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§0. INTRODUCTION

In recent years there has been some interest in trying

to improve the behavior of maps by extending their domains.

For example, in 1953 Whyburn showed that every map is the

restriction of a compact map [7]. Similarly Krovelec

proved in 1967 that each locally perfect map can be extended

to a perfect map [12] and in an as yet unpublished paper,

Dick man obtained the same result for arbitrary maps [4].

Here we show that every map can be extended to an open map

so that certain properties of the domain and range are pre-

served in the new domain. These results are then used to

obtain analogues and improvements of recent theorems of

Arhangelskii, Coban, Hodel, and Proizvolov.

§1. OPEN EXTENSIONS

Let f : X "• Y be a function, not necessarily con-

tinuous, from a topological space X into a topological

space Y. We shall call a point X€X and its image



f(x)€Y singular points of X and Y respectively, if there

is an opsn set U of X containing x whose image f(U)

is not a neighbourhood of f(x). The function f is open

just in case there are no singular points of X (or equiva-

lent of Y) •

For each singular point x of X, let Yv
 be a copy of

x

Y. Let W = X © (© Y ), where the second disjoint topological

sum is taken over all singular points of X. By identifying

each singular point X€X (with X thought of as a subset of W)

with its image f (x) (as a point of Y c W) we arrive at a
x "—

quotient space X* of W, The inclusion map i : X -» W

composes with the quotient map q : W -• X* to give an

imbedding of X into X*. Hence we may think of X* as an

^ctension of X.

Let f, : W * Y be the function whose restriction to X

is f and whose restriction to each Y is the identity
x

map 1 : Y -• Y. We leave the reader to verify that the

unique function f* : X* -• Y satisfying f*oq = f- is an

open extension of f. Recapitulating, we have that

1.1 There is an overspace X* <of X and an open function f* : X* -• Y

whose restriction to X is. f; f* iŝ  continuous just in case f
is.

Since only sums and quotients were used in the construction

of X* it follows at once that



1.2 Any coreflexive property^ 'of X and Y is preserved in X*

In particular, if X and Y are countably, sequentially or

(2)cpmpactly generatedv ' so is X*, If X and Y are locally

connected, or are P-spaces, or are chain net spaces* 'so is X*.

It is routine to verify that

1.3 X* satisfies the separation axioms T , T,, To, To, and
— — — — — — — * — _ _ - O . JL Z J —

T3 ,/2 whenever X and Y do.

We shall prove only the last case, that of complete regularity.

Suppose F is a closed subset of X* and p^F. If q" (p) H X = 0

(where q : W -• X* is the quotient map), then q" (p) €Y for some x.

Then there is a real valued function * on Y which is zero
a.

at q-1(p) and one at x•* f (x) eY and on q"1 (F) H Y . Extend *
x x

continuously to all of W by taking it constantly one on X and
on each Y ., x1 / x. This extended $ defines a real valuedx

function on X* which separates p and F. In the other case,

if x
oeq"

1(p) n x, let *Q : X - R be zero at XQ and one on

q~" (F) fl X. For each singular x, choose * : Y -• R which is
x x

one on q"1 (F) 0 Y and such that * (f(x)) = * (x) . These
X X O

functions combine to form one $ : W -* R which in turn induces

a real valued function on X* separating p and F.

X* can also be realized as an adjunction space. Let F be

the closed discrete subset of © Y whose intersection with each Y
x x

is its singular point f (x) . The map g : P -• X which sends each f (x)

to x, yields the adjunction space ® Y U X which is homeomorphic

to X*. Using this representation we see that



1.4 X* Is. normal, hereditarily normal, perfectly normal

collectionwise normal, or fully normal (i.e. paracompact)

whenever X and Y are.

The first three of these properties are preserved under sums

aid adjunctions. For the other three, the assertion follows from

a theorem of Tsuda [16].

