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INTRODUCTION

We are here concerned with the oscillatory behavior
of solutions of second order nonlinear ordinary differen-

tial equations of the form

(1) y" + yF(yz,X) =0, x>0,

where yF(yz,x) is continuous for x > 0 and |y| < o,
and F(t,x) 1is non-negative for x > O and t > O. The

prototype of equation (1) is the following

(2) v" + a(x)|y|¥ sgny = 0, X > 0,

where g(x) > 0 and ¥ > O. Both equations (1) and (2)

include the so called "Emden- Fowler equation":

y" +x° |yl sgny =0, x> 0,

where % > 0 and ¢ real. In the discussion to follow,
it is convenient to classify equation (1) according to the

nonlinearity of F, namely (1) is in the superlinear case

if F(t,x) is monotone increasing in t for every x and
similarly it is in the sublinear case if F(t,x) is mono-

tone decreasing in t for every x. In section 2, we also
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introduce weaker notions of super and sublinearity, which
play an important role in the oscillation and nonoscilla-
tion of solutions of equation (1).

A nontrivial solution of (1) is said to be non-oscil-
latory if for every a > O, the number of its zeros in

[a,0) is finite, and it is said to be oscillatory other-

wise. Unlike the linear equation, where the function

F(t,x) 1is independent of t, the nonlinear equation may
possess solutions of either kind. In view of this, one is

led to consider the following types of oscillation and non-
oscillation conditions, namely, those which guarantee all
solutions of (1) oscillate and its converse, i.e. the exis-
tence of one non-oscillatory solution, and those which
guarantee all solutions of (1) do not oscillate and its con-
verse, i.e. the existence of one oscillatory solution. The
first type of oscillation and non-oscillation conditions

have been the centre of a considerable amount of research

and there are a number of results in this direction for equa-
tion (1) or similar equations. We refer the reader to Wong [15],
for an expository account of this subject and for other related
references. Results of the second type may also be found in
Atkinson [1], Wong [14], Macki and Wong [10], Heidel [6] and
others. However, in contrast to results of the first type,
these results are not sharp when applied to the Emden-Fowler
equation. Sharp results have been found recently for equation

(2) when ¢y > 1 by Jasny [7] and Kurzweil [9] for the existence
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of one oscillatory solution and by Kiguaradze [8] and
Nehari [13] for non-oscillation. In the sublinear case
when ¥ < 1, Belohorec [2] has obtained results in both
directions. For the more general equation (1), in the
superlinear case, a study was initiated in Nehari [13]
and continued in Coffman and Wong [3], but as far as we
know the corresponding sublinear case has not been inves-

tigated.

In the present work, we attempt to present a unified
treatment for the study of this specific oscillation problem
of second type both in the sublinear and the superlinear
case. At the same time, we initiate a systematic investi-
gation in the use of Lyapanov like functions to study
oscillation and nonoscillation problems concerning second
order nonlinear equations. In the appendix, we further
this approach by showing how it may be used in the study of
the continuability problem and the uniqueness of the zero
solution. This technique was first introduced by Coffman
and Wong [ 3] for a special case of equation (1) and was
suggested by some ingenius differential identities and in-
equalities used by Nehari in [13]. The main results, too
detailed to describe here, include oscillation and nonoscil-
lation theorems for both of the two classes of equation (1)
and contain as special cases all of the results cited above.

In fact, in the process of this generalization, we not only
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achieve a certain degree of simplification but also discover
improved versions of earlier results even in the simple

case of equation (2). For example, Corollary 2 and Corollary
5 improve the results of Belohorec [2] for equation (2)

when ¥ < 1, Corollary 10 refines the result by Jasny [7]

and Kurzweil [9] for equation (2) when 4 > 1, and Proposi-
tion (¥*) extends a well known result of Nehari for equation
(1) in the superlinear case.

In most of the analysis concerning oscillation of solu-
tions of nonlinear equations, it is often assumed that every
locally defined solution of (1) is continuously extendable
throughout tﬁe entire non-negative real axis. We have included
in this paper an appendix which we hope presents an up-to-date
discussion of the continuability problem as well as the prob-
lem of local uniqueness of the zero solution. ’The results
presented in the appendix are used throughout this paper and
seem to be of independent interest in themselves.

Finally, we remark that preliminary versions of some

of the results given below were announced earlier in [4].
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2. Preliminaries. In this section we introduce some

notation, formalize usage of certain terminology, and
discuss general properties of equation (1).

We assume here that F(t,x) is continuous and non-
negative for t,x > O, and that yF(yz,x) can be defined
as a continuous function for x > 0, |y| < @ . These con-
ditions suffice for local existence of solutions of the

initial value problem-

(3) y(xl) = a, y' (xl) = b, x; > 0,

for (1).

A solution of (1) is understood to be a 02 function
satisfying (1) and defined on a right maximal interval of
existence. The term "local solution" will be used to refer
to a solution not necessarily defined on a right maximal
interval of existence. The term "oscillatory" will be used
in the sense of oscillatory on the right, i.e., a solution
of (1) is oscillatory if its zeros have a right cluster point,
and non-oscillatory otherwise. A cluster point of zeros of
a solution of (1) can occur in the interior of its interval
of definition, thus a non-oscillatory solution may possess a
left continuation which is oscillatory. Finally we remark
that any solution with a bounded right maximal interval of
existence is necessarily oscillatory. (Cf. Lemma A2 in the

appendix) .
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Concerning the classification of equation (1) as super-
linear or sublinear, (1) should, strictly speaking, be called

superlinear only if F satisfies

(4) F(t,,x) 2 F(ty,x), ty, >t , x(0,m),
and sublinear only if F satisfies
(5) F(tz,x) < F(tl,x) t2 > tl , x€(0,m).

Here we use these terms somewhat more loosely and refer to (1)
as superlinear or sublinear respectively if the coefficient
satisfies some weaker condition than (4) or (5) under which
the typical oscillation or non-oscillation properties of the
strictly sublinear or superlinear equation are preserved.

Such a condition of generalized superlinearity is

(6) G(t,x) < KtF(t,x), K>0, 0{t<m®m, 0<x< »;

the analogous condition of generalized sublinearity is

(7) G(t,x) > KtF(t,x) K>0, 0{t<w, 0<x< .
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Here

t Ve 5
(8) G(t,x) = I F(s,x)ds = 2I sF(s“,x)ds .
(0] (0]

(The assumptions made above concerning F(t,x) clearly
imply that G(t,x) is well-defined.) Another condition

of superlinearity, intermediate between (4) and (6) is

(9) F(t2,x)‘2 cF(tl,x) c > 0, t2 > tl’ 0<x< .

Reversing the inequality in (9), we obtain a condition of sub-

linearity intermediate between (5) and (7), namely,

(10) F(tz,x) g.cF(tl,x), c > 0, t2 > tl, O0<x< .

We note that (4) and (5) both are satisfied by the linear
equation (1), and the overlap of (6) and (7) is even greater.
In fact (6) and (7) are both satisfied by (2) for all ¥ > O.
Proper sublinearity, for example, which rules out even the
linear equation, is obtained by simultaneously requiring (7),
(23) and (30).

A further word may be appropriate here concerning the
pathologies which solutions of (1) can exhibit. The two major

problems are those of global existence and of uniqueness. The
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former problem arises primarily in the superlinear case,
the latter primarily in the sublinear case. In fact, as
we shall prove in the appendix, in the sublinear case,
under assumption (5) or under the weaker assumption (10),
all solutions of (1) will have an unbounded right maximal
interval of existence. This is probably not true if we
assume only (7) and is certainly false in the superlinear
case, as is well known.

Non-uniqueness can arise due to the fact that we have
not assumed a Lipschitz condition on F. For the super-
linear case this difficulty could easily be eliminated
by imposing a locally uniform Lipschitz condition in ¢t,
however in the sublinear case, in order to avoid ruling
out the equation (2) (with O < 4 < 1) the most that we
can assume is that F(t,x) satisfies a local Lipschitz
condition in t for all x but only for t > O. In the
presence of this latter assumption we will still be con-
fronted with the possibility of non-uniqueness of solutions
of the initial value problem (3) for (1) when a = 0. A
more detailed analysis of these problems will be given in
the appendix.

An important technique in the analysis to follow is
the rather simple one of comparing equation (1), "along

a solution", with a non-oscillatory linear equation
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(11) z" + p(x)z = 0,

or with an oscillatory linear equation

(12) u" + r(x)u = 0O,

where p(x) and r(x) are positive and continuous on
(O, ). The following results are obtained as elementary
consequences of the Sturm comparison theorem. We assume
below that equation (12) is oscillatory and that equa-
tion (11) is non-oscillatory.

Lemma 1. Let y(x) be a non-oscillatory solution

£ (1). Then

lim inf (r(x))_l F(yz(x),x).g 1,
X—D

and in fact, there exists an infinite sequence {gn} with

£, " ® a n- ® such that for all n = 1,2,...

1

(c(e)) " Fy?(€).8) < 1.

Lemma 2. Let y(x) be a solution of (1). If for

some X 20,

F(y? (x),%) < p(x), X < X< O,

then y(x) is non-oscillatory.




Lemma 3. Let vy(x) be a solution of (1). I or some

xo > 0,
F(y” (x),%) < p(x), x, < x < Q,

then y(x) 4is oscillatory.

In lemmas 2 and 3 § = Q(y) denotes the right end-
point of the right maximal interval of existence of the
solution vy(x) of (1).

Even more basic to this work than the comparison tech-
nique described above is the use of certain Lyapunov type
energy functions which are defined for solutions of (1) in
terms of certain sufficiently smooth auxiliary functions
and . Let y(x) be a solution of (1), we define

ZX (x) = Zk (x,y(x)) Dby

(¢} (¢}
X
(13) Z, () = F @y - v - [y - v ?d) ax
0 X

(0]

2 2
+ WGPP"Y (%) + a? wz G(yz,x) .

For vy as above, and for a fixed choice of X5 W and ¢ ,

we will refer to Z& (x) as "the energy function for y".
O

We remark that the "natural" energy function for a solution
of (1) is obtained by taking w(x) = P(x) = 1. The intro-

duction of the auxiliary functions w and 3 serves in
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place of a change of dependent and independent variable in

equation (1).
Lemma 4. Let w and ¢ be positive on (0,m) with

aECz(O,G)), and ¢ec3(o,a>) and let y be a solution of (1).

