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1. 1 NTRODUCTI ON

‘This paper concerns a class of nonlinear functiona
differential equations. A prototype for this class is
t he equati on,

. pt

(1.1) u(t) :-JO a(t-T)g(u(T))dT.
Thi s equation has been the subject of a great deal of work,
primarily that of Levin and Nohel. The main goal is to
obtain conditions on a and g which guarantee that al
solutions tend to zero as t tends to infinity. The first
result in this direction ([9]) asserts that asynptotic
stability holds if, ug(u) is positivewhen u”™ 0O and a

is conpletely nonotone, that is,

(1.2) a' (t)/*0, (-D al® (1) ~ o0 k = 0,1,2,

This result was inproved in ([8]) where it is shown that
(1.2) need hold only for k = 0,1,2,3. Mre recently
Hannsgen [6] has shown that (1.2) need hold only for

k =0,1,2. At the sane tinme it has been shown that one

can obtain sonme stability results for the perturbed equati on,

t .
(1.3) u(t) = -f a(t-T)g(u(T))dT + f(t,u(t)).

To

All of the results of Hannsgen, Levin and Nchel were
obt ai ned through the use of Lyapunov functions. There was
homevér one'paper, by Hal anay [4], which attenpted to

treat (1.1) by different methods. Hal anay gave a proof of




asymptotic stability of solutions of (1l.1) under assumption
(1.2) %k = 0,1,2. Halanay's proof is incorrect at several
places. However, it seems to us that the proof con-
tains an idea of great interest and importance. It is this
idea which is developed in the present paper and we proceed
to describe it‘here in a general way.

One can show that if g satisfies certain conditions and

a is a positive kernel; that is for any heC[O,m),
T t
(1.4) a(r:m) = [ ne) [ ae-mn(mar ae > o,
' o o)

for all T, then all solutions of (l.1) remain bounded for

all t. It is known that a is a positive kernel if its

Laplace transform é(s) satisfies the condition, -
A .
(1.5) Re a(s) > O in Re s > O.

It can be shown (see section 4) that (1.2) for k = 0,1,2

implies (1.5) and hence stability of solutions of (1.1).

Halanay's idea was that, in fact, (1.2) for k = 0,1,2

implies something stronger than (1.4) for a :and hence

yields asymptotic stability. He attempted to show that if

(1.2) holds for k = 0,1,2 then for some positive ¢ and
-at

a the kernel 2a(t) = a(t) - ece is still positive.

This has the effect of sharpening (1.4) to,
T t o, T 2
(1.6) f h(t) I a(t-t)h(T)dar dt > <¢°(T) + aef C (t)dt
o o o
where,

t
e(t) = f e (=T (myar.
o]




It turns out that the rather curious estimate (1.6)
is sufficient to yield asynptotic stability of solutions
of (1.1). Halanay's proof that e and a can be found
is incorrect. However he had what we believe is the
essential i1dea nanely that what is necessary is roughly

that (1.5) be sharpened to,
(1.7) Re 3(5) >0 on Res =0 s/ 0.

In this papef we both clarify and extend Hal anay's
idea. Wen it is properly phrased it becomes clear that
it can be extended to systens of equations and even to
certain partial differential equations. Thus we phrase
the whole theory on a Hilbert space & allowing g to
be an unbounded operator but requiring a to be bounded

and linear. The essential idea is to extend the inequality

(1.6), whi ch we termstrong positivity. In the genera

at

setting the role of e~ is taken over by a sem -group

whose infinitesinmal generator is negative definite.

W apply the notion of strong positivity only in very
speci al cases. However the theory seens to us to be of
sufficient interest on its own to warrant a nore general
di scussion on Hil bert spaces and we present this in
sections two and four. The discﬁssion centers around the
Lapl ace transform of the kernel a and we show that (1.7)
is indeed the key requirenment. W showthat (1.2) for
k = 0,1,2 is sufficient for strong positivity on finite

di nensi onal . spaces but not in general. On the other hand -




we consider the case Bﬁl in detail and show that (1.2) is
in no sense necessary. In fact we show that there exi st
oscillatory kernels, for exanple e * cos t, which are
strongly positive and also that there are strongly positive
kernel s which becone infinite at t = 0. The main tool

for applications,which we obtain in section 2, is what we

call the weak stability principle. This states that jLf_

h(t) £ weakly bounded and weakly uniformy continuous

in t ~>0 and q(T;h) JLS_bounded for all T then h

must tend weakly to zero as t tends to infinity.