If x is a singular point of X, then f (x) €Y and

q(x) = q(f(x)). If X and Y are (pathwise) connected, so are

their continuous images q(X) and q(Y ). Since each q(X) 0 q(Y ) / 0,
x x

U(q(x)Uq(Y )) is (pathwise) connected. Thus we have that

1.5 X* iŝ  (pathwise) connected whenever X and Y are.

Let X be the plane set consisting of the union of the

closed intervals [-1, 1] on the two axes. Let Y = [-1, 1] on one

axis and let f be the restriction to X of the projection onto

this same axis. Each point on one axis, except the origin is a

singular point of X. This example shows that

1.6 X* need not preserve metrizability, either axiom of counta-

bility, weight or local weight, separability or density, the

Lindelof property, or (countable, sequential, pseudo) compactness.

(Another open extension of a map f can be given whose domain

will preserve many of these properties. Since the family {lv, f}

separates points and also separates points from closed sets, the

evaluation map e : X - X x Y (given by e(x) = (x, f (x))) is an



embedding. Hence X is homeomorphic to e(X), the graph of £,

and the projection iry : X x Y "* Y restricted to e (X) is

essentially f. Thus each map is the restriction of a, projection

map. If X is. compact, f i£ the restriction of ja clopen map.

This iŝ  also the case if X iŝ  countably compact and Y a_ subspace

of a^ sequential space [5J. Clearly any finitely productive property

of X and Y is preserved in the domain of the projection. Hence

most of the properties mentioned in 1.6 are preserved.)

By imposing restrictions on the set S of singular points

of X, X* may be induced to preserve many other properties.

For example

1.7 Îf the singular points of X d<D not accumulate, metrizability.

local compactness and local weight are preserved in X*. Further

if the cardinality of S i^ not more than the larger of the

weights of X and Y, then neither is the weight of X*.

(Here we assume that X and Y are T, spaces.)

We first show that the quotient map q : W-* X* is a closed

mapping under the given hypothesis. Suppose F is a closed

subset of W and {pg} is a net in q(F) converging to a point p

in X*. Now q(F) = q(F fi X) U (U q(P fl Y )) and the restriction
x

of q to X and to each Y is an embedding. Since q(X) and

each q(Y ) is closed in X* we conclude that q(F 0 x) and

each q(F H Yv) is closed in X* also. Thus if (p*,} is fre-

quently in q (F H x) or in some q(F H Y ), p must belong to q(F)
x

and we are done. If q" (p) = {y} with yeY , let U = Y
x x.
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If q (p) = {x} where x is a non-singular point of X, let U

be a neighborhood of x in X which is free of singular points.

If q"1(p) = (x, f(x)) let U be the union of Yx and a neigh-

borhood of x in X which is free of singular points of X other

than x. In any case, q(U) is a neighborhood of p which has a

non-empty intersection with at most one q(Y fl F) . But {p̂ .} is
x a

eventually in q(U) and hence is frequently in either q(U) fl q(F fl X)

or q(U) fl q(F D Y ) . Hence q is a closed map. Since each q (p)
x

is at most a doubleton, q is a perfect map. Since metrizability

and local compactness are preserved under sums and perfect maps,

the first two assertions of 1.7 are proved.

Suppose m is the larger of the local weights of X and Y.

If <3~ (p) = fy) where yeY {f(x)), the image of a base at y
x

under q is a base at p. If q" (p) = {x} where x is a non-

singular point of X, a base can be chosen at x whose members

contain no singular points. The image of this

base under q is a base at p. If q" (p) = {x, f(x)}, choose a

base IB at x whose members contain only one singular point, and

choose a base If at f(x)eY , with the cardinality of U and IB

no larger than m. The images under q of sets of the form B U V

with BelB and Vel/, form a base at p of cardinality no larger

than m.

For what remains we need only note that weight w
2

= weight X + card S. weight Y <^ m + m = m and that perfect maps
do not increase weight.



Example 1.6 shows that the restrictions imposed on the set S

of singular points in 1.7 are not superfluous. By replacing one of

the intervals [-1, 1] in 1.6by a sequence converging to zero, one

can easily see that these cannot be weakened even to S being a

countable discrete subset.