(i) a?(x)&z(x)G(a¢2(x),x) is a non-decreasing function

x for every o > O, then,

15 1A
H

x2 p
(14) zxo(xz) - zxo(xl) > ;ZL_J‘X [wz(wz).,. + (wz)'w..]yzdx,
1

xz.z xl

a?(x)¢2(x)G(a¢2(x),x) is a non-increasing function

If (ii)

If
of x for every a« > O, then,

X
2

as)  z, () - B Gy) < %fx [L@®rm + Prpwn] 2q,
1

X, 2 Xy -

Proof. We assume first that F is of class Cl. Let y
be any C2 function, (not necessarily a solution of (1)), then
if 2x (x) 1is defined by (13), Z& (x) can be computed as

(0]

(0]
follows,

, 24l
R [ O N N TS +(?b’-5) Fy? & G(lpzo,x)lc:(:i)z,

+ Q(yz,X),
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where

,(16) Q(y%x) %; (wz(c) ‘bz (.O')Gﬁbz(c) (ﬁ—%ﬁ))‘f,c))lo = x.

Using (8) and rearranging terms this reduces to

A7) 5 (0 = 280y - ¥y o + yFL,x) + 3 F@t
(0]
+ (@) )y’ + oy x)

Suppose now that condition (i) holds, then Q(Yz,x) > 0,

and thus an integration of (17) yields

X
2 .
(18) I, (x,) - T, (x) >2]  Fe@y' - #'y) (v + yF(yZ,x))ax
(0] (0] X1

(wz(tbz),"' + (wz)'zbab")yzdx

This relation obviously is still valid when F is not Cl

as can be seen by approximating F (with w(x), ¥(x) and

Ly (x) fixéd) by smooth functions. Upon taking y to be a
solution of (1) the first assertion of the Lemma follows.

The second assertion is proved similarly; note that condition

(ii) implies Q(y2(x),x) < O .
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3. An oscillation criterion for the sublinear case..

We assume here that F in (1) satisfies (7). We
assume moreover, as in the previous section, that p(x)
is positive and continuous on (0, ), and that (1ll) is
non-oscillatory.

Theorem 1. Assume that: there exists a A > O such

that
(19) z" + (1 + NM)p(x)z =0,

is oscillatory:; there exist positive functions (.uec2 (O,m),

Ye C3 (O, ), with ¢ a solution of (11) and such that for

x > 0,

(20) w L0,

(21) wz(lbz)”' + (wz)'lb‘nb" L 0,
(22) ~Eppm = pfyt 2 e >0

there exist Mo, Xq > O such that

(23) F(t,x) > (1L + A)p(x), x> x, tg M(Z)d)z (%),

where A' > max(?x,K-l—l), (K 1is the constant in (7)); the

. 2,2 . . . . '
function ¥ G(a2¢2,x) is non-increasing in x for every

a > 0.

HUNT LIBRARY
CARNEGIE-MELLON UNIVERSITY
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Then (1) has oscillatory solutions.

Proof. Notice first that Lemma 4 and the hypo-

thesis above imply that Z, (x) 1is a non-increasing
(0]

function of x, for any solution y of (l). Let X5 >0
and choose a solution y of (1) with y(xo) = 0,
(y‘(xo))2 > clMg(K(l + X')—l)/a?(xo)¢2(xo). Such a solu-

tion of (1) must satisfy
(24) y(x) £ Mow(x), for x > X5 -

To see this, suppose there exists Xy > X5 with

y(xl) = Mow(xl), then, because of (13) and (21),

Z% (xl) > u?w¢"y2 + aesz(yz,x). Using (7) and the fact
(¢}

that § satisfies (11),

Exo(xl) > wzzbzyz (-p + KF(yz,X))
> vy’ -p + kF(2y? (x)) %))
2 wztbzyzp(K(lH\') - 1)

> nga?¢4(K(1+7\') - 1)

> e M(K(L+A) - 1),
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However this implies

2 2 \ 2 _
which is a contradiction, thus y satisfies (24). Now
(24), (23) and Lemma 3 together imply that y is an
oscillatory solution.

: 1
) 2
If one chooses w(x) =1, P(x) = x* and p(x) = 1/(4x"),
then (20), (21) and (22) are satisfied and (19)(is oscilla-

tory for any A > O. More generally, we can take

(25) w(x) = (log x)“ R
(26) p(x) = ié(log X)-6 s
(27) p(x) = (1/4x%) (1 - 48(1 +6) (log x)~2).

If p is given by (27), then (19) will be oscillatory for
every A > O, and (20) will hold provided pu < O. For the
above choice of w,y and p,
2 - —
pu’p? = F(log x)2H 40(1 - 45(1+6) (1og )72,

so that (22) will hold, at least for large x, provided

p 2> 26.




[16]
Finally a computation yields
27) LA+ (@) g =

x 2 (logx)2F 7 207 1l (48— p) -26(1+8) (2(26+1)-p) (Llogx)™?)

so that (21) will hold provided 46 < p . Thus if

(28) 26 L O,

and w and  are given by (25) and (26) respectively,
then (20), (21) and (22) will be satisfied. We thus have

the following corollary to Theorem 1.

Corollary 1. Let u,6 be real numbers satisfying (28).

Assume that there exist M.o,xO > O such that

(29) F(t,x).z-(l-+7\)/4x2 s X > Xq t S.ng(log:d -2 ,

1

where A>K T -1, and that the function
x(log x)z("- 6)G(agzx(log x)—26,x) is non-increasing in x

for every o > 0. Then (1) has oscillatory solutions.

Under the hypothesis of Theorem 1, equation (1) may or
may not also have non-oscillatory solutions. If (1) is
linear, for example, then there are no non-trivial non-

oscillatory solutions. The following result gives a condition
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not necessarily inconsistent with the hypothesis of Theorem 1

under which (1) will possess non-trivial non-oscillatory
solutions.

Theorem 2. Let § be positive on (O, ) and satisfy

(11) and suppose that there exist Ml,x1 > O such that

2,2
(30) F(t,x) < p(x), X > X, t2 MY (x)

Then (1) has non-trivial non-oscillatory solutions.

Proof. Choose y(xl) > Ml¢(x1), (y/&)‘(xl) > 0. Observe

that

(B2 (/P 1) = - (UF + M)y

py(p -F)Zo,

and thus (y/y)' (x) > (y/¢)'(xl) >0, x> X; . Such a
solution then satisfies y(x) > le(x), for x > x; and

consequently, by (30) and Lemma 2, y(x) is non-oscillatory.

Remark 1. The hypothesis of Theorem 2 is sufficient to
guarantee that all solutions of (1) have an unbounded right
maximal interval of existence. (See appendix).

Applying Corollary 1 and Theorem 2 to equation (2) we
obtain the following result.

Corollary 2. Let O < ¥ < 1, and let q(x)x(7'+3)/2(log x)B
be a non-increasing function of x with

(31) lim q@x)x” ¥3/2(109 x)B = x > 0,
X= o
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for some B < O. Then (2) has oscillatory solutions as well

as non-trivial non-oscillatory solutions.

proof. Equation (2) is a special case of (1) with

(32) Ft,x) = qot? /2
and
(33) G(t,x) = (2/(l-+7))q(x)t(74'l)/2

The inequality (7) thus holds, in this case, with K = 1.
Now let p = 26 = 28/(1-%). Then p and & satisfy (28)

and for G(t,x) given by (33),

x(log x) 2B~ 8 g(ex (109 %)~ 20, x)
= o+ D720, 49 amx T3 /2 (164 x)B .

Moreover, for F(t,x) defined by (32) if t K Méxﬂlog x)_26 B

then

F(t,x)‘z.%g_ lx(y— l)/2(lo<_:,' x)p

Y-1 -2

2 kM X

(0]
Thus if we take My < (4k)™17Y) | then (20) will hold for
some A > O. The existence of oscillatory solutions of (2)

follows from Corollary 1.
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To prove the existence of non-oscillatory solutions of (2),

choose, by (31), an Xq > 0 such that

q(x)x(y+3)/2(log x)ﬁ < 2k, for x 2> Xy -

2%

If x> x, and tZMix(log x) then

F(t,x) = GtV D72 =1, (V=172 (155 8,

Thus if we choose My > (8k)l/(l_ 'y), then F will satisfy
(30), with  given by (26), and the existence of non-oscilla-

tory solutions of (2) follows from Theorem 2.

For B = 0 this result was proved by Belochorec [2].
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4. A non-oscillation criterion in the sublinear case.
Like the theorems in section 3, this result is also motivated
by a theorem of Belohorec [2]. The extension in this case

seems somewhat deeper than that of Theorems 1 and 2.

Theorem 3. et F(t,x) satisfy (5), assume that

. 2 2
(34) YF(y] 5 x) < ¥,F(y; X), for y, 2y, -

In addition to the hypothesis of Theorem 2, assume that

al)ec3 (0O,®) satisfies

X
(35) wx) = [ 5% > @, as x-~® ,
P (%)
and
(36) GCHm + (Drger > 0.

Moreover, assume that for every o > O, wzzsz(azzbz,x) is a

non-decreasing function of x, and that

(37) 1im 26?3, %) = k(o) < o .
X= @

Then equation (1) is non-oscillatory on [xl,co ).
Proof. We observe first that if y 1is a solution of (1)

then Ex (x), defined by (13), is a non-decreasing function
(0]
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4. A non-oscillation criterion in the sublinear case.
Like the theorems in section 3, this result is also motivated
by a theorem of Belohorec [2]. The extension in this case

seems somewhat deeper than that of Theorems 1 and 2.

Theorem 3. Let F(t,x) satisfy (5), assume that

, 2 2
(34) Y]_F (Yl » X) £ Y2F (Yz y X), for Y2 2 yl .

In addition to the hypothesis of Theorem 2, assume that

¢€C3(O,GD) satigfies

X
(35) o) = [ 5% > @, as x-~® ,
P (x)
and
(36) FwHm + (B g > 0.

Moreover, assume that for every o > O, a?¢2G(a2¢2,x) is a

non-decreasing function of x, and that

(37) 1im  Pp2e(e?y?,x) = k(@) < ® .
X= @

Then equation (1) is non-oscillatory on [xl,oo).
Proof. We observe first that if y is a solution of (1)

then Z&»(x), defined by (13), is a non-decreasing function
(0]
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of x. This follows from the assumption concerning G, (36)
and inequality (14) of Lemma 4.