In section 3 we present a discussion of the generalized
equations (1.1) and (1.3). W distinguish between positive
and strongly positive kernels, showi ng that, roughly
speaking, positivity yields stability while strong positivity
yields asynptotic stability. Qur main result is of a con-
ditional nature and has the follow ng general form _If a

is strongly positive and u jjs ja solution of (1.3) such

that g(u) JLS weakly bounded and weakly unifornly continuous

then g(u) tends weakly to zero as t tends to infinity.

There are of course a nunber of technical hypotheses
whi ch are required and we discuss these in detail in section
three. The interesting feature, though, is the "weak-weak’
character of the result. In finite dinensional spaces this
aspect ceases to be of inportance hence does not appear in
Hal anay’s work. For partial differential equations, however,
it becomes very inportant for it is the weak boundedness

and continuity which is nost easily verified. Mreover weak




convergence of g(u) in one space, together with standard
enbeddi ng theorens, yields strong convergence of u to
zero in a different space. It is thus interesting that it
is the *weak-weak! results which come out naturally from
the theory. The corresponding 'strong-strong® results (in
obvi ous term nol ogy) require stronger hypotheses on a but
at the same tine are not of as great interest.

In section five we give extensive and concrete applica-
tions of the theory to the equation (1.3) in IR, Ve obtain
nmost of the known results as well as sone new ones and, we
feel, clarify the roles of the various special hypotheses
on g and f which occur in earlier papers. Qur work on
strongly positive kernels shows that (1.2), k =0,1,2 are
only one set of hypotheses and that the results nay hold
for oscillatory kernels or kernels which are infinite at
zero. W have included in section 5 a heuristic discussion
of tﬁe l'inear version of (1.3) and we then proceed to obtain
generalizations of the results to nonlinear equations. W
call attention in particular to Theorem 5.6 in which we
show that if aeL,-L and . f(t,u) ::fOD + h(t),h€Ll t hen
solutions of (1.3) need not tend to zero.

For equations in 3% we are able to verify the neces-
sary boundedness and uniformcontinuity of solutions from
the equations thenselves. It will be clear that nost of
the results in 3R carry over directly to equations in IR
al though we do not discuss these explicitly. For partia

differential -functional equations the situation is not so




simple. To illustrate this we present a brief
discussion of such equatidons in section six. We study
primarily the linear equation,

t
(1.8) ut(x,t) = —fo a(t-T)Lu(x,7)dTr + £(x,t)
where I 1is a strongly elliptic differential operator and
a 1is a strongly positive kernel in ]Rl. We show how the
general theory of this paper connects to (1.8) through
standard results in partial differential equation theory
and thus we obtain asymptotic stability results for (1.8).
These are related to some recent work of Dafermos [1],
in which he extends the ideas of Levin and Nohel to equations
on Hilbert spaces.

It is only in the linear case that we are able to
carry through the theory completely. We present, in section
six, a simple example of a nonlinear equation for which we
can prove the weak boundedness but not the weak uniform con-

tinuity.




2. WEAK STABILITY PRINCIPLE

Let ¥ be a Hilbert space, and Cﬂ[o,oo) be the
space of all continuous functions on [0,00) with values
in ¥. A = [A(t) : te[0,00)} 1is a strongly continuous
one parameter family of bounded linear operators on H.
For fixed T > O, we define the functional QX [v;T] on
Cu[o,oo) by

T

t
(2.1) QxlvsT] = j (V(t),I Alt-1) v (T)dT)dt,
o}

o
where (¢,s) denotes the inner product on ¥.
We say that the one parameter family A defines a

positive kernel if

(2. ) Qx [v:T] > O, for all vecu[o,oo) and T > O.

It is easy to see that if A(t) = cI for all te[0,00)
where ¢ 1is a nonnegative real constant and I denotes

the identity operator on H, then
c T 2
(2.3) Qg [viT] = i'nf v(t)ar||* > 0, for all T > O,
o

and thus c¢I defines a positive definite kernel.
We now introduce the notion of strongly positive

kernels. Let S be a symmetric linear operator on ¥, such that
2
(2.4) (s&,6) > o &l%, o >0, &e¥.

