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We are here concerned with the oscillatory behavior

of solutions of second order nonlinear ordinary differen-

tial equations of the form

(1) y" + yF(y2,x) = 0 , x > 0,

where yF(y ,x) is continuous for x > 0 and |y| < oo ,

and F(t,x) is non-negative for x > 0 and t > 0. The

prototype of equation (1) is the following

(2) y" + q(x) |y|y sgn y = O , x > O,

where q(x) J> 0 and y > O. Both equations (1) and (2)

include the so called "Emden- Fowler equation11:

a . y
ylf + x |y| sgn y = 0 , x > 0,

where y > 0 and a real. In the discussion to follow,

it is convenient to classify equation (1) according to the

nonlinearity of F, namely (1) is in the superlinear case

if F(tjX) is monotone increasing in t for every x and

similarly it is in the sublinear case if Fft^x) is mono-

tone decreasing in t for every x. In section 2, we also
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introduce weaker notions of super and sublinearity, which

play an important role in the oscillation and nonoscilla-

tion of solutions of equation (1)•

A nontrivial solution of (1) is said to be non-oscil-

latory if for every a > 0, the number of its zeros in

[a,oo ) is finite, and it is said to be oscillatory other-

wise. Unlike the linear equation, where the function

F(t,x) is independent of t, the nonlinear equation may

possess solutions of either kind. In view of this, one is

led to consider the following types of oscillation and non-

oscillation conditions, namely, those which guarantee all

solutions of (1) oscillate and its converse, i.e. the exis-

tence of one non-oscillatory solution, and those which

guarantee all solutions of (1) do not oscillate and its con-

verse, i.e. the existence of one oscillatory solution. The

first type of oscillation and non-oscillation conditions

have been the centre of a considerable amount of research

and there are a number of results in this direction for equa-

tion (1) or similar equations. We refer the reader to Wong [15],

for an expository account of this subject and for other related

references. Results of the second type may also be found in

Atkinson [1], Wong [14], Macki and Wong [10], Heidel [6] and

others. However, in contrast to results of the first type,

these results are not sharp when applied to the Emden-Fowler

equation. Sharp results have been found recently for equation

(2) when y > 1 by Jasny [7] and Kurzweil [9] for the existence
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of one oscillatory solution and by Kiguaradze [8] and

Nehari [13] for non-oscillation. In the sublinear case

when y < 1, Belohorec [2] has obtained results in both

directions. For the more general equation (1), in the

superlinear case,, a study was initiated in Nehari [13]

and continued in Coffman and Wong [3], but as far as we

know the corresponding sublinear case has not been inves-

tigated .

In the present work,, we attempt to present a unified

treatment for the study of this specific oscillation problem

of second type both in the sublinear and the superlinear

case. At the same time, we initiate a systematic investi-

gation in the use of Lyapanov like functions to study

oscillation and nonoscillation problems concerning second

order nonlinear equations. In the appendix, we further

this approach by showing how it may be used in the study of

the continuability problem and the uniqueness of the zero

solution. This technique was first introduced by Coffman

and Wong [3] for a special case of equation (1) and was

suggested by some ingenius differential identities and in-

equalities used by Nehari in [13]. The main results, too

detailed to describe here, include oscillation and nonoscil-

lation theorems for both of the two classes of equation (1)

and contain as special cases all of the results cited above.

In fact, in the process of this generalization, we not only
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achieve a certain degree of simplification but also discover

improved versions of earlier results even in the simple

case of equation (2). For example, Corollary 2 and Corollary

5 improve the results of Belohorec [2] for equation (2)

when y < 1, Corollary 10 refines the result by Jasny [7]

and Kurzweil [9] for equation (2) when y > 1, and Proposi-

tion (*) extends a well known result of Nehari for equation

(1) in the superlinear case.

In most of the analysis concerning oscillation of solu-

tions of nonlinear equations, it is often assumed that every

locally defined solution of (1) is continuously extendable

throughout the entire non-negative real axis. We have included

in this paper an appendix which we hope presents an up-to-date

discussion of the continuability problem as well as the prob-

lem of local uniqueness of the zero solution. The results

presented in the appendix are used throughout this paper and

seem to be of independent interest in themselves.

Finally, we remark that preliminary versions of some

of the results given below were announced earlier in [4].
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2* Preliminaries. In this section we introduce some

notation, formalize usage of certain terminology, and

discuss general properties of equation (1).

We assume here that F(t,x) is continuous and non-
2

negative for t,x > 0, and that yF (y , x) can be defined

as a continuous function for x > 0, |y| < OD . These con-

ditions suffice for local existence of solutions of the

initial value problem

(3) y(x1) = a, y* (x^ = b, x± > 0,

for (1).
2

A solution of (1) is understood to be a C function

satisfying (1) and defined on a right maximal interval of

existence. The term lflocal solution" will be used to refer

to a solution not necessarily defined on a right maximal

interval of existence. The term "oscillatory" will be used

in the sense of oscillatory on the right, i.e., a solution

of (1) is oscillatory if its zeros have a right cluster point,

and non-oscillatory otherwise. A cluster point of zeros of

a solution of (1) can occur in the interior of its interval

of definition, thus a non-oscillatory solution may possess a

left continuation which is oscillatory. Finally we remark

that any solution with a bounded right maximal interval of

existence is necessarily oscillatory. (Cf. Lemma A2 in the

appendix).



Concerning the classification of equation (1) as super-

linear or sublinear, (1) should,, strictly speaking, be called

superlinear only if F satisfies

(4) P(t2,x) Z.Fit^K), t2 > t± , X€(O,CD),

and sublinear only if F satisfies

(5) F(t2,x) 1 Fft^x) t2 > t± , X € ( O , G D ) .

Here we use these terms somewhat more loosely and refer to (1)

as superlinear or sublinear respectively if the coefficient

satisfies some weaker condition than (4) or (5) under which

the typical oscillation or non-oscillation properties of the

strictly sublinear or superlinear equation are preserved.

Such a condition of generalized superlinearity is

(6) G(t,x) £ KtF(t,x), K > 0 , O ^ t < o o , O < X < O D ;

the analogous condition of generalized sublinearity is

(7) G(t,x) 2. KtP(t,x) K > 0 , O ^ t < O D , 0 < x < CD .
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Here

Pt «Vt 0

(8) G(t,x) = J F(s,x)ds = 2J sF(s ,x)'ds
0

(The assumptions made above concerning F(t,x) clearly

imply that G(t,x) is well-defined.) Another condition

of super linearity,, intermediate between (4) and (6) is

(9) F(t2,x) 2 cF(t1,x) c > 0, t 2 > t x, 0 < x < OD

Reversing the inequality in (9), we obtain a condition of sub-

linearity intermediate between (5) and (7), namely,

(10) F(t2,x) £ cF(t 1,x), c > 0, t 2 > t±3 0 < x < OD

We note that (4) and (5) both are satisfied by the linear

equation (I), and the overlap of (6) and (7) is even greater.

In fact (6) and (7) are both satisfied by (2) for all V > 0.

Proper sublinearity, for example, which rules out even the

linear equation, is obtained by simultaneously requiring (7),

(23) and (30).

A further word may be appropriate here concerning the

pathologies which solutions of (1) can exhibit. The two major

problems are those of global existence and of uniqueness. The
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former problem arises primarily in the superlinear case,

the latter primarily in the sublinear case. In fact, as

we shall prove in the appendix, in the sublinear case,

under assumption (5) or under the weaker assumption (10),

all solutions of (1) will have an unbounded right maximal

interval of existence. This is probably not true if we

assume only (7) and is certainly false in the superlinear

case, as is well known.

Non-uniqueness can arise due to the fact that we have

not assumed a Lipschitz condition on F. For the super-

linear case this difficulty could easily be eliminated

by imposing a locally uniform Lipschitz condition in t,

however in the sublinear case, in order to avoid ruling

out the equation (2) (with 0 < y < 1) the most that we

can assume is that F(t,x) satisfies a local Lipschitz

condition in t for all x but only for t > 0. In the

presence of this latter assumption we will still be con-

fronted with the possibility of non-uniqueness of solutions

of the initial value problem (3) for (1) when a = 0. A

more detailed analysis of these problems will be given in

the appendix.

An important technique in the analysis to follow is

the rather simple one of comparing equation (1), "along

a solution", with a non-oscillatory linear equation
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(11) z" + p(x)z = 0,

or with an oscillatory linear equation

(12) u" + r(x)u = 0,

where p(x) and r(x) are positive and continuous on

(OjOD ) . The following results are obtained as elementary

consequences of the Sturm comparison theorem. We assume

below that equation (12) is oscillatory and that equa-

tion (11) is non-oscillatory.

Lemma 1. Let y (x) be. .a non- oscillatory solution

of (1). Then

lim inf (r(x)) 1 F(y2(x),x)

and in fact, there exists an infinite sequence {£^} with
_ _ _ _ _ • — — — — — — — — — — ' — — — ' ' ' n '

£ -* oo cis n -* OD such that for all n = 1,2, ...

Lemma 2. Let y (x) be ja solution of (1) . J[f for

some x^ > 0 ,

2
F(y (x) ,x) <; p(x) ,

then y(x) is non-oscillatory.
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Lemma 3. Let y(x) be a solution of (1). If for some

0 ,

F(y2(x),x) £ p(x) , xQ £ x

then y(x) is oscillatory.

In lemmas 2 and 3 Q = Q(y) denotes the right end-

point of the right maximal interval of existence of the

solution y(x) of (1) .

Even more basic to this work than the comparison tech-

nique described above is the use of certain Lyapunov type

energy functions which are defined for solutions of (1) in

terms of certain sufficiently smooth auxiliary functions co

and 0. Let y(x) be a solution of (1), we define

2L (x) = £ (x,y(x)) by
X0 X0

(13) £ (x) = co2(i/)y! - 4>!y)2(x) - J (0y« - 0'y) 2 (a?) ! dx
0 x0

+ w W'Y (x) + co2 lj)2 G(y2,x) .

For y as above, and for a fixed choice of x , oo and ij) ,

we will refer to £ (x) as "the energy function for y".
X0

We remark that the "natural11 energy function for a solution

of (1) is obtained by taking co(x) = $(x) s 1. The intro-

duction of the auxiliary functions co and 0 serves in



[11]

place of a change of dependent and independent variable in

equation (1).