We point out that, in view of the above observation,
any possibility of pathological behavior of solutions of (1)
is completely ruled out under the hypothesis of Theorem 3.
Regarding the question of global existence, see Remark 1
following the proof of Theorem 2. In fact, because of (30),
the zeros of a solution y of (1) can have a cluster point

at x =a < o only if,

lim sup |y'(x)| = 0,
X—a

but in view of the non-decreasing character of X, and
because a is a right cluster point of zeros of vy, it is
clear from (13) that this is impossible.

We shall now assume that there exists an oscillatory
solution y(x) of (1) and show that this assumption leads
to a contradiction. If xl,Ml are as in Theorem 2, and vy
is an oscillatory solution of (1), then there must exist

an X, 2 Xy such that

(38) ly ()] < Mp(x), X 2> %, .

For otherwise, since y 1is oscillatory, there would exist

X3 > Xy with
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(39) ly(x)] = M, ¢(x)’ | (y/9)' | > o, at x = x,.

As the proof of Theorem 2 shows, a solution of (1) satisfying
(39) could not change sign for x > X3, and this contradicts
the assumption that y is oscillatory.

We put
(40) n= oy - 3'y) = W/,

and observe that since a?¢$“y2 = —pu?&zyz £ 0, then in view

of (13) and the non-decreasing character of I,
2 2.2 2
n(x) 2 Z, (x) - WP Gly »X)
(0]

for any X5 > 0. Since F 1is positive, G is non-decreasing

in its first argument so by (38),
2 2 2 2,2
n (%) 2 I, (x) - wd)G(Mllb X)), X2 %, ,
(0]

and finally, using (37) and the non-decreasing character of

FoPey?,x),

(41) N’ (x) 25, (x) -k x > %,,
(0]

where here and below, k = k(Mi). For the oscillatory solution

Y,




[23]

it follows from Rolle'!s Theorem and (40) that there exist
arbitrarily large values of x for which n(x) = 0. Thus
from (41) and the non-decreasing character of X there

follows, for X5 > 0,
(42) Exo(xo) < k,‘ xez.

Since I (x,) = 2 (%) 5 zxo(x) >0 for x> x., thus,
0

as wzapzb"yz £ 0, we have from (13),

X
[Ty - v ?@rax < n? 0 + FPeix,
X

(0]

for x > Xq - Using (37) and (38) as before we obtain

X

@3) [ Gy - v v2)rax < nf ) + K, X2 x,,
X
(o]

and finally, since ' > O, and since n vanishes for
certain arbitrarily large values of x,

@ 2,2
(44) 7wy - v ax <k

*o

We wish to show next that 7 is bounded. From (13) and (40),




[24]

using (42) and (43),

nz(x)‘g 2k - a3¢¢"y2 - aesz(yz,x), X > X,
Since (5) implies (7) with K = 1, we have,

n2 (x) < 2k - wzzbtb“yz - wzzbzyzF (y2,X) ) X2 Xy,

< 2%k - P2 (F 2 R-px), x> %, .

At a zero of 7' we have,

0 =1n(x) = -wy zp(F(yz,X)—p(X)) + (W/Wn,
so at such a value x > X,

2
n <2k - Ypywn.

Now using (35) and (38), we find that for x > X5 s n'((x) =0

implies,

n°(x) < 2k + M [n(x) |,

and this implies that the extremal values of 17 are uniformly

bounded, hence 7(x) is bounded as x = @, say
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(45) In(x)| < B.

Now for y(x) > O we have

n (%) = wby(P()-FE2,x) + (W/dn
z-wtbyF(yz,x) + (W/Wn .

If x> X, then using (35), (38) and (34),

wHYF(y2,%) = (/) PP yF(y2,x) ,

2,4 2.2
ng(w'/w)de F(Mld) »X),
from which there follows, with the use of (7),

whyF (2,0 < MW /W Fyleidy? x)

< KM?le(w'/w) .

Thus for y(x) > 0, x > X by use of the above and (45),

2 3

(46) ' (x) > - (kMY 4 B) (/W)

> -Bl(w'/w) .

Now take X to be a zero of y with yf(xn) > 0, and let

§£ be the first zero of 7 to the right of X, , SO that y(x),
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n(x) > 0 on [xn,§£]. Since (46) holds on [Xn’§£]’

X
- n

0= n(x) > n(x)-B, fx (/W) ax ,
n

and thus we can choose § :x < § < §£, such that,

But then for xn‘g x < gn,

13
n(x) > n(xn)-Bl ‘[xn (w/wax = %n(xn) .
n

Consequently,

3

n , _
f n («/wdx > By
X
n

RCTICRINS

If Xq is the first zero of y then using (13), (40) and the

non-decreasing character of gx s
(o]

X
n
nz(xn) 2> 772 (xo) + f

o)

n? (& /) ax,

2 n2 (x5) -
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Thus

. gn
(47) I n2 (o /wdx > Bil

X
n

%n(xo))3 .

Since X, Wwas an arbitrary zero of vy, (44) and (47)

contradict the assumption that y is an oscillatory solu-

tion of (1). This completes the proof of Theorem 3.

Remark 2. Condition (5), or what is its consequence,

(7) with K =1 1is used only in the proof that 1 is

bounded. If we assume that |w2¢3¢"| is bounded for

large x, then in the hypothesis of Theorem 3, (5) can

be weakened to (7) with O < K.

One choice for 3 in Theorem 3 is

x(1-¢€/2 0<e< 1.

(48) P(x) =
It is clear that w can be allowed to differ from an

indefinite integral of ¢_2 by a positive constant factor,

accordingly we take

(49) w(x) = x©

The inequality (36) is easily verified for this choice of

2 1 2
and (w; moreover, ¢3¢" =-7 (1- €), so that in view of

the remark following the proof of Theorem 3, for this choice
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of P, (5) in the hypothesis of that theorem can be replaced
by (7) with 0 < K. The coefficient p in (1l1l) correspond-

ing to P(x) = x(1- €)/2 is (1- e2)/4x2.

A second choice for w9 and p 1is (25), (26), (27)

with

(50) 5 >

N

, p=206+ 1.

From (27') and (50) one can readily verify (36), and, except
for a positive constant factor, w 1is an indefinite integral
of ¢_2 . We have thus the following two corollaries to
Theorem 3.

Corollary 3. Let F(t,x) satisfy (7) and (34). Let

1l+¢ l1-¢

1 > ¢ > 0, and assume that for every a > O, x G(ox ,X)

is non-decreasing with a finite upper bound, and that there

exist xl’Ml > O such that
2_1-¢€

F(t,x) < (1- ez)/4x2, for t > My X

Then equation (1) is non-oscillatory on (xl,oo).

Corollary 4. Let F(t,x) satisfy (5) and (34). Let §> %

26+ 2 —26’X)

and suppose that for every o > 0, x(log x) G(ox(log x)

is non-decreasing with a finite upper bound. Moreover, assume

that there exist Xl’Ml > O such that
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F(t,x) < (1-486(1 + 6) (log x)-z)/4x2, t 2 Mix(log x)'25 .

Then equation (1) is non-oscillatory on (xl,a>).

Specializing Corollaries 3 and 4 to equation (2) we

obtain the following results.

Corollary 5. (Belohorec [2]) Let 0 < %< l,’q(x)‘z o,

and assume that for some B, 0 < B < (1-6)/2, X(3 +7)/2+Bq(x)

is non-decreasing and bounded above. Then (2) is non-

osqillatory.

Corollary 6. Let 0 < ¥< 1, g(x) > O, and assume that

for some B, B > -éffz s q(x)x(3-+y)/2(log x)B is non-decreasing

and bounded above. Then (2) is non-oscillatory.
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5. An oscillation criterion for the superlinear
equation. We assume in this section that F satisfies (6)
for some K > 1, and we assume as before that (1ll1), with p

positive and continuous on (0, ), is non-oscillatory, and

that there exXists an ¢ > O such that
(51) v" + (1 + e)p(x)y = O,

is oscillatory. Moreover, we assume that wec3(o,a>),

P > 0, is a solution of (11l) and that

(52) wHm > o0,
aD
(53) [T - o,
v (xX)
(54) ey = et < o < @

Finally we assume that for every ¢ > O, ¢2G(a2¢2(x),x) is
a non-decreasing function of x, and that there exist

M.O,x0 >0 and €' > € such that

(55) F(t,x) > (1 + ¢')p(x), x 2%, t2M PP .
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The proof of the superlinear oscillation theorem will
be based on the following sequence of lemmas. It will be
assumed throughout this section that the conditions stated
in the preceding paragraph are fulfilled. We first reform-

ulate Lemma 2 for r(x) = (1 + €)p(x).

Lemma 2'. If y(x) is a non-oscillatory solution of
(1) then,
co -1 2
(56) lim inf (p(x)) F(y"(x),x) <1+ ¢
X = @®

Lemma 5. If y(x) 1is a non-oscillatory solution of

(1) and (y/9)' is eventually of one sign then,

(57) lim (y'9 - ¢'y) = 0.

Proof. First we shall show that
@™
(58) [” wwiax] <

If y is eventually positive and (y/¢)' 1is eventually

negative this is clear. If y and (y/¢¥)' are both even-
tually positive, then because of (55) and (56), we must have
y L Mow(x) for all large =x and thus (58) follows in this

case also.
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Since we can assume then in either case that
0 < y(x) < Myp(x) ,
for all large x, we have,
(Y'd - y9')' = y"p - y" L -Mypy",
so from (54),
(59) (v'% - yp')' < C M2,

for all large x. Consider now the case where (y/¢)' is

eventually positive. We shall suppose that

(60) 0< Q< 1lim sup (y'p - y¥') (%),
X = ®

and show that this leads to a contradiction. We first choose
A so that

® 2
(61) [ 1wrwrlax < o®/3zeqn, .

Because of (60) and (53) we can choose go, €1 so that

A< EOS 51: (v'y - Y¢')(€l) > %‘Q , and COMOJ‘Elab_z(x)dx =%Q.
(0]
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Then from (59)

(v'9 - y91) (0) 2 (' - vd') (&)

3

1
- CoM, J b2 (xax,

£

1
2 4 Q,
for go {xg ¢ . But this gives

f1 1 2! -2 2
JEQ (y/¥)'dx > 0 '[Eo Y “ax = 9/16C M, ,

which, since EO > A, contradicts (61l). The case where vy

and (y/¥)' eventually have opposite sign is handled similarly.

