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0. INTRODUCTION

Let k -• M i H fl J be an exact sequence of Hopf algebras

(with antipode) over the ring K. Let a : J -• H be a Hopf

algebra map such that p a = lj. The main result in this paper

(see section 2) gives a decomposition of H as a semi-direct

product of M and J with J acting on M via inner Hopf

algebra automorphisms. This is an immediate consequence of a

more general result about semi-direct products of group objects

in an arbitrary category with finite products, discussed in sec-

tion 1. In section 3 we use this main result to recover some

results of Konstant on cocommutative Hopf algebras.

It has been brought to the author's attention that

P. Gabriel has obtained essentially the same results for formal

groups. Since a reference is not readily available and our

setting is slightly different we believe the reader may find

this paper useful. At this point we wish to thank Professor

Stephen u. Chase for many useful conversations concerning the

material discussed here.

Throughout this paper,, if £ is a category, we denote

by £(A,B) the set of £ homomorphisms from A to B for

A and B in | £ | .

1. SEMI-DIRECT PRODUCTS

Let £ be a category with finite products. Denote by £

the category Horn (C° 3 Sets) of contravariant functors from £
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to Sets. & has arbitrary projective limits, thus in particular

fiber products and a terminal object. For X in |cj we denote

by £ the functor C( ,X) in 6. We recover structures from the

categories of sets and ordinary groups by first defining them

A A

functorially in C and then using the full embedding £ -> C:

X -* $ to go over to £. Since the major portion of the material

in this section is well known—see [SGAD]--we shall content our-

selves with giving brief definitions and indications of proof

as in the following examples.

EXAMPLE 1.1. Let G be a group functor in £. A functor H

in £ is a left G object if H(S) is a left G(S) object

functorial in S for every S in |c,| . in particular this

implies a functor morphism G x H - H satisfying the obvious

commutative diagrams. If H is a group functor and G(S)

operates on H(S) via group automorphisms functorial in S,

then H is a left G group object. If in addition H is an

abelian group functor,, then H is a left G module in the

category C.

Now let H be a left G group object in ^ . We can define on

the product H x G a unique group structure such that for every

s i n |jC|, (HXG) (S) is the semi-direct product of H(S) and G(S)

relative to the action of G(S) on H(S) and functorial in S.
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Given elements (h,g), (h!,gf) in (HXG) (S) = H(S) XG(S), their

product is defined by (h*(g-*hf), g*g! ) where g ^ h* denotes

the action of G(S) on H(S) . This construction is clearly

functorial in S. We denote this group functor by H # G and call

it the semi-direct product of H with G, This group structure

can be carried over to objects in £ by considering now represen-

table functors G and H. In this setting G is a group object

in C and H is a left G group object—H being a left G

group object if H is a left G group object or equivalently,

if there exist morphisms a : G X H -• H, a) : H X H -» H satisfying

the obvious commutative diagrams. See [Ch ] . Since R X G is

representable by H X G as a set functor via an isomorphism

of functors <p : H X G -• H X G, it is readily seen that the semi-

direct product structure on H X G endows H x G with a unique

group structure such that <p is a group functor isomorphism.

If we denote H X G with this group structure by H # G then
A A / V

<0:H #G~* H # G gives us the representability of the group

functor H # G. Using the full embedding of jC in fcy ie< Yoneda
1 s

lemma3 it is not hard to describe explicitly the group operations

on H # G. For instance the multiplication on H # G is given by

a morphism v in £ defined by the composition
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where L : G -• G X G is the diagonal map, T : G X H - » H X G

is the twist map,, a : G X H - H is the G structure on H, \i

and co are the group structures on G and H respectively.

Note that here we have used the fact that H # G = H xG as an

object of C>.

EXAMPLE L 3 . Let 1 - * H ^ F - * G be an exact sequence of group

functor^ that is for every S in |cj the sequence of groups

and group homomorphisms 1 -> H(S) x * > F(S) —*—^ G(S) is exact.

