
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



ORTHOGONALITY AND

NONLINEAR FUNCTIONALS

ON L -SPACES

by

K. Sundaresan

Report 70-21

HUNT LIBRARY
CARNEBIE-MELLON UNIVERSITY



Orthogonality and Nonlinear Functionals On L - spaces

K. Sundaresan

Let (X,£,M») be a measure space. If x,y are two

measurable real valued functions then x,y are said to be

orthogonal in lattice theoretic sense, in short, x iT y if
JLJ

|j,{t | x(t) y(t) £ o} = o. If F is a real valued function on

the Banach space L (|i) (1 < p <£ oo ) then F is said to be

additive if x,y e L (n) and x iT y then F(x + y) = F(x) + F(y) .
P 1JIntegral representations of additive functionals on L (n) has been

the subject of extensive study in recent years. For these and

related results we refer to Drewnowskii and Orlizc [1], Mizel and

Sundaresan [2], Mizel [3] and Sundaresan [4].

The concept of orthogonality involved in the definition of

additive functionals though very natural in these function spaces

there are other concepts of orthogonality in a Banach space, in

particular applicable to the function spaces L (|i), which are

natural generalizations of the usual concept of orthogonality in

Eucledian spaces and are of intrinsic geometric interest. For

several such concepts of orthogonality we refer to James [5,6].

We are particularly interested in the definition of orthogonality
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adopted in [6]. According to [6] if B is a real Banach space

and x,y e B then x is orthogonal to y, in short, x ij y

if 11 x + A y || 2 !! x II f o r a 1 1 r e a l values of h.

The purpose of the present paper is to study functionals F

on spaces L (fi) where F is required to be additive in the

sense if x,y e L (n) and x ij y then F(x + y) = F(x) + F(y) .

For the motivation of study of such functionals it is enough to note

that if x,y e Lp(^) and x 4-L y then x ij y while the following

counter example shows that this implication cannot be reversed; Let

be the Lebesque measure contracted to the unit interval I.

Consider the functions x,y defined by x = CrQ \/2\ ~ ^Fl/2 11

and y is the constant function 1, where if M is a set C M

is the characterstic function of M. It is verified that

x,y € L (|JL) and x JL T y while x and y are not orthogonalp J

in lattice theoretic sense.

Before proceeding to the main result we recall the necessary

terminology, notations«and few useful results.

In what follows p is arbitrary, 1 <̂  p <; oo , unless otherwise

specified. (X,£,M,) is a fixed totally a - finite nonatomic

positive measure space. A function ( p : R X X - » R is a

Caratheodary function, in short a C - function, if

(1) <p(* ,t) : R -» R is continuous for almost all t e X and

(2) <p(r,«) : X -» R is measurable for all r e R. It is verified

that if x is a measurable real valued function so is the function

(pox defined by <pox(t) = <p(x(t) , t) . A C - function <p is said

to be a C - function if <p o x € L1(|i) for all x e L



It is known, Krasnoselskii [7], that if p < OD and p. (X) < oo

then a C - function <p is a C - function if and only if there

exists a function a € L-iv) and a positive number b such that

I P(r,t), | £ a(t) + b J r |p

for all r € R.

A function F: L (M») •* R is an AT-function if it satisfies
p Li

the following condition. (1) If x,y € L (|i) and x iT y
P ij

then F(x + y) = F(x) + F(y) . (2) If p = GO then F is

uniformly continuous relative to L norm on each bounded

subset M ^ L (|i) and if p < GO then F has the same property

provided M is supported by a set of finite measure, (3) F is
continuous on the Banach space L (M-) if p < GO and is continuous

with respect to bounded a«e convergence if p = GO • F is said

to be an A T- function if F satisfies the conditions (2) and

(3) stated above in addition to (1 ) if x,y e L (|i) and

x xT y then F(x + y) = F(x) + F(y) . Since x x T y => x xT y
O Li J

every A T- function is an AT - function.

