¥)  SL  ZoyyH(p,$),1,, VPH(V,P) ~ A,

S'6 V¢H(V,d)))r2:n2 - Az’Az

P2: .
Sé Fl - AI,V¢H(V,¢)
sy I 7 VYH(V,¥) , 8, , ToVPH (0, )
85, Ty = VPH(V,¥),8,, TpVPH(p, $) S5 pTPH(p,¥) , 0, = A,
sg Toolly = By, Ay, VYH(V, Y)
P

S7 Torllgs Do, Ty = 8oy Ay, 85, Ay

.
-
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Let B be an 1i-block of P and E be its entrance. Then
define the corresponding i-block B' and its entrance E!

as follows. Any one of the explicitly indicated g o V pH(0, P)
or V YF(V,¥) belongs to B! (E') if and only if the corresponding
formula & ¢ V $H(p,¥) in P belongs to B (E). (A sequent
between Sé and Sa or Sé and Si may be treated as S&

or S! respectively, and the V YpH(V,y) in Sg behaves like

1
the i ¢ V YH(p,d) in S; and the V YH(V,d) in S§ behaves
like the & ¢ V @oH(p,¥) in SZ’) Any other formula belongs to
B' (E') if and only if its corresponding formula belongs to
B (E).

Notice that, since V is reducible, the substitution of V
for a does not change the reducibility of a formula. It should
be also noticed that for every A' in P', either the corresponding
A 1is identical with A' or A' is obtained from A by
substituting V for «.

Cl - C3, Bl and B2 are direct consequences of [C,P], [B,P]

and the definitions of P'!' and its blocks.

B2.3. Suppose, for example, the cut formula V PH(V,d)
in Sé, which is the auxiliary formula of a strong inference
(cut), belongs to a Tormula bundle which contains a key
principal formula of dim i. Then in P the V ¢H2(a,¢)
in S5 is such a formula, and therefore by [B2.3,P], it does
not belong to any i-block. This implies that the ¥ ¢ v yF(op,d)
in S5 does not belong to any i-block. Henceforth, by
definition, the cut formula vy PF(V,y) in S does not belong to

any i-block. Similarly for the v YH(V,¥) in S§. As was
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mentioned at the beginning, there is no substitution which can

apply to VY YH(V,d).

B3. Notice that V and vy $H(V,y) do not contain any eigen
variable except those of substitution. Therefore the new

occurrences of V and v YH(V,Y) do not cause any new situation.

B4. Let B' be an i-block and suppose A' and F!
satisfy the conditions on A and F in B4 for B'. We should
emphasize that A' does not occur in the end piece. Let B,A
and F in P correspond to B', A' and F' respectively.
Then F' 1is either F itself or F(%) and A' is either A
itself or A(%). It is obvious that F and A satisfy the
condition for B; in particular A does not occur in the end

piece of P.

B4.1. If o does not occur in A, then this follows
from [B4.1,P], since 6J(F) < GJ(F') for every j < n. Suppose
oo occurs in A. It implies that in P a occurs in B.

Case 1) The VYV YH(a,¥) in Sg 1lies outside B. Then o
occurs both inside and outside B, and o is a non-substitution
eigen variable in P. Therefore by [B3,P] a occurs in F.

By [B4,P], the following (a) and (b) hold.

(a) 5;(A(a)) < 6;(F(a)) and 6;(A(a)) < 6;(F(a)) if
i> i+ 1.

(b) dpk(a;A) = 0 for all k > i.

(b) and Proposition 1.6 for A and V yield

(c) ék(A(V)) = max(ék(A(a)),ék(V)) for k = 1i.
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Since o actually occurs in F Proposition 1.6 applies to
F and V, and hence

(@) & (F(V)) = max(6, (F(2)),5, (V) + dpy(a;F(a))) if
dpj(a;F(a)) = 0, for all j > k + 1.

Here we shall observe the following fact. Suppose F
is of the form & nVXF(n,x). Then YV XF(7n,X), which may be
called a semi-subformula of F satisfies the condition on A
in P together with B and F. Therefore by [B4.3,P] applied
to B,F and V xF(n,x), dp (a;¥ XF(n,x)) =0 if i < k. This
implies that

(e) dpi(a;F) =1 and dpj(a;F) =0 if i+ 1< j,
since the type of F is of dim i.

From (a), (c), (d) and (e) follows

55 (A(V)) < 6, (F(V)), or &,(A") < 8,(F'),
and

5j(A(V)) < éj(F(V)) for j > 1i + 1.

Case 2) The V PpH(a,¥) in Sg; belongs to B. Then the
dim of the type of & ¢ V YH(p,¥), say j, is less than i

([B2.1,P]). Therefore
5. (2 0 V yH(p,¥)) = 5, (V yH(a,¥)) for k > i.

By [B1.3,P] & ¢ v $H(p,d) in S, belongs to B. On the other
hand, [C1,P] and [B1.3,P] require that the ¥ ¢ y $H, (@, ¥) in
S1
[B4.1,P] for B, & ¢ V yH(p,¥Y) and ¥ PH(V,P).

and V ¢H1(V,¢) in S belong to some j-blocks B, and by
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6, (V) < 6, (v PH(V,¥)) < 6, (Z o V YH(p,¥)) for k > i,

where the first < holds because dpk(a;V YH(a,d)) = 0. (This
follows from the fact that & ¢ V $H(¢,y) is reducible.) 1In

B, v ¢H2(a,w) satisfies the condition on A, since this is of
dim less than i, and hence it cannot be a descendent of a key
principal formula of dim i by [B2.3,P]. Thus by [B4.1,P]

for B,F and V @ Hz(a,w),

6,( @ V $H(p,¥)) = 6,(V H(a,¥)) < &, (F),

and < hold for 5j for j > i + 1. Combining the above
two results, we have

(£) 6i(V) < 6i(F) and 6j(V) < 6J(F) if j>i+ 1.

(a), (b) and (c) in Case 1) are valid for Case 2) too. From
(a), (c) and (f), we have 6i(A) < 5i(F) and 6i(V) < 5i(F),
and hence &6,(A(V)) < &,(F) < 6,(F'). Let j > i + 1.
5j(A) < 6j(F) from (a) and 6j(V) < 6j(F) from (f). Hepce by
(c) GJ(A(V)) < 5j(F) < 5j(F')-

B4.2. Suppose B is a substitution variable which affects

F'. If B affects F, then from [B4.2,P],
(g) dp,(B;A) < dp, (B;F) and dpj(B;A) < dpj(B;F) for j > i + 1.

If B does not affect F (i.e. does not occur in F), then 8

occurs in V and o occurs in F. From [B4.3,P],

(g") dpj(B;A) =0 for j > i.
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If o does not occur in A, or B does not occur in V,
then either dpi(B;A') = dpi(B;A) < dpi(B;F) < dpi(B;F') and
dpj(B;A') = dp, (8;4) < dpj(B;F) < dpj(B;F') for j > i +1

by (g), or
dp; (B;A') = dp,(B;A) = 0 < 1< dp, (B;F')

and dpj(B;A') =0< dpj(ﬁ;F') for j > i+ 1 by (g").
So we are done. Therefore let us assume that @ actually
occurs in A and B occurs in V.

Case 1) V ¢H2(a,¢) does not belong to B. Then & occurs
both inside and outside B. This together with [B3,P] implies
that @& occurs in F. On the other hand, by [B4.3,P] applied

to «q, dpk(a;A) = 0 for k > i. Therefore
(h) dp, (B;A') = max(dp, (B;A),dp, (B;V)) for k > i,

by Proposition 1.7. (Recall that B occurs in V.) On the
other hand (e) in the proof of B4.1 is valid here, and so
dpi(a;F) =1 and dpj(a;F) =0 if j > i+l. Thus, again by

Proposition 1.7,
(i) dp, (B;F') = max(dp, (B;F),dp, (B;V) + dp, (%;F))
if k > i. Now, by (g)-(i),

dpi(B;A’) < dpi(ﬁ;F')
and

dp;(P;A") < dpj(ﬁ;F') for j > i + 1.
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\ Case 2) V ¢H2(a,¢) belongs to B. Then the dim of
4 ¢ v PpH(p,¥), say j, must be less than i ([B2.1,P]). By
[B1.3,P], & o v wH2(¢,w) in S, belongs to B. On the other
hand, the & ¢ V ¢H1(¢,¢) in S, and v le(V,¢) in S, belong
to some j_-block, say B, and hence by [B4.2,P] and [B4.3,P]

applied to B, T o v $H, (@, %) and V PH,(V,9), we have

dp, (B;V) < dp, (B;V YH,(V,$)) < dp (B8 o ¥ PH, (0,¥))
= dp, (B;% o v ¥H,(p,¥))

for all k > i > jo. (See the proof of B4.1). In B,
v ¢H2(a,w) satisfies the condition on A. (See the proof of
B4.1.) Therefore by [B4.3,P] for B,F and vy $H, (0, ¥)

(as B does not occur in F),
dp, (B;E @ ¥ YH,(p,¥)) = dpg(ﬁ;V PHy(a,9)) = O
for all k > j_+1 in particular for k > i. Hence
dpk(ﬁ;V) < dpk(ﬁ;ﬁ ® V YHy(p,P)) =0

if k > i.

Combining this with (h) (which is valid for Case 2) as

well) we obtain
dpk(ﬁ;A’) = dpy (B;A)

for all k > i. Therefore, if B occurs in F, then the
desired inequalities follow from (g). If B does not occur

in F, then o must occur in F. Therefore
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dp, (B;F') = dp, (B;V) + dp, (0;F) = dp (a;F),
and

dp, (B;A') = dp, (a;A).

But dpi(a;F) > 1 and dpk(a;A) =0 for all k > i ([B4.3,P]).

Therefore
dp, (B;A') < dp, (B;F')

and < holds for dpk, k >1i+ 1.
B4.3. Suppose B is a non-substitution eigen variable
or a substitution variable which does not occur in F'. The
latter case implies that in particular B does not occur in F.
Therefore in either case dpk(ﬁ;A) =0 for k > i by [B4.3,P].
If o does not actually occur in A, then dpk(ﬁ;A') = dpk(ﬁ;A) = 0,
for k > i. Assume o occurs in A. If B is a non-substitution
variable, then B does not occur in V. Therefore by [B4.3,P]
dp, (B;A(V)) = dpk(ﬁ;A(a)) =0 for k> i. If B is a sub-
stitution variable but does not occur in V, then the éame
equations hold.
Now suppose that P is a substitution variable which
occurs in V. If ¥ sz(a,¢) lies outside B, then a occurs
both inside and outside B. So a occurs in F and hence F'
must contain B, contradicting the hypothesis. Therefore
v yHy(a,y) belongs to B, and hence ¥ ¢V PHy (0, 9) is of dim,
say Jj,, less than i. LoV ¢H2(¢,¢) belongs to B ([B1.3,P]),
and v ¢H1(V,¢) and ¥ ¢ v ¢H&(¢,¢) belong to some j_-section

B. [B4,P] applies to B and those formulas: in particular
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dpj(a;V $H1(a,¢)) =0 if j > j , and by [B4.2 and B4.3,P]

dp, (B;V) < dp, (B;V H (V,9)) < dp, (B;E o ¥ YH, (0,¥))

= dpk(ﬁ;V wﬂz(a,¢))

for k > jo + 1; in particular k > i. The last term is O
by [B4.3,P] with V¥ ¢H2(Q,¢) as A, since F does not contain B.
So, dp, (B;A(V)) = dp, (B;A(a)) =0 if k > i.