§2. FINITE-TO-ONE MAPPINGS

In 1966, Proizvolov [15] showed that weight and metrizability

are inversely preserved in locally compact spaces under open finite-

to-one maps. Later that year, Arhangelskii [1] [2] showed they were

always inversely preserved under clopen finite-to-one maps. In 1967,

v

Coban [3] proved that hereditary paracompactness (metacompactness,

Lindelof) are inversely preserved under open finite-to-one maps.

(Some separation axioms are required for all these results.)

If f is a finite-to-one mapping and the set S of singular

points of X is finite (i.e. f is open except at finitely many

points) then f* : X* -» Y is an open, finite-to-one map and hence X*

will inherit properties from Y by the results quoted in the para-

graph above. (1.3 shows that the needed separation axioms (see below)

also lift properly.) Since these properties are all hereditary, X

must also enjoy them. Thus we see that it is sufficient to require

that f be open except at finitely many points to arrive at the

desired conclusion. For the, convenience of the reader ye list precise

statements of the improved theorems. (Assume all spaces to be

Hausdorff, and that f is continuous and onto.)
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2.1 (Proizvolov) Îf X and Y are locally compact, and f

is finite-to-one and open except at finitely many points, then

weight X £ weight Y. £f Y jLs metrizable, so is X. In the

proof, 1.7 as well as Proizvolovfs original theorem must be used.

2.2 (Arhangelskii) £f. X and Y are completely regular and f

is a, finite-to-one closed map which is open except at finitely

many points, then weight X < 'weight Y. Ij: Y is. metrizable.

so is X.

Here, in addition to 1.3 we need to only note that with S

finite, f* is closed iff f is closed.

V
2.3 (Coban) Ij: f jj3 finite-to-one and open except at finitely

many points, then X ^s hereditarily paracompact (metacompact.

Lindelof) whenever Y JLS. (For paracompactness X is required

to be regular.)

Simple examples can be given to show that the conditions on

the singular points of f cannot simply be omitted in 2.1, 2.2,

and 2.3. First let X = fcty Y = {0} U {l/n|ne»} < B and f : X -* Y

arise from n - 1/n. Y is locally compact, second countable and

metrizable. X is locally compact, has weight c and is not metrizable,

even though f is a perfect map. This covers 2.1 and 2.2.

For 2.3 let Y be as before and let Xf be the ordinal com-

pactification of U recently constructed by Franklin and

Rajagopalan [7], i.e. X! = IT U u^ + 1 with UN embedded as an open

dense subspace, u^ + 1 embedded as a closed subspace, IT fl a) + 1 = 0



and X1 compact Hausdorff. Let X =X ! \[^} and define f : X ~> Y

by f(n) = 1/n and f(x) =0 otherwise. Y is hereditarily

Lindelo'f (and much more) while X fails to be metacompact.

§3. DIMENSION

(in this section all spaces are assumed to be metric, and f

is continuous and onto. In 1963 Hodel [11] showed that dimension

cannot be lowered by open maps f such that each f" (y) is

discrete. The technique of the last section can be used to

improve this result also.

3.1 (Hodel) ijE the singular points of X do not accumulate and

if each f" (y) JLS. discrete, then dim X <^ dim Y.

For the proof we use 1.7, Hodel!s original theorem and that X

is a closed subspace of X*.

Hodel's theorem (in both the original and the improved version)

holds true for not necessarily continuous f if Y is taken to

be locally compact and separable.

To show that some hypothesis is needed on f, one need only

look at Paeno's map of the interval onto the square.

Carnegie Mellon University and
Indian Institute of Technology - Kanpur
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Footnotes

(f) This research was partially supported by the Fleischer
Foundation.

(1) See Herrlich [10] for the definition and properties of
coreflective subcategories.

(2) A countably generated space is one T f determined by
countable subsets11 in the sense of Moore and Mrowka [14].
Sequentially generated spaces are the sequential spaces [6]
and compactly generated spaces the k-spaces.

(3) For the coreflexivity of local connectedness, see
Gleason [9], A P-space is one in which each Gc is
open (see Gilman and Jerison [8] ). A chain net is one
whose underlying directed set is a chain. Chain nets
are said to suffice if any set containing the limits
of all its convergent chain nets is closed (see Misra [13] )


