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Let T be a mapping from a Banach space X into

itself and K be a closed bounded convex subset. The

celebrated Schauder fixed point theorem states that if

T(K) c K and T is completely continuous then T has

a fixed point in K. We are here concerned with extensions

of Schauderf s theorem to sums of operators. An operator

A defined on X is called a contraction if there exists

some constant 0 < q < 1, such that ||Ax < Ay|| <̂  q||x-y||

for all x,yeX. The following is a generalization of

Schauderfs theorem due to Krasnoselskii for sum of operators.

THEOREM I, (Krasnoselskii [8], Sadovskii [11])

Let T = A + B, where A JLs a. contraction and B completely

continuous, and T(K) c Ko Then T has _a fixed point in K.

The operator A is called non-expansive if

||Ax - Ay|| <̂  ||x - y|| for all x,yeX. We call the operator

B strongly continuous if for every weakly convergent sequence

{x,}, with limit x, there exists a subsequence {Bx, } such that

Bx^.-—> x strongly. Recent interests in the theory of non-

expansive mappings led to the following analogue of Theorem I:

THEOREM II. (Zabreiko, Kachurovskii and Krasnoselskii

[12] ) . Let X be ja real Hilbert space, T = A + B, where A

is nonexpansive and B _is strong_ly continuous, and T(K) c K.



Then T has a. fixed point in K.

When the operator B = 0, Theorem II reduces to the recent

well known result of Browder [1], Kirk [7] and Gohde [4],

establishing the existence of fixed points of nonexpansive

mappings on Hilbert spaces.

In a number of applications of SchauderTs theorem, it

is sometimes difficult to find a desired bounded convex

set K which is mapped into itself by T. One is thus led

to impose other conditions directly on the operator T

which ascertains the existence of some large closed ball

being mapped into itself by T. For this purpose, the notion

of quasi-norm of T is introduced which is defined by

(1) ||T|| = lim sup
iix||-oo

By requiring that ||T|| is small, we have the following an

alogue of Schauderfs theorem concerning the solvability

of functional equations.

THEOREM III, (Dubrovskii [2], Granas [5]). Tf T

is completely continuous,and ||T|| < 1, then ft(I-T) = X,

where R(T) denotes the range of T.

The purpose of this note is to prove analogues of Theorems

I and II by imposing quasinorm conditions on A and B

in place of the condition T(K) c K.

THEOREM 1. If T = A + B, where A JLs a. contraction

and B JL£ completely continuous, and ||A|| + ||B|| < 1, then

ft(I-T) = X.



THEOREM 2« Let X be _a real Hilbert space. If

T = A + B, where A JLs nonexpansive and B jus completely

continuous, and ||A|| + ||B|| < 1, then ft(I-T) = X.

Roughly speaking, Theorems I and II remain valid when

the condition that T(K) <= K is £>eing replaced by the

quasinorm condition that ||A|| + ||B|| < 1. Of course,

in Theorems I and II the operator T need only to be de-

fined on K rather than the entire space X. However,

the conclusions of Theorems 1 and 2 are also stronger.

As an immediate consequence of Theorem 1, we obtain

the main theorem of Nashed and Wong [10] as a corollary:

COROLLARY L If T = A + B, where A JLS â  contraction

and B Îs completely continuous, and ||B|| < 1 - q, then

ft(I-T) = X.

Note that if A is a contraction with contractive constant

q, then we have

A = l im sup llAxl
llxll-oo n S

lim sup Ax - AO
llxlhoo llx

llAOll

l i m sup qHxIl + llAOJl _
Hxlhoo llxll -

Thus if ||B|| < 1 - q then ||A|| + ||B|| < 1, and the result

follows from Theorem 1.

PROOF OF THEOREM 1. For each yeX, define A x = Ax + y

for every xeX and T = A + B. It i s easy to see that

A is a contraction with the same contractive constant q,



and the operator T satisf ies the same hypothesis as that

of T. Moreover, Oeft(I-T ) if and only if yeft(I-T).

Thus, i t suffices to show that Oeft(I-T). For any fixed

element ZGX, let Lz denotes the unique solution of

(2) Lz = ALz + Bz,

which is possible because A is a contraction. For any

pair of elements u,veX, we deduce from (2) the following

inequality

||LU - Lv|| £ ^ ||BU - Bv||,

from which and the complete continuity of B it follows

that L is also completely continuous. For each positive

integer n, denote B = {x : ||x|| <̂  n}. We wish to show

that there exists a positive integer N such that

L(B ) £ B . Suppose not, there must exist a sequence

[u }€B such that IILU II > n for all n. Since L is
n n M nM •*"

c o m p l e t e l y c o n t i n u o u s , so llu
nl! "* °° a s n -• oo . Note

t h a t from ( 2 ) , we have

(3) | |uj | £ n £ ||LUJ| ^ ||ALun|| + ||BuJ.

For each € > o, we may choose n such that for a l l n ^ n ,

llALuJI ^ (||A|| + f)||Lun||, and also ||BUJ1 ^ ((B|| + f) HuJ.