B5. We have defined entrances, and B5.1-B5.5 follow from
[B5,P] as obvious consequences of the definition.

For every substitution J' define d(J';P') = d(J;P),
where J corresponds to J'. Then define the degrees of semi-
formulas as D1-D3. It follows that if A and A' are identical,

then
) . d(A';pP') = d(A;P).

In particular this holds for & ¢ V $H(e,¥), and

d(y YH(V,¥);P') = d(y le(V,wﬁl(V,¢);P) for any occurence

of V YH(V,d). Notice that the V PH(V,d) in S, and the

g o V pH(p,¥) in S; are the auxiliary formula and the
principal formula of a key inference in P. So, by Corollary 7)

in §4,
(k) d(v YH(V,P);P) < d(Z ¢ V PpH(p,¥) ;P).

D4. Such a formula A' is either identical with its
corresponding formula A or is V YH(V,¥). In the former
case by (j), [D4,P] and the definition, d(A';P') = d(A;P)

< d(J;P) = d(J';P'). For the latter case, (k),(j) and [D4,P]
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imply d(A';P') = d(A';P) < d(& p ¥V PpH(p,¥);P) =
d(Z& o V pH(p,¥);P') < d(§;P) = d(J';P').

D5.follows from [D5,P] and the definition.

D6. Suppose B',F' and J' satisfy the condition in D6
for P' and J'affects a formula A' in B'. Then the
corresponding A belongs to B. Let F and J correspond
to F' and J' respectively. Since the eigen variable of J
does not occur in F!', it does not occur in F either. If the
eigen variable of J occurs in A (in P), then by [D6,P]
d(Ji;P') = d(J;P) < d(F;P) < d(F';P'). Suppose the eigen
variable of J does not occur in A. Then the eigen variable
of J', say B, (and hence of J) occurs in V. There are two
cases: Case 1) a occurs in A and A' is A(%) and
Case 2) A' is one of the indicated V YH(V,¥)'s and A is
the corresponding ¥ ¢ V YH(o,d) .

Case 1) We first observe that the V ¢H2(a,¢) in Sg
must belong to B, for otherwise a occurs both inside and
outside B, and hence [B3,P] implies that a occurs in F;
which in turn means that in P' B occurs in F', contradicting
our assumption. The fact that V ¢H2(a,¢) belongs to B implies
together with [B2.1,P] that the dim of v sz(a,w),'say Js
is less than i. On the other hand [Cl,P] requires that the
CRL ¢H1(¢,¢) in Sy belongs to some j-block, say B.

Suppose first that B does not occur in i ¢ V bH, (0, ¥) .
Then, as B occurs in ¥V le(V,¢), [D6,P] applied to B,

TV ¢H1(¢,¢) and V ¢H1(V,¢) implies

«) d(J;P) < d(Z o V YH (p,d);P) = d(Z ¢ ¥V PHy(p,d);P).
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[B4,P] applied to B,F and V $H, (0, $) implies the following:

6, (V dH,y(a,$)) < 6, (F)
and

6, (V ¥H (0, 9)) < 8, (F) if k > i + 1.
This implies

(m) 5,(T o ¥ YHy(0,9)) < 8, (F)
and

6, (T 0 ¥V YHy(0,9)) < 8, (F) if k > i + 1,

since ¥ ¢ v YH,(p,P) is of dim less than i. If vy is a sub-

stitution variable which occurs in F, then by [B4,P]

dpi(Y;V ¢H2(a,w)) < dpi(Y;F)
and

dp, (v;V $H,(a,9)) < dp (Y;F) for k > i + 1.
Therefore for any such vy

(n) dp, (v;Z @ v $H,(0,¥)) < dp; (Y;F)
and

dp, (v;T o ¥V $H,(0,$)) < dp (Y;F) if i + 1 < k.

Suppose Y 1is a substitution variable which does not occur in

Then
dp, (v;V $H,(a,9)) = 0 for all k > i,

which implies

(o) dp, (v;2 ¢ v PHy(@,¥)) = O for all k > i.




75

If Y 1is the eigen variable of a substitution Jo such that vy

occurs in B but not in F, then by [D6,P]
(p) d(J_;P) < d(F;P).

(0),(p),(n) and (m) satisfy the conditions 19)-4°) in Lemma
for Corollary 7) in §4 for B,F and ¥ ¢ V $H,(p,%) . Therefore
by Lemma, d(¥ ¢ V ¢H2<¢,¢);p) < d(F;P). Combining this with

(£), we obtain
d(J';P) = d(J;P) < d(E ¢ ¥V PH,(0,¥);P) < d(F;P) < d(F';P').

Suppose next that B occurs in & ¢ V ¢H1(¢,¢), and hence

in V $H1(a,¢). Then taking this as A in [D6,P], we have
d(J';P') = d(J;P) < d(J;F) < d(J';F').

Case 2) A is & ¢ V PH(p,¥) and A' is V PH(V,P)
(and B occurs in V).
Case 2.1) In P, A is a descendent of V $H1(V,¢).

Then, since A' belongs to B!', V¥ ¢H1(V,w) belongs td B by
definition. Therefore D6 follows from [D6,P] applied to B,F,J.
Case 2.2) In P, A 1is a descendent of V ¢H2(Q,¢).

If B occurs in ¥ $H,(a,$), then this follows from [D6,P].
If B does not occur in V sz(a,w) but occurs in V, then
the same argument as in Case 1) goes through.
In the following 6.6-6.9, we consider various cases where #
is 'second order V'. (See (10.1%).)
6.6. # 1is 'second order V', the cut formula is reducible

and the auxiliary formula of the boundary inference which
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introduces the cut formula under concern does not belong to any

block.

Suppose that P has the following form.

S | S Hl(a) S5 Hz(v),ﬂ1 - A

o 1 1’
JO
Sy Ty = 8y veH, (@ Sq4  VeHy(@), I, =~ Ay
S, T, = b,,VeH(9) S5 VoH(),0I, = A,
Sg Ta:llp = g5 4
S7 I's = 83

where Ié - A3(S7) is the i-loader of S;. It is obvious from
[D,P] that there is no substitution between S, and S, and
between S, and Sy which influences V ¢H1(¢)!and v ¢H2(¢)
respectively. Therefore we may omit the subsc#ipts 1 and 2.

Define P' as follows. (See (10.1.1%).)
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S I‘1 = b4,,H(a)
st Iy N H(a), Ay, VoH(Q)
sy, Ty = H(a),8,,70H(p) Sy VoH(p),0, = A,
8 Tglly = H@), 85, A
Sy Ty = H(a), A,
1"3 - AS,H(C(.) :
Jq -
Sg I3 = 43,H(V) sy HOW,O = A
T3, 0y = 8300
Sy T, = b8,,T0H(9) 810 V¢H(¢),H2,Té = b5, A,

Notice that J1

Tosllg, Ty = 85,03, A,

11 g:llgs 13 = 83,85, 4

applies to H(a) except J,.

is the new substitution and that no substitution
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Define a block B' and its entrance E' corresponding to
each block B of P and its entrance E as follows. None
of the indicated H(a)'s belongsto any block. The principal

formula of the substitution J i.e. H(V), does not belong to

1’

any block. Any other formula belongs to B' if and only if
its corresponding formula in P belongs to B. A formula in P!
which belongs to a block B' belongs to its entrance E!' if
and only if its corresponding formula in P belongs to the
entrance E of B. Recall that H(a)'s and the H(V) in Sg
do not belong to any block. 1In particular a formula in Ié
or A3 in one of the indicated places belongs to B' (E') if
and only if its corresponding formula in S, belongs to B! (E").
Now we shall prove that all the conditions are satisfied.
We omit all the easy consequences of the conditions on P and
the definitions.
C2 and C3 follow from the fact that for every formula A'
in P' there is a corresponding formula A in P such that A!
belongs to B' if and only if A belongs to B. |
Bl.1. Since the new H(a)'s and the H(V) in Sg do not
belong'to any block, we do not have to worry about them. If,
for example, a formula ré in 8y, belongs to B', then
by definition the corresponding formula in S7 belongs to B.
Therefore, again by definition the same formula of Ié in
any other indicated sequent in P' belongs to B'; also any
ancestor of it above S% belongs to B' since any ancestor

of the corresponding formula in S, belongs to B.

B1.2 - B2.2 and B3. The new formulas H(a)'s and H(V)
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are irrelevant to those conditions.

B2.3. The H(V) in S8 lies outside any block by definition.
Notice that to the H(V) in S§ corresponds the auxiliary formula
of a strong inference in P. _For any other strong inference
this follows from [B2.3,P].

B4. If a formula A' which is not in the end piece of P!
belongs to an i-block B', then the corresponding formula A
belongs to B in P, and A and A' are identical. Therefore
if B',A' and F' satisfy the condition in B4 for P', then
the corresponding B,A, and F satisfy the same condition for P.

B4.2. o is a new substitution variable in P'. However,
it is a non-substitution variable in P and hence by [B4.3,P]
dpk(a;A) =0 (= dpk(a;A')) for all k > i. But if a affects
a key principal formula F' of dim i in B', then dpi(a;F‘) > 1.
Thus dpi(a;A') < dpi(a;F') and dpk(a;A') < dpk(a;F') if k>i1i+ 1.
For any other variable, this follows from [B4.2,P] and the
definition.

B4.3. If B is not o and satisfies the condition for P!,
then it satisfies the same condition for P; hence by [B4.3,P]
dp, (B;A') = 0 = dp, (B;4) if k > i. dp,(a;A') = dp (a;A) =0
as in B4.2.

BS. We have defined the entrances.

B5.4. The cut formula H(V) in Sg does not belong to
any block. If the cut formula H(V) in S; belonged to B' - E',
then the corresponding formula in S3 would belong to B - E
by definition. Therefore by Corollary 2) the v ¢©H(p) in Sg

would belong to B - E. Hence by [B5.4,P] the V ¢H(p) in S,
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must belong to B ~ E, which implies that Hl(a) must belong
to B ([B5.2,P]), contradicting our major assumption. Thus,
the H(V) in S5 cannot belong to a B' - E'. For any other
cut formulas, this follows from [B5.4,P] and the definition.
Define d(J;P') = d(y ¢H(p);P) and d(J';P') = d(J;P)
for any other substitution J' in P', where J is the corres-
ponding substitution in P. Let L be d(Jl;P'). Define degrees
for semi-formulas in P' as D1 - D3. Then d(A';P') = d(A;P)
if J1 does not affect A'. Otherwise > holds.
D4. No formula under Si and S, except H(a)'s is
influenced by J,. J, does not affect H(a) since V ¢@H(p)

is reducible. Therefore by definition
d(H(a) ;P') = d(H(a);P) < d(V ¢H(p);P) = d(J,;P') (= ¢ ).