Assume f : F -• G has a group section, ie. a group morphism p : G -• F

such that f » p = 1 . It is then easy to see that for each S

in \o\ 9 G(S) acts on H(S) via inner automorphisms. Evidently

this action endows H with a left G group functor structure.

Moreover for every S in \c\ there exist set isomorphisms

given by <p(x) = (x f (p (S) f (S) (x) )~1 , f(S)(x)) ; £(h,g) = h # p (S) (g)

where x is in F(S), g in G(S), h in H(S) and *. denotes

the group operation in F(S). Identifying F(S) with H(S) X G(S)

via (p, it is easy to show that the group structure on F(S) is

precisely that of the semi-direct product of H(S) with G(S).

This is strictly an exercise in the theory of groups. Since S

was an arbitrary element of C! we conclude that F = H # G as

group functors. Now assume that both H and G are representable,

that is if the form H and G for H and G group objects in £.
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Then it follows from the above discussion and example 1.3 that F

is representable and in fact P = H # G . Thus we have shown the

following.

PROPOSITION 1.4. Let 1 -» H i F ^ G be an exact sequence of

group functors in C. with H, G representable. Assume f : F -• G

has a group section p : G -» F such that f • p = 1 . Then F

is representable and F ^ H #G, the semi-direct product of H

and G.

REMARKS 1.5. a) The above proposition is a special case of a

general result about extensions of G by H where the section p

is not necessarily a group section. As might be expected a

group cohomology is involved in their classification as in the

classical case.

b) Let 1->H-*F-*G be an exact sequence of group objects

in C!j exactness meaning, as usual3 exactness of the group

functors they represent. Let p : G -» F be a group section.

Then Proposition 1.4 implies F = H # G .

We now turn to the category £ of cocoiranutative coalgebras

for an interesting application of the above results. We will

need a few results on coalgebras which we briefly resume in the

next section.
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2. Cocoiranutative Coalgebras.

In this section we will work over a ring k. Unadorned ®

shall stand for &.. We refer the reader to [Sw] or [Sw] lf for

the notation and terminology we will use relevant to coalgebras

over k. In particular we denote by C the category of cocoiranu-

tative k coalgebras. For a coalgebra A in C!,. we will often

write ^L (or A) : A - A ® A for the comultiplication, and

£ (or C) : A -• k for its counit. C! has a terminal object

namely the ring k itself. Finite products exist in £; for A

and B in |c|, A 0 B has a natural coalgebra structure and

the diagram

A®B

is a direct product diagram where we have viewed the natural

isomorphisms A ® k = A and k ® B = B as identifications.

Finite coproducts exist in jC, if A and B are in \c\, then

A ® B the vector space direct sum is their coproduct with diago-

nal map given by
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A®A © B®B t - * (A©B) ® (A©B)

and counit

: A© B ? > k

where <ft
A^

£
B> denotes the induced morphism from the direct

sum. Under this coalgebra structure the natural morphisms

B

B

are coalgebra morphisms and define a coproduct diagram.

Recall now that a group object in <C is a coalgebra H

with coalgebra morphisms |LtH : H ® H - > H ; yH : H - * H

and 77 : k -> H rendering the following diagrams commutative
H

H0H0H * H®H

(associativity);

H®H
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2.1

(left identity)

and

H®H

li (left inverse)

H

Note that rj
H

give H an algebra structure;

we shall write the action of JLU as ordinary multiplication

and we will identify k with a subalgebra of H via rj .

We will use the term bialgebra for monoids in the category (2,

that is coalgebras H with an algebra structure induced by

coalgebra morphisms JLU and rjH as above satisfying the

relevant diagrams in 2.1. We will reserve the term Hopf algebra

for those bialgebras H with an inverse morphism y ; in other

words group objects in C. Note that for x in H,

2 2
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so that y is also a right inverse for H. Similarly r)H

is a right unit and both yR and nR are uniquely determined.

Furthermore yH is an algebra antiendomorphism under the

algebra structure for H and the comultiplication and counit

are both algebra morphisms for a bialgebra (Hopf algebra) H.

We will denote the category of Hopf algebras by M..

We can now carry over to our setting all of the formalism

for group objects in a category discussed in the previous section.