Lemma 4. Let co and 0 be positive on (O,GD) with

2 3
0£C (0, Q D ) , and $GC (O,OD) and let y be a solution of (1)

If (i) co (x) 0 (x)G(a^) (x),x) is a non-decreasing function

of x for every a > 0, then ,

(14) X (x ) - E (x ) ̂  4
X0 z ^ 0 X xi

x2 2
 x
x •

2 2 2
If (ii) 60 (x)$ (x)G(a$ (x),x) is a non-increasing function

of x for every a > 0, then,

X2

o o xi

k l •

Proof, We assume first that F is of class C . Let y
2

be any C function, (not necessarily a solution of (1)), then

if E (x) is defined by (13), £» (x) can be computed as
X0 X00

follows,

f | 0 a =
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where

Q(y2x) =

Using (8) and rearranging terms this reduces to

(17) £' (x) =
0

" + yF(y ,

Q(y2,x)

2 * J, 2 %tti

2
Suppose now that condition (i) holds, then Q(y ,x) >̂ 0,

and thus an integration of (17) yields

(18) £ (x~) - £ i
XO ^ XO

x.
yF(y2,x))dx

x

This relation obviously is still valid when F is not C

as can be seen by approximating F (with oo(x) , */)(x) and

y(x) fitted) by smooth functions. Upon taking y to be a

solution of (1) the first assertion of the Lemma follows.

The second assertion is proved similarly; note that condition
2(ii) implies Q (y (x),x) <̂  0 .
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3. An oscillation criterion for the sublinear case*

We assume here that F in (1) satisfies (7). We

assume moreover, as in the previous section, that p(x)

is positive and continuous on (O,OD), and that (11) is

non-oscillatory.

Theorem 1. Assume that: there exists a, A > 0 such

that

(19) z" + (1 + A)p(x)z = 0 ,

2

is oscillatory; there exist positive functions OOEC (0, OD ) ,

0€ C (O,QD), with $ a solution of (11) and such that for

x > O,

(20) cof 1 0 ,

(21) C02(^)2)Mf +

(22) -co2fV f = pco2 ^4 2 c ! >

there exist MQ, x Q > O such that

(23) F(t,x) > (1 + V)p(x), x > x^, t < M2l

where A1 J> max(A,K~ -1), (K is the constant in (7)); the
2,2 2 2

function to if) G(a 0 ,x) i^ non-increasincr in x for every
a > 0.

UBRARY
CARNEfilE-MELLON UNIVERSE
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Then (1) has oscillatory solutions.

Proof, Notice first that Lemma 4 and the hypo-

thesis above imply that £ (x) is a non-increasing
x0

function of x, for any solution y of (1). Let x > 0

and choose a solution y of (1) with Y(*n) = 0,

(yf (x
0))

2 > c ^ t K d + V)-l)/to2(x0)i/)
2(x0). such a solu-

tion of (1) must satisfy

(24) y(x) ^M Q 0 ( x ) , for x 2 x Q •

To see this; suppose there exists x, .> x with

y(x.,) = Mr.\h{x1)!f then, because of (13) and (21),
JL O J.

X ( x T ) ^ co200 f fy2 + U)2 i /)2G(y2 ,x) • U s i n g (7) a n d t h e f a c t
X0 X

that ^ satisfies (11),

0>Vy2(-p + KF(y2,x))

KF(M2,/)2(x1),x))

- 1).



[15]

However this implies

(x1> 2 co
2(x0)^)

2(x0)(yV(x0))
2 = L x (xQ) ,

which is a contradiction, thus y satisfies (24). Now

(24), (23) and Lemma 3 together imply that y is an

oscillatory solution.
I

If one chooses co(x) s 1 , i/)(x) = x2 and p(x) = l/(4x ),

then (20), (21) and (22) are satisfied and (19) is oscilla-

tory for any A > 0. More generally, we can take

(25) co(x) = (log

(26) 0(x) = x*(log x ) ~ 5

(27) p(x) = (l/4x2)(l - 46(1+ 6) (log x)"2)

If p is given by (27), then (19) will be oscillatory for

every A > 0, and (20) will hold provided fx <̂  0. For the

above choice of to, 0 and p,

pco204 = "j(log x ) 2 ^ ^ 45(1 - 46(1 + 6) (log x)""2),

so that (22) will hold, at least for large x, provided
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Finally a computation yields

" 2 ( l o g x ) 2 ^ " 2 6 ~ 1(-| (46- ix) -26(1 + 6) (2 (26 + 1)-M) (logx)"
2) ,

so that (21) will hold provided 46 < /i . Thus if

(28)

and co and 0 are given by (25) and (26) respectively,

then (20), (21) and (22) will be satisfied. We thus have

the following corollary to Theorem 1.

Corollary 1. Let /i, 6 be real numbers satisfying (28)

Assume that there exist Mn , x > 0 such that

(29) F(t,x) 2 (l + ?0/4x2 , x > x. , t < M^x(logx)

*- . o -*• o

where X > K - 1 , and that the function

x(log x) W~ G{a x(log x)"" ,x) is non-increasing in x

for every a > 0. Then (1) has oscillatory solutions.

Under the hypothesis of Theorem 1, equation (1) may or

may not also have non-oscillatory solutions. If (1) is

linear, for example, then there are no non-trivial non-

oscillatory solutions. The following result gives a condition
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not necessarily inconsistent with the hypothesis of Theorem 1

under which (1) will possess non-trivial non-oscillatory

solutions.

Theorem 2. Let 0 be positive on (O,OD) and satisfy

(11) and suppose that there exist M^x^ > 0 such that

(30) F(t,x) 1 p(x), x > K± , t

Then (1) has non-trivial non-oscillatory solutions.

Proof, Choose y(xx) 2 M10(x1)J, (y/0)
 ! (x^ > 0. Observe

that

= 0y(p - F) ̂  0 ,

and thus (y/0) ' (x) ̂  (y/0) ' (xx) > 0, x ^ XJL . Such a

solution then satisfies y(x) 2 M^0(x), for x ^ x , and

consequently, by (30) and Lemma 2, y(x) is non-oscillatory.

Remark 1. The hypothesis of Theorem 2 is sufficient to

guarantee that all solutions of (1) have an unbounded right

maximal interval of existence. (See appendix).

Applying Corollary 1 and Theorem 2 to equation (2) we

obtain the following result.

Corollary 2. Let 0 < y < 1, and let q(x)x(y + 3 )/ 2(log x)
2i§. <L non- increasing function of x with

lim
X-* CD
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for some ]8 <; 0. Then (2) has oscillatory solutions as veil

as non-trivial non-oscillatory solutions.

Proof. Equation (2) is a special case of (1) with

(32) P(t,x) =

and

(33) G(t,x) =

The inequality (7) thus holds, in this case, with K = 1.

Now let n = 26 = 20/(1- y ) . Then y and 6 satisfy (28)

and for G(t,x) given by (33),

x(log x ) 2 ( ^ ~ 6)G(0Dc(lOg x)~
25,x)

= a(r + D / 2 ( 2 / ( 1 + y ) ) q ( x ) x(y +3)/2 ( l o g x )0 m

Moreover, for F(t,x) defined by (32) if t ̂  M2 x(log x ) " 2 6 ,

then

F(t,x) 2 M^" 1 x ( y ~ 1)/2(log

Thus if we take MQ < (4k)1//(1 Y ) , then (29) will hold for

some 7\ > 0. The existence of oscillatory solutions of (2)

follows from Corollary 1.
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To prove the existence of non-oscillatory solutions of (2)

choose, by (31), an xx > 0 such that

q(x)x ( y + 3 ) / 2(log x)£ < 2k, for x 2 ^ .

If x 2 x-, a n d t j> M_ x( log then

F(t,x) = q(x)t«y- 1 ) / 2 1 M*" X x < y - 1 ) / 2 (log

Thus if we choose M, > (8k) ' ' ~ , then F will satisfy

(30), with ij) given by (26), and the existence of non-oscilla-

tory solutions of (2) follows from Theorem 2.

For j3 = 0 this result was proved by Belohorec [2] .
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4. A non-oscillation criterion in the sublinear case.

Like the theorems in section 3, this result is also motivated

by a theorem of Belohorec [2]. The extension in this case

seems somewhat deeper than that of Theorems 1 and 2.

Theorem 3. Let F(t,x) satisfy (5), assume that

(34) Y^fy 2 , x) £ y2F (y
2 ,• x) , for Y2 1

In addition to the hypothesis of Theorem 23 assume that

0eC (O,OD) satisfies

(35) o)(x) = - ~ > OD , as x - GD ,
J V (x)

and

(36) u>2(jf)2)IM + (co2)'#« 2 0 .

2 2 2 2
Moreover, assume that for every a > 0, co 0 G(a )̂ ,x) ĵ s

non-deereasing function of x, and that

(37) lim co2^2G(a202,x) = k(a) < CD .
X-* OD

Then equation (1) is non-oscillatory on [xn ̂CJD ) •

Proof. We observe first that if y is a solution of (1)

then L (x)3 defined by (13), is a non-decreasing function
x0
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4. A non-oscillation criterion in the sublinear case*

Like the theorems in section 3, this result is also motivated

by a theorem of Belohorec [2]. The extension in this case

seems somewhat deeper than that of Theorems 1 and 2.

Theorem 3. Let F(tJ,x) satisfy (5), assume that

(34) YxF(y^ , x) £ Y2F(Y2 ,• x) , for Y2 1

In addition to the hypothesis of Theorem 2, assume that

,x

(O,OD ) satisfies

r^ dx
(35) co(x) = J —2"- > ^ 9 as x -• CD ,

and

(36) co2(02)m + (co2)f#" 2 0 .

2 2 2 2
Moreover, assume that for every a > 0, co 0 G(a 0 ,x) Ĵ s .a

non-decreasing function of x, and that

(37) lim co2^2G(a202,x) = k(a) < CD .
X "* QD

Then equation (1) is non-oscillatory on [x,,GD).

Proof, We observe first that if y is a solution of (1)

then L (x), defined by (13), is a non-decreasing function
X0
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of x. This follows from the assumption concerning G, (36)

and inequality (14) of Lemma 4.

We point out that, in view of the above observation,

any possibility of pathological behavior of solutions of (1)

is completely ruled out under the hypothesis of Theorem 3.