If there is a substitution J' Dbetween Si and S/},
then v @H(¢) is in the upper sequent of the corresponding J

between S1 and S, in P. So, by [D4,P],
d(H(a) ;P') < d(V oH(p);P) < d(J;P) = d(J';P').

Suppose there is a substitution J' Dbetween Sé and S%.
Then there is a corresponding substitution J between SG
and S7 in P and so its degree is greater than L, since S7

is the (-loader of S6' Therefore
d(H(a) ;P') < d(Y oH(p);P) = L < d(J;P) = d(J';P").

Let A be a formula in Ié or Az. Then d(A;P') = d(A;P) <

by [D,P], since S, is the L -loader of S;.
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Suppose there is a substitution J' between Sq and

S Then there is a corresponding substitution J in P

10°
between Sy and Sz. Let A' be any formula in the upper
sequent of J' and A be its corresponding formula in P.

If A occurs between S, and Sg, then by [D4,P]
d(A';p') = d(A;P) < d(J;P) = d(J';P').

If A is in ré or Ag, then, since ré - b (i.e. S7) is an

L ~loader os SG’
d(A';P') = d(A;P) < L = d(VoH(p) ;P) < d(J;P) = d(J';P').

Suppose there is a substitution J' between S11 and 812’
Then there is a corresponding substitution J between S6 and

S, and, since S, is the L -loader of S, a(J;p) > L.

7 7
Therefore if A' is any formula in ré or A3, then

d(A';P') = d(A;P) < [ < d(J;P) = 4(J';pP').

For any other substitution, D4 follows from the aﬁove
remark and [D4,P].

D5. d(Jl;P') = d(¥Y oH(p);P) = and 0 < ¢ < W1
by definition.

D6. Suppose F' is a key principal formula in an i-block
B'. Then the corresponding formula F belongs to B in P.
Suppose the eigen variable of Jl’ i.e. & occurs in a formula
A' in B' but not in F'. Then a does not occur in F
and A belongs to B, and hence a occurs in B. On the other

hand, Hl(a) does not belong to B by our assumption. Therefore,
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by [B3,P], o occurs in F, contradicting our hypothesis. There-
fore J1 does not apply to this case.

Suppose the eigen variable of some other substitution
J' occurs in an A' in B! but not F'. Then the eigen
variable of the corresponding J occurs in A in B but not
in F. So by [D6,P] d(J';P') = d(J;P) < d(F;P) < d(FL;P').

6.7. # is second order vy, the cut formula V @H(p)
is reducible, the auxiliary formula of the boundary inference
which introduces the cut formula under concern belongs to a
block, and, if io is the smallest number such that Hl(a)
belongs to an io-block Bo’ then Hl(a) does not belong to
its entrance. (See 6.6 for P.)

The entrance of Bo will be called Eo' P' 1is defined
exactly as in 6.6. The blocks B' and their entrances E'
are defined as follows, corresponding to the blocks B of P
and their entrances E. The H(a) in one of Si,...,Sé belongs
to an i-block B' (its entrance E') if and only if the
corresponding V ¢@H(p) belongs to B (E). The H(a) in one
of S§,...,S87 and the H(V) in Sg belong to B! (E') if and
only if the V ¢@H(¢p) in S, belongs to B (E). It follows
that, in particular, all the H(a)'s in Si,...,S%... and the
H(V) in Sg belong to B! - E| (cf. Corollary 2) of §4). Any
other formula belongs to a k-block B' (its entrance E')
if and only if the corresponding formula in P belongs to B
(B).

As for other cases, for every formula A' in ©P' there

is a corresponding formula A in P such that A' Dbelongs to
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a B' (E') if and only if A belongs to B (E). Therefore
C1-C3 follow directly from [C,P].
B2.3. It is our assumption that in P, Hl(a) belongs
to B - Eo’ which implies that the cut formula V ¢H(p) in Sq
belongs to Bo - Eo (cf. Corollary 2)), and so the cut formula
V ¢H(p) in Sy belongs to B, - E ([B5.4,P]). This in turn
implies that HZ(V) in S; belongs to B, - E, ([B1.1 and B5.2,P]).
Therefore by [B2.3,P] there cannot be a key subformula . of
dim i0 as an ancestor of Hl(a) or HZ(V)’ since these are
the auxiliary formulas of strong inferences. $So, there is no
problem about the auxiliary formula of Iy i.e. H(a) and
the cut formulas H(V) in Sg and Sé. Suppose there is a key
auxiliary formula of dim i (i # io) as an ancestor of the H(V)
in one of Sg and in Sé. Suppose one of them belongs to an
i-block, say B'!'. Then by definition Hl(a) in So or HZ(V)
in S3 respectively belongs to B in P. But those are auxiliary
formulas of strong inferences. Therefore in either case, if (Hl(a) or
H2(V)) must lie outside any i-block ([B2.3,P]). So, from the
above argument, neither H(V) in Sé nor the one in Sg can
belong to B'. For any other formulas this follows from [B2.3,P].
B4. Suppose A' and F' belong to an i-block B!
and satisfy the condition B4. Recall that it is assumed that A!
does not occur in the end piece of P', and hence the new H(a)'s
and H(V)'s are irrelevant. Also A' and A are identical
unless A' 1is in the end piece and B,A and F satisfy the
condition in B4.

B4.2. o is a substitution variable in P! but is a non-
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substitution eigen variable in P. Therefore by [B4.3,P],
dpj(a;A) =0 = dpj(a;A') if § > i.

If o affects F, then dpi(q;F) = dpi(a;F') > 1. Thus
dpi(a;A') < dpi(a;F’) and < holds for j =i + 1. For any
other variable, this follows immediately from [B4.2,P].

B5.4. Suppose the H(V) in Sg belongs to a B' - E'.
Then by definition the cut formula V ¢H(p) in S, belongs to
B - E; hence by [B5.4,P] the V ¢H(p) in S5 belongs to B - E.
Therefore by [B5.2,P] and [B1.1,P] Hz(V) belongs to B - E,
which implies that the cut formula H(V) in S} belongs to
B! - E'.

For any other formula, this follows from the definition
and [B5.4,P].

Define d(Jl;P') = d(V oH(p);P) (= L) and d(J+;P') =
d(J;P) for any other substitution J' in P', where J is the
correspoﬁding substitution in P. Define degrees for semi-
formulas in P' as D1 - D3.

D6. Let us consider J as the substitution in question.
Suppose B' is an i-block, F' is a key principal formula
of dim i in B' and o, the eigen variable of Jl’ occurs in
a formula A'(a) in B' but not in F'. Then the corresponding
formula of F',F, is a key principal formula (of dim i) in B
and is identical with F', and hence a does not dccur in F.

Case 1) 1i = io and B' is Bl - Then A,F and V ¢H1(¢)

belong to Bo and
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(*) B, FadV ¢H1(¢) satisfy the conditions on B,F,

-and A in Lemma of §4.

(*) is proved below. Applying Lemma of 84, we have
d(J ;P') = d(V oH, () ;P) < d(F;P) = (F';P').

Proof of (*). We must show that 1°) - 4°) in the lemma
hold.

1°) Let Y be a substitution variable (of J) in P.
If Yy does not occur in F, then since Hl(a) satisfies the
condition on A in B4 (Hl(a) is not a descendent of a key
principal formula of dim io), B4.3 implies dpj(y;Hl(a)) = 0,
and hence dpj(Y;V ¢H1(¢)) =0 if j > i.

2°) If Y as above occurs in Bo but not in F, then
d(J;P) < d(r;P) by [D6,P].

3°) If y as above occurs in F, then dp, (y;V ¢H1(¢)) =

dpio(y;Hl(a)) < dpio(y;F), and < holds for j zéio by [B4.2,P].
4%) 5, (V ¢H (a)) < 6, (F) and < holds for j > i by
[B4.1,P]. © ©
Case 2) B 1is an io-block, but not Bo. Then @ occurs

both inside and outside B in P, since Hl(a) belongs to B,-
Therefore by [B3,P] &« occurs in F, contradicting the assumption.
Therefore this case does not arise.

Case 3) B is an i-block, where i io’ and Bo is
included by B. Then A, F, V ¢H1(¢) belong to B. Similarly
to Case 1) we can show that the four conditions in Lemma are

satisfied for B,F and vy ¢H1(¢). Therefore
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d(Jl;P') = da(v ¢H1(¢);P) < d(F;P) = d(F';P').

Case 4) B is an i-block where i > i and Bo is not

o
included by B. This means that B N B 1is empty by [C3,P].
Then Hi(a) lies outside B, which implies,as Case 2), this
case cannot happen.

Case 5) 1i < io and B is included by B. Hl(a) does
not belong to B by major assumption on io' Therefore a occurs
both inside and outside B; hence by [B3,P] @ occurs in F,
contradicting the assumption. Therefore this case does not
arise either. Consider some other substitution, say J'.
Let B' be an i-block, F' be a key principal formula of dim i

in B' and A' be a formula in B' such that the eigen variable

of J' occurs in A'.

Case 1') Suppose A' 1is the H(V) in Sg -

Case 1.1') i = i,- Then B is B  and hence, as was proved in
the proof of B2.3, the H2(V) in S84
that the eigen variable of J occurs in B. Therefore by

belongs to B!, which means

[D6,P]
d(J';p') = d(J;P) < d(F;P) < d(F';P'").

Case 1.2') i > ige Since H(V) in Sg belongs to B',
B N B' 1is not empty, this implies that B N B is not empty,
and hence B_ is included by B due to [c3,P]. The H2(V)
in S3 belongs to Bo’ and hence to B. Therefore like in
Case 1.1'), d(J';P') < d(F';P).
Case 2') A' is any other formula. Then the corresponding

formula A and A' have exactly the same substitution variables.




87

Therefore by [D6,P] d(J';PY = d(J;P) < d(F;P) < d(F';P').

6.8. # is second order V, the cut formula is reducible,
the auxiliary formula of the boundary inference which introduces
the cut formula under concern belongs to some block, and, if io
is the smallest number such that Hl(a) belongs to an i -
block, say Bo’ then Hl(a) belongs to the entrance of Bo’
say E_. (See 6.6 for P.)

In order to define a suitable reduct of P, we need the
following lemma, which is originally due to Kleene.

Lemma. (Kleene's Basis Theorem.) Let H(a) be a semi-
isolated formula in which a is not tied by any second order
quantifier (cf. [5] for 'tied) and no second order ¥ occurs.
Then there exists a semi-isolated abstract, say vH(a)’ such
that the second order variable of it are only those which occur
in H(a) and distinct from o, and H(VH(a)) - ¥V oH(p) is SINN-
provable.

Recall that VYV ¢ Hl(w) in P is reducible. Therefore there
is a semi~isolated formula ﬁ(a,Bl,...,Bm)(without second
order &) and reducible abstracts Vl,...,Vh which start with
second order & such that H,(a) is ﬁ(a,vl,...,Vh). Notice
that o 1is not tied by any second order quantifier. Therefore

by the above Lemma, there exists a semi-isolated abstract, say

VHl(Bl

introductions of second order &, such that

,...,Bm) and an SINN-proof, say Q(Bl,...,Bm) (without

HOVy (BysoeesB)sByseeesBy) = 7 0fio, 8,00 0sBy)
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is the end sequent of Q(Bl,...,Bm). Then Q(Vl,...,Vh), or,
for short, Q, which is obtained from Q(Bl,...,Bm) by substituting
Vl,...,Vh for Bl,...,Bm respectively, is an &-admissible
proof in which there is not use of the rules, which introduce

second order ¥, where we assume that P is F-admissible.