Given a Hopf algebra H, a left H coalgebra is a coalgebra N

with a coalgebra morphism a : H ® N -> N which is associative

and unitary. This endows N with an H module structure.

For h in H, n in N5 we will write &(h®n) as h—*n . N

is a left H object in C, and we denote the category of left H

objects by £ . Products exist in C, 7 given N and M in
TT

<C , the H module structure on their product N ® M is described

notationally by h—*(n ® m) = £(hMv—* n) ® (hn,—vm) for h in
(h) {1) (Z)

H 3 n in N, m in M . A left H Hopf algebra is a group in the

category £ ; in other words a Hopf algebra M such that its

multiplication, inverse and unit morphisms are H-module morphisms.

In particular for h in H, r and s in M, h—*(r • s) = £ (hn,—

(h) (1)

(h^x—*s) • If M is abelian, i.e. has commutative multiplication,

then M will be called a left H Hopf algebra module or H Hopf

module for short.
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Let H be a Hopf algebra, M a left H Hopf algebra.

In section 1, Example 1.1 we described the semi-direct product

of two group objects one acting on the other. In our context

then, the semi-direct product of M and H is the Hopf algebra

M # H such that:

i) M # H = M ® H as a coalgebra. This allows us to

write the elements of M # H as E m ® h, m in M, h in H.

ii) the algebra structure is defined by the commutative

diagram 1.2 in section 1. Using Sweedler1s notation, this turns

out to be

(m ® h) • (m
f ® hf ) = E m. (h M *—

A m!

(h) I1'

for m and mf in M, h and h1 in H.

iii) The unit map of M # H is trivially defined using the

product structure of M # H as a coalgebra. To define the inverse

map ^ 1 ^ H : M # H - ^ M # H define £ : M # H - M by £ (m ® h) =

vn(h) vVM(m) where yH and y are the inverse maps of H

and M respectively, m in M, h in H. £ is trivially a

coalgebra morphism. Let yMJtH = (£^14 ® 7^
 : M ® H -• M ® H.

Claim y M« H is an inverse for M#H. We will show it is a left

inverse. For m in M, h in H,

®m ( 2 )®h ( 3 ))
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2.2 = I
(m), (h)

, (h)

(h)

= £ M (m®h).

Thus M # H is the semi direct product of M and H in the category

In section 1, Example 1.3 we mentioned the action of a

group functor on another via inner automorphisms functorial in S

for S in |cj. In particular a group acts on itself by such

automorphisms. In our setting, the action is described in the

following:

Definition 2.3. Let H be a Hopf algebra. We define an inner

left action of H on itself by

h' =
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for h and h! in H . It is easy to see that this gives H

an H Hopf algebra structure. It is also easily checked using

Yoneda's lemma that this action gives rise to an action of C.( ,H)

on itself which is precisely the functorial inner automorphism

action described in section 1, Example 1.3.

In this setting,, Proposition 1.4 of section 1 becomes

Proposition 2.4. Let k -* M ^ H - > J be an exact sequence of

Hopf algebras with a Hopf algebra map a : J "* H such that

p*o = lj. Then M is a left J Hopf algebra via j—*m =

,£. a(j )• m-y__(a(j/ox) ) for j in J, m in M. Note that we
(J) «l *i \£.)

are using i to identify M with a sub-Hopf algebra of H.

Furthermore H = M # J the semi-direct product of M with J.

We will use Proposition 2.4 to extend a theorem of Konstant

on the structure of Hopf algebras over a field k. For this we

will need some further results on coalgebras and Hopf algebras.

3. Structure of Cocommutative Coalgebras Over a Field k.

In what follows all of our algebras (coalgebras) will be

assumed commutative (cocommutative) except when otherwise stated.

Most of the results hold without these assumptions, but we won't

need them in that generality.

We start out by listing without proofs some elementary

properties of coalgebras and coalgebra morphisms. As in the

previous section, £ will denote the category of cocommutative
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coalgebras, and JJ that of Hopf algebras in £; this time

over a field k.