We recall the following theorem stated in [2] in a form

suitable for our purpose.

Theorem 1. Let F be a real valued function on L (|i) (1 <£ p <£ GO ) .

Then F is an AT - function if and only if there exists a C - function

L p
ip : R X X -» R such that for all x e L

PF(x) = (pox d (i
*X

where <p(o,t) = o for t a*e in X.
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The main purpose of the paper is to characterise the class

of all AT-functions on L (n). Before proceeding to the
j p

characterization we need a useful lemma from functional equations.

In the rest of the paper if M c x, the characterstic function

of M is denoted by L .

Lemma 1. Let <p be a continuous function on R -» R satisfying

the functional equation

<p(p + q) + <p(p - q) = <p(q) + <p(-q) + 2 <p(p), <p(o) = o,

then there exists real constants Cj Slid C2 such that

<p(t) = (̂  t2 + C2 t for all t e R. I

Proof. From equations (1) and (2) it is seen that

<p(2t) = 3 <p(t) + <p(-t) for all t e R. Hence if G(t) = (p(t) + <p(-t)

2 2

then G(Jt ) = 2 G(t) . Assuming inductively that G(mt) = m G (t)

for all natural numbers m <̂  n and substituting p = nt,q = t in

(1) it is verified that G((m + 1) t) = (m + I ) 2 G(t).
Thus G |jM = ̂  G(l) for all rationals ^ . Since G is

n 2
continuous it follows that G(t) = t G(l) for all t e R.

1 2
Let i|r be the function i|r(t) = cp(t) - j c t where G(l) = C.

Then i|r is a continuous function and \|r satisfies the functional

equation i|r (r + s) + t|r(r - s) = 2 if (r) 5 I|F (o) = o. Hence

• (t) = at for all t e R where a is a constant. Hence

1 2
<p(t) = at + o" c t completing the proof of the lemma.

Theorem 2. Let F be a function on L (n) -» R.
P

(a) If p / 2 then F is an Aj - function if and only if there

exists a real valued measurable function 3 on X such that if



x e Lp'(ji) then the function 3 (t) is in L-̂ ii) and

F(x) = J p(t) x(t) d
XX

(b) If p = 2 then F is an Aj-function on L (|i) if and only if

there is a real number c and a function p as in (a) such

that for all x e L2(M<)

F(x) =J (cx2(t) +p(t) x(t) d \k(t)

Proof. Since the functions cpi : R x X -̂  R, i = 1,2 defined by

Ccp1(r,t) = p(t) r and cp (r,t) = cr2 + p (t) r are verified to be C

and C2 functions respectively it follows from Theorem 1 that the

function F defined by the equations in (a) and (b) is an

AT - function on the corresponding space L (|i) . If p ^ 2 F isJL p

l i n e a r o n L (M») a n d c e r t a i n l y i t i s a n A T - f u n c t i o n b y n o t i n g t h a t
P J

in a Hilbert space xi Ty if and only if the inner product (x,y) =:o.
u

Conversely let F be an A T - function on the space L (p.) . Since
j p

an A T- function is also an AT - function it follows from Theorem 1
J Li

that there exists a C - function cp such that for all x e L

F(x) = J cp(x(t)/t d H,(t) .

Since p. (X) > o and p. is nonatomic there exists a measurable set

M, o < |i(M) < GO , a pair of disjoint measurable subsets M-. ,M2 of M

such that |i(Mi) > o, i = 1,3 and M1 U M2 = M. Let r,s be any two

real numbers and x,y be the functions x = r I ± I-- and y = s Ilyr.
M-j Mp M

It is verified that x,y e L (n) and x JL y. Hence F(x + y)
P o

= F(x) + D(y). Thus from the integral representation**^ F it is

verified that J cp(s,t) d |j,(t) +J cp(r,t) d (i(t) •+ J cp(-r,t) d cp̂ ft)
X

= I cp(r + s,t) d (ji(t) +[ cp(s - r.t) d
VM M



Similarly considering the functions r lljr and s I., we obtain
M-. M

an equation same as the preceeding one except that 1ML and III

are to be interchanged. From these equations it is verified that

J 2 <p(s,t) d p,(t) + J <p(r,t) d n(t) + J <p(-r,t) d n(t)
M

= f t<p(r + s,t) + <p(s - r,t)J d n(t) .

