TWO NOTES ON REGULARITY IN GENERAL TOPOLOGY

by

Oswald Wyler

Report 70-22

1. A characterization of regularity in topology.

2. On regular convergence spaces.

۶

FE8 1

May, 1970

× Research supported in part by N.S.F. Grant GP-8773. University Libraries Carnegie Mellon University

Pittspurgh PA 15213-3890

CARNEGIE-MELLON UNIVERSITY

A CHARACTER]ZATION OP REGULARITY IN TOPOLOGT

Oswald Wyler*

We end in this note that the topological separation axiom T, (which we do not intend to imply T_z) can be regarded as a continuity condition for the convergence of filters. We express this condition in two quite distinct ways. This raises questions about connections between various continuity conditions for relations. We have only a partial answer to these questions.

Let (E, -C-) be a topological space. We denote by E^* the set of all filters on which converge for r- to some point of E. For XC E, we put $X^* = i < pfE^* : Xf < j > \setminus$. Then $0^* = 0$ for the empty set, and

(xru)* = x*ni* , *ex* <%=^ x£x ,

for subsets X , Y of E , $x \notin E$, and $i = |l C E : x \notin XJ$. We regard convergence of filters for TT as a relation $q : E^* \rightarrow E$, writing a? $q \times if < p$ converges to x. This relation is a mapping if and only if (E,tr) is a Hausdorff space. For X CZ E, we have $q(X^*) = \overline{X}$, the closure of X for $\sim cr$.

It seems natural to impose a topology on E^* by using the sets U^* , with U open for X", as a basis of open sets. The preceding paragraph shows that this works, and ve denote the topology of E^* thus defined by $\sim c^*$. With this notation, wt; state the following theorem.

* Research supported in part by N.S.P. Grant GP-8773.

- (i) (E,T) is a $T_{?}$ space.
- (ii) $q : (E^*, t^*) \rightarrow (E.'tr)$ is left continuous.
- (iii) $(E, \sim n)$ is an R_n space and q is upper amplitude R_n .

<u>Proof</u>. Assume first T_3 and consider $f : A \rightarrow E^*$ and $g : A \rightarrow E$ with f continuous and f(a) converging to g(a) for all $a \notin A$. If U is open in E and $g(a) \notin U$, then $g(a) \notin V \subset T \vee C \cup$ for some open \vee . For this \vee , we have $\vee \& f(a)$, and $\vee G f(x)$ implies $g(x) \notin \nabla$. Thus $a \operatorname{Crf}^{,1,*}$ and $f^{-1}(\vee) d g^{-1}(\vee)$. This shows that $g^{-1}(\vee)$ is open, and hence g continuous.

If q is left continuous, then q is upper semi-continuous by Theorem 2. If iqy, let A be the space with two points a, b, and with fb[^] open, but not closed. Put f(a) = f(b) = i and g(a) = x, $g(b) \gg y$. Then f is continuous and f(u) q g(u) for $u \notin A$. Thus g is continuous. If V is an open neighborhood of x, then $g^{-1}(v)$ is open and $a \notin g^{-1}(v)$. Thus $g^{-1}(V) \gg A$, and $y^{-1}V$. This shows that also $\gamma q x$, and E is I_Q .

Assume now (iii), and let P be closed in E and $x f \in F$. If iqy, then $\dot{y} q x$, and y f F would imply x f F = F. Thus $x^{\bullet} q^{-1}(F)$. It follows that i fV* for an open set V with $V*r q^{-1}(F) * 0$, But then $x \in V$, and $VnF = q(V*) f \setminus F = 0$. Thus E satisfies T,

The following example shows that R_Q cannot be omitted from Theorem 3. The space with two points and three open sets (used in the proof of the Theorem) is TQ but not T_1 , and hence a fortiori not T_7 or R_Q . But one sees easily that q is both upper and lower semi-continuous for this space.

The significance of lower semi-continuity of q is not clear to this author. The following curious result does not help with this. <u>Theorem 4</u>, q : $(E^*, -c^*) \rightarrow (E_f x)$ <u>is lower semi-continuous if</u> $(E_f \sim c)$ <u>is a finite topological space</u>.