We now take @w =1 in (13), then from (52) and the
non-decreasing character of ¢2G(a2¢2,x), it follows that X

is a non-decreasing function of x.

Lemma 6. Let y Dbe a non-oscillatory solution of (1),

then there exists a sequence gn such that 1lim gn = o ,

n - a
(62) Fy?(6),¢) < (1 + e)plE,), n=1,2,...,
and
2
(63) lim () < Co(K(1 + €)-1) Lim sup [ (v/) (¢) ] -
n-—- o n-= o
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Pfoof. Suppose that the hypothesis of Lemma 5 is satis-
fied, so that (57) holds. Because of Lemma 2' it is possible

to choose {gn} so that (62) is satisfied. It follows then

from (13) and (57) that

(64) lim B(g) < Lim sup {(@uny) (£)+ 97 (66077 (6).6,) ) -

n- n - @

Using (6) followed by (62) and (54), we obtain

(e )" (8 )y (€ )+ V2 (£ )6y (E),E,) <
< /e N[ + kvt € IFeC g8 ]
< CoIR(L + €)-11 (v (g) /(£ ))°

In view of (64), this last inequality implies (63).

If the hypothesis of lemma 5 does not hold, i.e. if

(y/9)' changes sign infinitely often then we choose {gn}

so that gn - o , and, for n = 1,2,..

°y

(65) (y'9p - 9'y) () =0,

and

(66) (Y9 - 'y)' (£) 2 0.
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But

(y'p - p'y)' = - %bY(F(yz,X)- P

so that for y > O, (66) implies (62) with € = 0. We
assume, as we can without loss of generality, that y(x) > O
for all large x, then (65) implies (64), and we obtain (63)

from (64) as before.

Theorem 4. Under the conditions imposed in the first

paragraph of this section, equation (1) has oscillatory

solutions.

Proof. 1In view of (55) and (62),

2
lim sup [ (v/9) (§) | < M2 .

n = o

Thus, since ¥ is non-decreasing, it follows from Lemma 6
that for any non-oscillatory solution y of (1), T, defined

by (13), satisfies

(67) lim T(x) < C MG (K(L+e) -1).
X =@

Again because of the monotonicity of X, if y is a solution
of (1) with y(xo) = 0, and y'(xo) satisfying (n(xo))2 =

= PRy (x))° > c M2 (K(L+¢) -1), where x, is sufficiently

(0]
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large, then (67) cannot hold, and y must therefore be

oscillatory.

As a corollary of the proof of Theorem 4 we have the
following result.

Corollary 7. If (6) holds with K = 1, in particular

if (4) holds, and if (51) is oscillatory for every ¢ > O,

then under the conditions of Theorem 4 every solution of

(1) with at least one zero in (O,m) is oscillatory.

Proof. Under the above conditions € can be taken
arbitrarily in (62) and hence in (67). Thus if (6) holds
with K = 1, (67) shows that, since X is non-decreasing,
Y(x) £ 0 for a non-oscillatory solution of (1). On the
other hand if y 1is a non-trivial solution of (1) and
y(xo) = 0, then XI(x) > E(xo) >0 for x> Xq s thus y

must be oscillatory.

Corollary 8. If ¢2(x)G(a?¢2(x),x) - ®, as X - ®

for every a > O, then under the conditions of Theorem 4

every solution of (1) with at least one zero in (0, )

is oscillatory.

Proof. Because of (55), it is implied by (62) that

(68) y(&) < M(E ),

but by (6), (54) and (62), when (68) holds,
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v e e <kt Fig ) 6

<K+ e)plg )4t (E),

< (1 + e)KCO.

We now claim that (y(gn)/¢(§n))2 - 0. Suppose not, then

there exists a subsequence {gn } such that yz(gn )/4,‘2(5n ) 2
i o i
az > 0, for some @. Observe that

92k, e(ePyP (e, Vg, ) < $PGE, Vel g, )aE )
1 1 1 1

1 1

which is bounded, contradicting the given hypothesis
‘ that ¢2(x)G(a2¢2(x),x) - o as x = o for every a > O.
Thus for a non-oscillatory solution of (1), (63) implies

Z(x) < 0 and the result then follows as before.

If we take
1
2
Yp(x) = x° ,

then § satisfies (11) with p(x) = 1/4x> , i.e.,

y"+ —%.y:O.
4ax
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Moreover, one readily sees that (52), (53) and (54) are
satisfied. fThus Theorem 4 and Corollaries 7 and 8 imply

the following result.

Corollary 9. Let F satisfy (6). Suppose that there

exist constants M,c > O such that

XO,

2

sz(t,x)2%+c, x>x. ., t>Mx,

and suppose that for every & > O, xG(ex,x) 1is non-decreasing

in =x. Then (1) has oscillatory solutions. £ (6) holds

with K =1, or if for every a > O,

lim xG(ax,X) = @
X = ®

then every solution of (1) with one zero in (0,®m) is

oscillatory.

The first assertion, that is, the existence of oscilla-
tory solutions of (1) under the hypothesis of Corollary 9,
was given in [3: Theorem 1]. An examination of the deriva-
tion of inequality (63) of Lemma 6 shows that in Theorem 4,

the hypothesis (6) can be weakened to

G(t,x) < KF(t,x), £ < M2y(x).
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With a similar modification of the hypothesis, Corollary 9
in fact contains Theorem 1 of [3].

If we specialize Corollary 9 to equation (2) we obtain
the following result, which is a refinement of a Theorem
of Jasny and Kurzweil,

Corollary 10. Let ¥ > 1, q(x) > O, and assume that

L(Y+3)/2

p(x) is a non-decreasing function of X, then

every non-trivial solution of (2) which vanishes at least

once in (O, ) is oscillatory.
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which reduces to,

@
J xq(x)dx < @ ,

is necessary for the existence of any non-oscillatory
solutions. Thus the class of equations of the form (2)

with ¥> 1 has the property (P): the existence of

any non-oscillatory solutions implies the existence of

bounded ones. We make note here of some other classes

of equations which also have the property (P). Nehari,
[11], [12], has shown that equations of the form (1) with
F subject to the non-linearity condition (N): there

exists an € > 0 such that for each x > 0, 0 < tieF(t,x) <

t;eF(tz,x) whenever 0 < t; t, < @ , share many of the
distinctive properties of (2), ¥ > 1. We shall show that
this class of equations has also the property (P). Indeed
in the presence of the condition (N), (69) is necessary for
the existence of non-oscillatory solutions of (l)} This is
in fact contained in [15, Theorem 4], nevertheless we give a

proof of this special case here.

Proposition (%). Let F satisfy condition (N), then

a necessary condition for (1) to possess non-trivial non-

osdillatory solutions EE (69) .
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Proof. Let y be a non-oscillatory solution of (1)

and suppose that y(x) > 0 for x > x Since y is

0 .
non-oscillatory, 1lim y'(x) = O and thus,
X = @
@® 2
vy = | yore®e),nat,
X

so that, as y 1is non-decreasing as well as positive for

X 2> xo,

-1-2¢ -2¢

® 2
e 2y 0 > [ wen (o), at
X
a
> | e et g, tat

2 .
Denote vy (xo) = ¢ and integrate the above inequality to

give
X
o 1 @
-1 -2 -2 p -
2e) M (v () 72€ - (y(x) 7%} > ¢ SF(c,t)dt ax
“x. “x
0
Sl K
2 J < CF(c,t)at ax
XO X
\xl nt
> ¢ €F(c,t)dx dt
*o %o
X
1
- €
= c JX (t - xo)F(c,t)dt R

(0]
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which shows, upon letting X @, that F must satisfy
(69). Moreover, if y(x) is unbounded, then the integral
in (69) must be finite for every ¢ > O.

Since in the presence of (N), condition (69) is suffi-
cient for the existence of bounded non-oscillatory solutions
of (1), Proposition (*) implies that the class of equations
of the form (1) with F satisfying the condition (N)
has the property (P). If € in (N) is allowed to equal
zero this is not true, as is shown by the example of the

Euler equation

A larger class with the property (P) is obtained by
replacing the condition (N) by the following condition

(N') F(t,x) .Ef monotone in t for each fixed x > O _and

there exist p > 1, T > O such that for all x > 0,

(log tl)-p'F(tl,x).g (log t2)—p F(t,,x) whenever T < t; £ty
An analogue of (*) for this case can be proved in exactly

the same way as (*¥). If p is allowed to equal 1 in

(N') then the resulting class again fails to have the

property (P). This is shown by the following example:

y log (y2 +1)
4x2 log(x+ 1)

y" +
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L

which has the non-oscillatory solution x2 , While the
log(t+ 1)
4x2 log(x + 1)

coefficient F(t,x) = fails to satisfy (69).

We remark that Theorem 4 of [15] enables one to determine
an even larger class of equations which has the property
(p).

We now wish to impose conditions which imply the ex-
istence of non-oscillatory solutions of (1) which are
bracketed between two preassigned functions. Accordingly
we assume the existence of functions H(x), ¢l(x), and

¢3(x) which are positive and continuous on (0O, o) and

such that

(70) G(t,x) > pl)t , £ ¢l (x),
and

(71) P(X) @300 < -a¥’(®, - 0<x< @ ,

where a < O , and look for nonoscillatory solutions of
(1) for which the energy function X(x), as defined by (13),

satisfies

(72) Z(x) La<o,
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with w(x) =1 . In fact, we establish in the following
result the existence of nonoscillatory solutions which are

bracketed between the functions ¢, and ¢,

Theorem 5. Let P € C3 (0, @), p > 0, satisfy (52)

and let ;sz(azwz s X) be a non-decreasing function of x

for every o > O . Assume also that there exist positive

continuous functions ®; 5 Oy and @5 on (O, ) satis-

fying (70), (71) and
(73) p2 (0 {elpi(x), x) - p(x)gs (x) | < a

Then (1) has a non-trivial non-oscillatory solution y such

that T , defined by (13) with w(x) = 1 satisfies (72) for

0<x<  , and that

(74) 03 (%) < ¥ (%) < ¢p (%)

It will be convenient first to prove the following.