Regarding the question of global existence, see Remark 1

following the proof of Theorem 2. In fact, because of (30),

the zeros of a solution y of (1) can have a cluster point

at x = a < OD only if,

lim sup |yf (x)| = 0 ,
x-* a

but in view of the non-decreasing character of E, and

because a is a right cluster point of zeros of y, it is

clear from (13) that this is impossible.

We shall now assume that there exists an oscillatory

solution y(x) of (1) and show that this assumption leads

to a contradiction. If XT*M-I a r e a s in Theorem 2, and y

is an oscillatory solution of (1), then there must exist

an x2 >̂ x- such that

(38) |y(x) | 1 M10(x) , x 2 x2 .

For otherwise, since y is oscillatory, there would exist

X3 >. xi with
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(39) |Y(X)I = M1 0(x), |(y/0)iI > 0, at x = x3-

As the proof of Theorem 2 shows, a solution of (1) satisfying

(39) could not change sign for x ^ X j , and this contradicts

the assumption that y is oscillatory.

We put

(40) 17 = co(0y' - 0!y) — ̂ 0 (y/$)1 *

2 2 2 2 2
and observe that since co 0i/)ffy = -pco 0 y ^ ,0 , then in view
of (13) and the non-decreasing character of X,

T?2(x) 2 £„ '
0

for any x Q > 0. Since F is positive, G is non-decreasing

in its first argument so by (38),

XL (x) - co202G(M202,x), x
x0

and finally, using (37) and the non-decreasing character of

2 ,2^ ,,,2 ,2 .
CO 0 G (M̂ j/) , x) ,

(41) rj2(x) > T (x) - k, x > x.,
X0 Z

2
where here and below, k = k(M 1). For the oscillatory solution y3
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it follows from Rolle's "Theorem and (40) that there exist

arbitrarily large values of x for which 77 (x) = 0 . Thus

from (41) and the non-decreasing character of L there

follows, for x > 0,

(42) 2^ (xQ) £ k , x 2. x 2 -

Since ZL (x ) = r\2 (x ) , £ (x) ^ 0 for x 2 x , thus,
TCQ o u xQ u

2 2
as co il)d)My ^ O , we have from (13),

J
x0

for x ̂  x . Using (37) and (38) as before we obtain

(43) J (0y« - j/)Iy)2(a)2)'dx £ T?2 (x) + k,
x

x
x0

and finally, since co' > 0, and since 77 vanishes for

certain arbitrarily large values of x,

(44) J (0y' - j/)'y)2(w2)'dx ^ k .
X0

We wish to show next that 77 is bounded. From (13) and (40),
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using (42) and (43),

2 2 2 2 2 2
r\ (x) £ 2k - co 00lfy - 60 0 G(y , x ) , x 2 x

2 •

Since (5) implies (7) with K = 1, we have,

T?2(X) l 2k - co20tf>"y2 - a>Vy 2 F(y 2 ,x ) , x

2k - co202y2(F(y2,x)-p(x)), x >

At a zero of ?7! we have,

0 = n' (x) = -coy 0(F(y2,x)-p(x)) +

so a t such a value x

rj2 ^ 2k - 0 y cof

Now using (35) and (38), we find that for x J> x^ , rj1 (x) = 0

implies,

r?2(x) ̂  2k + M1|rj(x) | ,

and this implies that the extremal values of rj are uniformly

bounded, hence rj(x) is bounded as x -* OD , say
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(45) |TJ(X) I £ B.

Now for y(x) > 0 we have

TJ' (x) = to0y(p(x)-F(y2,x)) + (wVto)T?

,x) + (co'/co) 77 .

I f x 2 x 2 , then using (35), (38) and (34) ,

2 2 3 2
u>$yF(y ,x) = (UJ'/OI)) w # yF(y ,x) ,

from which there follows, with the use of (7),

w^)yF(y2,x)

Thus for y(x) > 0, x 2 xo ̂  ^Y u s e o f t^ie al>ove and (45),

(46) T)' (X) 2 - (kKM^x + B) (CO!/CO) ,

2 -B1(03'/CO) .

Now take x to be a zero of y with y'(x ) > 0, and let

x be the first zero of TJ to the right of x , so that y(x),
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rj(x) ^ 0 on [x ,x ] . Since (46) holds on [x ,x ] ,

0 = r
n 1 J

x
n

x
n

and thus we can choose £ : x < £ < x . such that^
•̂n n ^n n

P n 1 -
J (co!/co)dx = •jB1xn

But then for xn ̂  x ̂  |

r?(x) 2 ̂ (x
n)~

Bi J n
x
n

Consequently,

J n (O3f/60)dx

n

If x is the first zero of y then using (13), (40) and the

non-decreasing character of £ ,

x
nJ 7?

x 0

1 V
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Thus

(47) J T?2(coVo3)dx2 B " 1 ^ r?(x0)) 3

xn

Since x was an arbitrary zero of y, (44) and (47)

contradict the assumption that y is an oscillatory solu-

tion of (1). This completes the proof of Theorem 3.

Remark 2. Condition (5), or what is its consequence,

(7) with K = 1 is used only in the proof that r) is

bounded. If we assume that | co 0 0" | is bounded for

large x, then in the hypothesis of Theorem 3, (5) can

be weakened to (7) with 0 < K.

One choice for ij) in Theorem 3 is

(48) </)(x) = x ( 1 " e)/2 , 0 < € < 1 .

It is clear that co can be allowed to differ from an

indefinite integral of i|) by a positive constant factor,

accordingly we take

(49) co(x) = x€

The inequality (36) is easily verified for this choice of 0

2 3 1 2
and co ; moreover, co ij) $ft = - •£ (1 - e ) , so that in view of

the remark following the proof of Theorem 3, for this choice



[28]

of ij) , (5) in the hypothesis of that theorem can be replaced

by (7) with 0 < K . The coefficient p in (11) correspond-

ing to </>(x) = x ( 1~ € ) / 2 is (1- €2)/4x2.

A second choice for to,*/) and p is (25), (26), (27)

with

(50) 6^7' ji = 26 + 1.

From (27!) and (50) one can readily verify (36), and, except

for a positive constant factor, to is an indefinite integral

of 0 . We have thus the following two corollaries to

Theorem 3.

Corollary 3. Let F(t,x) satisfy (7) and (34). Let

1 > e > 0, and assume that for every a > 0, x GG(ox " G,x)

is non-decreasing with <a finite upper bound, and that there

exist x- ,JML > 0 such that
— — • x i — _ _

F(t,x) <; (l-€2)/4x2, for

Then equation (1) is non-oscillatory on ( X ^ O D ) .

Corollary 4. Let F(t,x) satisfy (5) and (34). Let 6>

and suppose that for every & > 0, x(log x) + 2G(fyx(log x ) ^ 2 6

is non-decreasing with a. finite upper bound. Moreover, assume

that there exist xn ,M, > 0 such that



[29]

F(t,x) 1 (1- 46(1 + 6) (log x)~2)/4x2, t ̂  M2x(log x ) ~ 2 6

Then equation (1) JLS, non- oscillatory on (x- , GO ) .

Specializing Corollaries 3 and 4 to equation (2) we

obtain the following results.

Corollary 5. (Belohorec [2]) Let 0 < y < 1, q(x) 2 °>

and assume that for some j3, 0 < j8 < (1- 6)/2, x^3 +y)//2 + ^q(x)

is non-decreasing and bounded above. Then (2) JLS non-

oscillatory.

Corollary 6, Let 0 < y < 1, q(x) ^ 0^ and assume that

5 - V 13 + y) /2 8for some f}3 j3 ̂  — j ^ * , q(x)xv f'' (log x ) H Jig non-decreasing

and bounded above. Then (2) is non-oscillatory.
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5. An oscillation criterion for the superlinear

equation. We assume in this section that F satisfies (6)

for some K ̂  1, and we assume as before that (11), with p

positive and continuous on (O,OD), is non-oscillatory, and

that there exists an e > 0 such that

(51) y" + (1 + €)p(x)y = 0,

is oscillatory. Moreover, we assume that 0eC

0 > 0, is a solution of (11) and that

(52) (02)"» ^ 0 ,

(53)
J

= CD ,

(54) -0ff0 = p 0 < C^ < CD .
O

Finally we assume that for every a > 0, 02G(a202(x),x) is

a non-decreasing function of x, and that there exist

M ,xQ > 0 and e' > € such that

(55) F(t,x) ^ (1 + e')p(x), x ̂  xQ ,
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The proof of the superJ.inear oscillation theorem will

be based on the following sequence of lemmas. It will be

assumed throughout this section that the conditions stated

in the preceding paragraph are fulfilled. We first reform-

ulate Lemma 2 for r(x) = (1 + €)p(x).

Lemma 2! • JEf y(x) JLS a. non- oscillatory solution of

(1) then,

(56) lim inf (p(x) T 1 F (y2 (x) ,x) £ 1 + e
X "• 0D

Lemma 5. JLf y(x) jLs j. non-oscillatory solution of

(1) and (y/0)! .is eventually of one sign then,

(57) lim (y! 0 - ^ y) = 0 .

Proof. First we shall show that

(58) \r < OD

If y is eventually positive and (y/0)! is eventually

negative this is clear. If y and (y/0)* are both even-

tually positive,, then because of (55) and (56), we must have

Y <L MQ0(x) for all large x and thus (58) follows in this

case also.
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Since we can assume then in either case that

0 < y(x) £ M

for all large x, we have,

so from (54),

(59)

for all large x. Consider now the case where (y/0)f is

eventually positive. We shall suppose that

(60) 0 < Q £ lim sup (y»0 - y^')(x),
x -> <a>

and show that this leads to a contradiction. We first choose

A so that

(61) J |(y/0)!|dx < Q2/32CQMO .

Because of (60) and (53) we can choose £ ^ t So that

A £ |0 1 fix, (Y
!0 - ŷ )j) (4^ 2 -| Q , and C0MQJ

 1 0 " 2
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Then from (59)

r * 1 - 2
C0M0 I * ( x ) d x ,

,1
4

f o r 4 0 <L x <L £] • B u t t h i s

= Q2/16CQMO ,

which, since ^ > A, contradicts (61). The case where y

and (y/if)) ! eventually have opposite sign is handled similarly.

