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FIXED POINT THEOREMS FOR

SUMS OF OPERATORS

James S. W. Wong

Let T be a mapping from a Banach space X into
itself and K be a closed bounded convex subset. The
celebrated Schauder fixed point theorem states that if
T(K) €K and T is completely continuous then T has
a fixed point in K. We are here concerned with extensions
of Schauder's theorem to sums of operators. An operator

A defined on X 1is called a contraction if there exists

some constant O < g < 1, such that ||Ax < Ay|| < qllx-yl|
for all x,yeX. The following is a generalization of

Schauder's theorem due to Krasnoselskii for sum of operators.

THEOREM I. (Krasnoselskii [8], Sadovskii [11])

Let T = A + B, where A 1is a contraction and B completely

continuous, and T(K) € K. Then T has a fixed point in K.

The operator A is called non-expansive if

lax - ay|| < ||x - y|| for all x,yeX. We call the operator

B strongly continuous if for every weakly convergent sequence

{xk}, with limit x, there exists a subsequence {Bxk } such that
i
Bxk7—+ X strongly. Recent interests in the theory of non-
1

expansive mappings led to the following analogue of Theorem I:

THEOREM II. (zabreiko, Kachurovskii and Krasnoselskii

[12]). Let X be a real Hilbert space, T = A + B, where A

is nonexpansive and B _is strongly continuous, and T(K) < K.




Then T has a fixed point in K.

When the operator B = O, Theorem II\reduces to the recent
well known result of Browder [l1l], Kirk [7] and Gohde [4],
establishing the existence of fixed poihts of nonexpansive
mappings on Hilbert spaces.

In a number of applications of Schauder's theorem, it
is sometimes difficult to find a desired bounded convex
set K which is mapped into itself by T. One is thus led
to impose other conditions directly on the operator T
which ascertains the existence of some large closed ball
being mapped into itself by T. For this purpose, the notion

of quasi-norm of T is introduced which is defined by

(1) 7|l = lim sup TX
|| ]| o0 x

By requiring that ||T|| is small, we have the following an-
alogue of Schauder's theorem concerning the solvability

of functional equations.

THEOREM III, (Dubrovskii [2], Granas [5]). £

T
is completely continuous,and ||T|| < 1, then R(I-T) = X,

where R(T) denotes the range of T.

The purpose of this note is to prove analogues of Theorems
I and II by imposing quasinorm conditions on A and B

in place of the condition T(K) < K.

THEOREM 1. f T=A+ B, where A is a contraction

and B is completely continuous, and ||a|| + ||B|| < 1, then

R(I-T) = X.




THEOREM 2. Let X be a real Hilbert space. If

T=A + B, where A is nonexpansive and B is completely

continuous, and ||A]| + ||B|| < 1, then R(I-T) = X.

Roughly speaking, Theorems I and II remain valid when
the condition that T(K) € K is being replaced by the
quasinorm condition that |A] + ||B|| < 1. Of course,
in Theorems I and II the operator T need only to be de-
fined on K rather than the entire space X. However,
the conclusions of Theorems 1 and 2 are also stronger.

As an immediate consequence of Theorem 1, we obtain

the main theorem of Nashed and Wong [10] as a corollary:

COROLLARY 1. f T=A+ B, where A is a contraction

and B is completely continuous, and ||B|| < 1 - q, then

R(I-T) = X.

Note that if A is a contraction with contractive constant

g, then we have

&)l = ﬁ}icrln_z;p ax

< lim sup [|ax - ao|l + |lao|l
x||=o0 IES]

< 1lim su x| + llaoll _
xR = @

Thus if |B]| < 1 - ¢ then ||a|| + ||B]]| < 1, and the result

follows from Theorem 1.

PROOF OF THEOREM 1l. For each vyeX, define Ayx = AX + Vy

for every xeX and Ty = Ay + B. It is easy to see that

AY is a contraction with the same contractive constant q,




and the operator Ty satisfies the same hypothesis as that
of T. Moreover, OeR(I—Ty) if and only if vyeR(I-T).
Thus, it suffices to show that O0ecR(I-T). For any fixed

element zeX, let Lz denotes the unique solution of
(2) Lz = ALz + Bz,

which is possible because A is a contraction. For any
pair of elements u,veX, we deduce from (2) the following

inequality

luu - vl < 755 IBu - Bl

from which and the complete continuity of B it follows
that L 1is also completely continuous. For each positive
integer n, denote B = {x : x| < n}. We wish to show
that there exists a positive integer N such that

L(BN) c BN. Suppose not, there must exist a 'sequence

(u }eB  ~such that |Lu || > n for all n. since L is

completely continuous, so HunH - oo as n - o©. Note

that from (2), we have

(3) lu ll < n < flou | < llave || + B |

For each € > O, we may choose ng such that for all n > n_,

lacu Il < (llall + $)llzu |l, and also [Bu |l < Bl + $) |l |-
Using these estimates, we can obtain from (3)

leu lci-la) - 5 < lBu |l

which implies




(-l - § < 2ol ¢ 1Bl gy 4 g

lzu, | flu|

from which it follows 1 < ||A|| + ||B]| + €. Since e > 0 is

arbitrary, this provides the desired contradiction and proves

the theoremn.