Lemma 7. Let ¢ and G satisfy the conditions of

Theorem 5. If y is a positive local solution of (1)

defined near xo , and if the energy function for vy,

with w= 1, satisfies

E(xo) <o,
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then y, or any left continuation of y can be continued

to O, and will be positive there.

Proof. As shown in section 5, the conditions on
and G imply that T is non-decreasing, thus it is nega-

tive to the left of x on the interval of definition

0’
of y . The same is clearly true for the energy function
for any left continuation of y. Since T must be posi-
tive at a zero of y, it follows that y , or any left
continuation of y is positive to the left of Xq -
Therefore y or any left continuation of y can be con-
tinued to O.

Proof of Theorem 5. For n =1, 2, 3, ... , let Y,
denote a solution of (1) determined by initial conditions
yn(n) > 0, y'(n) which make Zh(x) = Z(x,yn(x)) L a at
X = n. There do exist such initial conditions because of
(73) . Because of Lemma 7, y, can be assumed to be defined
on (0,n] and will be positive there; because it is non-
decreasing X = Zh will satisfy (72) for 0 < x < n . By
virtue of (70), (71) and (72), y = Y, must satisfy (74)

for 0<x<n. On every compact subinterval of (0,m),

{yn(t)} is a bounded sequence in view of (74). By (13) and

(72) with w=1, Y =Y, and XY = Zn’ we conclude that
{yh(t)} is also uniformly bounded on every compact subinter-

val. It is thus possible to choose a subsequence (y_ } which
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is convergent on compact subintervals of (0, ) to a
solution y of (1) and such that {y! } converges uni-

formly on compact intervals to y'. It follows that,

o3(x) < v(x) < (%), 0<x< m ,

and from (13) that (71) holds for the energy function for vy,
for 0< x< o . In view of (70) and (71) the above esti-
mate on y can be strengthened to (74) for 0< x < ®

This completes the proof of Theorem 5.

Remark 3. We note that condition (71) is somewhat

trivial in that the existence of the function ©3 is

o) = LBy taop

always guaranteed, e.g., we may take

Corollary 11. Let

(75) 1Bl < (y- 1)/2,

and let q(x)x(y*'3)/2_ B be a non-decreasing function of x.
If

(76) lim q)x¥*3/2-B ¢ o

X = @®

then (2) has a solution y(x) positive on (0, o) and such
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0 < 1lim inf x-(lﬂe)/zry('x)g lim sup x-(l-e)/zy(x) < o,
X - ® X = o

where ¢ = 2B8(y - 1)-l )
Compare the hypothesis here with the hypothesis of the
oscillation criteria of Jasny [7] and Kurzweil [9], (or see

Corollary 10.)

Proof. Take @ = x(1+e)/2

so that § satisfies (11)
with p(x) = (1 - e2)/4x2 . For appropriate values of a < O,
By s My 5 K3 > 0, the conditions (70), (71) and (73) will be
satisfied for

-1 -1 -1

By <p1(x) = Py 0y (%) = p37 ooy(x) =

(1= e)/é
Remark 4. The conditions (75) and (76) imply that
xq(x) < kx% ,
where o= 8- (y+ 1)/2 < -1. Thus g(x) satisfies (as it

must) the integral condition of Atkinson, [ 1], for the exis-

tence of nbn—oscillatory solutions of (2) mentioned earlier.

Example. Consider the Emden-Fowler equation,
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(77) y* + x¥ |y|Ysgn vy = o, x>0,

with -2 >y >-(L+y), ¥y>1 . Then g(x) = xV will
satisfy the conditions of Corollary 11 with B =y + (y + 3)/2.

If one takes € = 2B8/(y- 1) =1+ 2(v + 2)/(7Y- 1), one

finds that (77) has a solution y given by

(78) y(x) = [(1 - €2)/4]1/(y- l)x(l- €)/2 )

Atkinson's theorem yields the existence of bounded non-
oscillatory solutions, the so-called Emden solutions of
(77) , see [5]. An Emden solution of (77) is uniquely
determined by its value at @, in particular, there is a

unique solution Yo of (77) with yo(m) = 1. The Emden

solution y of (77) with y(®) = c > O is given by

y(x) = a (1- €)/2yo(ax)

where a_(l- €)/2 c. Finally, if -2 >y > -(y + 3)/2,
then any solution of (77) which is not at least to within a

factor of -1 an Emden solution or the solution given by (78),

is oscillatory; see [5]. It follows from Atkinson's theorem

that (77) has only oscillatory solutions, excepting the

trivial one, when p > -2 , and it will follow from section 7

that (77) is non-oscillatory when p < -(¥%+ 3)/2. These
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results are also to be found in [5].
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7. Nonoscillation Theorem for the Superlinear Equation.

We prove in this section the counterpart of Theorem 4,
namely a nonoscillation theorem for the superlinear equa-
tion. We assume in this section that F satisfies (9) and
as before that (l1l1), with p positive and continuous on

(O, ), is non-oscillatory.

‘Theorem 6. Let ¢ be a positive solution g_f_ (11),

let 9 € C3 (0O,0) and suppose that

(79) $>0, @HML o, 0<x< ® ,
(80) o(x) = o(P(x)) , o as x = ® ,
. . 2,.2
(81) lim inf @ (p7)"(x) > % > 0,
X =
(82) lim inf -(p3(p"(x) > ¢y > 0 .
X = o
Suppose in addition that !bzG(aquz , X) is a non-increasing
fuhétion of x for every a > O. Then any solution y of

(1) satisfying
| ® -
(83) [ 1vedn] ax< @,

must be non-oscillatory.
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Proof. The theorem will follow readily if we can
show that for any oscillatory solution y(x) for which

(83) holds, there must exist a constant Bo such that

2 2
(84) vy (x) £ Bj o (x)
Indeed suppose that y(x) 1is an oscillatory solution of

(1) satisfying (84). Then since F is positive and satis-

fies (9), we have for any a > O
G(ozzibz,X) 2 C(a2 a,bz - By <p2) F(Bo<p2,X)

Thus because of (80), there exists a positive constant

K0 > O such that
(85) aa®¥*,x > x_¥° F(B_¢", %) ,

for all sufficiently large x. Now for any solution y(x)

of (1) satisfying (84), we have, on account of (9) and (85)

b y?2 e 92 (x), %) .

0l

Fiy’(x),%) < 2 F(B ¢ (x),%) < (cK_)~

s . 2 . . .
By hypothesis, the function ¢2<3(a¢3 , X) 1s non-increasing,

thus we have, in view of the above inequalities,
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- (86) Fly? (x),%) < X, (p(x)"*

for some positive constant Kl and all sufficiently

large x. From (80) and (82), we also have, for suffi-
ciently large x,

WEN™? < et (e 3

(87) < - ‘_231 o (x) ((x)) "t

(%) SR

'Using (87) in (86), we have for some appropriate constant

K, >0,
(88) Fiy’(x),% < K, (ﬁ%ﬁ-} p ()
Since ﬁﬁﬁg = o0(l) as x = o , we can pick Xq suffi-

ciently large so that for x > X5
2
F(y" (x),x) < p(x)

The hypothesis that equation (11) is non-oscillatory together
with Sturm's comparison theorem now implies that y(x) must

be nonoscillatory, thus contradicting our assumption.
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It remains to show that an oscillatory solution of
(1) for which (83) holds also satisfies (84) for some

B° < @ . To this end, we first prove the following.

Lemma 8. Let y Dbe an oscillatory solution of

(1) satisfying (83). Then there exists a constant Bo

such that if y(a) = y'(b) =0 and y(x) # 0 for a<x<b ,

then
b2 2

(89) [ [y2w/6® 0] ax < B,
a

Proof. It follows from Lemma 1 and (79) that for any
solution y(x) of (1), X(x) = ID(x,y(x)) (with (w(x) = 1)
is a non-increasing function of x, and in fact we have

from (17) that when F is of class cl,

(90) - % Z(x) < % (v°)m y?

Integrating (90) from a to b, we have

b
01 $ %77 m) + v’ m) + yPetp) - Pyt < 1 [ wtmyP e ax,
a

and by the usual argument, this inequality remains valid

even if F is not Cl.

On the other hand, we observe that
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b b b
.% Ia(¢2):n yz(x) dx = -% Y2(¢2)"(x) - Ia(wz)n},yt(x) dx
1,2, 2 b,
(92) - 2 Y - [ W vy oax .
a
Combining (91) and (92), we obtain
b 5 2 .2 2,2
[Tahr vy wax < ¥¥y%@ - pPey’®),b)
a

2,2
L ¥y (),
and since the monotonicity of ¥ implies that ¢2y42
decreases from one zero to another zero of y to the right,
the integral on the right is bounded independently of the

interval [a,b], i.e.

. b
(93) " w®ryy 0 ax < B,
a

where B is a constant independent of [a,b]. Next we
note that if we assume y(x) > 0 for a < x< b, then

on that interval

((pzyx’ - y((pz)i = (pzyn - y((pz)n

- ‘<p2 Y F(yz,x)-y(cpz) "

< - vl
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Integrating the above estimate and using (83) we obtain

2 2
(94) oy L v+ ¢,
where Co is an appropriate constant again independent
of the interval [a,b]. This independence follows since
the function (¢23ﬂ - y(¢2)')(x) must vanish at some

point of (a,b). Next we use (94) to obtain the following

estimate

Ib -Y—'-Z- ax =Ib AN (92 y' dx

a (¢2) a o ()"

b !
< J‘ —— (Y(o®)' + c, )dx
a ¢ (o)’

b , b,
Sja 2 dx““co‘J‘ 2, 2, 9x -
® ¢ (¢7)

Using (8l1) and Schwarz's inequality, we obtain, ﬁrovided

a 1is sufficiently 1arge,

b _,2 )
(95) f Y= ax < <—
a (¢2)' o

1 1
b 2 2 b 2
+ G4 (f "2 dx) (I ix 2 )
a (7)) a o ()"

b 2
I ()" yy' ax
a
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from (82), we have, for large x,

(o a
o T
x ¢ (t)
so that
a
(96) () (%) > e ox) | S5
x ¢ (t)

Now we use (96) to estimate the last integral in (95) as

follows

b

b
dx 1 ax 2 ax
(97) B — L = = - dt L = _]. 3
Ia ¢4(¢2), ¢y Ia 5ja><g§_ A, Y ¢3(x)
x ¢ (t)
where
<P'
1 . 1 S
F— = lim sup = = lim sup 'f"‘ L o' (a)
o X = o © J dt X = o -3
x @ (t) g
b 2
Denote by pu the integral I > dx . Substituting (97)
a (o)

into (95), and using (93) we obtain
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N

(98) p <L B, + B, s

where Bl’ B, are constants. It then follows from (98)

that p < Bj for some appropriate constant B, -
This completes the proof.