We now take to = 1 in (13), then from (52) and the

2 2 2
non-decreasing character of $ G(QL ij) ,x), it follows that E

is a non-decreasing function of x.

Lemma 6 . Let y t>e ji non-oscillatory solution of (1) y

then there exists a sequence £ such that lim £ = GO ,
n -• CD

n = 1,2,...,

and

(63)
r -i

lim L(t ) 1 C (K(l + e)-l) lim sup (y/0) (* )
n - » O D n - » Q D



[34]

Proof. Suppose that the hypothesis of Lemma 5 is satis-

fied, so that (57) holds. Because of Lemma 21 it is possible

to choose [$ } so that (62) is satisfied. It follows then

from (13) and (57) that

(64) l im E($ ) 1 l im sup { ( # y ) Un)+4> ($n)G(y ($ ) , $ )
n-» CD n -• OD

Using (6) f o l l o w e d by (62) and ( 5 4 ) , we o b t a i n

co[K(i

In view of (64), this last inequality implies (63).

If the hypothesis of lerama 5 does not hold, i.e. if

(y/*/)) T changes sign infinitely often then we choose {| }

so that | -* OD , and, for n = 1,2,...,

(65) (y'0 - ,0'y) (^) = 0 ,

and

(66)
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But

(F( Y
2, x)- p) ,

so that for y > 0, (66) implies (62) with e = 0. We

assume,, as we can without loss of generality, that y(x) > 0

for all large x, then (65) implies (64), and we obtain (63)

from (64) as before.

Theorem 4. Under the conditions imposed in the first

paragraph of this section, equation (1) has oscillatory

solutions.

Proof. In view of (55) and (62),

lim sup [(y/0) (§ )1 £. M
n -> OD J
n -> OD

.

Thus, since E is non-decreasing, it follows from Lemma 6

that for any non-oscillatory solution y of (1), E , defined

by (13), satisfies

(67) lim S(x) M (K(l + €) - 1 ) .

Again because of the monotonicity of E, if y is a solution

of (1) with y(xQ) = 0, and y! (xQ) satisfying (r7(xQ))
2 =

Q)y
! (xQ))

2 > CQM
2 (K(l + €) - 1 ) , where x Q is sufficiently
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large, then (67) cannot hold, and y must therefore be

oscillatory.

As a corollary of the proof of Theorem 4 we have the

following result.

Corollary 7. .If (6) holds with K = 1, jLn particular

if (4) holds, and if (51) _is oscillatory for every e > 0,

then under the conditions of Theorem 4 every solution of

(1) with at least one zero in (0,OD) is oscillatory.

Proof. Under the above conditions e can be taken

arbitrarily in (62) and hence in (67) . TOius if (6) holds

with K = 1, (67) shows that, since £ is non-decreasing,

E(x) <̂  0 for a non-oscillatory solution of (1). On the

other hand if y is a non-trivial solution of (1) and

y(xQ) = 0, then £(x) ;> E(xQ) > 0 for x > xQ , thus y

must be oscillatory.

Corollary 8, JEf 02 (x)G(a2^2 (x) ,x) -+ OP . as x -» gp

for every & > 0, then under the conditions of Theorem 4

every solution of (1) with at least one zero in (O,OD)

is oscillatory.

Proof. Because of (55), it is implied by (62) that

<68>

b u t b y ( 6 ) , (54) and ( 6 2 ) , when (68) h o l d s ,
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(1 + e)KCQ .

2
We now claim that (y(£ )/$(£ )) -* 0* Suppose not, then

2 2
there exists a subsequence {£ } such that y (£ )/0 (£ )

2
ft > 0, for some «. Observe that

which is bounded, contradicting the given hypothesis

2 2 2
that ^ (x)G(a tj) (x),x) -* OD as x -• OD for every oe > 0.

Thus for a non-oscillatory solution of (1), (63) implies

D(x) <£ 0 and the result then follows as before.

If we take

0(x) = x2 ,

2
then 0 satisfies (11) with p(x) = l/4x , i.e.,

y"
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Moreover, one readily sees that (52), (53) and (54) are

satisfied. Thus Theorem 4 and Corollaries 7 and 8 imply

the following result.

Corollary 9. Let F satisfy (6). Suppose that there

exist constants X-,M, c > 0 such that

x2F(t,x) x Q , t ̂  M2x ,

and suppose that for every ft > 0, xG(ox*x) JLS non-decreasing

in x. Then (1) has oscillatory solutions. If (6) holds

with K = 1/ or if for every a > 0,

lim xG(ax ,x) = OD
x -• OD

then every solution of (1) with one zero in (O,ao ) is

oscillatory.

The first assertion, that is, the existence of oscilla-

tory solutions of (1) under the hypothesis of Corollary 9,

was given in [3: Theorem 1]. An examination of the deriva-

tion of inequality (63) of Lemma 6 shows that in Theorem 4,

the hypothesis (6) can be weakened to

G(t,x)
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With a similar modification of the hypothesis, Corollary 9

in fact contains Theorem 1 of [3I.

If we specialize Corollary 9 to equation (2) we obtain

the following result, which is a refinement of a Theorem

of Jasny and Kurzweil,

Corollary 10. Let y > 1, q(x) j> 0, and assume that

(V+ 3)/2x w " p(x) is a non-decreasing function of x, then

every non-trivial solution of (2) which Vanishes at least

once in (0,a>) is oscillatory.



[41]

which reduces to,

xq(x)dx < OD ,

is necessary for the existence of any non-oscillatory

solutions. Thus the class of equations of the form (2)

with V> 1 has the property (P) : the existence of

any non-oscillatory solutions implies the existence of

bounded ones. We make note here of some other classes

of equations which also have the property (P). Nehari,

[11], [12J, has shown that equations of the form (1) with

F subject to the non-linearity condition (N): there

exists an e > 0 such that for each x > 0, 0 < t~6F(t,,x)

t^ F(t2,x) whenever 0 < t, t^ < OD 5 share many of the

distinctive properties of (2), y > 1. We shall show that

this class of equations has also the property (P) . Indeed

in the presence of the condition (N), (69) is necessary for

the existence of non-oscillatory solutions of (1). This is

in fact contained in [15, Theorem 4], nevertheless we give a

proof of this special case here.

Proposition (*). Let F satisfy condition (N), then

£ necessary condition for (1) JJO possess non-trivial non-

oscillatory solutions is (69).
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Proof, Let y be a non-oscillatory solution of (1)

and suppose that y(x) > 0 for x > x . Since y is

non-oscillatory, lim y!(x) = 0 and thus,
x -• OD

y' (x) = J y(t)F(y2(t),t)dt ,

so that, as y is non-decreasing as well as positive for

X 0 '

(Y(x))"1-2Gy' (x) 2, f (Y(t))"2€F(y2(t),t)dt

0))"
2€F(y2(x ),t)dt

x

2
Denote y (x ) = c and integrate the above inequality to

give
X-

(2€)"1{(y(x()))"
2€ - (y(x1))~

2€} ̂  J J c"€F(c,t)dt dx
x

1 1
J J c~eF(c,t)dt dx
x Q x

;x pt
J c~eF(c;,t)dx dt

xo xo
xl

= c"e J (t- x )F(c,t)dt ,
X0
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which shows, upon letting x, ^ GD , that F must satisfy

(69). Moreover, if y(x) is unbounded, then the integral

in (69) must be finite for every c > 0.

Since in the presence of (N), condition (69) is suffi-

cient for the existence of bounded non-oscillatory solutions

of (1), Proposition (*) implies that the class of equations

of the form (1) with F satisfying the condition (N)

has the property (P). If € in (N) is allowed to equal

zero this is not true, as is shown by the example of the

Euler equation

y" + ^-5- y = 0 .

A larger class with the property (P) is obtained by

replacing the condition (N) by the following condition

(N1) F(t,x) is monotone in t for each fixed x > 0 and

there exist p > 1 , T > 0 such that for all x > 0 ,

(log t±)~
p F(t1,x) £ (log t 2 r

p F(t2,x) whenever T < t±

An analogue of (*) for this case can be proved in exactly

the same way as (^). If p is allowed to equal 1 in

(N!) then the resulting class again fails to have the

property (P). This is shown by the following example:

n + 7 loq(y2+l)

4xz log(x + 1
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1
"2

which has the non-oscillatory solution x , while the

coefficient F(t,x) = loq(t + 1) fails to satisfy (69).

4x log(x + 1)

We remark that Theorem 4 of [15] enables one to determine

an even larger class of equations which has the property
(P).

We now wish to impose conditions which imply the ex-

istence oi non-oscillatory solutions of (1) which are

bracketed between two preassigned functions. Accordingly

we assume the existence of functions 0(x), cp..(x), and

<p3 (x) which are positive and continuous on (0 , a> ) and

such that

(70) G(t,x) ^ p(x)t , t 2 <P?(x) ,

and

(71) p(x) <p3 (x) < - a0 (x) , - 0 < x < OD ,

where a < 0 , and look for nonoscillatory solutions of

(1) for which the energy function S(x)3 as defined by (13),

satisfies

(72) E(x) £ a < 0 ,
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with U)(x) s 1 . In fact, we establish in the following

result the existence of nonoscillatory solutions which are

bracketed between the functions <pn and <pQ .

I l l

and let 0 G(a ij) , x) be^ â  non-decreasing function of x

for every a > 0 . Assume also that there exist positive

continuous functions <p. , <p9 and <p« on (0, GD ) satis

fying (70), (71) and

(73) </)2(x) {G(<P2(X),X) - P(x)<p2 (x) } < a

Then (1) has a non-trivial non-oscillatory solution y such

that £ , defined by (13) with oo(x) = l satisfies (72) for

0 < x < OD , and that

(74) <p3(x) < y(x) < cp^x) .

It will be convenient first to prove the following.

Lemma 7. Let 0 and G satisfy the conditions of_

Theorem 5. l£ y i^ â  positive local solution of (1)

defined near x , and if the energy function for y ,

to = 1 , satisfies

0 ,
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then y s or any left continuation of y can be continued

to 0 , and will be positive there.

Proof. As shown in section 5, the conditions on $

and G imply that £ is non-decreasing, thus it is nega-

tive to the left of x Q , on the interval of definition

of y • The same is clearly true for the energy function

for any left continuation of y. Since £ must be posi-

tive at a zero of y , it follows that y , or any left

continuation of y is positive to the left of x .