Since this equation is true for every measurable set M, |A(M) < OD ,

and M* is nonatomic it follows from the uniqueness assertion in

Radon - Nikodym theorem that for a given pair of real piimbers r,s

and for t a e .. that

(*) <p(r + s,t) + <p(s - r,t) = <p(r,t) + cp(~r,t) + 2 <p(s,t) .

Let now Q be the set of rationals. Since Q X Q is a countable
set it is verified that there exists a (j, - null set N such that

for all t ff N the equation (*) continues to be true for all

(rrs) € Q X Q. Since <P(%t) is a continuous function for t a« e* the

equation (*) is verified for all (r,s) e R X R and for t outside a

nullset. Since cp(o,t) = o a«e* it follows from Lemma 1 that there

exist functions a^g on X -> R such that for t a«e*

cp(r,t) = a(t) r2 + p(t) r.

Since <p is a C - function <p(l,* ) and cp(-l,») are measurable

functions. Thus a,p could be assumed to be measurable functions.

We proceed to show that a is a constant a e and further

if p ^ 2 then a = o

We assert (A) if s is any real number then either

M,{t J cc(t) > s} = o or (i{t | a(t) < s} = o and (B) if for some

real number c, f-i (a ~ (c)) > o then a(t) = c for t a«e^

i.e. ^(a"1(c)) =



If the assertion in (A) is false there exist measurable

sets M1-,M2, o < M-tM^) = |i(M2) < GO such that J^ D M2 = 0

and oc(t) > s on ML and a(.t) < s on M2. Let

x, = IM - Ilir and y, = I,, where M = M1 U ML . It follows that

x 1 x y-. Hence V(x^ + y^ = F(x..) + F(yj). Now appealing to
• . . ...... ... 2

the integral representation of F and noting <p(r,t) = a(t) r + p (t) r

it is verified that f (a(t) - s) d n(t) - f (a(t) - s) d |i(t) = o
"M1

 JM 2

since nfML) = ^(M 2). However this equation contradicts the fact

that M-(M.) > o for i = 1,2 and a(t) - s > o on M, and

oc(t) - s < o on M . This completes the proof of (A). We

proceed to verify (B). Let c be as in the hypothesis of

(B) . If cx(t) = c for t a e is not true then either

\i{t j a(t) > c} or aft ( a(t) < c} is positive. Let for

definiteness |i(a~ ] c, GO [) > o. Since lim n(a~ ] c + 1/n, a> [)

= |ju (a~ J Q9 oo [) there is an integer n̂ . such that

M.fa"1] c + 1/iij, GO [) > o. Thus if c < s < c + 1 / ^ then

\i (a ] - GD , s [ and \i> (a ] s9 GD [ are both positive contradicting

(A). Thus (B) is verified•

Next we proceed to show (C) that there is a real number c

such that ILL (a"" (c)) > o. If this is not true then (*) for

every real number r, JJ, (a"" (r)) = o. Thus from (A) it is

verified that either p,(a" ] O,GD f) = (i (X) or Jifa*"1] - GO ,O[) = (i (X) .

Let us assume the first alternative is true. Then recalling (*)
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it is verified that o < \tia~1] o,a> [) = E ^(cT1] n,n + 1[) .