3.1. If C is a coalgebra over k, and k is a field

extension of k, then k ® C is a k coalgebra with diagonal

map

k ® C

and the obvious counit.

3.2 Let f : C -• D be a morphism of coalgebras.

Then Imf is a subcoalgebra of D. See [Sw] 3 Proposition

1.4.4, p. 13.

3.3 Finite fiber products exist in <:. A proof of this

statement can be found in [MM]. As a direct consequence we have

the following*

Proposition 3.4» Kernels exist in H; if f : A - B is a

morphism of Hopf algebras, then there exist a Hopf algebra M

such that the sequence

3.5 k - M - A 5 B

is exact as a sequence of Hopf algebras. Moreover

M = {a in A|(l®f) A^(a) = a ® 1}

Proof: See [O.S.], [Sw] .

HUNT LIBRARY
CARNEGIE-MELLON UNIVERSITY
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3.6 Let A be a finite dimensional algebra over the field k.

Setting C = A*, C has a natural coalgebra structure where

: A* - (A ® A) * = A* ® .A*, tQ = 7?* : A* - k.

Conversely if C is a coalgebra,, then C* has a natural

algebra structure via the adjoint morphisms. In fact the

functor A -» A* gives an anti- equivalence between the

category of finite dimensional algebras and that of finite

dimensional coalgebras. If A is not a finite dimensional

algebra then (A ® A) * * A* <8> A* in general and A* does

not have a natural coalgebra structure. However we have a

functor ( )° from the category of algebras to that of

coalgebras such that the following adjointness relation holds.

3.7 Alg(A,B*) = Coalg(B,A°)

where A is an algebra, B a coalgebra. A° is defined by

A° = jLij*~ (A* 0 A*) = {x in A*Jker x contains an

ideal I of finite codimension}3

where juA : A <8> A -• A is the multiplication on A. Clearly for A

finite dimensional, A° = A*. If H is a Hopf algebra then H°

is also a Hopf algebra which we call the Hopf algebra dual of H.

See [Sw] 3 [Sw]
 ! for further comments.
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3.8 If C is a finite dimensional coalgebra, then there

exists a 1 - 1 inclusion inverting correspondence between

ideals in C* and subcoalgebras of C. An ideal I in C*

corresponds to I = {x in C | < i* , x> = 0 for every i* in 1}

= (cVl)^ 3 a subcoalgebra of C. A subcoalgebra D of C

corresponds to the ideal D = {f in C* | < f 3 1 > = 0 for

every d in D} in C* .

The following result will be very useful to us in the en-

suing discussion. A proof of it can be found in [Sw] , Theorem

2.2.1, p. 31 or [SHS], Expose 11, Lemma 1.4.

Proposition 3.9. Any coalgebra C is the union of finite

dimensional subcoalgebras.

Definition 3.10. Given a set E, we define on the vector

space k(E) generated by E, a coalgebra structure by means

of the k linear maps

k(E) - k(E)®k(E) : e - e 0

"* k : e "* 1 > e in E .

A coalgebra of this form is called a constant coalgebra. If E

is finite, k(E) is the dual of nk ^ the algebra of functions
E

from E to k with pointwise operations. For any coalgebra C

the set of elements g in C such that A^ (g) = g ® g, £ (g) = 1

are called the group like elements of C and we will use the nota-

tion G(C) to denote this set. It is easy to see that G( ) is a
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product preserving functor from coalgebras to sets, represented

by k. The set G(C) is linearly independent, and is a basis

if C is a constant coalgebra. Let k be the separable closure

of k. A coalgebra C will be called separable if k ® C is

a constant k coalgebra. If C is finite dimensional, this is

equivalent to C* being a separable algebra. A coalgebra D

is called simple if^it contains no proper subcoalgebras; D is

called irreducible if it contains a unique simple subcoalgebra fi 0;

D is called coconnected if D is both irreducible and its unique

simple subcoalgebra is 1-dimensional. Finally a Hopf algebra

is irreducible (coconnected) if it is irreducible (coconnected)

as a coalgebra.