Consider the uniformly continuous one parameter semi-group
S generated by S, namely, S = {ke_St : te[O,m)},k > O.
Consider now the functional Qg [v:;T] associated with §,

that is,

T t
(2.5) oxlvsT] = f (v(t),kj e S(E-T) Limyar)at.
o (@]




We set
T
a[vi(t) = f e 3D y(T)dr,
- 0
. and observe that,
(2.6) N oglv](t) = v(t) - S(slv](t)).
We form the inner product of [2.6] with s[v] and obtain

(2.7)  2-go {IS[VI(D)II® = (v(t),s[VI(t)) - (Ss[vI(t),s[v](t>)"

For fixed T > 0, we integrate equation (2.7) from O to T

and obtain, by (2.4),

T
(2.8) Q/[v;T] > ht\s[v] (T)j|2 + kaf [|s[v] (t) ||?dt.
. S 4 JO

W use the condition (2.8) to define the concept of a

i strongly 'positi've kernel. W say that A defines a strongly

positive Kernelr if theresexists a symmetric S, satisfying (2.4),
and k > 0 such that if S =ke"", then for all T > 0,

(2.9) Q[v;T] "> Q[v;T] for all veCy 0, 00).
Clearly, any one paraneter family A defining a strongly
positive kernel also defines a positive kernel.

W call an elenent v(t) in Cji[Qoo) weakly stabl e

if for each welt, the function (v(t),w is bounded and

uniformy continuous in t. In other words, v(t)eCy[Q 00)
is weakly stable if wv(t) is weakly bounded and weakly
uni formy continuous. The following result forns the

basis of our present study. W termit the weak stability

N principle,
THEOREM (2.1) Suppose that : A is strongly positive

and v(t) jus ji weakly stable elenent in G{0,00).. X f
Q‘_[v; T] _1f bounded for all T, then v(t) converges




weakly to zero.

PROOF. By hypothesis there exists a bounded S,
satisfying (2.4), such that if

t
(2.10) s[v] (t) = j e-S(t_T)

wv(rT)dr,
o

then we have,
2 T 2
(2.11)  Qx[v:T] > cqllsivi(D)||” + e, [ llstvie)|at,
]

where Cq15C9 > 0. If we differentiate (2.10), we have,

from (2.6),

(2.12)  S(slvl(£),w) = (v(t),w) - (Ss[V](t),w).

We observe that (2.11) and the assumption that

QX[V;T] is bounded for all T > O imply that

(2.13) | (ssivl(t),w)| < [IsllIstv]ce) [[lIwll,

which is bounded for all t > O. Since (v(t),w) is bounded,
by hypothesis, it follows that the function ¢(t) = (s[v](t),w)
has a bounded derivative, hence is uniformly continuous.
Furthermore it belongs to L2[O,G)) since

T 2 2 T 2

[ 1stvie,mi?ae < wli® [ lIstvl (0] at.

o o
It follows that 1lim ¢(t) = O. The uniform continuity of
o(t) implies thaEﬁg; (Ss[v](t),w) = (s[v]l(t),Sw), there-
fore '(t) is uniformly continuous on account of (2.12)
and the weak uniform continuity of v(t). It is then

an immediate consequence of the mean value theorem that

o'(t) tends to zero, (see section 5). Since
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(Ss[v](t),w = (s[v](t),Sw) tends to zero, (2.12) inplies
t hat

(2.14) JS (v(t),wW =0,

conpl eting the proof.

A natural question to ask, in light of Theoren(2.1) is
whet her strong boundedness and uniformcontinuity of g(u)
inmply strong convergence to zero. It turns out that this
is not true without further assunptions. W hope to return

tothisat a later tine.




3. FUNCTI ONAL- DI FFERENTI AL EQUATI ONS,

We consider functional differential equations of

the form

(3.1) u(t) = -1 A(t-T)g(u(T))dT + £(t,u(t)), t ~ o0
o N

on a Hlbert space W Here A= {A(t) : t ;> 0} is a
strongly continuous, one paraneter fam |y of bounded
i near operators on W g 1is a transformation mﬂph domai n
&gE-W and f(t,v) is a mapping from [0, 00) Xg into
& By a sol ution of (3.1) weneanamp u: [0, 000 -» U
whi ch satisfies the follow ng conditions:
(i) u is strongly continuous on [O,bo);
(it) u(t)e% for all te(Qo00)J
(iii) u is strongly differentiable on (Qo0)J
(iv) u satisfies (3.1) on (Gs00).

W | eave aside questions of existence and uni queness
of solutions of (3.1) although these are closely rel ated
to our stability results, especially on finite dinmensiona

spaces. For convenience, we refer to (3.1) as the

perturbed equation and to its special cases

(3.2)  G(t) = -3 A(t-*r)g(u(T))dT + f(t), t~O,
0 _
and
ot
(3.3) u(t) = -3 A(t-T)g(u(T))dT,

o

as the unperturbed and honbgeneous equations respectively.