U s i n g t h e s e e s t i m a t e s , we c a n o b t a i n from (3 )

fUn||(l-||A|| - f ) <; ||BUn||

which implies



(i-IN - f) ̂l!vi ̂ |!V i wi +f-

from which it follows 1 £ ||A|| + ||B|| + e. Since e > 0 is

arbitrary, this provides the desired contradiction and proves

the theorem.

PROOF OF THEOREM 2. As in the proof of Theorem 1, it

suffices to show that Oeft(I-T). To this end, w£ define

for 0 < A < 1,A. = AA,B. = AB and T. = AT. First note
A A A

that A nonexpansive implies A. is a contraction with

contractive constant A. Next, since B is strongly con-

tinuous and X is reflexive, B is also completely con-

tinuous so does B. for every A. Thus, an application of

Theorem 1 to the operator T. shows that there exists

x.eX satisfying
A

(4) xA - (A^ + BA)xA = 0,

for each A,0 < A < 1. We claim that the set [x : O < A < 1}

is bounded. For otherwise, there exists a sequence {A.}

such that ||x̂  || -• + oo as i -> oo. Using (4), we observe
i

that

V1"



which upon letting i -• oo, gives a contradiction* Now

since the set {x^} is bounded, there exists a subsequence

{x. }, A. t 1, which converges to an element x
o
e X» Since

B is strongly continuous, there exists a subsequence {A }

such that A t 1 and Bx. converges strongly to
i n

We write x. = x- for short. Note that
1 ni

| | i | | = ||Ax. + Bxi||

£ ||Axi - A0|| + | | | | JI

£ HxJ + 2||A0|| + (||Bxo|| + 1) ,

from which it follows that the sequence (Tx.} is also

bounded independent of i, say ||Tx.|| <̂  M, NOW, we observe

that by (4)

||Txi - xi|| = ||Tx± •- An< TK±\\

hence lim ||Tx. - x.|| = 0. Also the strong convergence of
i-ooi-oo

Bx. to Bx may be used to prove that the sequence {x. - Ax.}

converges strongly to Bx , since

kj_ ~ A X i - BX
OII ^ II X i " T X i l l + | l B X i ~ B X

Q I

Finally, let xeX; and obtain from the nonexpans ivene ss of

A the following inequality

(5) ( x - A x - x . + A x . , x - x . ) J > 0 .



Note that

(x - Ax - xt + Ax., x - x.) - (x - Ax - , x - X Q)Q )

£ | ( i i Q , x - x i)| + | (x - Ax - BX Q, X Q - x±)\,

which tends to zero as i -• oo. Thus passing the limit in

(5) , we obtain

(x - Ax - BX Q, x - xQ) J> 0.

Since t > 0, we obtain from above

(xQ - A(xQ + th) - BxQ,h) ̂  0.

Letting t -» 0 in the above inequality, we find

(x - Ax - Bx , h) > 0. The fact that h is arbitrary yieldsv o o o •*-
x = Tx . This completes the proof of the theorem,
o o

Remark 1, We note that the original proof of Corollary 1

is similar to that of Theorem 1. However, by a direct applica-

tion of Theorem III, we can now provide a shorter proof.

It is well known that if A is contraction then (I - A)""

exists and is Lipschitzian with Lipschitzian constant (1 - q)~ ,

Since B is completely continuous and (I - A)"" Lipschitzian,

it follows that (I - A)" B is completely continuous. Now

we observe that

lira sup ||(I-A)"1(Bx-BO) II + H(I-A) 1BO|1
l|x||-.oo Rl

S U P 11BX|J + HBOII
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Applying Theorem III to the operator (I-A)~ B, we obtain

Bd-d-A)"^) = X, Thus,

R(I-T) = R((I-A) (I-d-A)"^)) = (I-A)X = R(I-A).

Again since A is a contraction, we have ft(I-A) = X.

Remark 2. As a historical remark, we wish to point

out that in [8], Krasnoselskii assumed the stronger condition

that Ax + ByeK for every pair x,yeK. The stronger result

was first given in Sadovskii [11]. An alternative proof of

Theorem I in case X is a Hilbert space was also given in

Zabreiko, Kachurovskii and Krasnoselskii [12], We remark

also that under the above stipulated stronger condition,

Theorem II was first proved by Kachurovskii [6]. Dubrovskii

[2] originally proved Theorem III under the stronger hypothesis

that ||T|| = 0, such an operator is also called asymptotically

zero. The introduction of quasinorm and the present improve-

ment was due to Granas [5]. Extensions of Theorems I and II

in a different direction may also be found in Fucik [3].

For applications of fixed point theorems for sums of operators

to the study of nonlinear integral equations we refer to

Krasnoselskii [9] and Nashed and Wong [10].

Remark 3. Although Theorem 2 is stated and proved for

a real Hilbert space it obviously remains valid for Hilbert

spaces over complex numbers. In particular, inequality (5)

and the following arguments remain valid if .one simply

replaces the inner product by its real part.
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