Remarks 3.11. a) It follows immediately from Proposition 3.9

that every simple subcoalgebra is finite dimensional. Moreover,

under the correspondence cited in 3.8 above, the simple subcoalge-

bras of C correspond to the maximal ideals of C* and if D is

a simple subcoalgebra of C then D* = C*/DJ" is a field.

b) By going over to the separable closure, reducing to the

finite case and dualizing, it is easily seen that a coalgebra C

is separable if and only if it is the union of finite separable

subcoalgebras, in which case every subcoalgebra is separable.

It is evident that the sum of separable coalgebras is separable.

c) Let C be a separable coalgebra over k, k the separable

closure of k. Then
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k ® C = k(G(k ® C)),

G(k ® C) as before the set of grouplike elements of k ® C.

Let F be the Galois group of k over k. Then T is a

profinite group in the Krull topology and acts on the elements of

k ® C via y(k & c) = yk ® c for y in F, k ® c in k ® C.

In particular it acts continuously on the set G(k ® C) endowed

with the discrete topology. More generally if E is a T set

on which T acts continuously, E with the discrete topology, T

acts on k(E) in the obvious manner. Setting k<E> = k(E) =

fixed points under F, we get that k<E> is a k coalgebra

such that k ® k<E> = k(E). See [SHS] Expose'11, for further

details. In particular for C a separable coalgebra,

C = (k ® C ) r = k<G(k ® C)>

is an isomorphism of coalgebras and this establishes an equi-

valence of categories between the category of separable coalgebras

and the category of sets E with continuous F action; E with

the discrete topology. Clearly Hopf algebras which are separable

as coalgebras correspond to F groups under this equivalence.

Proposition 3.12. Let C be a coalgebra in <C. Then

a) There exists a unique maximal separable subcoalgebra C
s

of C, with an inclusion morphism i : C -> C, such that if B
s

is a separable coalgebra and f : B -» C a morphism of coalgebras,

f factors uniquely through £.
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b) If C is such that its simple subcoalgebras are separable,

then there exists a unique coalgebra morphism p : C -> C such
s

that pX = l and any coalgebra morphism g : C -* B for B

a separable coalgebra factors uniquely through p. Both V and p

are natural in C.

Proof; By Remark 3.11 (b) above it suffices to restrict our-

selves to finite dimensional coalgebras, construct C and by
s

a limit argument extend our results to arbitrary coalgebras.

Thus assume C is finite dimensional. Then C* is a finite

dimensional commutative algebra and as such the product of local

rings. Hence C* = II R. , R, local with maximal ideal m. ,
i€l xI finite. Set C = A* where A is the product of those R./nu

which are separable field extensions of k. A is the maximal

separable quotient algebra of C* with the obvious surjection

j : C* -* A. Clearly

i = j* s c
 c—-» C
s

is a separable subcoalgebra of C. Any coalgebra morphism

f : B -• C from a separable coalgebra B to C gives rise

to an algebra morphism f* : C* -* B* where B* is separable.

(Recall that all coalgebras are assumed to be finite dimensional

now.) It follows easily from the theory of separable algebras

that f* factors uniquely through A, and so we get a commutative

diagram
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Dualizing we obtain a unique morphism g* such that the

following diagram commutes

Thus f factors uniquely through 1. Note that this

implies C is the unique maximal separable subcoalgebra
s

of C - the sum of all the separable subcoalgebras of C.

To prove part (b) we observe that by Remark 3.11 (a) the simple

subcoalgebras of C are of the form (R./m.)* for all i in I,

I the finite index set introduced above. Hence R./m. is a

finite separable field extension of k for all i in I and

A = II R./m. = C*/rad C* ,

that is C S (C Vrad C*) * = (rad C*)^ . In particular this
s

implies that C* is a commutative finite dimensional algebra

with C*/rad C* separable. By the Wedderburn Malcev Theorem -

see [CR] Theorem 72.19, p. 491 - there exists a splitting
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k : C*/rad C* -> C* such that Jk : C*/rad C* •* cVrad C*