Therefore y or any left continuation of y can be con-

tinued to 0.

Proof of Theorem 5. For n = 1, 2, 3, ... , let y

denote a solution of (1) determined by initial conditions

yn(n) > 0 , y
!(n) which make £n(x) = S(x,yn(x)) £ a at

x = n. There do exist such initial conditions because of

(73). Because of Lemma 79 y can be assumed to be defined

on (0,n] and will be positive there; because it is non-

decreasing £ = £ will satisfy (72) for 0 < x < n . By

virtue of (70), (71) and (72), y = yn must satisfy (74)

for 0 < x < n . On every compact subinterval of (O,OD),

{y (t)} is a bounded sequence in view of (74). By (13) and

(72) with o)s 1, Y = Yn y and £ = £ , we conclude that

(y^(t)} is also uniformly bounded on every compact subinter-

val. It is thus possible to choose a subsequence {y } which
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is convergent on compact subintervals of (0, CJD ) to a

solution y of (1) and such that {y! } converges uni-

formly on compact intervals to yf . It follows that,

<p3(x) £ y(x) x < ao

and from (13) that (71) holds for the energy function for y,

for 0 < x < oo . In view of (70) and (71) the above esti-

mate on y can be strengthened to (74) for 0 < x < ao .

This completes the proof of Theorem 5.

Remark 3. We note that condition (71) is somewhat

trivial in that the existence of the function <p~ is

always guaranteed, e.g., we m^y take <p3 (x) = * y — ijT (x)p (x)

Corollary 11. Let

(75) |.j9| < (y- l)/2 ,

and let q(x)x1^ '' " ̂ be a non-decreasing function of x.

(76) lim q(x)x(y + 3 ) / 2 " ? < oo
x -• OD

then (2) has ji solution y(x) positive on (0, ao ) and such
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that

0< lim inf
X -* OD

- £ ) / 2 y ( x ) lim sup x~
X •* OD

- €)/2y (x) < CD ,

where € = 2/J(y - 1)""

Compare the hypothesis here with the hypothesis of the

oscillation criteria of Jasny [7] and Kurzweil [91, (or see

Corollary 10.)

Proof. Take ij) = s o that satisfies (11)

2 2
with p(x) = (1 - € )/4x • For appropriate values of a < 0,

J*l ' 1*2 ' ^3 ^ ° ' tlie c o n d i t i o n s (70), (71) and (73) will be

satisfied for

<P2(x)

Remark 4. lOie conditions (75) and (76) imply that

xq(x) <£ kxa ,

wher^ a = j 3 - ( y + l ) / 2 < - l . Thus q(x) satisfies (as it

must) the integral condition of Atkinson, [II, for the exis-

tence of non-oscillatory solutions of (2) mentioned earlier.

Example. Consider the Emden-Fowler equation,
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" \y\y(77) yM + x" \y\y sgn y = 0 , x > -O ,

with - 2 > | / > - ( l + y . ) , y > l . Then q(x) = xv will

satisfy the conditions of Corollary 11 with /3 = v + (y + 3)/2

If one takes e = 20/(y - 1) = 1 + 2 (y + 2)/(y- 1), one

finds that (77) has a solution y given by

(78) y(x) = [(1 -

Atkinson1s theorem yields the existence of bounded non-

oscillatory solutions,, the so-called Emden solutions of

(77) see [5] . An Emden solution of (77) is uniquely

determined by its value at ao s in particular, there is a

unique solution y of (77) with yQ(oD) = 1. The Emden

solution y of (77) with y(aD ) = c > 0 is given by

y(x) = a"*1" €)/2y0(ax)

where a" (1~ e)^2 = c. Finally, if -2 > v > - (y + 3)/2 ,

then any solution of (77) which is not at least to within a

factor of -1 an Emden solution or the solution given by (78),

is oscillatory; see [5]. It follows from Atkinson1s theorem

that (77) has only oscillatory solutions, excepting the

trivial one, when y ̂ > -2 , and it will follow from section 7

that (77) is non-oscillatory when y <̂  -(y+ 3)/2, These
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results are also to be found in [5].
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7. Nonoscillation Theorem for the Superlinear Equation.

We prove in this section the counterpart of Theorem 4,

namely a nonoscillation theorem for the superlinear equa-

tion. We assume in this section that F satisfies (9) and

as before that (11), with p positive and continuous on

(O,ao), is non-oscillatory.

Theorem 6 • Let <p bei â  positive solution of (11),

let tj) € C (O,OD ) and suppose that

(79) if) > 0, (rj)2)w 1 0 , 0 < x < GD ,

(80) <p(x) =o(0(x)) , as x -* oo >

(81) lim inf <p2(02)"(x) 2 C
o > 0

X -• OD

(82) lim inf -<p3<p» (x) 2 cn > 0 .
x -» CD

Suppose jjQ addjtJQn Jjjat 02G(fl^)2 , x) i s a non-increasincr

function of x for every & > 0 . Then any solution y of?

(1) satisfying

(83) J |y(<p2)"| dx < 00 ,

must be non-oscillatory.



[52]

Proof* The theorem will follow readily if we can

show that for any oscillatory solution y(x) for which

(83) holds, there must exist a constant B such that
o

(84) y2(x) £ B n <p
2(x) .

Indeed suppose that y(x) is an oscillatory solution of

(1) satisfying (84)• Then since F is positive and satis-

fies (9), we have for any ct > 0

<p2) F(BQ(p
2,x) .

Thus because of (80), there exists a positive constant

K > 0 such thato

(85) G(# tj) ,x) >̂ K j/) F (B <p , x) ,

for all sufficiently large x. Now for any solution y(x)

of (1) satisfying (84), we have, on account of (9) and (85)

F(y2(x),x) £ ^ F (B Q <p
2 (x), x) ̂  ( c ^ ) " 1 f2 (x) G(«2 iji2 (x), x)

2 2 2
By hypothesis, the function if) G(a.if) 3 x) is non- increasing,
thus we have, in view of the above inequalities,
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(86) F(y2'(x),x)

for some positive constant K- and all sufficiently

large x. From (80) and (82), we also have, for suffi-

ciently large x,

(87) ^ - ~ <pM(x)
1

Using (87) in (86), we have for some appropriate constant

K2 > 0 ,

(88) F(y'(x),x) 1 jrlVftLJ p(x, .

Since *f() = °(1) as x -> OD ^ we can pick x suffi-

ciently large so that for x ̂ > x

F(y2(x),x) ^ p(x) .

The hypothesis that equation (11) is non-oscillatory together

with Sturm's comparison theorem how implies that y(x) must

be nonoscillatory3 thus contradicting our assumption.
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It remains to show that an oscillatory solution of

(1) for which (83) holds also satisfies (84) for some

B < ao . To this end, we first prove the following.

Lemma 8. Let y be an oscillatory solution of

(1) satisfying (83) . Then there exists ja constant B

such that if y(a) = y1 (b) = 0 and y(x) =f ° for a < x < b ,

then

(89) J [y'2(x)/(<p2)Mx)] dx £ BQ .

Proof« It follows from Lemma 1 and (79) that for any

solution y(x) of '(1), £(x) = E(x,y(x)) (with oo(x) s 1)

is a non-increasing function of x, and in fact we have

from (17) that when F is of class C ,

(90) —^ S(x) £ \ (02)"' y2

Integrating (90) from a to b, we have

(91) j/)'2y2(b) + #«y2(b) + ij)2G(y2}h) - 0
2y'2(a) ̂  i T (02) '"y2 (x) dx,

2a

and by the usual argument, this inequality remains valid

even if F is not C .

On the other hand, we observe that
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b 2 2 1
(0 ) ' ff y (x) dx =s -TJ*

a

b -f> ,2,
^ ) wyy j

a "a

1 2 2 P 2
(92) = ^ (A ) M y (b) - (̂  )" yyf (x) dx

z "a

Combining (91) and (92), we obtain

J (02)« yy« (x) dx £ i/)2y!2(a) - j/)2G(y2 (b) ,b)
a

2 2

and since the monotonicity of E implies that 0 y1

decreases from one zero to another zero of y to the right,

the integral on the right is bounded independently of the

interval [a,b]9 i.e.

rb 2
(93) (A )" yy1 (x) dx £ B ,

a

where B is a constant independent of [a,b]. Next we

note that if we assume y(x) > 0 for a < x < b , then

on that interval

(<p2y« - y(<p2)' = <p2y" - y(<p2)"

= - <p y F(y ,x)-y(<p ) M

1 - y(<p2)" .
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Integrating the above estimate and using (83) we obtain

(94) (p2y< 1 y(<p2)' + C Q ,

where C is an appropriate constant again independent

of the interval [a,b]• This independence follows since

2 2
the function (<p y! - y((p ) f ) (x) must vanish at some

point of (a,b) . Next we use (94) to obtain the following

estimate

b v' 2 Pb

a (cp ) f a <p

f -2^2,, <y^2)' + c o ) d x

pb
JL-X— dx + C I —* dx

Using (81) and Schwarz* s inequality^ we obtain, provided

a is sufficiently large,

(95) f
b zl2. dx < 2__ r

b
/(2,,,

a (<p ) ' o a

2
+ c

° l w a (<p')< / \ " a <p-*(<^.)'(
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from (82), we have, for large x,

so that

[(96) (<p2)' (x) ^ c- <p(x) [ f
1 x <p3(t)

Now we use (96) to estimate the last integral in (95) as

follows

r dx < l f dx < 2__ r dx
J a <p4(<p2)' ^ c l J a . p ^ 0 0 % - C l^o J a <p3 (x) '

J x co

where

-Si
1 1 " n3

•r— = lim sup - 5 — — = lim sup -* £ <p' (a)
o x -» OD <p • f d t x -* OD - •=

J x <p3(t)

rb v 2

Denote by /j the integral * , dx . Substituting (97)
a (<p2)'

into (95), and using (93) we obtain
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(98) /i £ B 1 + B
2

where B. , B2 are constants. It then follows from (98)

that \i <^ B for some appropriate constant B

This completes the proof.

