LINEAR DIFFERENCE EQUATIONS:

CLOSEDNESS OF COVARIANT SEQUENCES.
APPENDIX.
by
Juan Jorge Schäffer
This report is an addendum to Report 69-34. Meprer T-7

Suppose Y is $a(b, d)$-sequence for A, where (b, d) is an ^-pair such that supp (b) is infinite, but Y is not subcomplete. Is it still possible to infer the existence of a closed (b,d)-sequence "near" Y? An obvious candidate is cl Y, where (cl Y) (n) = cl (Yen)), ne co; but even if we could show that cl Y is covariant (see Remark after Lemma 5.1), it might not be true that cl Y c ${ }^{x} 0 d^{\#}$ We therefore proceed indirectly, first constructing a subcomplete (b,d)-sequence with suitable properties. The desirability of this investigation was suggested by results of G. Pecelli concerning dichotomies for functionaldifferential equations.

Let us recall [1; Lemma 6.3] for given deb...- : For each $m € c o$ the set $X-{ }_{r}$, of $\underset{\sim}{d}$-solutions of (I_{r},) is $\sim \widetilde{d}[\mathrm{~m}]$ [m] a feubspace of $\mathrm{d}_{\boldsymbol{x}_{[\mathrm{m} \mathbf{j}}}(\mathrm{X})$ and the linear mapping II (m): $\mathrm{x} \rightarrow \mathrm{x}(\mathrm{m})$: $\underset{\sim}{X_{\mathrm{d}}}[\mathrm{m}] \rightarrow \mathrm{X}_{\mathrm{Od}}(\mathrm{m}) \quad$ is jDounded and bijective.

Let Y be a covariant sequence, Y c X . For each Od
$\mathrm{mG} \subset \mathrm{C}$ we set $\mathrm{Y} .(\mathrm{m})=\Pi(\mathrm{m})\left(\mathrm{cl}\left(\Pi(\mathrm{m}) \sim^{1}(\mathrm{Y}(\mathrm{m}))\right) \mathrm{cn}(\mathrm{m})\left(\mathrm{X}_{\mathrm{r}, \mathrm{I}}\right)=\right.$ テ a ~ $\sim d \sim[m]$ $X_{Q d}(m) \quad$ where $c l^{\wedge}$ indicates closure in $d_{\sim} \|_{\text {m }}(X)$ or, equivalently, in the subspace $X . r$, . Thus Y, is subcom${ }^{\wedge} \mathrm{Ci}$ Lm
includes $Y(r a)_{5}$

$$
\begin{equation*}
Y(m) \quad c \quad Y_{d}(m) \quad a \operatorname{cl} Y(m) \quad m e \omega \tag{5.1}
\end{equation*}
$$

We observe that the definition of Y_{d} may be rephrased as follows: ue $Y_{d}(m)$ if and only if, x being the solution of ($\left.I_{r_{\mathbf{r}}} m_{\mathrm{J}}.\right)$ with $\mathrm{x}(\mathrm{m})=u_{\mathrm{g}}$ there exists for every $e>0$ a solution y of $\left({ }_{\mathbf{L}}^{\mathrm{I}} \mathrm{r}_{\mathrm{J}} \mathbf{i}\right)$ in ${ }^{\mathrm{Y}} \mathrm{r}_{\mathrm{m}} \mathrm{i}$, such that $\mathrm{X}-\mathrm{y}$ is $a \underset{\sim}{d-s o l u t i o n ~} \operatorname{anc}^{-1}|x-y|_{\mathbf{a}^{\prime}}<6$.
5.1. Lemma, Let Y be $a(b, d)$-sequence for an /-pair
($b^{\wedge} d$) such that supp (b) is an infinite set (in particular,
 plete $(\underset{\sim}{b}, d)$-sequence.

Proof. It is sufficient to prove that $\underset{\sim}{\dot{\sim}} \underset{\sim}{\underset{\sim}{q}}$ is covariant: for then Y c Y, \quad X X^{\prime} - implies that $Y-$ is $a \quad\left(b^{\wedge} d\right)$ - sequence
[1; Lemma 8.4^ (b)], and it is subcomplete by its definition. Let integers ${ }_{n}{ }_{n} *{ }^{n}$ * ${ }^{e}$ given with $n>{ }^{\prime}{ }^{\prime}{ }^{>}=0$. We are to prove that $\left(U\left(n, n_{Q}\right)\right) \sim^{1}\left(Y_{d}(n)\right)=Y_{d}\left(n_{Q}\right)$.

Let u e $Y_{\mathbf{d}}\left(n_{0}\right)$ and $e>0$ be given, and let x be
 a solution y of $\left(I_{r},\right)$ in Y, \ldots, such that $|x-y|-$. $<\in$.

 $U\left(n, n_{Q}\right) u=x(n)=X_{[n]}(n) \quad e Y_{d}(n)$, and hence $\left(U\left(n, n_{Q}\right)\right)^{\prime 1}\left(Y_{f l}(n)\right) 3$
$Y_{a}\left(n_{0}\right)$. It remains to prove the reverse inclusion.