PROOF OF THEOREM 2, As in the proof of Theorem 1, it

suffices to show that O0eR(I-T). To this end, weé define

for 0< A< 1,A, = NA,B, = AB and T, = AT. First note

A A A

that A nonexpansive implies A% is a contraction with
contractive constant . Next, since B 1is strongly con-
tinuous and X 1is reflexive, B 1is also completely con-
tinuous so does By for every A. Thus, an application of

Theorem 1 to the operator T shows that there exists

xxex satiszing

(4) Xy - (AX + Bk)xk = 0,

for each 2,0 < A ¢ 1. We claim that the set {XA : D<A\ <1}
is bounded. For otherwise, there exists a sequence {Ai]

such that Hxx | =+ oo as i = co. Using (4), we observe
i

that
1

1 = (A + B, )
[ENAL | AT x7‘i”

1
AL
1
< m ”Ax?\i + BX7\iH
i

1
.s]ﬁgcﬂ' (quxﬁl*'”BXAJD;
1




which upon letting i = oo, gives a contradiction. Now:

since the set (xx} is bounded, there exists a subsequence

{xx ], Ny t 1, which converges to an element x eX. Since
i

B is strongly continuous, there exists a subsequence [xn ]

i
such that xn t 1 and Bx, converges strongly to on.
i n,
We write X, = X for short. Note that
ny
o=, || = llax, + Bx,|

< llax; - aof| + [lao|l + Bx|

< =gl + 2llaoll + dliBx |l + 1),

from which it follows that the sequence {Txi} is also

bounded independent of i, say |Tx.|| < M. Now, we observe

that by (4)
Iy~ xll = llewg - 2 e
<@ -y =51l < (1 - LS
hence }igo HTxi - xiH = 0. Also the strong convergence of
im

Bxi to on may be used to prove that the sequence {xi - Axi}

converges strongly to on, since
lx; - ax; - Bx |l < llx; - Tx;[| + [IBX; - onH.

Finally, let xeX; and obtain from the nonexpansiveness of

A the following inequality

{(5) (x - Ax - X5 + Axi, X - xi).z o.




Note that

| (x - ax - X, + BX;, X - x;) - (x - Ax - on, X - xo)|
< | (-x; + Ax; + Bx_, X - x| + [ (x - Ax - Bx_, x_ - x) |,

which tends to zero as i - oco. Thus passing the limit in

(5), we obtain
(x - Ax - on, X - xo) > O.
Since t > 0, we obtain from above

Letting t - O in the above inequality, we find

(xo - Ax_ - Bx,, h) > 0. The fact that h is arbitrary yields

X, = Txo. This completes the proof of the theorem.

Remark 1. We note that the original proof of Corollary 1
is similar to that of Theorem 1. However, by a direct applica-
tion of Theorem III, we can now provide a shorter proof.

It is well known that if A is contraction then (I - A)"1
exists and is Lipschitzian with Lipschitzian constant (1 - q)—l.
Since B 1is completely continuous and (I - A)'1 Lipschitzian,
it follows that (I - A)"lB is completely continuous. Now

we observe that

H(I-A)’lnll < lim sup lLz-a) " (Bx-BO) || + |l(z-2) "1BO|
x||l-oc0 I x||

¢ L. lim sup IBx|l + llBoll + ll(z-2) ‘B0l
l1-q |ix||-»o0 Y]

<& lsll < 1.




Applying Theorem III to the operator (I-A)_lB, we obtain

R(I-—(I—A)_]'B) = X. Thus,
R(I-T) = R((I-A)(I-(I—A)'IB)) = (I-A)X = R(I-A).

Again since A is a contraction, we have R(I-A) = X.

Remark 2. -As a historical remark, we wish to point
out that in [8], Krasnoselskii assumed the stronger condition
that Ax + ByeK for every pair x,yeK. The stronger result
was first given in Sadovskii [11]. An alternative proof of
Theorem I in case X 1is a Hilbert space was also given in
Zabreiko, Kachurovskii and Krasnoselskii [12]. We remark
also that under the above stipulated stronger condition,
Theorem II was first proved by Kachurovskii [6]. Dubrovskii
[2] originally proved Theorem III under the stronger hypothesis
that |IT|| = 0, such an operator is also called asymptotically
zero. The introduction of quasinorm and the present improve-
ment was due to Grénas [5]. Extensions of Theorems I and IT
in a different direction may also be found in Fudik [3].
For applications of fixed point theorems for sums of operators
to the study of nonlinear integral equations we refer to

Krasnoselskii [9] and Nashed and Wong [10].

Remark 3. Although Theorem 2 is stated and proved for
a real Hilbert space it obviously remains valid for Hilbert
spaces over complex numbers. In particular, inequality (5)
and the following arguments remain valid if .one simply

replaces the inner product by its real part.
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