<u>Proof</u>. We show more: all sets $q^{\mathbf{1}}(x)$ are open in \mathbb{E}^* . Since $q^{\mathbf{1}}(x)$ is the set union of all $q^{\prime\prime} \mathbf{1}(x)$, x6.X, it suffices to consider $q^{\prime\prime} \mathbf{1}(x)$ for xfE. The set intersection of all neighborhoods of x is an open neighborhood V of x since E is finite, and obviously $q^{\prime\prime} \mathbf{1}(x) = V^*$ for this set.

One further example: for the space with three points and six open sets, q is lower semi-continuous (by Theorem 4), but not upper semi-continuous.

We conclude with the following remark. All results of this note remain valid if E* is taken as the set of all convergent ultrafilters on E and filters are replaced by ultrafilters throughout.

Preferences

[1] C. Berge, Topological Spaces. New York, Marcillan, 1963.

[2] A. S. Davis, Indexed systems of neighborhoods for general topological spaces. Acer. Math. Monthly <u>68</u>, R86 - 893 (1961).

[3] E. A. Michael, Topologies on spaces of subsets. Trans. A. M. S. <u>71</u>.
152 - 182 (19bl).

CARKhGIE-MSLLON UNIVERSITY

ON REGULARITY FOR CONVERGENCE SPACES

Oswald Wyler*

Cook and Fischer in [2] and independently Fleischer in [4] defined regularity for convergence spaces by a partial converse of the inverse limit property. We wish to show in this note that their regularity condition is in fact a continuity condition for filter convergence. Since convergence is in general a relation and not a mapping, this requires a definition of continuity for relations. We furnish such a definition which should also be useful elsewhere.

Cook and Fischer proved that regularity in their sense is implied by the topological axiom $T_{,,}$, formulated in terms of filter convergence. Biesterfeldt [1] pointed out that the converse implication is also valid. However, his proof work- only for T_{0} spaces; we shall give a proof for all spaces.

We have to establish some notations. We write $y \ p \ for \ filters \ (p , y - on a set E if ils is finer than <math>\leq$?, ie.e. if . We define a convergence space (E,q) as a pair consisting of a set E and a relation q from filters on E to E, subject only to the two Fréchet axioms, as follows.

L1. If $x \in E$ and $x = jx \in CE : x \in X$, then $x \neq x$.

L 2. If $_{J}Tq \ge and \bigvee (p, then also yq \ge .)$ The third axioia used by Cook and Fischer [2] will not be needed.

* Research supported in part by N.S.F. Grant GP-8773.

Let (E,q) be a convergence space. We denote by E* the set of all filters on E which converge for q to some point in E, and we consider q as a relation from E* to E. We put X* = f < pfE* : X < f < p for X < Z E. Then

(1)
$$(xm)^* = X^*m^*$$
 and $x \in X^* < \xi > x (\in X)$

for subsets X , Y of E and x f E . For a filter \vec{W} on E* , we define a filter $(\vec{p} \pm \text{ on } E$, called the <u>compression</u> of (\vec{p}, p) by putting

(2) $* f < f > 4 ==^{X} X f (p)$

for XCE, One verifies easily that 0^* is indeed a filter. If 0^7 is the filter on the set of all filters on E with (p as basis, then $0^* - 96 0^1$, the Kowalsky compression defined in [5]; see [6] for a proof of this.

The closure of a set $X \subset E$ with respect to q is the set $\overline{X} = q(x^*)$. If a is a filter on E, then the sets \overline{X} with $X \notin (T \leq form a filter basis;$ we denote jy $\overline{\xi}T$ the filter on E with this basis. This allows us to formulate T_3 in terms of filter convergence, as follows.

 $T_{\mathbf{y}}$. (7 q x always implies) $T_{\mathbf{y}}$. The following theorem is due to Cook-Fischer [2] and Biesterfeldt [1].

(Reg) Let I be a set and $f : I --> E^*$ and g : I --> E mappings. If f(b) converges to g(b) for all bfl and if cr is a filter on I such that $(f(\ll r))_{\#}$ converges to a point $x (f \in r)$, then $g(\ll r)$ converges to x.