Now let a and b be as in the above lemma. For

a^-x^.b , by Schwarz*s inequality

rx / r b .2 \ l /px |2
| y ( x ) | l J | y ' ( t ) | d t 1 [ J 2 - g - d t J ( J (<P>'dt

a \ a ( < p ) t / \ a /

So, by (89),

y2(x) ^ BQ(p2(x) ,

for a <£ x £ b . Then for any oscillatory solution y(x),

it follows from the concavity of y between zeros and the

fact that <p is a solution of (11) that (84) holds for all

large x. This completes the proof of the theorem.

Remark 5. Clearly condition (4) implies (9) for the

function F. Also, by taking <p(x) = x and $(x) = (x log x)

in Theorem 6, we obtain Theorem 2 of [3] which is a generali-

zation of earlier results of Kiguradze [8] and Nehari [13].

2
Note that in this case, since (<p )fl s o , condition (83) is

trivially satisfied.
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As an example of a function F(t,x) satisfying (9)

but not (4), we may take F(t,x) « q(x) exp(£(t) - rj(t)),

where q(x) ̂  0 , §(t) is nondecreasing and rj(t) is

uniformly bounded for all t .
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Appendix: Continuation and I<QCftl fl[nj.quen^ss Q |

Solutions of Generalized Emden-Fowler Equations

We are concerned with establishing continuability and

local uniqueness of solutions of the following second order

ordinary differential equation:

(1) yff + y F(y2,x) = 0 ,

where F(t_,x) is continuous in both variables and also

non-negative. The prototype of such an equation

(2) y" + q(x) |y|y sgn y = 0 ,

where q(x) is continuous and nonnegative, has received

considerable attention in recent years. We classify

equation (1) as superlinear or sublinear according to

whether F(t,x) is monotone increasing or decreasing

in t. More precisely, we say that equation (1) is

superlinear if

(3) F(t2,x) 2 F(t1^
:

and sublinear if
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(4) F(t2,x) £ P(tx,x) ,
 fc2 ^ fcl -

When these conditions are specialized to equation (2),

we obtain y >̂ 1 for superlinearity and V <£ 1 for

sublinearity.

In case of equation (2) when y >̂ 1 , the local

uniqueness of the zero solution, i.e. that a solution y(x)

satisfying the initial conditions

(3) y(xQ) = y'(xQ) = 0

for some x must be the identically zero solution, is

well known. It is also not difficult to see that the same

remains valid for the more general equation (1) subject to

condition (3). This was observed by Nehari, [12]; for

completeness we include a slightly simplified version of

his argument here. Suppose that y(x) is a solution of

(1) satisfying (5). Choose € > 0 such that

(6) J (x + € - s) F(l,s)ds < 1 ,
xo

which is always possible since F(t,x) is continuous in

its variables. Integrating (1) from x to x , x e [x ,x + e],

we obtain

(7) y(x) = j (x - s) y(x) F(y2(x),s)ds
x o
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We may also assume that € > 0 is sufficiently small so that

sup |y(x) ) <£ c < 1 .
x < x < x + €
o — — o

Since y(x) is continuous,, there exists x e[x ,x +e]

at which |y(x,)| = c . Note that equation (1) is symmetric

with respect to y, that is if y(x) is a solution of (1),

so is - y(x). Therefore we may assume y(x ) = c . Evalu-

ating (7) at x, , we have by (6)

Xl
c = J (X;L - s) y(x) F(y

2(s),s)ds

x
2

(x - s) F(c ,x)<
xo

J (xQ + e - s) F(c , s)ds < c ,

which is a contradiction. Thus y(x) s o . A further analysis

of the above proof shows that in the superlinear case the

uniqueness of the zero solution in fact follows from the

corresponding property for the linear equation. Indeed

every solution y(x) of (1) satisfies the linear equation

y" + p(x) y = 0 ,
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2
where p(x) - P (y (x),x) is continuous, which clearly has

the required uniqueness property. The solution of an arbi-

trary initial value problem for equation (1) is of course

unique when F(t,,x) satisfies a locally uniform Lipschitz

condition in t. This is the case in particular for equa-

tion (2) when y >, 1 .

We make note next of the fact that for the sublinear

case of (1)3 any solutions defined locally can be extended

to (0,00). Proofs for the sublinear case of (2) have been

given by Heidel, [A-5], and Belohorec [2]. As in [A-5], we

may derive a general result for equation (1) from a theorem

of Wintner, see Hartman ([A-4]3 p. 29). Indeed, the equa-

tion (1) is equivalent to the vector equation

where r?(x) = (y! (x) ,y (x)) , f (x, rj) = ( -y F (y2 , x), y1 ) . If we

use the vector norm 1771 = max( | rj-̂  |, I TJ2 |) then (4) implies

that

K(x))

2
where K(x) = max ( max yF(y ,f)) . The scalar
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equation

rf « (1 + K(x)>r ,

has all of its solutions defined on ( O , O D ) , thus by the

result of Wintner just referred, any locally defined solu-

tion of the sublinear equation (1) can be extended to (O,ao )*

Of course a weaker condition than (4) will suffice

in order that all solutions of (1) be continuable. One

such useful condition is domination of F(t,x), for large t,

by a function independent of t. We formulate this more

precisely as follows. If there exists a continuous non-

negative function p(x), and if for every compact interval

[a,b] in (0,00), there exists an M > 0 such that F(t,x) <̂  p(x)

for t ̂ > M and a <C x <£ b , then any locally defined solu-

tion of (1) can be extended to (O,ao). The proof is similar

to that given in the preceding paragraph.

In view of the above remarks it is apparent that the

more subtle questions are those of continuability of solu-

tions of the superlinear equation and of the uniqueness

of the zero solution of the sublinear equation. For the

first order scalar equation, although the problem there is

not so deep, an analogous situation occurs as is illustrated

by the simple equation,

y = IYI V ,
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considered for 0 < y < 1 and 1 < y < <x> . There is, for

this first order equation, a sort of "duality" between the

non-uniqueness of the zero solution, for 0 < y < 1 , and

the failure of global existence of solutions when 1 < y < ao .

As we shall see, a more striking and more interesting duality

exists in the second order case between the two problems

mentioned at the beginning of this paragraph. (Cf. Heidel,

[A-5], concerning equation (2)).

We consider first the problem of continuability of

solutions of the superlinear equation. For the special

case of equation (2), this problem has been considered by

Hastings [A-3], Coffman and Ullrich [A-l], Heidel [A-5J and

in related papers, Jasny [7], Kiguradze [8], Moore and

Nehari [A-8], Willett and Wong [A-10]. A systematic study

does not seem to have been made concerning the continuability

problem for equation (1). Some general results concerning

equations more general than (1) may be found in Hastings [A-3],

but they seem to be not particularly useful in analyzing

equation (1). Results generalizing that of Coffman and Ullrich

[A-l] for the Emden-Fowler equation (2) are also given in

Ullrich [A-9]. Similar remarks concerning the continuability

of solutions may be found in Nehari [11], [13], Coffman and

Wong [3J.

Let 0 <£ a < b <£ ao . By a local solution of (1) in

(a,b) , we shall mean a solution of (1) defined on a non-empty
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open subinterval of (a,b). By the phrase, "all solutions

of (1) are continuable on (a,b),lf we shall mean that every

2
local solution in (a,b) of (1) has a C extension on

(a,b). If b is finite we shall say that all solutions of

(1) are continuable through b if for some a < b every
2

local solution of (1) in (a,b) has a C extension on

an open interval containing b.

The main result of [A-l] states that jj: q(x) _is posi-

tive and locally of bounded variation on (a,b) then all

solutions of (2) are continuable on (a,b). The same

argument as the one used in the proof of the result just

quoted gives the following: jj: b < OD and if q(x) is

positive on (a,b) and log q(x) has finite upper variation

on (a,b) then all solutions of (1) are continuable through

b. This last result is of interest primarily as a criterion

of continuability of solutions of (2) through an isolated

zero of q(x). Another result along this line is due to

Heidel [A-5-], and states that .if [ (b - x) a + 3 q (x) J exists

and Jjs non-positive on some left neighborhood of b, then

all solutions of (2) are continuable through b. Actually

Heidel [A-5] stated this result in a somewhat different

form, and he has explicitly assumed that q(b) = 0 there,

which is an unnecessary assumption.

Concerning equation (1), when (3) holds, Ullrich [A-9],

has given the following generalization of the continuability
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result of [A-l] for (2) : jj: there exists a. non-decreasinq

function h(x) on (a,b) such that for all t > 0,

(8) |log F(t,x2) - log F(t,x 1)| £ h(x2) - h(x1) , a < X l < x

then all solutions of (1) are continuable on (a,b). Let

rt
(9) G(t,x) = J F(s,x)ds .

o

Inspection of Ullrich1 s proof shows that (8) can be replaced

by

(10) | log G(t,x2) - log G(t,x1)| £ h(x2) - h ^ ) , a ^ x 1 < x 2 < b

which is implied by (8). We remark also that Ullrich1s

proof can be made to yield a one-sided (i.e. right) continu-

ation criteria, namely

(J.1). log 6(t,x2) - log G(t,x1) ^ h(x2) - h(X;L) , a ^ X ; L < x 2 < b

For equation (2), where G(t,x) = (y+ I ) " 1 q(x)t y + 1 , (11)

is weaker than (10) only if q(b) = 0, however, in general,

(11) is weaker than (10) even if b < OD and G(t,x) is

positive for a ^ x ^ b , t > 0 .
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In Theorem A.I below we state continuability criteria

for solutions of (1) which contain all of the results quoted

above. W& first give a necessary condition that a solu-

tion of (1) can not be continued through b in the following

lemma.

Lemma At 1. Let y(x) be a solution of (1) with F

satisfying (3) an [a,b) . Suppose that y(x) cannot be

continued through b , then y (x) has infinitely many

zeros in every left neighborhood of b and

lim sup |y(x) | = lim sup |y! (x) | = oo.
x - * b - x -> b -

Proof, We first show that if y(x) cannot be continued

through b then y(x) must have infinitely many zeros in

every left neighborhood of b. Otherwise,, there exists

€ > 0 such that y(x) is concave toward the axis for

b - € < x < b , and consequently lim y1(x) and lim y(x)
x-*b- x -*b -

exist and are finite, proving continuability.