Now define P' by using the above Q.

~
' ! ’
o 1 "

" Q f
St ry - Al,Hl(VH ) « 8 H (Vg ) = ¥V oH, (0)
o) 1 1
JO
S; Ty 787 oHy () :
S5 Ty = 8,V oH(0) Sy V¥ oH(p),0, = A,
Sé F2,H2 - AZ,A2

The blocks and the entrances are defined as follows. No
formula in Q belongs to any k-block if k < io. The .
¥V oH(p)'s in Si,...,Sé do not belong to any k-block if k < i .
Any other formula belongs to a k-block B' (its entrance E'),

where k < io’ if and only if its corresponding formula in P

belongs to B (E).

Let k > i . If in P the Hl(a) in S, belongs to a
k-block B, then all formulas in Q belong to B'. If the
Hl(a) does not belong to any k-block, then no formula in Q
belongs to any k-block in P'. Any other formula belongs to

a B' if and only if its corresponding formula belongs to B.
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Suppose the Hl(a) in S, belongs to a B. Then in Q
all formulas except the V ¢H1(¢) in S and its ancestors
belong to B' - E' and the v ¢H1(¢) in S and its ancestors
belong to E' if and only if the Hl(a) in S, (in P) belongs
to E. 1If Hl(a) in So belongs to B, then the Hl(VHI)
in Sé belongs to B! - E'. For any other formula A',A'
belongs to B' (E') if and only if A belongs to B (E).

It is easily seen that if a formula in Q@ belongs to a
k-block B', then the Hl(a) in S, of P belongs to B.

For any other formula A' in P', there is a corresponding
formula A such that A' belongs to B' if and only if A
belongs to B. According to the definition, Q@ does not contain
any key inference. Therefore Cl1 - C3 follows from [C,P].

Bl.1. Suppose v ¢H1(¢) in one of Si,...,Sé belongs to
a k-block B'. Then by definition k > io and the corresponding
v ¢H1(¢) and its ancestors in P belong to B, and hence by
[B1.1,P] Hl(a) belongs to B. So, by definition all formulas
in Q belong to B', which means that in P' all anceétors
of V ¢H1(¢) belong to B'. If the Hl(VHl) in S belongs to
a k-block B', then by definition k > io and a114formu1as
in Q belong to B'; in particular all the ancestors of the

Hl( ) belong to B'. Similarly for the v ¢H1(¢) in 8.

Vv
Hy
For any other formula this follows from [B1l.1,P].

All formulas in Q do or do not belong to a block simultaneously.
If the auxiliary formula of a logical inference belongs to Q,

then so does its principal formula. Therefore B1.2 and B1.3 are

easily proved.
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Since Q has no introduction of second order &, B2.1 and

B2.2 are easily proved.

B2.3. The v oH(p) in S, 1is the auxiliary formula of a
strong inference. If it is the descendent of the auxiliary formula
of a key inference of dim k, then the V ¢@H(p) in Sq (in P)
satisfies the same condition. Therefore by [B2.3,P] it does not
belong to any k-block; hence it does not belong to any k-
block in P! either.

B3. We may assume that a free variable in Q which may

occur somewhere else occurs in S or in H(¢), since we may assume

that V has only free variables which occur in H(p). Therefore

H
we may exclude Q from the consideration altogether, since all
formulas of Q do or do not belong to a block simultaneously.
Therefore this follows from [B3,P].

B4. Suppose B' is a k-block and B',A' and F' satisfy

the condition on B,A,end F in B4. Since A' does not belong

o
to the endpiece of P,A' 1is either A itself, A(VH ) or a
1 .

formula in Q.
First we deal with the case where A' is A or A(% ).
H
1
The corresponding formulas A and F belong to B (by definition),
and F' is F or F(% ). By [B4.1,P],
H
1

(8) 5, (A) < 8, (F) and 6j(A) < 5j(F) if k+1<3j<n.

B4.1. If o does not occur in A, then A' is A and

hence & (A') = 6 (A) < 8, (F) < 6, (F'), and < holds for k + 1< j

< n.
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Suppose @ occurs in A. Then by [B4.3,P] dpj(a;A) =0 if

k < j < n. Therefore by Proposition 1.6

(b) 6j(A') 6j(A(Vﬁ )) = max(éj(A),éj(VH ))

1 1

]

max (5. (A),6,(H;(0))) if k < j < n.

1f Hl(a) also belongs to the same B, then [B4.1,P] applies
to F and Hl(a) (cf. [B2.3,P]; hence 6k(H1(a)) < 6k(F) and
< holds if k + 1 < j < n. Therefore (a) and (b) imply
ék(A') < 6k(F) < 6k(F') and < holds if k + 1< j < n. If
Hl(a) does not belong to B, then o occurs both inside and
outside B in P. Therefore by [B3,P] a occurs in F. By
[B4.3,P] applied to any sub-semi-formula of F, say G,

dpj(a;G) =0 for all j if k < j < n. This implies that

(c) dpj(a;F) =0 if k+1<j<n and dp.(a;F) = 1.

Therefore by Proposition 1.6

(d) 5k(F') = max(ék(F),ék(VH) + 1)
and

1 = . .
6j(F ) max(éj(F),éj(VH)) if k+1<j < n.

From (a), (b) and (d)
5, (A1) < 6, (F)

and < holds if k + 1 < j < n.

B4.2., Suppose B is a substitution variable which affects

F' .
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Case 1) B occurs in F but not in Hl(a). Then by .

[B4.2,P]
dpj(B;A') = dpj(B;A(VHl)) = dpj(B;A(a)) < dpj(B;F)Ag dpj(B;F')

if j =k and < holds if k + 1 <J < n.

Case 2) B does not occur in F but & occurs in F and B
occurs in Hl(a), dpj(a;A) =0 if j > k as in B4.1, which
together with Proposition 1.7 implies

(e) dpj(B;A') = max(dpj(B;A),dpj(B;HI)) = dpj(B;Hl) = dpj(B;VHI),

since dpj(amHI) = 0. From (c) and Proposition 1.7 we have

I

dpj(ﬁ;F') = max(dpj(B;F),dpj(B;Hl) + 1) dpj(B;Hl) + 1 3

if j =k and = dpj(B;Hl) if k+ 1< j < n. Hence dpk(B;A') .

< dp, (B;F') and < holds if j > k + 1.
Case 3) B occurs both in F and Hl(a). Then by [B4.2,P]

(£) dpk(B;A) < dpk(B;F)

and < holds if k + 1 < j< n. If A does not contain a,

then dpj(B;A') = dpj(B;A). So we assume @ occurs in A.

Then dpj(B;A') max(dpj(B;A),dpj(ﬁ;Vﬁl)) as in (e) above.

First suppose @ occurs in F. Then the right hand side of

the above equation is < dpj(B;F') if j =k and < holds R
if k+ 1< j<n. (See the argument in B4.1 above.) Next

suppose a does not occur in F.

Case 3.1) Hl(a) belongs to B. Then by [B4.2,P] applied

to F and Hl(q)
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dpj(B;Hl(a)) < dpj(B;F) = dpj(B;F')

” if j =k and < holds if k + 1 < j < n. Combining this with
(f) and the equality in Case 3), B4.2 holds.

Case 3.2) Hl(a) does not belong to B. Then a occurs
both inside and outside B. Therefore by [B3,P] @ must occur
in F, contradicting the assumption.

B4.3. If B is a non-substitution eigen variable, then

it does not occur in VH and hence dpj(B;A') = dpj(B;A) =0

by [B4.3,P]. Suppose Bl is a substitution variable which does
not occur in F'. This implies that B does not occur in F.
[B4.3,P] applied to a implies dpj(a;A) =0 if k< j<n.
Also dpj(B;A) =0 by [B4.3,P] for such j. If o does not
actually occur in A, then dpj(B;A') = dpj(R;A) = 0. Suppose a
occurs in A.

Case 1) Hl(a) does not belong to B. Then a occurs both

inside and outside B. Therefore by [B3,P] a occurs in F.

So the assumption that F' (which is F(% )) does not contain

Hy

B means that Vy,  does not contain B. Thus dpj(B;A') =
1 .

dpj(B;A) = 0 follows from [B4.3,P] trivially.

Case 2) Hl(a) belongs to B. Then Hl(a) satisfies the
same condition as A. Therefore by [B4.3,P] applied to Hl(a),
dpj(B;Hl(a)) =0 = dpj(B;Vﬂl) and hence dpj(B;A') = dpj(B;A) =0
for all j > k.

Second case. (This can happen only if k > io.) A' is a

. _ o Biseoo,B
formula in Q. Recall that Hl(a) = H(a,B,,...,8) (L’ ’vﬁ)’

1,.00’
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where H is semi-isolated and Vl,...,Vh are reducible; if .

6(81,...,Bm) is a SINN-proof of ’I:I'(Vﬁ sByseeesB) =
: 1

A ¢ﬁ(¢,81,...,ﬁm), then Q is obtained from 6(61,...,Bm)
by substituting Viseeos V) for 81,...,Bm respectively. So,

the 6j of the formulas of Q are determined by Hl(a).

(*) 5j(A') < 6j(H1(a)) and dpj(B;A') < dpj(B;Hl(a)) for any j.

Since we'are assuming that A' ©belongs to B!, Hl(a)
belongs to B by definition. So F, H(a) and B satisfies
the condition of B4. Hence by [B4,P] and (*) above we obtain
the following.
B4.1. 6, (A') < 6 (H;(a)) < 4, (F) < 6 (F') and < holds
if k+ 1< j<n.
B4.2. dp, (B;A') = dp, (B;H,(a)) < dp, (B;F) < dp, (B;F')
and < holds if k + 1< j < n.
B4.3. dp;(B;A') < dp (B;H(0)) =0 if k< j <.
BS5. We have defined entrances. Let B' be a k-block
of P' and E’ be its entrance and let B be the corresponding
k-block of P and E be its entrance.
B5.2. For k < i
First part: Suppose V ¢oH(p) (call it D) in one of

this is obvious. Suppose k> io.
S}s---»85 Dbelongs to E'. Then by definition and [B5.2,P] the
corresponding VYV ¢H(p) and its ancestors belong to E, which

implies that Hl(a) belongs to E. So, by definition V @H(p) R
in S and all its ancestors belong to E'; therefore all

ancestors of D belong to E'. If we started with a formula
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in Q, then the entrance is so defined that all its ancestors
belong to E'. For any other formula, this follows from [B5.2,P].

Second part: Suppose an ancestor of the V ¢H(¢) (in §S)
in Q belongs to E'. Then by definition Hl(a) belongs to E
in P and so all its descendents in Q belong to E'. By
[B5.2,P] any descendent of Hl(a) which belongs to B belongs
to E. So any descendent of the V ¢H(¢p) in S which belongs
to B' Dbelongs to E'. For any other formula, this follows
from [B5.2,P] and the definition.