<u>Proof</u>. If the data of (tieg) are given, then $b \not{i} \sim I$ and X f z t(b) imply $g(b) f \uparrow$, and thus $f(B) C X^* ==^>$. $g(s) d \vec{X}$ for sets B C I and X CZ. E.

It follows immediately that $g(\langle \mathbf{jr} \rangle) = \{\mathbf{f}(\langle \mathbf{jr} \rangle)\}_{*}$, and now T- and L 2 imply that $g(\langle \mathbf{jr} \rangle)$ converges to x if $(f(\mathbf{or}))_{\#}$ does.

For the converse, let I in (Reg) be the graph of q and f and g the projections, i.e. $t(\langle p_t x \rangle) - Cp$ and $g(cP,x) \langle = x \ if \langle jPq, x \rangle$. If I C E, let $S_x \langle in(X^*X X) \rangle$. Then clearly $f(s_x) \ast X^*$ and $g(S_x) - 1$. If $\langle pf E^* \rangle$, then the sets S_x with $Xf \langle X \rangle$ form a filter basis; we denote by S q the filter on I with this basis. One sees easily that $(f^*S_y))_{\#} - (h$ and $g(S_y) = 5f$. If we apply (Reg) with CT = $Sq \rangle$, then T, results.

If f : (E,q) -5 (F,r) is a continuous mapping of convergence spaces, then the induced filter mapping maps E* into P* . Thus f induces a mapping f* : E* - ^ P* , We note without proof that

(3)
$$Y \in f^*(\varphi) \iff f^{-1}(Y) \in \varphi$$

for ${\it p\!\!\!\!/}\, {\tt f}\, {\tt E}^*$ and ${\tt Y}\, {\it CZ}\, {\tt P}$. This is a general filter property.

Let again (E,q) be a convergence space. We introduce a convergence structure q* on E* as follows. We put (p q* < p, for < p f E* and a filter 0on E*, if $0_t 4q^*$, and we put in addition $< fiq^* x$ for x f E if < & q x. Thus $q^*(0)$ depends only or $J \$. We have the following result.

<u>Theorem 2</u>. (E^*,q^*) is a convergence space. $(f > q^* \& \# for every filter$ on E^* with $0 + 6E^*$. If $0 q^* p$ and mq x, then $(4 q x \cdot If f : (E,q) -V(P,r)$ is a continuous mapping of convergence spaces, then $f^* : (E^*,q^*) \rightarrow (F^*,r^*)$ is also continuous.

Proof. $X^* \in 4$ > ^=4> ^6- X* <£=> X ($\approx f$, and thus (^.)_# • <**T**₂, and $\P^* < \$, if <p£ E*. L 2 for q* is obvious since If* £ <^V if Cf. < ^6 • The middle parts of the Theorem are obvious from the definition of q*. The last part follows immediately from the definition of q^* , the implication $f(x) = y^*$, and the following bit of filter algebra.

Lemma 1. If $f : (E,q) \longrightarrow (P,r)$ is a map of convergence spaces, then $irH^*)$ + - $(f^*)^{1/*}$ sad., $(f^*(0))_{\#} - f^*(\phi_*)$, for YC P and a filter (f) on E^* .

<u>Prool</u>'J We note for the first part that

$$\varphi \in (\mathfrak{r}^*)^{-1}(\mathfrak{I}^*) \iff \mathfrak{r}^*(\varphi) \in \mathfrak{I}^* \iff \mathfrak{I} \in \mathfrak{r}^*(\varphi) \iff \mathfrak{r}^{-1}(\mathfrak{I}) \in \varphi .$$

Now use (?) once more. The second part is established by

$$Y \in (f^*(\phi))_* \iff Y^* \in f^*(\phi) \iff (f^*)^{-1}(Y^*) = (f^{-1}(Y))^* \in \phi$$
$$\iff f^{-1}(Y) \in \phi_* \iff Y \in f^*(\phi_*).$$

This proves the Lemma.

We define mappings $j : E \longrightarrow E^*$ and $Pd : E^{**} \longrightarrow E^*$ by putting j(x) = ifor $x \pounds S$ and $x(^) - (fa \text{ for } 0 \pounds r^* E^{**} \ll (E^*)^*$.