Now let a and b be as in the above lemma. For

a< x<b, by schwarz's inequality
1 1
X b 2 2 X 2
vy | < [ lytwlae g (I s dt> (f (%) at
a a (o) a

So, by (89),
yz(X) < B°<p2(X) s

for a { x < b . Then for any oscillatory solution y(x),

it follows from the concavity of y between zeros and the

fact that ¢ is a solution of (11) that (84) holds for all
large x. This completes the proof of the theorem.

Remark 5. Clearly condition (4) implies (9) for the
function F. Also, by taking ¢(x) = xyL and Y(x) = (x log x;
in Theorem 6, we obtain Theorem 2 of [3] which is a generali-
zation of earlier results of Kiguradze [8] and Nehari [13].
Note that in this case, since (¢2)" = 0 , condition (83) is

trivially satisfied.
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As an example of a function F(t,x) satisfying (9)
but not (4), we may take F(t,x) = q(x) exp(£(t) - n(t)),
where q(x)‘z O , g£(t) 1is nondecreasing and n(t) is

uniformly bounded for all t .
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Appendix: Continuation and Local Unigueness of
Solutions of Generalized Emden-Fowler Equations
o T T T T R ]

We are concerned with establishing continuability and
local uniqueness of solutions of the following second order

ordinary differential equation:
2
(1) y" +y Fly ,x) =0,

where F(t,x) is continuous in both variables and also

non-negative. The prototype of such an equation

(2) y" + qx) |y|Ysgmy =0,

where g(x) 1is continuous and nonnegative, has received
considerable attention in recent years. We classify
equation (1) as superlinear or sublinear according to
whether F(t,x) is monotone increasing or decreasing

in t. More precisely, we say that equation (1) is

superlinear if
(3) F(t,,x) 2 F(tl,x) , t, 2ty

and sublinear if
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(4) F(t,,x) < F(t,x) , t, >ty -

When these conditions are specialized to equation (2),
we obtain 7.2 1 for superlinearity and ¥ £ 1 for

sublinearity.

In case of equation (2) when 4 > 1 , the local
uniqueness of the zero solution, i.e. that a solution v (%)

satisfying the initial conditions

(5) y(x,)) =y'(x)) =0

for some Xq must be the identically zero solution, is
-well known. It is also not difficult to see that the same
remains valid for the more general equation (1) subject to
condition (3). This was observed by Nehari, [12]} for.
completeness we include a slightly simplified version of
his argument here. Suppose that y(x) is a solution of
(1) éatisfying (5). Choose € > O such that

X +€

o
(6) J (xo + e - 8) F(l,s)ds < 1,

X
o

which is always possible since F(t,x) is continuous in
its variables. Integrating (1) from X to x, x € [xo,x0 + €],

we obtain

X ,
(7) y(x) = | (x- s) y(x) F(y (x),s)ds

%o
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We may also assume that ¢ > 0 1is sufficiently small so that

sup ly(x)] e <1
xo,g X< x + ¢

o

Since y(x) is continuous, there exists xle[xo,xo-ke]

at which ]y(xl)l = ¢ . Note that equation (1) is symmetric
with respect to vy, that is if y(x) is a solution of (1),
so is - y(x). Therefore we may assume y(xl) = ¢ . Evalu-

ating (7) at X, , we have by (6)

*1
2
c = [ e v rP(e),00as
X,
X X
L c I (xl - s) F(c",x)ds
X
o
X, te ,
L c I (xo + € - g8) F(c",s)ds < ¢ ,
*o
which is a contradiction. Thus y(x) = 0. A further analysis

of the above proof shows that in the superlinear case the
uniqueness of the zero solution in fact follows from the
corresponding property for the linear equation. Indeed

every solution y(x) of (1) satisfies the linear equation

y" + p(x)y =0,
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where p(x) = F(yz(x),x) is continuous, which clearly has
the required uniqueness property. The solution of an arbi—
trary initial value problem for equation (1) is of course

unique when F(t,x) satisfies a locally uniform Lipschitz
condition in t. This is the case in particular for equa-

tion (2) when ¥ > 1.

We make note next of the fact that for the sublinear
case of (1), any solutions defined locally can be extended
to (O, ). Proofs for the sublinear case of (2) have been
given by Heidel, [A-5], and Belohorec [2]. As in [A-5], we
may derive a general result for equation (1) from a theorem
of Wintner, see Hartman ([A-4], p. 29). Indeed, the equa-

tion (1) is equivalent to the vector equation
n' = £(x,n) ,
where 7n(x) = (y'(x),y(x)), £(x,n) = (—yF%yz, X),y'"). If we

use the vector norm |pq| = max(|nl|,]n2]) then (4) implies

that

[£(x,m) | < (1 +K(=x)|n],

where K(x) = max ( max yfF(yz ;€)) . The scalar
0<ELx 0Kyl
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equation

r' = (1 + K(X))r ,

has all of its solutions defiﬁed on (0, ), thus by the
result of Wintner just referred, any locally defined solu-
tion of the sublinear equation (1) can be extended to (0,m).
Of course a weaker condition than (4) will suffice
in order that all solutions of (1) be continuable. One
such useful condition is domination of F(t,x), for large t,
by a function independent of t. We formulate this more
precisely as follows. If there exists a continuous non-
negative function p(x), and if for every compact interval
[a,b] in (0, ), there exists an M > O such that F(t,x) £ p(x)
for t > M and a < x < b, then any locally defined solu-
tion of (1) can be extended to (0, ). The proof is similar

to that given in the preceding paragraph.

In view of the above remarks it is apparent that the
more subtle questions are those of continuability of solu-
tions of the superlinear equation and of the uniqueness
of the zero solution of the sublinear equation. For the
first order scalar equation, although the problem there is
not so deep, an analogous situation occurs as is illustrated

by the simple equation,

vyt = |ylY ,
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considered for 0 < y< 1 and 1< ¥< ®. There is, for
this first order equation, a sort of "duality" between the
non-uniqueness of the zero solution, for 0 < ¥< 1, and

the failure of global existence of solutions when 1 < ¥Y< .
As we shall see, a more striking and more interesting duality
exists in the second order case between the two problems
mentioned at the beginning of this paragraph. (Cf. Heidel,

[A-5], concerning equation (2)).

We consider first the problem of continuability of
solutions of the superlinear equation. For the special
case of equation (2), this problem has been considered by
Hastings [A-3], Coffman and Ullrich [A-1l], Heidel [A-5] and
in related papers, Jasny [7], Kiguradze [8], Moore and
Nehari [A-8], Willett and Wong [A-10]. A systematic study
does not seem to have been made concerning the continuébility
problem for equation (l1l). Some general results concerning
equations more general than (1) may be found in Hastings [A-3],
but they seem to be not particularly useful in analyzing
equation (1l). Results generalizing that of Coffman and Ullrich
[A-1] for the Emden-Fowler equaﬁion (2) are also given in
Ullrich [A-9]. Similar remarks concerning the continuability
‘'of solutions may be found in Nehari [11l], [13], Coffman and
Wong [3].

Let 0L a< b o®. By a local solution of (1) in

(a,b), we shall mean a solution of (1) defined on a non-empty
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open subinterval of (a,b). By the phrase, "all solutions

of (1) are continuable on (a,b)," we shall mean that every

local solution in (a,b) of (1) has a C2 extension on
(a,b). If b 1is finite we shall say that all solutions of
(1) are continuable through b if for some a < b every
local solution of (1) in (a,b) has a C2 extension on

an open interval containing b.

The main result of [A-1] states that if gq(x) is posi-

tive and locally of bounded variation on (a,b) then all

solutions of (2) are continuable on (a,b). The same

argument as the one used in the proof of the result just
quoted gives the following: if b < oo and if qg(x) is

positive on (a,b) and 1log g(x) has finite upper variation

on (a,b) then all solutions of (1) are continuable thfouqh

b. This last result is of interest primarily as a criterion
of continuability of solutions of (2) through an isolated

zero of g(x). Another result along this line is due to

| .
Heidel [A-5], and states that if [(b - x)OH'3 q(x)] exists

and_if non-positive on some left neighborhood_9£ b, then

all solutions of (2) are continuable through b. Actually

Heidel [A-5] stated this result in a somewhat different
form, and he has explicitly assumed that g(b) = O there,
which is an unnecessary assumption.

Concerning equation (1), when (3) holds, Ullrich [A-9],

has given the following generalization of the continuability
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result of [A-1] for (2): if there exists a non-decreasing

function h(x) on (a,b) such that for all t > O,
(8) |log F(t,x

o) - log F(t,x;)| < h(xy) - h(x)), alx <x,<b,

then all solutions of (1) are continuable on (a,b). Let

: t
(9) G(t,x) = I F(s,x)ds
o
Inspection of Ullrich's proof shows that (8) can be replaced

by
(10) [log G(t,x,) - log G(t,x;)| < h(x,) - h(x;) , a<x;<x,<b,

which is implied by (8). We remark also that Ullrich's
proof can be made to yield a one-sided (i.e. right) continu-
ation criteria, namely

(11) 1log G(t,x

2) - log G(t,xl) < h(x2) - h(xl) , ag_xl<x2<b.

For equation (2), where G(t,x) = (¥ + l)_:L q(x) t'y+l , (11)
is weaker than (10) only if g(b) = 0, however, in general,
(11) is weaker than (10) even if b < @ and G(t,x) is

positive for a { x< b, t > 0.
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In Theorem A.l below we state continuability criteria
for solutions of (1) which contain all of the results quoted
above. We first give a necessary condition that a solu-

tion of (1) can not be continued through b in the following

lemma.

Lemma A.l. Let y(x) be a solution of (1) with F

satisfying (3) on [a,b). Suppose that y(x) cannot be

continued through b, then v(x) has infinitely many

zeros in every left neighborhood of b and

lim sup |y(x)]| = 1lim sup |y'(x)] = oo
X = b - X = b -

Proof. We first show that if y(x) cannot be continued
through b then y(x) must have infinitely many zeros in
every left neighborhood of b. Otherwise, there exists
€ > 0 such that y(x) 1is concave toward the axis for

b - € <x<b, and consequently lim y'(x) and 1lim vy (x)
x=b- Xx—b -

exist and are finite, proving continuability.