11
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We establish the connection between (3.1) and the
i deas of the preceding section by form ng the inner
product of (3.1) and g(u(t)) and integrating from O

to T. The result is the follow ng:

(3.4) Jo('u(t),g(u(t)))dt + Q@lg(u):;T] = {O(f(t,U(t)),g(u(t)))dt-»

Qur goal is to find conditions on f and g such that the
positivity of A wll guarantee, by (3.1), the boundedness
of Q [g(u);T]. Then if we inpose strong positivity on
K, we can infer fromTheorem (2.1) that if g(u) is weakly
stable it nmust tend to zero weakly. The verification of
weak stability of solutions of (3.1) is carried out, for
the nost part, in the speci‘ al cases discussed in detail  i n
sections 5 and 6. However, we do present sone general
results applicable to (3.1).
Qur basic hypothesis on g and f are as follows:
(Go) There exists a functional G v) defined on

& whi ch satisfies

9
() gp & > -,

(ii) Qv) is FrecHet differentiable on f& and
grad Qv) =g(v) for all ve&g, I.e.

v+h) = &v) + (g(v).h) +of[|hl]),

as ||| - O.
(Po) There exists a function aeL"_tO,@@) such t hat

(3.5) | (f(t,v),a(v))] £a(t)(l + G(v}),

for all tgo and for all V€$;. The functional G is
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as postulated in (Go).
Our basic boundedness and stability result is the

following.

THEOREM (3.1) Suppose that (GO) and (Fo) hold,

and that wu(t) is a solution to (3.1).

(i) If A defines a positive kernel, then |G(u(T))]

and QX [g(u):;T] are bounded for all T > O.

(ii) 1If A defines a strongly positive kernel, and

if g(u) is a weakly stable element in C,[0,00), then g(u)

tends weakly to zero.

PROOF. Using the positivity of A, we obtain from

(3.4) the following estimate !

T T
[ @ ,gmmwmnae < [ (£e,ue)),g0ue))at.,
(0] (0]

Assumptions (GO),(FO) and an application of the chain rule

together imply*
T a T
cu(m) - e(u(0) = [ = atuenae ¢ [ alt) (Lre(ue)))at,
o o
from which it follows that
OO0 T
(3.6) |G(u(T))| < (|G(u(0))] +J a(t) dt) f a(t)dt < .
o o

Substituting (3.6) into (3.4), we obtain

sup

T
oxlg(w) ;] <le(u(m) | + |G<u(o))|joa(t)dt+t20

QO
lG(u(e)) | aterat,
(@]

proving the boundedness of Qx[g(u):T]. The conclusion (ii)

of the theorem then follows from Theorem (2.1).

*The necessary condition on G 1is that é% G(u)(t)) = (g(u(t),ﬁ).
We are showing here that G_ implies this. 1In section 6 we
will not have (G_.) but th® differentiation result will be
verified directly.

BONT LISRARY
CARNERIE-WELLON WMIVERSITY
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Remark (3.1) The boundedness of G need not of course
imply the boundedness of either g(u) or u. If we

impose on g the additional hypothesis
(G7) G(v) - o0 as |v| - o,

then (3.6) will imply that |lu(t)| is bounded. If in
addition g 1is assumed to be a bounded mapping, then it
will follow that g(u) is also bounded (hence, of course,
weakly bounded). Thus, for example, on finite dimensional
spaces, (Gl) and the continuity of g will yield the
boundedness of g(u). The boundedness of g(u) together
with additional assumptions on A and f will yield
boundedness results for u(t) and WY(t), namely!

Corollary (3.1) Suppose that (GO),(FO), (Gl) hold

and that A defines a positive kernel. If in addition

g 1is a bounded mapping, then for every solution wu(t) of

(3.2), we have,

(1) Jlace)flerylo,@), lE(0)]| < By = [lace) || < My
for all t > O;

(i1) Ja(e)llerylo,00), [E(0)] < B, = Ju(e)]| <y,

PROOF. From Theorem (3.1) and the discussion just
given in Remark (3.1), we know that |g(u(t))| is
bounded by all t > O, say by Bo' Returning to equation

(3.1), we have
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t
lace) ]| < #0 J |IA(t-T)||dT + {lE(e) |
o)
r‘t
< By J ||A(a)||der + By,
(0]

proving (i). To prove (ii), we differentiate (3.1) to

obtain

t . ]
(3.7) Tu(t) = -ACQ g(u(t)) -fo A(t-T)g(u(T))dr + f(t),
whi ch gi ves

01 £ BIAON + B i TAEDIIAT + [T,

and proves (ii).