<u>Theorem</u>?. j : (E,q) $-^{(E^*,q^*)}$ and $^{\#}$: (E**,q**) -> (E,q) are continuous maps of convergence spaces.

<u>Proof</u>. We have $j(x) \subset I^* < == \ X < C Y$ for subsets X, T of E by the second part of (1), and it follows immediately that $(j(o?))_{\#} * < f$ for a filter $e > fE^*$. Thus $j(tf?) q^*$ i if d? q x, and j is continuous.

For the second part, we need the following lemma.

Lemma 2- (^e(F))* * (*%)* for a filter 5* fin E** .

<u>Proof</u>. If XCTE, then

$x \in (\mathcal{H}(\mathcal{F}))_* \iff x^* \in \mathcal{H}(\mathcal{F}) \iff \mathcal{H}^{-1}(x^*) \in \mathcal{F}$

and $Xfi(F_4)_t \iff ** < \pounds = * \iff H > (* \cdot) * \pounds \pounds "$. Since $(Pex'H^{**}) < \# = * (p^* \pounds X^* < \pounds = * > X \leftarrow \phi_* \iff x^* \leftarrow \phi$ for $(fie E^{**}, we have x^{"1}(x^*) = (X^*)^*$, and the Lemma is proved.

Now let $J^{*}q^{**}0$. If $(^{*}=\langle f and , jP_{\#}qffifor some (?) fr^{E}*$, then $@=(fa. and J^{q} * * . If Jr^{*} < \&>$ then $CFj^{*}.0^{*}$, and again $."F^{*}q^{*} < /* \cdot Stt^{tnenala0} X(<3^{-})q^{*}(^{*})$ by lamina 2 and the definition of q^{*} ... Thus ,5C is continuous.

The last part of Theorem 2 shows that $T(E,q) \ll (E^*,q^*)$ and $Tf = f^*$ define an endofunctor T of the category of convergence spaces. There is enough filter algebra scattered in this paper to prove that T and the mappings j and *OC* are the ingredients of a categorical triple (T, j, &f). The existence of such a triple seems to be characteristic for topological regularity. We plan to take this up elsewhere in a more general context.

Let now (E_fq) and (P,r) be convergence spaces. We call a relation $u : E \to F$ left continuous, from (E,q) to (F,r), if for every continuous mapping $f : (A,p) .-^{(E_tq)}$, where (A,p) is an arbitrary convergence space, and every mapping $g : A \to P$ such that f(a) u g(a) for all u fA, the mapping g is continuous, from (A,p) to (P,r). We shall not study this concept in depth here; we note only the following result.

<u>Theorem</u>[^]. <u>Let</u> ([^],q) and (P,r) <u>be convergence spaces</u>. <u>A mapping</u> u : $E . -s^*$ <u>j</u> is a left continuous relation from (E,q) Jto. (P,r) <u>if and only if</u> u <u>is a continuous mapping</u>. <u>If</u> u : (E,q) - (P,r) and v : (P,r) - *; (G,s) <u>are</u> <u>left continuous relations</u>, <u>then</u> v u : (E,q) - * (G,s) <u>is left continuous</u>. <u>Proof</u>. A continuous mapping obviously is left continuous as a relation. Conversely, if a mapping $u : E \cdot \cdot -:>F$ is a left continuous relation, then g = u for f = id E in the definition. Thus u is a continuous mapping.

If u : E - ? F and v : P - G are left continuous, and if f : A - Eand h : A - G satisfy f(a) (v u) h(a) for all a < A, then there is g : A - P such that f(a) u g(a) and g(a) v h(a) for all $a \neq A$. If f is continuous, then g is continuous, and then also h is continuous. Thus v uis left continuous.

Theorem 4 shows that convergence spaces and left continuous relations form a category into which the category of convergence spaces and continuous mappings is naturally embedded.

We have cleared the way for our main result.

<u>Theorem 5</u>. <u>A convergence space</u> (E,q) <u>satisfies</u> (Reg) <u>if and only if con-</u> <u>vergence of filters defines a left continuous relation</u> $q : (E^*,q^*) \longrightarrow (E,q)$.