is the identity. Moreover any two splittings are conjugate,

[CR] ibid; hence since C* is commutative, splitting is

unique. Going over to the dual situation we get a unique

coalgebra morphism p = k* : C -> C such that p.\ = 1- .
s s

If D is a separable coalgebra and T : C -» D a coalgebra

morphism, we get an algebra morphism T* : D* -* C* where D*

is a separable algebra. The splitting k : C*/rad C* -• C*

gives rise to a vector space decomposition of C* as

C* = rad C^ © S where S = image of k and thus is a

subalgebra of C* isomorphic to C*/rad C*. Since D^ is

a separable algebra, Im T* C S and hence T* factors uniquely

through C*/rad C^ as in the following commutative diagram

where a is uniquely determined.

Dualizing we arrive at a commutative diagram

C > D

Vp=k* \ / a*

and T factors uniquely through p.
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Finally we prove that v : C <-> C and, whenever it exists,
s

p z C -• C with p.\ = ln , are both natural in C. This
S s

is an easy consequence of the factorizations shown above. If

f : C -> C! is a morphism of coalgebras, then the composite

f#^ : Cs"*Ct * s a coalgebra morphism with Cg separable and

therefore by above there exists a unique coalgebra morphism

f : C -• Cf such that the following diagram commutes
s s s

Similarly, in the case of coalgebras with a unique

p : C -• C satisfying the above conditions, there exists
s

a unique coalgebra morphism fs : C -» Cf such that the
s s

following diagram commutes

f s = f S-p-i = p f - f - t = p 1
Moreover

two coincide. We will use f

f = f
s s so the

to denote the induced morphism

from C

in C.

to C1s and we have shown both i and p are natural
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Remark 3.13. (a) The proof of part (a) above appears in [SHSJ

Expose 11. A much simpler proof can be obtained by defining C
s

to be the maximal separable subcoalgebra of C and showing directly

that any coalgebra morphism from a separable coalgebra to C

factors uniquely through C . We have preferred, however, the
s

more explicit description of C given above for the purpose of
s

the proof of part (b).
(b) Proposition 3.12 shows that ( ) is a functor from

s

the category of coalgebras jC to the category of separable co-

algebras right adjoint to the forgetful functor. As such, it

preserves products and the natural morphism (A ® B) -• A ® B

is a coalgebra isomorphism for coalgebras A and B in JjC | .

If C!f is the full subcategory of £, consisting of coalgebras

whose simple subcoalgebras are separable, then the natural in-

clusion i : C — C for any C in |clI is such that

s
p*i = lp with p : C -* C uniquely determined and natural

s s

in C. In particular, let H be a Hopf algebra such that its

simple subcoalgebras are separable. Applying the product preser-

ving functor ( ) to the structure maps of H gives a Hopf
s

algebra structure on H with i : H - H and p : H -» H ,

Hopf algebra maps since both are natural in H. H will be

called the separable component of H.

(c) Let K be a field extension of k. It is easy to

see that the natural morphism (K ® A) - K ® A is an isomor-

phism of K coalgebras. In particular set K = k = the separable

closure of k. The separable coalgebras over k are the constant
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coalgebras. Thus for C a k coalgebra, (k ® C) = Tc ® C =
s s

k(G(k ® C)) the largest constant k coalgebra of k $ C, where

G(k <8> C) denotes as usual the group like elements of k ® C .

This implies C = k<G(k <8> c)>. If H is a Hopf algebra, then
s

H = k<G(k ® H)> where now G(k ® H) is a T group with con-
s.

tinuous F action, T the Galois group of k over k, G(k ® H)

endowed with the discrete topology.

Proposition 3.14. Let H be a Hopf algebra whose simple sub-

coalgebras are separable. Then H is the semi-direct product

of a coconnected Hopf algebra and the separable component H
s

Of H.

Proof: By above we have obtained a unique Hopf algebra

P
morphism H >H such that p-l = 1 , 2 :H c*H the

s H S s
inclusion morphism. Let M be the kernel of p : H -» H .

s
We have an exact sequence of Hopf algebras

k - M - H * ^ Ha P s

with a Hopf algebra section i. By proposition 2.4, H = M#H ,
s

the semi-direct product of M and H with H acting on M
s s

via inner automorphisms and this is a Hopf algebra isomorphism.