Remark (3.2) For the honbgeneous equation (3.3),
assunption (FO) is automatically satisfied. For the |
unpertur bed and nonhonbgeneous equation (3. 2), (Fo)

will be satisfied if we assume”

(Fy) ll£(t) ller T0, 0},
and
(&) oW [ £ k(I +[Kv) | ), for all ve%
Remark (3.3) Wen g(u) is a linear symmetric
transformation, g(u) = Lu, we can satisfy (ii) of

(&) by taking Gu) :-l(u"Lu). Condition (i) wll
then be satisfied if L 1is positive and (GJ_) w | |

be satisfied if the smallest eigenvalue of L is

positive. If L 1is in addition bounded, then the last con-
dition is also sufficient for (&) to hold. This will be
the case in finite dinensional spaces. In 3Rl, we can

satisfy (ii) of (%) ky taking




Qia) ZBU g(E)dE and (i) of (& wll be satisfied if
for examgl e, geC(-o00,a0) and wug(u) J>0 for |ul Ilarge.
For a general discussion concerning the existence of the
functional G(v), see Vainberg [15].

Theorem (3.1) is capable of an extension which is
inmportant in the applications. W are here concerned
with the condition: (Fo) which in general rules out a

constant perturbing term W thus replace (Fg by the nore
general condition

(F f(t,u) =1f~ + f.(t,u), vvhe_re fre* and f. is
a mapping from [Qoo) X U into & which satisfies
(F )o

o

W shall show later (in section 5) that when f A0, one
00

canno§y, in general, expect asynptotic stability even if
it =3R. O the other hand, if A(t) also contains a
constant term then we can still obtain asynptotic

stability as we show now.

THEOREM (3.2) Suppose that (G) and (F ) hold.
Q J

Q

and that wu(t) is a solution of (3.1). Assune that the

——— —— ——— . ———

operator limt A(oo) exi sts and deffnes a positive
Q
definite symetric operator and let A = A - A(o0) .

Then the follow ng hold; . |
(i) JBE A defines <a positive kernel , then | Qu(T))
and Q‘[g(u) ;T] are bounded for all T J> 0.

(ii) 1f % defines a strongly positive kernel, then_
0 _______ —_—

g(u) weakly stable in CMOQo0) => g(u(t)) tends weakly

to zero.

16
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PROOF. The proof involves a process of 'completing the
square' and was used by Levin and Nohel in the one dimensional

case. We rewrite (3.1) in the form
. t t
(2.8) u(t) = -A(00) I g(u(r))dr - f Ao(t—T)g(u(T))dT + £(t,u(t)).
o o

Now form the inner product of (3.8) with g(u(t)) and
integrate from O to T. With (£,A(00)¢&) > aongﬂz for

all £eHd, one obtains

T
G(u(m) - 6(u(0)) + oxlg(w ;1) < -a_ | gluce))at]?
o] (o]
T T
v (£ L] gaenar) + [ a(e) (ec(u(e))at
(o] (o]

T
<o e 1P + [ ate) (1re(u(e)))at.
fe) ()

In view of (Fo), conclusion (i) follows. On the other
hand, conclusion (ii) follows from (i) and Theorem (2.1).

We close our discussion here by showing that the methods
presented in Theorem (3.2) allow us to treat certain second
order equations. Consider for example the following

second order functional differential equation
. e t
(3.8) H(£) = cg(u(t)) + | Blt-m)g(u(r))dr + £(t),
o

where C is a bounded linear operator on ¥ and £ is
a mapping from [0O,00) into H. Define a new transformation

A(t) Dby the expression
t

(3.9) a(t) = -] B(mar - c
o

Using (3.9) we can rewrite (3.8) in the following form
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(3.10) \i(t) = -A(0)g(u(t)) - J A(t-THg(u(T))dT + f (t) .
0]

An integration of (3.10) will nowyield

L L
(3.11) u(t) =u(0) - J A(t-T)g(u(T))dT + j f(T)dT,

o Jo
which is of the form(3.1) under investigation. |In order

to apply Theorem (3.2), we need to assune that
1 f(T)dT e L,[0,00)3(&) holds and A(o0) exists and is

pdlsi tive as given in Theorem (3.2). This will be the case
(0]0)

if B(t) > O (as a semi-definite operator) and C - le B(T)dT
0

defines a positive definite operator. This investigation
is carried out in sections five and siX where we al so

consi der cases in which A(oo) = 0.
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4. POSITIVE AND STRONGY POSI TI VE KERNELS,