Now suppose that lim sup| y(x) | < oo , then an inte-
x->b -

gration of the differential equation yields the existence and

finiteness of lim y(x) and of lim yT (x) , from which
x-*b - x-*b-

follows continuability. If lim sup|y* (x) | < <x> , then an
x ->b -

integration yields lim sup|y(x) | < OD , and the result
x - b -

follows as above.
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sorem A.I. Let there exist a bounded non-decreasing

function h(x) on (a,b) such that for every a > 0

(12) l o g [ ( b - , x 2 ) ] - log[ (b - x ^ 2G(a(b - X]_) 2

h(x2) - a < x, < xo < b

then every local solution in (a,b) of (1) possesses

a continuation through b.

Proof of Theorem A.I. It suffices to assume that

there exists a solution y of (1) defined on some open

interval [«,/?) , a <̂  a < j3 <£ b , and which possesses no

proper right extension and to show that this assumption

leads to a contradiction. In view of Lemma A-l it suf-

fices to show that the given solution y is bounded on

[a,£). The existence of a proper right continuation,

and thus the contradiction, follows.

Put

(13) «(x) = (y(x) + (b-x)y'(x))2 + (b - x ) 2 G(y2(x),x)
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then if G is of class C we have

*< (x) = 2(y(x) + (b-x)y' (x))tt>-x)y"

[(b- x)2G(a2(b- x)2,x)] • ^ N

fy(x) + (b- x)yJ fy»

[(b- x)2G(a2(b- x)2,x)]

2(b-x)ly(x) + (b- x)yJ Ay" +yF(y2,

a =

For G of class C , (12) implies

b- x)2G(«2(b-x)2,x)] ^ h« (x)[(b- x)G(«2(b-x)2,x)]

and thus

' (x) £ 2(b-x)(y(x) + (b- x)y« ) (y» +yF(y2, x)) + h1 (x) *(x) ,

We have therefore the differential inequality,

*• (x) £ h1 (x) $(x) , a ̂  x < /3
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integration of which yields,

(14) *(x) £ «(«) exp[h(x) - h(o)I , 0 1 x < |8 .

If G is not of class C , choose a sequence of C-

functions G (t,x) such that, as n -• OD , G (t,x) -* G(t,x)

and F ( t , x ) = -—r G ( t , x ) -• F ( t , x ) uniformly on compactn o "C n

subse t s of a < x < b , t J > 0 , and so t h a t in a d d i t i o n ,

for a l l $ > 0 , n = l , 2 , . . . ,

| ~ f ( b - x ) 2 G ( a 2 ( b - x ) 2 , x ) l ^ ĥ  (x) ( b - x)G ( a 2 ( b - x) 2 ,x) l
ox L n j n j

Taking

* n (x ) = (y(x) + ( b - x ) y ' ( x ) ) 2 + (b - x) 2 GR (y2 (x) , x)

we o b t a i n

2 ( b - x ) ( y ( x ) + ( b - x ) y ' ) ( y " + y F n ( y 2 , x ) ) + h 1 ( x ) * n ( x ) j

for a <£ x < 8 - Tiius for a r b i t r a r y j3! , & < 81 < f} ,

* n ( x ) ^ Cn + h l ( x ) * n ( x ) ^ <* 1 x

w h e r e C = s u p | 2 ( b - x ) ( y ( x ) + ( b - x ) y « ( x ) ) ( y « + y F ( y 2 , x ) )
e&<3* n
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so that lim C = 0 . Integrating the above differential
n -• ao n

inequality and letting n -• oo , then since lim *n(
x) ~ *(x)

n -• OD

« <1 x < Is 9 w e obtain 4(x) < <&(«) exp[h(x) - h(a)J, and

since /*'</? was arbitrary,, it follows that (14) holds

regardless of whether G is of class C . Since G(t^x)

is positive,, (11) and (12) imply that there exists a constant

K < CD such that

(y(x)/(b-x))' 1 K ( b - x ) 2 , at. 1 x < j3 ,

and integration of this differential inequality shows

that y(x) is bounded on {0L3 B) *

Corollary A-l. Let log [ (b - x) y + 3 q (x) ] have

finite upper variation on (a,b), then every local solu-

tion in (a^b) ^f (2) possesses a. continuation through b.

The proof of the main theorem of [A-l], concerning

continuability of solutions of (2), consists in proving

boundedness of

l(Yf (x))2 + ^ j q(x)|y(x)|y + 1 ,

for solutions of (2). From boundedness of this expression

follows boundedness of y1(x)9 hence^ in view of Lemma A.l^

continuability of y(x). An alternative approach is to



P5]

consider the function

boundedness of which directly implies boundedness of y(x),

hence, again in view of Lemma A.I, continuability. Actually

the first approach is preferable, since for right continua-

tion this approach requires only boundedness of the upper

variation of log q(x). The second approach, on the other

hand, requires for right continuation the boundedness of

the lower variation of log q(x), and thus this approach

can never be applied to prove continuation through an

isolated zero of the coefficient q(x). However, the attempt

to generalize the second approach leads to the following

theorem, which, while it gives nothing new for equation (2),

neither is it contained in Theorem A.I.

Theorem A>2, Let there exist JL bounded non-decre as ing

function h(x) _on (a,b) such that for every ot > 0

(15) log F(«,x2) - log F f a ^ ) ^ - (h(x2) - h(x]L)),

a < x 1 < x2 < b ,

then every local solution in (a,b) jDf (1) possesses ja

continuation through b.
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Proof. We sketch a proof for the C case. Let

G(t,x) be given by (9) and let r(co,x) be defined implic-

itly by,

r(G(t,x),x) = t

then,

and,

rx(co,x) = - Gx(r(to,x) ,x)/F(r(to,x) ,x>) .

If y is a local solution of (1) on (a,b) and if we put,

then

and thus, if

= (y 1) 2 + G(y2(x),x)

•' (x) = Gx(y
2(x),x) ,
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then

(16) *' (x) = (G (y2(x),x) - G (>I'(x),x))/F(*(x),x)

Since $(x) ;> G(y2(x),x) , it follows that

(17)

and using (3) and (9) we obtain from (16)

P*(x) .** (x) = " J fe log2
y2 (x)

which in view of (15) and (17) yields

(18) V (x)

Suppose now that y(x) is a local solution of (1) defined,

say, on (x ,x.) c (a,b). Then integration of (18) and

the use of (17) and the boundedness of h(x) on (a,b)

lead to the conclusion that

lim |y(x) | < CD .
x -• x, -

By Lemma A.I, this implies the desired result.
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Yet other continuation criteria can be obtained if

one is willling to impose a stronger condition than that

of local bounded variation and yet weaker than the notion

of differentiability of the coefficient q(x) in case of

equation (2). For example we can obtain continuability

results by requiring the existence of upper right deriva-

tives. The upper right derivative of a function $(x) is

defined as

D+ *(x) = lim sup ~ (#(x+h) - $(x) ) .
n

h - 0

A result in this direction is the following.

Theorem A.3. Suppose that the function G(t,x) defined

in (8) jLs upper right differentiable with respect to x for

each t and satisfies

(19) D+ G(t,x) 1 a)(x,G(t,x)) ,

on [0,X], where co(x,r) Jjs _a continuous function of both

variables x and r and non-decreasing in r for each x.

jTf in addition every solution of the first order equation

(20) r1 (x) = co(x,r(x))
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can be continued up to X , then every solution of (1)

can be continued up to X .

Proof. We introduce the Lyapunov function for equa-

tion (1)

(21) *(x) = y'2(x) + G(y2(x),x) .

Since G(t,,x) is right dif ferentiable,, we differentiate

(21) and obtain

D+ «(X) = D+ G(y2(x),x)

, G(y2(x),x))

By hypothesis^ co(x̂ r) is non-decreasing in r; so we have

(22)

for all x € [0,X] . An application of a differential inequality

(see Hartman [A-4], p. 26) will now give

*(x) ^ r(x) , x € [O,XJ *

frcan which it follows that *(x) is bounded on [O,Xj and

thus y1 (x) . The result then follows from Lemma A-l.
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When restricted to equation (2) the above theorem

yields the following extension of a result in Willett and

Wong [A-10] .

Corollary A-2. Let q(x) > 0 be^ continuous and upper

right differentiable on [0^ ao ) , then every solution

of (2) can be continued from the right on [0, ao ).

Proof, Note that equation (20) in this case becomes

r' (x) = (D+ q(x))r(x)

rx +which has the solution r(x) = r(x ) exp( D q(s)ds) and
O *i IN.

O

clearly can be continued from the right on [0, OD ).

Remark A.I. We can of course use the differential

inequality technique as just given in Theorem A.3 to formu-

late a more general condition than (12) in order to improve

Theorem A.I. The details are essentially the same and

will be left to the interested reader.

We turn our attention now to the sublinear case,,

namely equation (1), where F satisfies condition (4).

Before discussing the problem of the uniqueness of the zero

solution we prove several other results for this equation

which are also of interest. The first two of these concern

the initial value problem



[81]

(23) y(xQ) - 0 , y!(xQ) = a ,

where a 4= 0 , and thus without loss of generality we

can take a > 0 . A similar study of this problem for the

superlinear equation (1), with F satisfying (3) and

other additional hypothesis may be found in Moroney [A-7J,

and Coffman [A-2]•

Theorem A. 4. Let 0 < a < P < OD , and let A > 0.

Then there is an e > 0 3 depending only on F, ot, B and

A such that if & <̂  x <1 j3 * a > A ,, and y (x) _is a. solu-

tion of (1) satisfying (23), then y(x) > 0 for x < x < x + €.

Theorem A,5, If there exist positive constants 6-

and 62 < a , and a. non-negative function h (x) defined

and locally integrable on 0 < |x - x | < 6̂^ , satisfying

xo±6l
(24) J (x- xQ)h(x)dx < oo ,

o'
xo

and if

(25) |o^F(o^(x- X Q)
2,X) - ^ ( ^ ( x - XQ),X) I £ h(x)

for 0 <|x- x I < 6 and |w- - a| < 6O , i = 1,2, then

the initial value problem (23) for (1) has a. locally unique

solution when a =j= 0. .
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Proof of Theorems A.4 and A.5. Let y(x) be a solu-

tion of the initial value problem (23) for (1). (By remarks

above y can be assumed to be defined on (0, <x> ) .) Then

U)(x) = y(x)/(x- x ) satisfies the integral equation

(t- x ) \ 2 2

(26) to(x) = a - (1 £- 1 (t-x )o>(t)F((t-x ) </(t),t)dt
,.x , (t- x ) \

- (1 £- 1
Jx \ (x- x j /

Let e be chosen so that

x + €r
xo

\

then using (4) and a standard argument one can easily show

that if a > A , then any solution co of (26) must satisfy

co(x) > 3a/4 , for x < x < x + e . The assertion of

Theorem A.4, clearly follows.