We may choose n_{\perp} e supp (b) $\boldsymbol{q}^{\prime} n_{\perp}>n$. Since, by the preceding part of the proof applied to $n^{\wedge} n_{\prime_{\perp}}$, we have $\left.\left(U\left(n, n_{Q}\right)\right){ }^{\prime-1}\left(Y_{d}(n)\right) \quad C\left(U\left(n, n_{Q}\right)\right)^{11}\left(U^{\wedge} . n\right)\right)^{11}\left(Y_{f l}\left(r^{\wedge}\right)\right)=$ $\left(U\left(n_{l j}>n_{o}\right)\right)^{-\perp}\left({ }^{Y} d^{\wedge} n_{i} \wedge>\right.$ it: will be sufficient to prove that $\left(U\left(n_{1}, n_{0}\right)\right) \sim^{1}\left(Y_{d}\left(n_{1}\right)\right) \quad c Y_{d}\left(n_{0}\right)$.

Let $p>1$ be given. Consider any u e (Ufn^n $\left.\delta^{\prime}\right)^{\prime \prime \prime}\left(Y_{d}\left(n_{i}\right)\right)$ and any $e>0$, and let x be the solution of $\left(I_{r}\right.$, , with
$x\left(n_{Q}\right)=u . \quad$ Thus $\left.x\left(n_{1}\right)=U C n^{\wedge \wedge}, n_{Q}\right) x\left(n_{Q}\right)$ e $Y_{d}\left(n^{\wedge}\right.$. There

 we may, since $n_{\perp} € \operatorname{supp}(\underset{\sim}{b})$, and find
(5.2)

$$
\begin{aligned}
& \left\|f \mathbf{I}_{\underset{\sim}{b}} \leqq\right\| x\left(n_{1}\right)-y\left(n_{1}\right) \| \mathbf{x} \chi^{n_{1}} \mathbf{I}_{\underset{\sim}{b}} \leqq \\
& \leqq\left|x_{\left[n_{1}\right]}-y \|_{\underset{\sim}{d}}\right| x^{n_{1}}{\underset{\sim}{d}}_{-1} \mid x^{n_{1}} \mathbf{t}_{\underset{\sim}{b}}< \\
& <\in X^{n_{1}} \mathbf{a}_{\underset{\sim}{d}}^{-1} X^{n} \mathbf{I}_{\underset{\sim}{b}} .
\end{aligned}
$$

Since Y is a $(\underset{\sim}{b}, \underset{\sim}{d})$-sequence, there exists a solution z. of (II) with this f such that z lies eventually in Y -i.e., $\mathrm{Zfn}^{\wedge} \mathrm{e} Y \mathrm{fn}{ }^{\wedge}$ and

$$
\begin{equation*}
|\mathbf{z}|_{\sim}^{d}{ }_{\sim}^{f} p K_{y} \mid f{\underset{\sim}{b}}_{\mathbf{l}_{b}} . \tag{5.3}
\end{equation*}
$$

Now $\mathrm{Z}_{\mathrm{r}_{\mathrm{Ln}} \mathrm{O}_{\mathrm{J}}}$ is a solution of $\left(\mathrm{II}_{\mathrm{L}}{\boldsymbol{n}_{\mathrm{O}}^{\prime}}\right.$) with this f , and
 tron of $\left(l_{[n o]}\right)$. Therefore $v=z^{\wedge}-\left(x^{\wedge}-y\right)^{\wedge}+x$
 $Y\left(\mathrm{n}_{-}\right)$, so that v lies in $\mathrm{Y}_{\mathrm{f}}, \mathbf{U}^{-}$, and (5.2), (5.3) imply

$$
\begin{aligned}
|x-v|_{d} \wedge & \left|x_{\left[n_{-}\right]}-y\right|_{d}+|z| \underset{\sim}{d}< \\
& <\in\left(1+\rho K_{Y} \|_{\sim}^{n_{1}}{\underset{\sim}{d}}_{-1}^{\|_{\chi}}{ }^{n^{1}}{\underset{\sim}{b}}\right) .
\end{aligned}
$$

Since $e>0$ was arbitrary, it follows that $u=x(n \delta e$ $\underset{\sim}{Y_{d}}\left(\mathrm{n}_{\ell}\right)$. Hence $\left(\mathrm{U}\left(\mathrm{n}_{1}, \mathrm{n}_{\ell}\right)\right)^{11}\left(\underset{\sim}{\mathrm{Y}_{\mathrm{fl}}}\left(\mathrm{n}_{ \pm}\right)\right) \underset{\sim}{c} \mathrm{Y}_{\mathrm{d}}\left(\mathrm{n}_{\ell}\right)$, as was to be proved.

Remark. A slightly simplified version of the proof will show that the sequence cly is also covariant.
5.2. Theorem, Let Y be a $(\underset{\sim}{b}, d)$-sequence for $a n$ -pair $(\underset{\sim}{b}, \underset{\sim}{d})$ such that $\operatorname{supp}(\underset{\sim}{b}) \quad$ ils an infinite set (in particular, for a. /-pair or a. t-pair ($\underset{\sim}{k} * \underset{\sim}{d})$) Then;
(a) ; if $\underset{\sim}{Y} \underset{\sim}{j}(m)$ jisclosed $\underset{\sim}{\text { (in particular, if }} Y(m)$ is closed) for some $m e o o, ~ t h e n ~ c l y=\underset{\sim}{\underset{\sim}{a}} L^{\wedge} \underline{a^{\wedge}}$ closed (b, d) - sequence 7
(b) ; if $U\left(\mathrm{n}_{.,}, \mathrm{n}_{-}\right)$is compact for some $\mathrm{n}_{-}, \mathrm{n}$. e cog
 and its terms have constant finite co-dimension in X.

Proof. Lemma 5.1, formula (5.1), and Theorem 4.1.