B5.3. If k < io’ then Q 1is irrelevant. For Kk = io,
Hl(VH) in Sg belongs to E!, since Hl(a) belongs to E_ by
assumption. If k < io, then Hl(VHl) does not belong to any
block since Hl(a) does not. §So this is also irrelevant.

Suppose k > io'

Case 1) The Hl(a) in S, belongs to E. Then V¥ ¢H1(¢)
in S and all its ancestors belong to E' by definition; hence
those formulas are irrelevant. If a formula in Q belongs
to B' - E! tﬁen it disappears within Q, which impliés that
all its descendents belong to B' - E', Hl(VHl) in S' as
well as all its ancestors belong to B' - E'.

Case 2) Hl(a) in S, belongs to B - E. Then all the
formulas of Q belong to B' - E'. Also V @H(p)'s in Sys+--58)
belong to B' - E' since the corresponding formulas in P belong
to B - E (cf. [B5.3,P] applied to H, ().

Case 3) The Hl(a) does not belong to any block. Then all

formulas in Q 1lie outside any block and so do the descendents

of V¥ ¢H1($).
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B5.4. Suppose the Hl(VH ) in S, Dbelongs to B' - E'.
1
This originates in the fact that Hl(a) in S, belongs to B.

Then by definition the Hl(vH ) in S belongs to B' - E'.
1
Conversely, if the Hl(VH ) in S belongs to B' - E', then
1 ‘
the only possibility is that Hl(a) belongs to B; hence the

Hl(VHl) in Sé belongs to B' - E',.

For the cut formulas within Q, this holds by definition.

Define d(J';P') = d(J;P) for every substitution J' of
P', where P is the corresponding substitution of P. Notice
that P and P' have exactly the same kinds of substitutions
since Q 1is substitution-free.

Define d(A;P') as D1 - D3. If A' 1is identical with its
corresponding formula A in P, then d(A';P') = d(A;P). If «

actually occurs in A and A' is A(% ) then d(A;P) < d(A';P').

1y

D6. First suppose k < io. Let B' be a k-block of P!
and F' is a key principal formula of dim k which belongs
to :B'. Suppose the eigen variable of a substitution J
occurs in a formula, say A', in B' but not in F'. Let A'

be A(% ) where A is the corresponding formula of A' in
H
1

P and F' Dbe F(% ). Then by definition A and F belong
H
1

to B. Let B be the eigen variable of J' (and so of J).

The assumption implies that

1°. B does not occur in F, and

2°, Either a does not occur in F, or a does occur in

F but B does not occur in VH .
' 1
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1° implies that J does not affect F.
Case 1) The eigen variable of J occurs in A (in P).

Then by 1° above F,B,J and A satisfy the condition D6 for P.

Therefore by [D6,P]
d(J';P') = d(J;P) < d(F;P) < d(F(VH );P!).
1
Case 2) The eigen variable of J does not occur in A
in P. Then a occurs in A and B8 occurs in VH since
1
the eigen variable of J' occurs in A'. This implies that A8
occurs in V ¢H1(¢), and hence J affects V ¢H1(¢) in P.
Case 2.1) Hl(a) belongs to B in P. Then the eigen

variable of J occurs in B but not in F; thus by [D6,P]
d(J';pP') = d(J;P) < d(F;P) < d(rF';p').

Case 2.2) Hl(a) does not belong to B. Since o actually
occurs in A, a occurs both inside and outside B. Therefore
by B3 o occurs in F. Then by 2° B does not occur'in VH R
contradicting the assumption of Case 2). Therefore this case1
is impossible.

Next suppose k > io. If the eigen variable of a substitution
J!' occurs in a formula A' in Q and Q is included by a k-
block B', then, as Hl(a) belongs to B and we may assume
that a substitution variable B occurs in Q only if it occurs
in S, in P we may take Hl(a) as A. Hence by [D6,P]

d(J';P') = d(J;P) < d(F;P) < d(F';P'). (Recall that F' cannot

belong to Q.)
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6.9. #  is second order YV and the cut formula is non-

reducible. Let P be of the following form:

’ .
LI .«

S T, = 8,H,(a) S4 Hy(V),0, = A
JO

S, Ty = 8y,70H, (@) Sy VoHy (@), T = A

S, Ty = 8,5, VoH(p) S5 voH(0), I, = A,
J

S¢  Taslly = 8gshy

Notice that there is no substitution between S1 and S2
and between S4 and SS'

Define P' as follows in terms of the following subproofs

P1 and P2.




P.: !

1° oo
S! I‘l-'Al,Hl(V)
s r1~H1(V),A1,V¢H1(¢)
s}, Ié*H(V),Az,VwH(¢) Sy,  VeH(p),I,~A,
S& 1"2,n2-°H(v),A2,A2
TysTy=bg, Ay, H(V)
Py: :&
8y H,(V),0=A
S Vo), T, (DA,
Sg  Tyby, VoH(p) Sy VeH(p),T,,H(V)=A,
sy T, 0y, H(V)=4,, A,
HOV), T, Mp=hgs Ay
p':
Py Py

7 Tl Toslly = 8o, Mg, 85, A,

1"2, Hz - Az,Az

’
.

e d
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For every i-block B (its entrance E) of P, the
corresponding i-block B' (its entrance E') of P' is
defined as follows. The H(V) in one of Si,...,Sé and of
S&,...,Sé belongs to B! (E')Aif and only if its corresponding
Y ¢oH(p) belongs to B (E). The H(V)'s in one of Sgs+.- and
S§s ... belongs to B! (E') if and only if the V ¢@H(p) in 85
and S& respectively belongs to B(E). Any other formula
belongs to B! (E') if and only if its corresponding formula

belongs to B (E).

B3. We may assume that neither y nor H1(¢) contains
any non-substitution eigen variable. Therefore a non-substitution
eigen variable of P' occurs in a formula A' in P' if and
only if it occurs in its corresponding formula A in P.

B4. Suppose B' is an i-block and suppose A',B' and
F' satisfy the condition in B4 for P'. Let A and F
correspond to A' and F' respectively (in P). Then A!

is A or A(%) and F' is F or F(%). B,A,F satisfy

the same condition. Hence [B4,P] holds; in particular,

(a) dp (a;4) =0 if i< k< n; 6;(8) < 6;(F) and < holds

for j > i ¥ 1.

B4.1. We only have to deal with the case where a actually

occurs in A.
Case 1) Hl(a) belongs to B in P. Then v ¢H1(¢) in

S, belongs to B by [B1.3,P]. This implies that it belongs
to B - E, since it is non-reducible (cf. [B5.5,P]). Therefore

all v ¢oH(p)'s under S, belong to B - E by [B5.3,P], in
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particular the one in SZ’ which implies together with [B5.4,P]
that the Y @H(¢) in Sy belongs to B - E; hence the HZ(V)
belongs to B ([B1.1,P]). Due to [B2.3,P] Hz(v) cannot be

a descendent of a key principal formula of dim i. Therefore
HZ(V) satisfies the condition of A in B4 for P; thus, by

[B4.1,P] applied to Hz(V),

(0)  6,(V) < 6,(Hy(V)) < 6.(F), and £ holds for i + 1<k < n.

(a) and Proposition 1.6 yield
(c) ék(A') = max(ék(A),ék(V)).
From (a), (b) and (c) we obtain
8:(A1) < 8;(F') and 6,(A") < &, (F')

if i +1<j<n.
Case 2) Hl(a) does not belong to B. Then [B3,P],
[B4,P] and Proposition 1.6 applied to A and F as well
as [B4,P] applied to a subformula of F and F imply B4.1.
Suppose B 1is the concerning eigen variable in B4.2
and B4.3. Then B4.2 and B4.3 are proved for B8 by applying
[B4,P] for a and B as well as [B3,P] for «.
B5. For every block B' (of dim i) we have defined its
entrance E', corresponding to B and its entrance E.
B5.2. The only crucial fact for this case is that, due

to [B5.5,P], V ¢H1(¢) in S does not belong to any entrance.

1
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B5.4. Suppose the cut formula H(V), in Sg belongs to
a B' - E'. This means that the V ¢H(p) in S, belongs to
B - E by [B5.3,P]; hence the V ¢H(¢p) in S, belongs to .B - E
by [B5.4,P]. _

B5.5. Notice that if H(V) is non-reducible then so
is YV @H(o).

Assign to every substitution J' of P' the degree of
the corresponding substitution J of P. Define d(A';P')
for all semi-formulas in P' as D1 - D3. d(A;P) = d(A';P')
if A 1is identical with A', since, in that case, a substitution
J' affects A' if and only if J affects A. < holds if
At is A

D4. There is no substitution between S1 and SZ’ and
between S4 and S5, since V ¢H(¢) is non-reducible. (See
[D2,D4 and D5,P].)

6.10. # is ~]. Suppose P is of the following form.

P: . o
S, ApTy - Sy I = A
S, Ty =y, Ay S5 Aprlly = 4y
S, Ty~ b, A Sg AT, = A,
J




Define P' as follows.
P1: '
8, ApL =4,
S'2 I‘l,Al -' Al, "7A1
s} T,.A = b,, 7A Sg 7,0, = A,
5, TpA,0, = 8y, A,
87 AT, I, = Ay A
P2:
1 -
8y Oy = ApLAy
S'5 7A2,II1 -' A2,A1
S, T, ~ by, 7A sS4 78,0, = A, A,
87" To,lly = A 05, A,
S Tl = 8y, A,
P':
P; Py
Sg Tosllgs Py, g = 85,485,805, A
Sg Py, 0y = D5, A

Ll
.

—
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Define the blocks and the entrances of P' in a natural
way.

B5.5. Suppose, for example, the A1 in Sé is non-
reducible and belongs to E'. This Al is in the left hand
side of a sequent. This means that the '7A1 in 82 belongs
to E. By assumption 7 A 1is non-reducible. [B5.5,P] requires
that '7A1 must have a form V’¢>—7v¢-7 G, which is impossible.

So, the A in Sé does not belong to any entrance if it is

1
non-reducible.

To each substitution in P' assign the same degree as
the corresponding substitution in P, and define d(A;P') as
in D1 - D3. Then d(A';P') = d(A;P) or d(A';P') = d(A;P) - 1
in case A is 7A'.

D4. If an A, or its descendent X is in the upper

sequent of a substitution in P', then the corresponding 7A1

or 77X is in the upper sequent of a substitution in P.

Therefore
d(&;p') < d(7%;P) < d(J;P) = d(J';P') by [D4,P].

6.11. # is A. See 10.2*. Define P! as in 10.2* and
define its blocks and entrances naturally.

6.12. # is first order y. Similarly to 6.11.

§7. The consistency proof. In order to complete the proof
of Theorem 1.3 in §5, we now assign the o.d.'s of the system

o(aP+1+1,aP(n+1) + 1) to the proofs with degree of dim n, where

n > 1.
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Note. We do not include n = O (namely the SINN-proofs) here.

Definition 1.19. Let P be a proof with degree of dim n.
The o.d.s are assigned to the sequents in P in the same
manner as 6.1 - 6.8 of Chapter 2 in [5] by reading WS
in place of w except the cases where the concerning inferences
are the reducible, second order V in the succedent and the
second order & in both sides. We shall give a precise definition,
although most part is overlapping with [5].
1) The o.d. of an initial sequent is O.