Thus from (A) and (*) it is verified that there

exists an interval ]m,m + IX such that

^(a"1] m,m + 1[) = p, (X) . Once again from (*) it follows that

if F± = [m,m + 1] then |i(a"1(F1)) = ^ (X) • Noting that

Ufa"1] m,m + 1[ = ^(a"1] m,m + l/2[) + ^(a"1] m + 1/2,m + 1[) and

repeating the above argument it is verified that there is a closed

interval %2 <Z F ^ length F2 = j such that |i (a~1(R J ̂ ^ ££}-• ^#epeating

this procedure there is a decreasing sequence of closed*intervals1(F.}

such that length F. -> o and M*(a" (F)) = M» (X) . Thus if c is

is the real number (c) = fl F. then p, (a" (c)) = p (X) contradicting

(*). Hence (C) is verified.

From (B) and (C) it follows that a is a constant function.

This completes the proof of the theorem for p = 2.

We complete the proof of the theorem by showing that if

p = 2, cx(t) = o a«e*

If 1 <; p < 2 since cp o x e Lpd-i) whenever x € L (M>) as

noted earlier restricting our attention to a measurable set

M, o < (j,(M) < oo , we find that there is a function a e L (M«) and

a positive number b such that

| cc(t) r2 + p(t) r | ̂  a(t) + b |r |p'->a?e- in M.

From this inequality since p < 2 it follows that

a(t) = o a«e* in M. Thus a(t) = o a«e«



Next we proceed to the case p > 2 but p ^ GO .

Let oc(t) = c a«e* Then from the implication

x xT y =* F(x) + F(y) = F(x + y) it is verified that

(s) x i y =» c f x(t) y(t) d M-(t) = o.

Let c ^ o. Let M,,M2 be two disjoint measurable subsets

of X such that o < nfM^) = |i (M ) < OD . Consider the functions

1 1

x = 2v~l IM + a*'1 IM and y = 4 IM - IM . Then it is

verified that x x y. Thus from (s) since c ^ o it
j

follows that I x(t) y(t) d p,(t) = o. By direct evaluation of

the integral it is verified that the integral is not equal to o,

obtaining a contradiction. Hence <x(t) = o a*e»

The case when p = GD is similarly dealt except instead

of x^y of the preceeding case we consider the functions

defined as follows. Let M-^M^M be three pair wise disjoint

measurable sets such that o < M M ^ = M M 2 ) = M*(M3) < on .

Let x = Ilf and y = - Ilf where M = M, U Mo U Mo. It is

verified that x.y e L (|i) and x xT y. However

J x(t) y(t) d |i(t) jt o. Thus as in the preceeding case

a (t) = o a»e-

Remark: We note that since F is a continuous function

on
 -P

L (|i) that the function x -» f P (t) x(t) d p, is a
P J

continuous linear functional. Thus if 1 <̂  p < GO then

P e L (fjt) where q = —£> if p > 1 and q = GO if p a l ,
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Thus we note that every Aj - function on L2(M*)
 i s o f t h e

form F(x) = c || x|l2 + f (x) where c is some real number and f

is a continuous linear functional on L,

In conclusion we note that if B is a Banach space and

if there is a function F : B -» R such that

(1) x x y => F(x + y) = F(x) + F(y) and (2) F(x) = c || x ||2 + f (x)
J

for some real number c ^ o and for some f e B (the dual of B)

and dim B ̂  3 then B is a Hilbert space. For if there is

such a function F then it is verified that

x Xj y * || x + y ||2 = || x ||2 + || y ||2.

Thus if x x y then since A x xT y for all A e R it

follows that || y + A x ||2 = A2 || x ||2 + || y ||2 ;> || y ||2.

Thus y x x. Hence orthogonality (J) is symmetric. Thus
J

from the footnote on p. 283 in [6] it follows that B is a

Hilbert space. This observatiin provides an alternate proof

of the part asserting oc(t) = o a< c< if p ^ 2 in the proof

of Theorem 2 in this paper.

As already noted in the introduction there are other concepts

of orthogonality in normed linear spaces, [5]. However the one

considered in this paper is the most interesting since it is closely

related to hyperplanes and linear functionals as one notices by

referring to [6].
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