To prove Theorem A.5 we use the fact that local unique-

ness for solutions of the initial value problem is equivalent

to locai uniqueness for solutions of (26) . Accordingly^

let ox and cô  be two solutions of (26) , then from (26)

and (25) we have

x) - o^(x) I £ || (t- x )h(t) \t&(t) - c^(t) |dt| .
X

o

Using (24) and a standard argument we conclude that ox. (x) = oa>
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in some neighborhood of x . This completes the proof

of Theorem A.5.

Corollary A-3. Let y be a solution of (1) and

let x be a cluster point of zeros of y. Then

lim y!(x) = lim y(x) = 0 .
x -• x x -> x^o o

Proof* Immediate from Theorem A.4, We remark that the

above corollary also gives a simple generalization of a result

of Heidel [6] for equation (2) .

Corollary A-4. Let 0 < y < 1, then the initial

value problem (23) for (2) has ja locally unique solution

when a =f 0.

Proof. Let 0 < 62 < a 9 then for o\ 9 û> J> a - 62 >Let 0 < 62 < a 9 then for o\

(a-

and thus the equivalent of (25) is satisfied with h(x) =

v - 1k(x-x ) / q(x)^ where k is a positive constant depending

only on 62 .

We come now to the problem of uniqueness of the zero

solution for the sublinear equation (1). We make the follo-

wing simple but important observation.
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Lemma A. 2. If a solution y (x) of: (1) has

(27) y(xQ) = y1 (xQ) = 0 ,

for some x e (0, ao ), then y has infinitely many zeros

in every neighborhood of x .

Proof. If y = 0 in a neighborhood of x there is

nothing to prove. We assume therefore that for any € > 0 ,

y(x) =f 0 on the interval X Q - e < x < x . If for some

€? , 0 < eT < e , y were of one sign, say positive, for

x - €f < x < x , then since yyft ^ 0 , we have y1 (x) ^

yt (x ) = 0 for all x e (x - €j
 9 x ). Consequently,

y(x) <^ y(x ) = 0 , which contradicts what we just assumed.

This completes the proof.

We have quoted a result to the effect that when y > 1

and the upper variation of log q(x) is finite in some

interval (a,b] then every local solution of (2) defined

in (a,b) possesses a continuation through b. The "dual11

of this result for (2) with 0 < y < 1 is the following:

if q(x) _is positive and the lower variation of log q(x)

is bounded in (a,b] , then for x e(a,bj any solution

o£ (1) satisfying (27) vanishes identically on (a,x ) .

The latter result, like the former, is obtained from a

differential inequality for the "energy function,"

^ ( Y 1 ) 2 + m^T1 q( x)|y| y + 1 • 0 n t h e other hand, if q(x) > 0
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on (a,b) , q(b) = 0, and q is decreasing for b- € < x < b ,

where € > 0, (so that the lower variation of log q is

necessarily infinite on (a,b)), then if y were a solu-

tion of (2) with 0 < y < 1, satisfying (27), with X Q = b ,

and if y did not vanish identically in (b - e , b) for

some €! > 0 , then by Lemma A.2 , y would have infinitely

many zeros in (b - e} 9Sh). However the monotone character

of q(x) would imply that the amplitude of these oscilla-

tions is increasing in (b - e , b ) , which in view of (27)

is impossible, thus y must vanish identically in (b - e , bj.

A stronger result due to Heidel [A-5], states that if

V + 3(b - x) ' q(x) is decreasing in (b - € , b) for some

e > 0, then any solution of (2) satisfying (27), with

x = b , vanishes identically in (b - e , b ) . The result

in [A-5] is stated for the C case and it is assumed

there that q(b) = 0 . We present extensions of these

results, and in fact, our results when reduced to equation

(2) improve the known results mentioned above.

Theorem A.6. Let F satisfy (4) and assume that

there exists a non-increasing function h(x) , defined, on

[a,b], such that for every a > 0 ,

(28) log G(a,x2) - log Giot,^) 2 M * 2 ) -
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for x~ > xn • Then for x €(a,b] , any solution of (1)
—•—— z X — — Q _ _ _ _ _
satisfying (27) vanishes identically in (a,x T.

1 ] ' O

The proof of this result will be omitted, since the

arguments are similar to those used previously, and which

will be used below. More specifically, one shows that the
2 2

function $(x) = (y1 ) + G(y ,x), when y is a solution

of (2) is either positive on [a,b] or vanishes identi-

cally there.

The proof of Heidel1s result just mentioned involves

the device of throwing the singular point b for (2) to

infinity by means of the change of variable

y(x) = (b- x)u(t), t = ~-x

This result can be proved also by considering the "Lyapunov

function"

(y(x) + (b- x)v' (x))2 _Ĵ _ ,y(x) ,y + 1

for (2). The proof of Theorem A.7 below depends upon finding

the appropriate generalization of the above Lyapunov function

for (1).

Theorem A.1. Assume:

(1) there exist positive constants 6.. , 62 and there exists
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a positive C function cp(t) defined for t ̂ > 0, with

<p(0) = 0, and cp1 (t) > 0 for t > 0, such that for

2
0 < b - x < 6 , and (b - x) <p(t) < 62 , the function

(29) G(t,x) = (b- x)2G((b- x)2cp(t),x)

= (b- x ) 4 J F((b- x)2<p(t),x)<p' (t)dt ,

is a convex function of t ,

there exists a. non-decreasing function h(x) , defined

2
for 0 <̂  b - x < 6n and such that for 0 < (b - x) t <̂  60

(30) log[(b- x2)
4F((b- x2)

2t,x2)] - log[(b-x1)
4F((b- x 1

h(x2) - h(x1), for

Then if y îs ja solution of (1) satisfying

(31) y(b) = yMb) = O

then y(x) = 0 for 0 < b - x < 6 .
_-_.__«__-_> • I

2
Remark. When y F (y , x) is non-decreasing in y for

y > 0, which is the case for equation (2), then the function

2
<p in the hypothesis of Theorem A. 7 can be taken to be t .
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On the other hand, when yP(y , x) = q(x)f(y) and yf(y) > 0

whenever y ^ 0, which is the case for many of the more

important examples, then the junction <p may be taken

as (p(t) = E"1(t) where E(t) = 2J f (u)du.
o

Proof of Theorem A.7. We consider the case where F is

of class C , and define a function T(co,x) by

(32) T(G(t,x),x) = t ,

so that

-1

(33) r

t~ ~ -1 •

Gx(r(t0,x),x)/Gt(r(C0,x),x) J .

Let y be a solution of (1) satisfying (31) and let *(x) be

defined by formula (13). Then, as shown in the proof of

Theorem A.I,

(35) •' (x) = |- f(b- x)2G(ot2(b- x)2,x)l y
a " b- x

G(t,x)



If we put

= T(*(x),x)

t h e n b y ( 3 3 ) , (34 ) and ( 3 5 ) ,

[ 8 9 ]

(36) </>• (x) = - [c x ( t ,x)

<p
,2.

]

We observe that

> x )

so that

By (36) and (29)

(x) = -[(*>- x)4F((b-
-,-1

J [(b- x)4F((b- x)2<p(s),x )]<p' (s)ds
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so by the convexity of G ,

p fe I (b- x)4F((b- x)2<p(s),x)]} <pt (s)ds
(X) ̂ " I -1

p
-1 2 4 2 ~
<p V (b- x ) 4 F(b- x)z <p(s), x)<p' (s)

b - x

The inequality (30) implies that the integrand in the above

integral is bounded above by h1(x). Thus we obtain

(x)

and integration of this inequality yields

(37) 0(b) 2 0(xQ) exp(h(xQ) - h(b)) ,

for 0 <^ b - x < 6-. . Suppose now that y = 0 for

0 <̂  b - x <£ 61 , then by Lemma A. 2 y and hence y1 has

infinitely many zeros, clustering at b (they cannot cluster

on the left of b). But at a zero of y1

• W ) •

and thus (37) implies that

2
lim l^^-z) > O ,
x-b
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which contradicts (31), therefore y = 0 in 0 < b - x < 6, .

In the case where F is not of class C , we may approxi-

mate F by a sequence of C functions in the same manner

as in the proof of Theorem A.I.

Restricting Theorems A.6 and A.7 to the special equa-

tion (2) with 0 < y < 1 , we obtain

Corollary A.5. Let q(x) be positive on [a,bj.

If log q(x) has finite lower variation on [a,bj, then

for x e [a,b] , every solution of (2) , with 0 < y <± 1 ,

satisfying (27) vanishes identically in [a,x ].

Corollary A.6. Let q(x) be positive on [a,b].

If log (b - x ) ^ q (x) has finite upper variation as x -> b ,

and y (x) JLs ja solution of (2) , with 0 < y •£ 1 3 satisfying

y(b) = yf (b) = 0 3 then there exists e > 0 such that y(x) = 0

for x e [b - €,b] .

Finally, we wish to make a few comments concerning the

method of proof discussed here in connection with the

continuability problem for superlinear equations and the

uniqueness of the zero solution for the sublinear equations.

In the former case, we devise certain techniques involving

Lyapunov like functions to obtain a contradiction to Lemma A.I

by either showing that (i) lim sup ]yi (x) ] is finite or
x - b

(ii) lim sup |y(x) | is finite. In Ullrich's result [A9 J ,
x - b
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quoted above, condition (8) is used to show that (i) is

true. Theorem A. 2 follows the alternate route,, namely

by showing that the assumed conditions imply (ii).

Similarly, in case of uniqueness of zero solution, one

devises ffdualff techniques involving Lyapunov like func-

tions to obtain a contradiction to Lemma A.2 by either

showing that (i) lim sup |y!(x)| > 0 or that (ii)
x -> b

lim sup |y(x)| > 0. Thus, in Theorem A.6 we show under
x -* b
the given assumptions that the contrary of the desired

conclusion leads to (i). Alternately, we employ the

route (ii) in Theorem A.7.
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