2) If S, and S, are the upper sequent and the lower

1 2
sequent respectively of a structural inference, then the o.d.

of S2 is equal to that of Sl'

3) If S and S are the upper sequent and the lower

1 2
sequent respectively of one of the inferences ~/,A in the

antecedent, first order YV, non-reducible second order vy in
the succedent, second order ¥ in the antecedent, explicit,
second order & in the succedent, or explicit, second order
V in the antecedent, then the o.d. of S, is (P*1:0,0),
where o0 1is the o.d. of Sl'

4) If S and S, are the upper sequents and § is

1
the lower sequent of an inference A 1in the succedent, then

the o.d. of S is (uP+1;O,01 # 0,), where oy and o, are

the o.d.'s of S and S2 respectively.

1

5) If S and S2 are the upper sequent and the lower

1
sequent respectively of an implicit second order V in the
antecedent, then the o.d. of So is (aP+1,a + 2,0), where a

is the grade of the auxiliary formula and ¢ is the o.d. of Sl‘
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6) If S and 82 are the upper sequents and S is

1
the lower sequent of a cut, then the o.d. of S is (aP+1;a+1,01#02),

where a is the grade of the cut formula and 01 and Oy
are the o.d.'s of S1 and S2 respectively.

7) If S and S2 are the upper sequent and the lower

1

sequent respectively of a substitution with the degree i,

then the o.d. of S 1is (i;0,0), where O is the o.d. of Sq-
8) 1If S1 and S,

sequent respectively of an induction, then the o.d. of S2

are the upper sequent and the lower

is (aP+1;a + 2,0), where a is the grade of the induction

formula and ¢ is the o.d. of Sl'

9) Let S and S be the upper sequent and the lower

1 2
sequent of a reducible, second order V in the succedent.

9.1) The auxiliary formula of the concerning inference
belongs to a block. Let i be the smallest number such that
the auxiliary formula belongs to an i-~block. Then the o.d.
of 8, is (uP+1;w(n+3)+(n-i),o), where o is the o.d. of §,.

9.2) The auxiliary formula of the inference does not
belong to any block. Then the o.d. of S, is (d'1;0,0),
where ¢ is the o.d. of Sl'

10) Let S1 and S2 be the upper sequent and the lower
sequent of an implicit second order ¥ in the succedent. The
o.d. of S, is (aP+1;a + 2,0), where a is the grade of the
auxiliary formula and o is the o.d. of Sl'

Notice that the grade of any formula is less than aP+3,

and hence is less that w(™*3)*+(0=1) por 211 1 < i< n (cf.

9) above). The o.d. of a sequent S in P may be denoted
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by o(S;P), or for short o(S). The o.d. of P is defined
as the o.d. of the end sequent of P. 1In passing, we call the m
in (i,m,a), where (i,m,a) is any part of an o.d. B, a second
element of B.
Concerning the Y-degree, Proposition 1 and its corollary
in Chapter 2 of [5] can be easily proved for our present version
of Y. If we read aP+1 instead of w in the lemmas in
Appendix to 10.1.1.2 of 84 of [5] (i.e. 10.1.1.2%), then all
arguments there go through for the modified version of those
lemmas. We shall distinguish those modified lemmas by putting ¥;
for example Lemma 1* corresponds to Lemmal!in Appendix to 10.1.1.2%,
Now we must show that the o.d. of the proof decreases
when a reduction as §6 is performed. Since the proof is basically
the same as that for SINN in [5], we shall only note some
crucial points. We quote the numbering in §6. In most cases
it is a direct consequence of the definition of blocks that
9.1) in Definition 1.19 does not arise anew after reduction;
hence the second element of o.d.'s do not increase. |

6.5. Put o(So) = p, o(Sy) = p, o(s3) =2, o(8;) =1,

I

o(Ss)
o(Sé)

v and o(®) = ¢ in P. Similarly in P' put

I

u', o(Sé) =p', o(85) = A, o(8)) =171', o(Sy) = V!
and o(~) = o'.

Notice that Y(A(V);P') = Y(A(a);P) and v(A(V);P') < v(A(a);P)
for any formula A(a) above Sg which contains o. Therefore
g(A(V);P') < g(A(a)) for such formulas, and g(A';P') = g(A;P)
for any other formulas A'. Thus follows A! SJK for all j.

Similarly we can show that p' = pu.
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In order to show o <o o it suffices to prove V! <j v

for all j.

v =(ap+1;m+1,p#7)

and
V! = (uP+1;m'+1,(aP+1;m+1,p#T)#(aP+1;m+1,p'#T)),

where m' = g(V PH(V,9);P) (= g(V YH(V;y);P') and
m=g(Z o ¥V PH(p,P);P) (= g(¥ ¢ V PpH(p,P);P')).

The crucial fact is m' < m, which follows from Corollary 6)
in 84 (i.e. 2(V YH(V,¥)) < (L ¢ v YH(p,¥))), for both
formulas take value O for Y and v. From this and Lemma 1%
follows V! <j v (cf. 10.1.2%),

6.8. As in 6.5, we can easily prove that for any A’
in P', g(A';P) < g(A;P), where A corresponds to A'. Since
Q is not included by any k-block if k < io’ every second
element of the o.d.s of any sequent in Q@ 1is less than afn+3)+(n-io).

We should also recall that the grade is less than uP+3. Let q

be o(S;P'). Then

o(8y;P') = (uP+1;g(H(VH))+1,xn#q) < (ap+1;“fn+3)+(n-io),x)

O(Sl;P)

for all j (cf. Lemma 1) in 2.6 of [7]). (This is the most
crucial point.) Therefore Lemma 1* applies and o' <j o is

proved as in 6.5.
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§8. The well ordering of O(I,A). In 87 we carried out the
consistency proof of Dn by the help of transfinite induction
along <o’ which is the ordering of O(uP,uP) with respect to
0. Therefore now the problem is to see what is necessary in
order to prove the well ordering of O(«’, ") for each n.

We shall, however, state a more general theorem first.
Theorem 1.5. Let I and A be primitive recursive sets (of
natural numbers) with primitive recursive well orderings <I
and <, respectively, and 0(I,A) be the system of ordinal
diagrams (o.d.) based on I and A. Then the well ordering
of O(I,A) for each member of I or the maximal element is
proved in the system which is obtained from SINN by adding to it
the principles of transfinite induction along <I and <A
and the semi-isolated inductive definitions along <I'

As for the systems with inductive definitions, one should
refer to Chapter 4 of [5]. Since the proof of the theorem is
similar to the argument in [4], we shall not present the
detailed computation, which is routine and straightforﬁard,
but shall only discuss the theorem in a more precise manner.
Let us introduce two new predicate constants A1 apd A2,
where Al(i,a,B) is to be interpreted as "a is an i-fan with
respect to B" and A2(i,a) is to be interpreted as "a is
i-accessible" (cf. [4]). By simply arithmetizing the theory
of o.d.s, we can easily define two semi-isolated formulas G1
and G2 which express the intended meanings of A1 and Az,

where G1 contains neither A1 nor AZ’ while G2 may contain
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A (One might see a hint of this in [2].) Thus we add the

1.
following two inductive definitions to SINN as the initial

sequents:

A (,a,85) — G (3,84, (x,y}(4,(x,y,4,)) A x < 1))
and

Ay(i,a) = Gy(d,a, {x,y}(Ay(x,y) A x <; ).

Furthermore permit TI(I) and TI(A), which read 'the trans-
finite induction along <I'and 'the transfinite induction
along <A' respectively, as the initial sequents. Then the
accessibility of O(I,A) with respect to <i for each i,
where i 1is a member of I or i is o, is formulated in
a second order formula and is proved in the above presented
system.

We should remark that if the transfinite induction along <I
and <A are provable in SINN, then the latter two initial
sequents can be eliminated, and thus it should be emphasized
that for the case of our concern, viz., the case where 'I = off
and A = ap, it suffices to assume the system which is obtained
from SINN by adding to it the semi-isolated inductive defini-

tions along o,

§9. The semi-isolated inductive definitions along o', We
begin this section with the following two remarks. Let F
be the set of provably—A%—abstracts of dim m. Then an F-
abstract or an F-formula (cf. Definition 1.6) is called

essentially provably-A; of dim m. If in the definition of Dn

»
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in 81 .we permit essentially provably-A1 abstracts of dim < n
as the comprehension abstracts, then tﬁe resulting system is
actually equivalent to Dn' Therefore in the following we
shall identify those two systems.

Although the following theorem is concerned with the semi-
isolated inductive definitions, we only have to show the
definability of Hi-inductive definitions in the under mentioned
system, since the semi-isolated inductive definitions can be

1

1 (and arithmetical inductive definitions by

obtained from Il
substitutions).
Theorem 1.6. Let n > 1 and (aP,-J ) be the standard well
ordering of natural numbers whose order type is uP. Then the
semi-isolated inductive definitions along (uP, —~ ) (cf. Chapter
4 of [5]) can be defined in the system PA% (cf. 81).

Proof. We shall prove that for each n > 1, the Hi-inductive
definitions along (", <) can be defined in the system D,
(cf. §1). Notice that («f', <) can be regarded as the lexico-
graphical ordering of ordered n tuples of numbers. Let us
fix n and first introduce some notations.

Notation. 1) xn,... and an,... stand for series of n
bounded and free variables respectively, and hence (xn),...

and (an),... stand for ordered n tuples of such variables.

2) Let < denote the lexicographical ordering of ordered
(x )

n denotes an abstract of the

n tuples of numbers. Then «
form {u")((u™) < M A a[u"D.
3) G(b™,B) be an arbitrary semi-isolated formula with the

indicated occurrences of b" and B. Then F(a,a™) is the
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abbreviation of a formula of the form y x7((x") < (a") o
af[x?] = G(xn,a(xn))), where V x" stands for V Xy oeee VX .

We are concerned with the inductive definition along |
(«, <), where the basis for the inductive definition is a
formula like G above. The argument goes as follows. For
every 1 such that 1< i < n, the following are provable
i-1°

(3.1) F(a,an"l,a,ol-l) - d wF(w,an-l,a+1,01_1),
where O' stands for 0,...,0.

1
(4.1) F(a,a™ t,0M) = v y* 2 oF(p,a"" 1, yh).

Then from (3.n), applying induction on b,

(5) v vy & @F(p,y,0™ ) | '
and, from (4.n),
(6) F(a,0™) = v y® & oF(p,y™).
(5) and (6) yield
(7 vy & oF(p,y")
in Dn-l'
Define A(an'l,b) as I w(F(w,an_l,b+1) A ¢[an'1,b]). .

Our last task will be to show that

(8) A is essentially provably-A;
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and
n
(9) AGa®) — c(a®,a®))

in Dn from (7). This completes the proof of the theorem.

Now we proceed to the detailed argument.

(1.1) F(a,a™) ,F(8,a™), ®") < (@™ - «[b"] = B[b"]
and
(1.2) F(a,a™, (0™ < (2™ - F(a,p™)

are provable in some elementary, second order arithmetic.