<u>Proof</u>. Assume first (Reg) and consider $f : (A,p) - (E_{f}^{*}q^{*})$ and g : A - E such that f(a) converges to g(a) for all $a(cA \cdot If er p a , then f(b) q^{*} f(a)$ and $f(a) q g(a) \cdot By$ the middle part of Theorem 2, $(ffcr)_{\#} q g(a)$ in this situation. Thus g((5) q g(a) by (Reg), and g is continuous. This proves left continuity of q.

Let now q be left continuous, and consider the situation of (Reg). Adjoin a single point z to I to form A, and extend gr to a filter on A_t also denoted by $\langle T \rangle$. Put $\oint p z$ if q > 4 < T or $\langle p = t \rangle$, and allow only a p a for a f z in I. This defines a convergence space (A,p). Extend f and g to A by putting f(z) = i and $g(z) \ll x$. This does not change $f(\leq^n)$ and $g(z) \ll x$. If $(f(er)) \approx q x$, then $f(\langle y) q^* f(z)$, and thus f is continuous. Since f(a) q g(a) for a = z as well as a fl, it follows that g is continuous. But then g(&) converges to x = g(z), as required by (Reg).

<u>Corollary</u>. <u>A separated convergence space</u> (E,q) <u>is regular if and only if</u> q : $(E*_fq*) -$ \$ $(2*_q)$ <u>is a continuous mapping</u>.

<u>Proof</u>. If (E,q) is separated, then q is a mapping, and thus the Corollary just requires putting Theorems 4 and 5 together.

We conclude with some remarks. If (E,q) is a separated regular convergence space, then $q : (E^*,q^*) - (E,q)$ is not only a continuous mapping but defines an algebra for the triple (T, j,i?e) mentioned earlier in this note. To prove this is an easy exercise in filter algebra.

The spaces considered in [<?] satisfy the following axiom in addition to L 1 and L 2.

L3. If $\langle j \rangle$ q x and J^q q y, then ($\langle \rangle$ P») q x.

Here ^>cy.' = jluY : X^-qp and $Y \in Y^*$ T⁰⁶⁸⁶ spaces are the limit spaces of [5] and [3]. If (E,q) is * limit space, then so is (E^*,q^*) . This follows immediately from the fact, easily verified, that $((pulp)^* \ll cf \land c \ll P)$ for filters (*ft* and ^ on E*. Thus all our results remain valid for the category of limit spaces. The only modification which is needed is in the proof of Theorem 5: we must put dpp z for $\Rightarrow ^9"U z$.

If q is convergence of filters for a topology t of B, then one sees easily thj.t (E^*,q^*) is a neighborhood space, i.e. each $\langle p \in E^* \rangle$ has a neighborhood filter N« such that $\langle f q^* f \rangle \langle f = 0 \rangle U^*$, for a filter (/) on E^* . In general, q* is not the convergence of filters for a topology of E^* , One sees without difficulty that the finest topology of B* with filter convergence coarser than q* has the sets U*, with U open for $\sim C_t$ as a basis of open sets. The connections between this topology and T₃ for (&,*c) have been studied in [7].

References

- Biesterfeldt, H. J.: Regular convergence spaces. Indag. Math. <u>28</u>, 605 607 (1966).
- Cook, C. H,, Fischer, H. R.: Regular convergence structures. Math. Ann. <u>174.</u> 1-7 (1967).
- 3. Fischer, H. R.: Limesräume. Math. Ann. <u>1</u>22., ²⁶9 703 (1959).
- 4. Fleischer, I.: Iterated families. Colloq. Math. <u>15</u>, 235 241 (1966).
- 5. Kowalsky, H.-J.: Limesräume und Komplettierung. Math. Nachr. <u>12</u>, 301 340 (1954).
- Ramaley, J. F., Wyler, O.s Cauchy spaces II. Regular completions and compactifications. Math. Ann. (1970).
- 7. Wyler, 0. A characterization of regularity in topology. To appear.

CARNEGIE-MELLON UNIVERSITY