 Now suppose that 1lim sup| y(x) | < @ , then an inte-
. x-Db-
gration of the differential equation yields the existence and

finiteness of lim y(x) and of lim y'(x) , from which
Xx=b- XxX=Db-

follows continuability. If 1lim sup|y'(x)| < @ , then an
X=Db-

integration yields 1lim sup|y(x)| < @ , and the result
x=Db-

follows as above.
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Theorem A.1l. Let there exist a bounded non-decreasing

function h(x) on (a,b) such that for every o > O

(12) log[ (b- %)% Glalb- x,)%,x,) | - Log (b- x)) e (alb- x;)?,x)) |
< h(x2) - h(xl) a < X < X, <b,

then every local solution in (a,b) of (1) possesses

2 continuation through b.

Proof of Theorem A.l. It suffices to assume that
there exists a solution y of (1) defined on some open
interval [o,B) , a { o< B £ b , and which possesses no
proper right extension and to show that this assumption
leads to a contradiction. In view of Lemma A-1 it suf-
fices to show that the given solution y is bounded on
[o,B) . The existence of a proper right continuation,

and thus the contradiction, follows.

Put

(13) &(x) = (y(x) + -3y )2+ ®-x2 ey’ (x),x) ,
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then if G 1is of class C1 we have
@ (x) = 2(y(x) + (b-x)y'(x)) (b-x)y"

(b - x) = 1v-x

b-x

= 2(b—X)Cf(X) + (b-X)y) (Y"+yF(y2, X))

+ 2 [m-n2c®- x)z,x)]a _

o) 2 2 2
+ & [ m-n%@ ®-x ,x)]m= - )

Y
b-x

For G of class Cl , (12) implies

2 [m-n%e’m-0%n] < n@[e-ve®m-0nin],
and thus

@ (x) < 20-%) (y(x) + (B-x)Y) " HYEES, %)) + b (%) $x)

We have therefore the differential inequality,

¢ (x) < h'(x) ®(x), el x< B,
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integration of which yields,
(14) &(x) < @(a) exp(h(x)-h(a)] , alx<pB.

If G is not of class Cl, choose a sequence of Cl

functions Gn(t,x) such that, as n - o, Gn(t,x) - G(t,x)

and Fn(t,x) = %E Gn(t,x) - F(t,x) uniformly on compact

subsets of a < x<b, t >0, and so that in addition,

for all ¢ >0, n=1,2,...,
2 lw-n%c(®- 02,50 ] < b bB-xe (6 m-x7,x)] .
Taking
2 2 2
¢ (x) = (v(x) + (b-x)y'(x))” + (b-x)" 6 (y" (%), %),
we obtain
®(x) L 2(-x)(v(x) + (b—X)y')(y"+yFn(Y2,X))+ h' (x) & (x),
for a < x< B. Thus for arbitrary B8', a < B' < B8,
¢ (x) < C +Nh(x)¢ (x), o< x<LK B,

where C_= sup [2(b-x)(y(x) + (b-x)y' " 2, ,
n aSXSﬁ'I x) (y (x X)y' (%)) (y" +y F (v, %)) |,
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so that 1lim Cn = 0 . Integrating the above differential
n - @

inequality and letting n - @ , then since 1lim ¢n(x) = @(x) ,
n- @

d'g x < B, we obtain ¢&(x) £ ®(a) exp[h(x) - h(a)], and
since R' { B was arbitrary, it follows that (14) holds
regardless of whether G is of class Cl. Since G(t,x)

is positive, (11) and (12) imply that there exists a constant

K < o such that

(y(x)/(b-x))" < Kb-x"2, a<x<B,

and integration of this differential inequality shows
that y(x) 1is bounded on (e,R).

v+ 3

Corollary A-1. Let 1log [(b- x) g(x)] have

finite upper variation on (a,b), then every local solu-

tion in (a,b) of (2) possesses a continuation through b.

The proof of the main theorem of [A-1l], concerning
continuability of solutions of (2), consists in proving

boundedness of

1, . 2 1 +1
S ENT 4+ ST a vy | ,
for solutions of (2). From boundedness of this expression

follows boundedness of y' (x), hence, in view of Lemma A.1,

continuability of y(x). An alternative approach is to
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consider the function

yrl (v ()2

Y+ 1
2 q(x) IY(X) l

3

boundedness of which directly implies boundedness of y(x),
hence, again in view of Lemma A.l, continuability. Actually
the first approach is preferable, since for right continua-
tion this approach requires only boundedness of the upper
variation of 1log g(x). The second approach, on the other
hand, requires for right continuation the boundedness of

the lower variation of 1log g(x), and thus this approach

can never be applied to prove continuation through an
isolated zero of the coefficient q(x).‘ However, the attempt
to generalize the second approach leads to the following
theorem, which, while it gives nothing new for equation (2),

neither is it contained in Theorem A.1l.

Theorem A.2. Let there exist a bounded non-decreasing

function h(x) on (a,b) such that for every o > O

(15) log F(a,x,) - log Fla,x)) 2 - (h(x,) - h(xl)),
a < Xy < X, <b,

then every local solution.ig (a,b) of (1) possesses a

continuation through b.
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Proof. We sketch a proof for the Cl case. Let

G(t,x) be given by (9) and let T(w,x) be defined implic-

itly by,
T'(G(t,x),x) =t
then,
T (wx) = (F(T(wx),x) L
and,

T (wx) = - 6 (T(wx),x)/F(T(wx),x))
If y is a local solution of (1) on (a,b) and if we put,
8(x) = (y)? + c(y*(x),%)
then
¢ (x) = Gx(y2 (x),x) ,
and thus, if

¥(x) = T(®(x),x) ,
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then
(16) ¥ (x) = (G (7 (x),%) - G _(¥(x),x))/F(¥(x),x)
Since &(x) > G(y2(x),x) , it follows that
(17) v(x) > v2 (x) ,

and using (3) and (9) we obtain from (16)

— 1log F(s,x)ds ,

¥(x)
¥ (x) = - J gx

y2 (x)

which in view of (15) and (17) yields
(18) ¥ (x) £ h'(x)¥(x).

Suppose now that y(x) is a local solution of (1) defined,
say, on (xo,xl) c (a,b). Then integration of (18) and
the use of (17) and the boundedness of h(x) on (a,b)

lead to the conclusion that

lim ly(x)] < o

X * X, -
1

By Lemma A.l, this implies the desired result.
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Yet other continuation criteria can be obtained if
one is willling to impose a stronger condition than that
of local bounded variation and yet weaker than the hotion
of differentiability of the coefficient qg(x) 1in case of
equation (2). For example we can obtain continuability
results by requiring the existence of upper right deriva-
tives. The upper right derivative of a function &(x) is

defined as

D} &(x) = limsup 3 (®(x+h) - &(x))

R
h=-oF
A result in this direction is the following.

Theorem A.3. Suppose that the function G(t,x) defined

in (8) is upper right differentiable with respect to x for

each t and satisfies

(19) DF G(t,%x) < w(x,G(t,x)) ,

on [0,X], where w(x,r) is a continuous function of both

- variables x and r and non-decreasing in r for each x.

If in addition every solution_gf the first order equation

(20) , r'(x) = w(x,r(x))




[79]

can be continued up to X, then every solution of (1)

can be continued up to X.

Proof. We introduce the Lyapunov function for equa-
tion (1)

(21) B(x) = y'2(x) + Gy (x),x) .

Since G(t,x) 1is right differentiable, we differentiate

(21) and obtain
+ _ + 2
D &(x) = Dp G(y™ (x),x)

< wx, Gy (x),x)) .

By hypothesis, w(x,r) is non-decreasing in r; so we have

(22) Df &(x) < wix, &x) ,

for all x ¢ [0,X]. An application of a differential inequality

 (see Hartman [A-4], p. 26) will now give

®(x) < r(x) , x ¢ [0,X]

from which it follows that &(x) is bounded on [0,X] and

thus y'(x). The result then follows from Lemma A-1.
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When restricted to equation (2) the above theorem

yields the following extension of a result in Willett and

Wong [A-10].

Corollary A-2. Let qg(x) > O be continuous and upper

ridht differentiable on [0, o), then every solution

of (2) can Qg continued from the right on [0, @).

Proof. Note that equation (20) in this case becomes

r'(x) = (Df q(x))r(x)

X
which has the solution r(x) = r(xo) exp ( J D; g(s)ds) and
*o
clearly can be continued from the right on [0, @).

Remark A.l. We can of course use the differential

inequality technique as just given in Theorem A.3 to formu-
late a more general condition than (12) in order to improve
Theorem A.l1. The details are essentially the same and

will be left to the interested reader.

We turn our attention now to the sublinear case,
namely equation (1), where F satisfies condition (4).
Before discussing the problem of the uniqueness of the zero
solution we prove several other results for this equation
which are also of interest. The first two of these concern

the initial value problem
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(23) y(xo) =0, y'(x)) =a,

where a # 0, and thus without loss of generality we
can take a > 0 . A similar study of this problem for the
superlinéar equation (1), with F satisfying (3) and
other additional hypothesis may be found in Moroney [A-7],

and Coffman [A-2].

Theorem A.4. Let 0< a< B< o, and let A > O.

Then there is an € > O, depending only on F, @, B and

A such that if e« < xo‘g B, a>A, and y(x) is a solu-

tion of (1) satisfying (23), then y(x) > O for X < x < X + €.

Theorem A.5. If there exist positive constants 61

and 62 < a , and a non-negative function h(x) defined

and locally inteqrable on 0 < |x - xol < 6, , satisfying
Xx +6

o—"1
(24) I (x - xo)h(x)dx <o ,

X
(o]

and if

(25)  JwF(uh(x-x)2,%) - @F(d(x-%2),0] < h(x)|w- o,

for 0 <|x- x | <6 and |w -al <35,, i =1,2, then

the initial value problem (23) for (1) has a locally unique

solution when a # O.
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Proof of Theorems A.4 and A.5. Let y(x) be a solu-

tion of the initial value problem (23) for (1). (By remarks
above y can be assumed to be defined on (0, @ ).) Then

wx) = y(x)/(x- xo) satisfies the integral equation

X (t - xo) 2 2

@6) w0 =a- [ ) e ) R @), a
X X-X

(o] (o}

Let € Dbe chosen so that

xo+ €
1.2 2 1
J 7 eexr@dae-x)?,onae < &,

then using (4) and a standard argument one can easily show
that if a > A, then any solution w of (26) must satisfy
w(x) > 3a/4 , for X < x < X+ €. The assertion of
Theorem A.4, clearly follows.