Define E(a,ﬁ,an'l,b) as
v yR8[y"] = [((™ ™ L,p) A aly"D

v (( n, _ n-1 n (yn)
y) = (a ~,b) AG(y ,a )11

Then

(2.1) F(a,a"1,b),E(a, B,a" 1,b) ~ F(B,a" 1, b+1)
and -
(2.2) Vo &y Elp,b,a" 1,b)

are provable in SINN (or Do)‘

(3.i) and (4.i) are proved together by induction on i.

(3.1) F(a,an"l,b) - & wF(¢,an_1,b + 1)
follows from (2.1) and (2.2) (in Do).
(4.1) F(a,2"1,0) -~ v x @ oF(p,a™ 1, %)

follows from (2.1) and (2.2) (in Do), using induction on b

n-1
b

applied to ¥ @F(op,a b).

HUNT LIBRARY
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Assume now that (3.i) and (4.i) have been proved in Dy _q-

We must deduce (3.i+1) and (4.i+1) in Di‘

n-(i+1) n-(i+1)

(3.i+1) F(a,a ,a,oi) - I oF(p,a ,a+1,01).

(3.i+1) is proved by the following procedure. Consider two
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abstracts U and U' which are defined as follows.

U MR, a™ D a0t A (M < (@2 3D ai1,0h)
> 8 o(Flp,y"™ D x,y41,0% ) A o[y* D) x,y,0871]) ]

and

U {yn}[F(a,an'(i+1),a,oi) A (yn)-<(an'(i+1),a+1,oi)

oV (P(F((P’yn-(1+1);x’y+1:01_1) > w[yn-(l-'-l)’x:Y:ol_l])]’

where x and y are the (n - i)th and (n - i + 1)th variables
in yn. As a consequence of (1.1), (1.2) and (4.i),

1°. v x"(w&™ = ur(x™)) is provable in D, _q-
From 1° we can show that

2°. there is an essentially provably-A; abstract of

v(xh) = U (x)

dim i - 1, say V, such that vy x"(U(x™)
is Di_l-provable.

In order to prove (3.i+1l) it suffices to show

n~-(i+1) n-(i+1)

3°. F(a,a ,a,Ol) - F(U,a ,a+1,01)

in Di’ since then U can be replaced by V, which is the

essentially provably-A; abstract of dim i - 1 obtained
in 2°. 3° is proved by using (1.1),(1.2) and (4.i).

From (3.i+1) we have

-(i i - (i i
c! ‘PF(‘P:an (1+1):a,01) - 4 ¢’F((P:a'n (1+1)’a+1:0 ),

is Di-provable, from which follows
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4°, C! ¢F(¢,an_(1+1),a,oi).

(4.i) implies that

59, q ¢F(¢,an'(1+1),a,01) - ¥ x'@ ¢F(¢,an'(i+1),a,xi)

is D, ,-provable. 4° and 5° yield (4.i+1).
Finally we shall deduce (8) and (9) from (7). It is

easily seen that (1.1) and (7) imply

1

A(an'l,b) — ¥ o(F(p,a™ ", b+1) D w[an'l,b]),

and hence, similarly to 20, we can show that

(8) there is an essentially provably-A; formula of dim n -
say &, such that A(a"1,p) — K(2""1,b) is D__ -provable.

(7) also implies
o n n , (0"
6. A(0") - G(0,A ).

On the other hand, (1.1) reinforced with the comprehension

axiom applied to A, which is an essentially provably—fdrmula

obtained in (8), implies

o n-1 n-1 n (a.n'1 b)r_n

7°.  F(A,a" 7,b),F(B,a ,b+l) =V x (B P [x]

n-1
= A(a ’b)(xn)),

which is provable in Dn‘ It is a matter of routine to deduce

o n,,_n n n n ,(a"

89. Vv x((x)< (a”) o [A(x") = G6(x ,A 1)

n
- [a@™ = G(an,A(a )1)
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from 7°. 6° and 8° enable us to apply n-induction on (a™)
n
to the formula A(a™) = G(an,A(a )), thus yielding (9) and

completing the proof of the theoren.

§10. Conclusion.
Theorem 1.7. Let Un be the order type of O(«,u) with
respect to its ordering <o’ Then the ordinal of the system

PA%,

comprehension axiom, is the limit of Un for all n < w.

i.e. second order arithmetic with the provably-Aé

Proof. From Theorem 1.4, the remark after Theorem 1.5 and Theorem

1.6.
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CHAPTER II
The Ordinal of Second Order Arithmetic with the A;-

Comprehension Axiom

811. A revised version of the consistency proof of second
order arithmetic with the Hi-comprehension axiom and the
extended inductive definitions.

In Chapter 4 of [5], Takeuti presented a consistency
proof of second order arithmetic with the H}-comprehension
axiom and the extended inductive definitions, using a system
of o.d.s 0(0({0o},1_) U {E},N(I_)) (cf. 8 in Chapter 4 of

[5]). This system of o.d.'s is, however, unnecessarily large

and we can improve the result: the consistency of the system

I I I
is proved by using the system of o.d.s O(w ® @© @y,

+ 1,w s W w
Since most of the definitions in [5] may be taken over, we shall
only demonstrate how to modify the original method. We shall
quote the item numbers in [5] by adding asterisque. Thus, for

example, 4.3*% denotes 4.3 in Chapter 4 of [5]: Proposition 2%

denotes Proposition 2 in Chapter 4 of [5]. We denote the ordering

I
a’oo by simply <.

11.1. The rank is defined as in 3%*.

Corollary. Let B and C be arbitrary two formulas in which
Am and A occur respectively. Then r(Am:B) <a> r(An:C)

if m < n.

11.2. The Y-degree of a quasi-formula is defined as a
I . -
number less than w®. The definition is like in 4%, replacing #0




118

by + 1, -except the following cases.
4.3, If A 1is of the form An(s,t,V) A s <* i, then

r(A_:A)
y(A) is Y(V) + o 0 * 1.

4.6, If A is of the form An(s,t,V), then v(A) is

(A _:A)
Y(V) + w B .

Corollary. Let [xl,...,xn}H(xl,...,xn) be an abstract and

SqsecesS) be arbitrary terms. Then
Y(H(sl,...,sn)) < Y({xl,...,xn]H(xl,...,xn)).

Lemma 1. If G(B,a) is a semi-isolated quasi-formula (allowing
other free second order variables as well) which contains none

of An’An+1""’ s 1is a constant for which 1I(s) is provable,

and V 1is an arbitrary abstract which is not semi-isolated,

then

r(A. :B,)
k Jy .4

Y(G(V;AS (M) < Y(V) + T w +m
1=1
for some jl,...,jk < n, some formulas Bl"“’Bk’ and for a
number m, where Aﬁ(V) is an abbreviation of {x,y](An(x,y,V) A
x <* s), and r(A, :BL) <r(A :A) for 4 < k. We omit the
Jy, n n -
proof of this lemma as well as of any subsequent lemma in this
section, since it is all a routine computation.
Proposition 2*¥, If s is a constant for which I(s) is

provable, V is not semi-isolated and Gn(a,b,a,B) is as in

1.2.2%, then

S
Y(G,(s,t,V,A (V))) < v(A (s,t,V)).
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Proof. As a special case of Lemma 1,

r(A. :By)
s Je
Y(G(V,An(V))) <Y(V) + T w + m,
e
where r(A, :BL) <r(A :A) and m < w. On the other hand
g n"'n :
T(An:An)
y(An(s,t,V)) =y(V) + w . Thus follows the proposition.

11.3. The conditions on the degree are given as in 5%

with the following modifications. The degrees are assigned

1
from ww + 1.

5.2.2%, If A is implicit and not semi-isolated, then d(A)

I

is u:oo.

5.2,3.3¥*, If A is of the form An(s,t,V) A s <* i,
then d(A) is
r(A _:A)

max(d(V),d(J)) + w 2
J

+ 1,

where J ranges over all the substitutions which affect A.

5.2.3.6%, If A is of the form An(s,t,V), then d(A)

r(An:A )

is max(d(v),d(J)) + w , where J ranges over all the

substitutions which affect A.
Lemma 2. Suppose G(B,a) is a semi-isolated quasi-formula whose

only free f-variables are B and a, and which contains none

of An’An+1""' Assume also that i 1is a constant for which
I(i) is provable. If V is semi-isolated, then
; X r(Aj*:BL)
d(G(v,A (V))) < max(d(V),d(d)) + I w ’ + m,

J 1=1




120

for some jl""’jk < n, some Bl""’Bk’ and a number m,

where j < m, r(Aj :BL) <Oo r(An:An) and m < w, and J ranges

4
over all substitutions which influence V.

As a special case of Lemma 2, we have
Proposition 4%. Suppose An(i,t,V) is semi-isolated (i.e. V

is semi-isolated), and i 1is a constant for which I(i) is

provable. If either

. . . i
I(l):An(ls t,V) i Gn(ls t,V:An(V))
or

I(i),Gn(i,t,V,Arll(V)) - A (i,t,V)

is an initial sequent in a proof with degree, in which An(i,t,V)

is implicit, then

ae, (i,t,v,AL (V) < d@_(,t,).

I
11.4. The norm of a quasi-formula is assigned from u)oo,

in the same manner as in 6%, although #0 in 6* is replaced by
+1 here and 6.3* and 6.6* are slightly changed.

6.3*, If A 1is of the form An(s,t,V) A s <* i, then

r(A _:A)
n(A) is n(V) + w R + 1.
6.6, If A is of the form A (s,t,V), then n(A) = n(V)
n
r(An:A)
+ W )

Lemma 3. If G(B,a) contains none of A A qseees 1 is a
constant for which 1I(i) is provable and V is an arbitrary

variety, then

: k
n(G(V,A (V))) < n(V) + T w + m,
4=1
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where j, < n, r(Aj :BL) < r(An:An) and m < w. .

The following ;roposition is a special case of Lemma 3.
Proposition 5*. If I(i), G (i,t,V,AX(V)) = A (i,t,V) or
1(1), A_(i,t,V) - Gn(i,t,v,Ai(V)) is an initial sequent of
our system, and i is a constant for which I(i) is provable,

then

n(6, (1,t,v,A2(V))) < n(a_(1,t,M).
I I

11.5. The grade is assigned to a formula from w® x wx w®,

Ioo Ioo
Let N(Ioo) denote X WX w and < be the lexico-

graphical ordering of N(Ioo)' The grade of a formula A,

g(A), is given by < Y(A),a,n(A)>, which is a member of N(Ioo)’

(See 7*.) -
Proposition 6*. If 1I(i), An(i,t,V) - Gn(i,t,V,Ai(V)) or

I1(i), Gn(i,t,V,Ai(V)) - An(i,t,V) is an initial sequent of a

proof with degree, and i 1is a constant for which 1I(i) is

provable, then

g(G, (1,,V,AX (M) < g(A (1,t,M).

I I I :
11.6. The o.d.s of O(w ® + 1,a>°° X w X u>°°) are

assigned to the sequents of a proof with degree as in 8%,
We might remark here that, although in the original work the
initial sequents are given g(D) for some D, it is not .
necessary. It suffices to assign <0,0,0> to an initial sequent.
11.7. Having finished the definitions, the consistency
proof of the system may be carried out exactly as in 9%.