Let L be a simple subcoalgebra of the Hopf algebra M. We can

consider M as a sub-Hopf algebra of H. By hypothesis, L is

separable, hence by 3.12 above there exists a subcoalgebra Lf
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in H such that L = I(L'). But then
s

Lf = p-l(Lf) = p(L) = eR(L) C k C Hg

which implies L = k c M. Thus M has a unique simple

subcoalgebra, namely k; hence is coconnected and the result

follows.

Definition 3.15. Let H be a Hopf algebra. An element x

in H is called primitive if ^(x) = x ® l + l ® x .

Denote by P (H) the vector space of primitive elements in H.

Then it is easy to see that P(H) has a Lie algebra structure

given by [x,y] = xy - yx for x,y in P(H). This is the

Lie algebra associated to the Hopf algebra H.

Corollary 3.16. Let k be a perfect field. If H is a Hopf

algebra over k, then H is the semi-direct product of a coconnec-

ted Hopf algebra and the separable component H of H. Further-
s

more, if k has characteristic zero, H is the semi-direct

product of the universal enveloping algebra of P(H) and the
separable component H = k<G(k ® H)> of H where k is the

s
separable (algebraic) closure of k .

Proof: Let D be a simple subcoalgebra of H . Then D*

is a finite field extension of the perfect field k, thus sepa-

rable and hence D is a separable coalgebra. By Proposition 3.14,

H decomposes into a semi-direct product of a coconnected Hopf

algebra M and the separable component H = k<G (k <S> H)> of H
s
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If k has characteristic zero, a coconnected Hopf algebra M

over k is the universal enveloping algebra of the Lie algebra of

its primitive elements. See [SwJ, Theorem 13.0.1, p. 169.

Let x be a primitive element of H. We now use the notation

of Proposition 3.14 and consider the exact sequence

k - M - H - H .o p s

For x in P(H)> p(x) is a primitive element of H and
s

remains so under change of ground field. By going over to the

separable closure we can assume p(x) is a primitive element

in a constant coalgebra k(E) say. But then it is easily shown

by means of a simple basis argument that p(x) = O. This implies

that

(1 ® pJA^x) = (1 ® p) (x ® 1 + 1 ® x) = x ® 1

or equivalently x lies in M. See Proposition 1.5. Thus M

contains all the primitives of H and is the universal enveloping

algebra of the Lie algebra P(H).

Remarks 3.17. a) Note that if H is commutative as an algebra,

that is an abelian group object in C, the action of H on M
s

is trivial and the semi-direct product becomes the ordinary tensor

product of the abelian Hopf algebras M and H with the induced
s

abelian Hopf algebra structure. These remarks and Corollary 3.16
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have connections with the theory of algebraic groups. Over a

field of characteristic zero the algebraic group analogue is

the decomposition of a commutative algebraic group into a pro-

duct of unipotent and reducible components. See [SHS]9 Expose 11,

p. 11 for more details.

b) M. Sweedler has constructed a Hopf algebra morphism

p1 : H -* k(G(H)) for Hopf algebras H whose simple subcoalge-

bras are one-dimensional, such that p! = l-u/p/rrxx where

k(G(H)) is the group ring on the group like elements of H

and 2 : k(G(H)) -* H is the inclusion mapping. From this he

gets a decomposition H = M # k(G(H)) where M is the kernel

of p! and is the maximal coconnected sub-Hopf algebra of H

containing k . Since the simple subcoalgebras of H are one-

dimensional they are a fortiori separable, and by the uniqueness

of the previously defined p : H -* H , p = p! . Moreover,
s

H = k(G(H)) and our results give the same decomposition up tos

isomorphism as Sweedler1s. In particular in the case that k

is an algebraically closed field the above conditions are satis-

fied for a Hopf algebra H over k and we recover Konstant!s

result on the decomposition of a Hopf algebra over an algebrai-

cally closed field.
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