To prove Theorem A.5 we use the fact that local unique-
ness for solutions of the initial value problem is equivalent
to locai uniqueness for solﬁtions of (26). Accordingly,

let w and wy be two solutions of (26), then from (26)

-and (25) we have

X
ey () - @, (1) | < ljx(t-xo)h(t) e (£) - @y () |at] .

o]

Using (24) and a standard argument we conclude that “ﬁ(x) = “b(x)
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in some neighborhood of X, - This completes the proof
of Theorem A.5.

Corollary A-3. Let y be a solution of (1) and

let X be a cluster point of zeros of y. [Then

lim y'(x) = lim y(x) = O .

X = X X=X
o O

Proof. Immediate from Theorem A.4. We remark that the

above corollary also gives a simple generalization of a result

of Heidel [6] for equation (2).

Corollary A-4. Let O < ¥ < 1, then the initial

value problem (23) for (2) has a locally unique solution

when a # O.

Proof. Let O < 62 < a , then for w s W > a - 52 5

|- %)Y " la [ - )] < v x)Y T a0 @ 67 ey - @yl

and thus the equivalent of (25) is satisfied with h(x) =
k(x- xo)y_ lq(x), where k 1is a positive constant depending
only on 62.

We come now to the problem of uniqueness of the zero
solution for the sublinear equation (l1). We make the follo-

wing simple but important observation.
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Lerma A.2. f a solution y(x) f (1) has

e ey St —i————— ==

(27) y(x)) = y'(x)) = 0,

for some xoe(o, @), then y has infinitely many zeros

in every neighborhood of X

Proof. If y = 0 in a neighborhood of X there is
nothing to prove. We assume therefore that for any ¢ > O,
y(x) ¥ 0 on the interval X, - e <x< X . If for some

€', 0< €' < e, y were of one sign, say positive, for

x, - ¢ <x<x_, then since yy" < 0 , we have vy'(x) >
y‘(xo) =0 for all x e(xO - €', xo). Consequently,
y(x) < y(xo) = 0, which contradicts what we just assumed.

This completes the proof.

We have quoted a result to the effect that when ¥y > 1
and the upper variation of 1log g(x) is finite in some
interval (a,b] then every local solution of (2) defined
in (a,b) possesses a continuation through b. The "dual"
of this result for (2) with O <% < 1 is the following:

“if q(x) is positive and the lower variation of 1log g(x)

is bounded iﬂ (a,b] , then for xoe(a,b] any solution

of (1) satisfying (27) vanishes identically on (a,xo).
The latter result, like the former, is obtained from a

differential inequality for the "energy function,"

%(y')2 + ;%rl q(x)lyly+—1 . On the other hand, if qg(x) > O
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on (a,b), g(b) = 0, and g is decreasing for b-¢ < x< b,
where ¢ > 0, (so that the lower variation of 1log gq is
necessarily infinite on (a,b)), then if y were a solu-
tion of (2) with 0O <y < 1, satisfying (27), with x, = b,
and if y did not vanish identically in (b-¢,b) for

some €' > O, then by Lemma A.2, y would have infinitely
many zeros in (b- €', b). However the monotone character

of g(x) would imply that the amplitude of these oscilla-
tions is increasing in (b- €, b), which in view of (27)

is impossible, thus y must vanish identically in (b- ¢, b].
A stronger result due to Heidel [A-5], states that if
(b-—x)y'+3q(x) is decreasing in (b- €, b) for some

€ > 0, then any solution of (2) satisfying (27), with

X, = b, vanishes identically in (b- €, b). The result

in [A-5] is stated for the Cl case and it is assumed

there that g(b) = 0. We present extensions of these
results, and in fact, our results when reduced to equation

(2) improve the known results mentioned above.

Theorem A.6. Let F satisfy (4) and assume that

there exists a non-increasing function h(x) , defined, on

[a,b], such that for every o > O,

(28) log G(a,xz) - log G(a,xl) > h(x2) - h(xl)
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for x, > X - Then for xoe(a,b], any solution of (1)

satisfying (27) vanishes identically in (a,xo].

The proof of this result will be omitted, since the
arguments are similar to those used previously, and which
will be used below. More specifically, one shows that the
function ¢&(x) = (y')2 + G(yz,x), when y is a solution
of (2) is either positive on [a,b] or vanishes identi-
cally there.

The proof of Heidel's result just mentioned involves
the device of throwing the singular point b for (2) to

infinity by means of the change of variable
1
y(x) = (b-x)u(t), t= == .

This result can be proved also by considering the "Lyapunov

function"

(y(x) + (b-x)y' (x))° v +1

(b - x) 7+3q(X)

+ v (x) |

il
Yy +1 'b-x

for (2). The proof of Theorem A.7 below depends upon finding
the appropriate generalization of the above Lyapunov function

for (1).

Theorem A.7. Assume:

(1) there exist positive constants 61, 62_ and there exists
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a positive c¢*  function o(t) defined for t > 0, with

o(0) = 0, and o' (t) >0 for t > 0, such that for

0<b-x< 61 , and (b-x)2¢(t) < 62 , the function

(b - x)%6((b- x)20(t),x)

Il

(29) g(t,x)

t
m-0% [ F(e-0lm),0e (Bat
(o]

is a convex function of t ,

(2) there exists a non-decreasing function h(x), defined

for 0 < b-x< 61 and such that for 0 < (b- x)zt‘g 62

(30) 1og[ (b - x2)4F( (b - x2)2t,x2)] - 1og[ (b - xl)4F((b— xl)zt,xl)]

< h(xz) - h(xl), for Xy 2 Xy

Then if y is a solution of (1) satisfying

(31) y(b) = y'(b) = o0

then vy (x) O for 0<b-x<K 61

Remark. When yE%yz,:d is non-decreasing in y for

y > 0, which is the case for equation (2), then the function

¢ 1in the hypothesis of Theorem A.7 can be taken to be t2.
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on the other hand, when yF%y2,>ﬂ = q(x)f(y) and yf(y) >0
whenever y % O, which is the case for many of the more
important examples, then the junction ¢ may be taken

~1

t
as ¢(t) = Z “(t) where T(t) = ZI £(u)du.
o

Proof of Theorem A.7. We consider the case where F is

of class Cl, and define a function TI'(w,x) by

i

(32) r(g(t,x),x) =t ,
so that
. -1
(33) T (wx) = [6 (Tlwx),x ]
(34) L (wx) = - [6,(T(wx),%) /6, (Nwx),x) | -

Let y be a solution of (1) satisfying (31) and let &(x) Dbe
defined by formula (13). Then, as shown in the proof of

Theorem A.1,

(35) & (x) = %;[m-x)%(f(b-x)z,x)]a y

W)
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If we put
p(x) = T(&(x),x) ,
then by (33), (34) and (35),

(36) P (x) = - [o (t,%) Gy (T(wx) %)

We observe that
0x) > 6o (L)), x)
so that
p(x) = T@,%) > ¢ (gE=)?)

By (36) and (29)

=1
o 0 ==L -0 - 02w, e 1) ]

fib(x)

()

L o-0%(e-02eenx) ] (s)as
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so by the convexity of G ,

{%’E [(b - X)4F(' (b - X‘)'2<p(S) ,X)]}+<p' (s)ds

PR > - |
f¢l_x_2 -x% Fb-x? o(s), x)o' (s)

b-x

The inequality (30) implies that the integrand in the above

integral is bounded above by h' (x). Thus we obtain
' (x) > - h'(x)P(x) ,
and integration of this inequality yields

(37) pP) 2> P(x)) exp(h(x)) - h(b)) ,

for 0 b - X < 61 . Suppose now that y = O for

0<b-x< 6 , then by Lemma A.2 y and hence y' has
infinitely many zeros, clustering at b (they cannot cluster

on the left of b). But at a zero of y!
~ 3 2
r(G ((P ((b _ X) ) ,X)

(=)

It

P(x) = T(®(x),x)

and thus (37) implies that

2
lim ——XF—) > 0 |,

x=b b-x
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which contradicts (31), therefore y =0 in 0< b - x < 61 .
In the case where F 1is not of class C , we may approxi-
mate F Dby a sequence of C1 functions in the same manner

as in the proof of Theorem A.l.

Restricting Theorems A.6 and A.7 to the special equa-

tion (2) with 0 < y < 1 , we obtain

Corollary A.5. Let g(x) ke positive on [a,b].

If log g(x) has finite lower variation on [a,b], then

for xoe[a,b], every solution of (2), with 0< vy <1,

satisfying (27) vanishes identically in [a,xo].

Corollary A.6. Let qg(x) be positive on [a,b].

f log(b-—x)Y+3

g(x) has finite upper variation as x = b,

and y(x) is a solution of (2), with O0 < y < 1 , satisfyving

y(b) = y'(b) = 0 , then there exists € > O such that y(x) =0

for x ¢ [b-€,b].

Finally, we wish to make a few comments concerning the
method of proof discussed here in connection with the
continuability problem for superlinear equations and the
uniqueness of the zero solution for the sublinear equations,
In the former case, we devise certain techniques involving
Lyapunov like functions to obtain a contradiction to Lemma A.1l

by either showing that (i) 1lim sup |y* (x)] is finite or
x=Db

(ii) 1lim sup |y(x)| 4is finite. 1In Ullrich's result [R9],
X =D
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quoted above, condition (8) is used to show that (i) is
true. Theorem A.2 follows the alternate route, namely
by showing that the assumed conditions imply (ii).
Similarly, in case of uniqueness of zero solution, one
devises "dual" techniques involving Lyapunov like func=
tions to obtain a contradiction to Lemma A.2 by either

showing that (i) 1lim sup |y'(x)| > O or that (ii)
x =D

lim sup |y(x)| > 0. Thus, in Theorem A.6 we show under
x=Db

the given assumptions that the contrary of the desired
conclusion leads to (i). Alternately, we employ the

route (ii) in Theorem A.7.
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