Proposition 4% and Proposition 6* are essentially used.




122

11.8. Now we shall exploit the above general result to our

special concern.
w

rd
Id

Definition 2.1. Let L denote ww’ n with its canonical

ordering. Then second order arithmetic with the semi-isolated

comprehension axiom and the semi-isolated inductive definitions

along L shall be called IDn.
Note. We can replace "semi-isolated" by "H%“

Theorem 2.1. The consistency of IDn is proved by the system

w2
n+1)°

Proof. From the result in 11.6, the consistency proof for IDn

w
of o.d.s O(wn+1 + 1,w

can be carried out by the o.d.s. of o(wI‘ID + 1,wI°° X W X wI°°),
where I is, in this case, w , and hence I__ = (2. I| + 1) w-=

I
(wn + 1) *w, which implies that w® = wﬁll and wﬁll X wX wﬁll =
.

§12. The A;-comprehension axiom and the semi-isolated inductive
definitions. In this section we shall establish the proof-
theoretical equivalence between second order arithmetic with

the A%—comprehension axiom and the system U ID_.
n<w

Friedman has shown the following result in his [1] as a
corollary of a theorem:
Z%-AC and ID < ®© nave the same theorems in the common

part of their language, where ID <& is the theory of iterated
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inductive definitions.
He also mentions a result of R. Mansfield:

A;-CA and Z;-AC have the same theorems. On the other
hand it is a simple matter to show that 1ID <% can be

embedded in U IDn (cf. Definition 2.1). Thus, in virtue
n<w : '

of the above results by Friedman and Mansfield, holds the

following.

Proposition 2.1. Second order arithmetic with the Aé-compre-

hension axiom is a subsystem of U ID_.
n<w

The opposite direction of equivalence is stated as follows.

Proposition 2.2. The semi-isolated inductive definitions along

w (cf. Definition 2.1) are defined in second order arithmetic

with the Aé—comprehension axiom.

Proof. The proof is similar to that of Theorem 1.6 except that

it is simpler this time.
Let < denote the canonical well-ordering with the order
type € and ’<n be its restriction to W Let G(b,a)

be in a Hi-formula with the indicated occurrences of b and

o. Define F(a,a) as
v x < aa[x] = G(x,a%))

where o* is the abbreviation of {y}(y< x A a[y]). Suppose

the following 1° and 2° are provable with the A%—comprehension

axiom:
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1°. Vv y Z oF(p,y).
2°. % o(F(p,a) A ola]) =y o(F(p,a) D ¢[al). -

Then define A(a) as
I o(F(p,a2) AN ola])
and show that

3. a(a) — G(a,Aa) is provable with the A;-comprehension
axiom, thus completing the proof. It should be noted that according
to Gentzen's result the principal of transfinite induction
along ~<n (for each n > 0) is provable without comprehension
axioms.

3° (under 1° and 2°) is proved by transfinite induction
along <<n as follows. The argument is similar to that of (9)

in the proof of Theorem 1.6. The crucial step is to deduce
F(A,a), F(a,a) = ¥V y(a?[y] = A*(y)),

where A is {xJA(x), by a use of the A;-comprehension axiom
(applied to A) and 2°. oOtherwise 1° and 2° are used as in

the proof of Theorem 1.6.

o

1° and 2° are proved simultaneously by transfinite induction

along «dn' Let D(y) stand for
I o(F(o,y) N oly]D) = v o(Flo,y) 2 o[y]).
Then what must be shown is

Vy <, a((y) AZgF(p,y)) = D(a) A T gF(p,a).
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Let U denote the abstract {y}(x -<5n a AT o(F(o,x) A o[x])).

4°. vy < a(dy) A& eF(p,y)) v y~<, aF(U,y) is
proved by transfinite induction on y, by some uses of the A;-
comprehension axiom applied to U. 4° together with the A;-
comprehension axiom implies

5°. yy=<_a(dy) AEeFlp,y) ~ TV y < aFlp,y)).
5° implies immediately

o N

6. Vy<_ a@y) A&eFlp,y)) ~ I ¢F(p,8).

6° and the uniqueness of o satisfying F(a,a) yield
Vy -<n a(D(y) A  oF(p,y)) - D(a). This completes the proof.

We have now established the following

Theorem 2.2. Second order arithmetic with the A;-comprehension
axiom is proof-theoretically equivalent to U IDn.

n<w
§13. Conclusion.
Theorem 2.3. Let uM be the order type of O(wn,wn) with
respect to its ordering <o' Then the ordinal of second order

arithmetic with the A;-comprehension axiom is the limit of My

for all positive n < w.

Proof. From Theorem 2.1, the remark after Theorem 1.5, and

Theorem 2.2.

Additional remark. The evaluation of the o.d.s of the semi-
isolated iductive definitions (811) does not necessarily give

the least upper bound of the ordinals. As an exemplary case for




this fact, let us take the inductive definitions along w.

Theorem 2.1 for n = 1 gives the corresponding ordinal

0(u#ﬁ’+ l,a##rz), while we have shown in Chapter I that
0(a? + 1,a§ + 1) suffices in proving the consistency of the

semi-isolated inductive definitions along w.
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Chapter III. APPLICATIONS OF THE REDUCTION METHOD

The reduction method which was used in proving the con-
sistency of the system of proofs with degree can be exploited
in investigating various structural aspects of some systems with
the w-rule. 1In most cases the arguments go parallel to those
in [6] and [7]. Therefore we shall only state the results and

sketch the proofs for a few exemplary cases.

§14. w-proofs and cut elimination.
Let us first define a system of second order arithmetic
which is in substance the system with the provably-A; com-

prehension axiom and the construction w-rule and will be

~called Zn'

Definition 3.1. A system Zh is defined similarly to the system
of proofs with degree of dim n (cf. Definition 1.17) with the
following modifications.

(1) Only the formulas which do not contain any first
order free variables are involved. (Such a formula may be called
t-closed, meaning that it is closed with respect to terms.)

(2) The constructive w-rule is added. (cf. Introduction
of [6] for the definition of the constructive w-rule.)

The system Zn is then defined as the subsystem of Zﬁ

which does not involve the rule ''substitution!' . A .

Note. 1) The condition (1) in Definition 3.1 implies that

no induction for first order V in the succedent is involved

in a proof of Zh.
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2) It can be easily shown that " substitution! is actually
redundant in Zn’

3) For any proof with blocks which has no substitution
the condition on degree is automatically satisfied. Therefore

for Zn-proofs it suffices to require the conditions on blocks

only.

Theorem 3.1. Let n be an arbitrary, but fixed, positive

integer. Let < denote the well ordering of O(aP+1 + l,a?(n+1) + 1)
with reference to the element O (which is normally denoted by <o).
The ~< -recursive functions are defined as in Introduction of

[6]. Then there exists a < -recursive function f such that

for every proof with degree of dim n whose sequent, say S,
consists of t-closed formulas only, £('P) (= "P'7) is Godel
number of a Zn-proof of S. Furthermore if a formula A in S
belongs to an i-block (its entrance) of P' if and only if A
belongs to an i-block of P, and two formulas in S belong to

a same block of (its entrance) P' if and only if they belong

to a same block (its entrance) of P.

Proof. For the proof of the theorem, we can élosely follow the
proof of Theorem 1 in Chapter I of [6] as well as the reduction
argument in §6 of this article. We only have to worry about

the definition of blocks and entrances. In most cases, however,

the conditions on blocks are either easily taken care of or dealt
with as in §6. We shall explain the situation with one example.
Suppose the end piece of P does not contain any first order

free variable not used as an eigen variable but does contain a
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key inference of dim i as a lowermost, explicit, non-structural

inference in the end piece of P;

.
v ’

s r = A,V YF(V, )

T = A8 @Y YF(o,¥)

.

Define r(P) as:

T~ A,Y d F(V,0)

' - v yF(v, ), A

!

T~V YF(V,9),8, .

For every block B (its entrance E) of P, a block B' (its
entrance E') of r(P) is induced as follows: all the explicitly
indicated v YF(V,d) belong to B' (E') if and only if the
Vv YF(V,¥) in S, belongs to B (E), and any other formula
belongs to B! (E') if and only if its corresponding formula
in P belongs to B (E).

r(P)—< P 1is easily shown, and hence by induction hypothesis

f(r(P)) has been defined and satisfies the conditions in the

theorem. We define f(P) as:

£(r(P)) {
\ Sé rO "y #’F(V:d’):A
Sl PO - AO:V YF(V, )

S, T, ~ 0,8 o v ¥F(0,¥)
1"0-. AO .
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Enlarge each block of f(r(P)) and its entrance, say B and &,
in order to define the corresponding block and its entrance,
say B' and E', of f(P), as follows: the VY yF(V,d) and
g o ¥V PF(p,¥P) in S, and §,. respectively belong to an
i-block B' if and only if the V JF(V,d) in S, belongs
to B; any descendent of ¥ ¢ V yF(p,)) belongs to B' if
and only if the corresponding formula in Ao (in Sé) belongs
to B; a formula in I, or A, belongs to B' 4if and only if
the same formula in S! belongs to B. The entrance £ is
defined similarly from &.

It is only a matter of routine to confirm that f(P) is
a proof with blocks.

We should also note that if P is reduced to more than
one proof, then in defining the blocks of f(P) from those of

the proofs which have been .defined by induction hypothesis we

take the unions of corresponding blocks.

§15. A system with a function symbol.

Definition 3.2. A system Un is defined as the system of
proofs with degree of dim n augmented by a function symbol
as well as the related rules of inference (cf. §2, Chapter I,
of [6]). The system ﬁn is obtained from 2z (cf. Definition

3.1) by adding to it the f-w-rule (cf. §2, Chapter I of [6]).

Theorem 3.2. There is a < -recursive function g such that

for every proof of U , say P, g('P") is Godel number of a ﬁn—

proof of the same end sequent as P, satisfying the same conditiens
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on blocks and entrances as stated for the f£('P") in Theorem 3.1.
Proof. The proof in [6] can be strictly followed. We shall
deal with one case as an example. Suppose that the end piece

of P does not contain any first order free variable other than
eigen variables but does contain an induction as a lowermost
explicit, non-structural inference. Suppose furthermore that
A(s) is the principal formula in the succedent of the concerning
induction and s contains a function symbol f. Then define
r(P) as in 1.2.1.2, Chapter I of [6]. The descendents of A(a)
and A(a + 1) above A(0),I,f(m) = n - A,A(s) are defined to
belong to a block B' if and only if A(a) and A(a + 1) bel ong
to the corresponding B. f(m) = n are defined not to belong

to any block. Now follow the arguments in [6] and Theorem 3.1.

$§16. Cut elimination theorem of the system with the w-rule.
Theorem 3.3. Let z, and ZA be as in Definition 3.1. For
any Zﬁ-proof there exists a cut free Zn-proof of the same
sequent. Furthermore, this is proved by using the systém of
o.d.s of o(*! 4 1w X (ag(n+1) + 1)) where w is the
first non-constructive ordinal. .

This theorem is proved similarly to the theorem in 3.3
of [7] except that here we must define blocks and entrances.

The technique is, however, similar to that of Theorem 3.1 of

this article.

O
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