In this section we give sone sufficient conditions
for positivity and strong positivity of kernels. Halanay [4]
stated, but incorrectly proved, that in ]Rl, a(t) is

strongly positive if”
(4.1) (-1ykal® (t) ~>0, k=0,1,2,

and a(t) f <constant. That (4.1) alone is sufficient for
the positivity of a(t) is well known (see Loeve [11]* p. 217).
W t hout additional assunptions on a(t), one clearly cannot
expect strong positivity. It is™ however”™ interesting to find
that under the additional assunption that a(t) ~ constant,
a(t) in fact defines a strongly positive kernel. The effort
to verify Hal anay's claimand clarify his proof led us to
a result which is valid in general Hilbert space. 1In the
speci al one di nensional case, we can prove a better result,
notivated by the work of Hannsgen [5]+ Later we show
by exanples that the nonotonicity conditions are too special
in that positivity and strong positivity may hold for sone
oscillatory kernels.

It is well known in circuit theory (see for exanple [13])
that a kernel a(t) in Sd‘ wi Il define a positive kernel

if its Laplace transform Q(s) satisfies the condition,
(4.2) Re dls) > 0 in Re s > 0.

| f Q(S) exists for Re s =0 and is continuous in Re s j> 0
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then it follows from (4.2) that Re Q(s) > 0 on Re s = O.
Our main result is that, apart from some technical details,
strong positivity will hold if Re Q(s) is strictly positive
on Re s = O.

The general results concern a family A = {A(t) : t > 0}
of bounded linear transformations on a Hilbert space ¥,

. : A
For such a family we define the Laplace transform A(s)

by the formula,
(4.3) A(s) = lim f E a(t)at.
T—~00

Here we mean the Bochner integral and the uniform limit;
all subsequent limits will be in the uniform topology.

We give here an outline of the ideas of the section.
It appears that natural analogs of one-dimensional results
hold only when Aft) is symmetric for each t. Under this
assumption, and some more technical ones, we show that if
Re A(iT) is nonnegative semi-definite on ¥ for each 1cR
then A is a positive kernel. This is an analog of (4.2).
Then strong positivity will follow if we can find S and e,

which are positive, such that if § = ee_St, then,

A A
(4.4) Re(A(iT) - S(iT)) 1is positive for all TeR,

We will, in fact, look for S in the form <c¢I, ¢ > O. Then

A -
S = (s%c) 1 I and (4.4) Dbecomes

(4.5) (¢,Re A(lT)E)‘Z 2 Hg“ for all ¢£eM, for all €cH
v2

and T€R.
The rather complicated work to follow aims at establishing

the inequality (4.5). There are two difficulties. First
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we have to verify (4.5) for large T and hence we must obtain
estimates for g(iT) as T - oo. Second we must obtain

the inequality for T's on bounded subsets. Here a distinction
must be made between finite and infinite dimensional spaces.

If dim ¥ < oo, and g(iT) is continueus and positive

then (4.5) necessarily holds on bounded T sets. In infinite
dimensional spaces we must essentially postulate that (4.5)
holds for T in bounded subsets of IR.

We impose on A the conditions:

(Al) A(t) 1is twice strongly differentiable on [0,00)

(e o)
ay) [ 1a®(e)fat < @ x = 1,2.
o

We have then,

Iacey) - Atk = \lfzz al(e)ae] < ftz lar (e Jlat
1 1

and hence,

(4.6) 1lim A(t) = A(a) exists.
t-0o

We set Ao(t) = A(t) - A(oo) and require that A satisfy,

® (t)|lat
ay [ lagelae < oo

For the Laplace transform ”ﬁ(s) of A we have
- A
ﬁ(s) = s 1 ﬁ(oo) + Ao(s) where Ao is the Laplace transform

of AO and we collect here some facts concerning the transforms.

A . . . . .
Lemma 4.1 (1) Ao (o+iT) exists and is continuous in

oc>0. Iti

also holomorphic in o > O.
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(2) A(s)=s"' A(0) +s"“A' (o) + o(s~") wuniformyas |s| - 00
in a” Q
Prooft (1) follows easily from (%) « ™ prove (2)

we integrate by parts twice, using (A”"), and obtain, (note

that (A) inplies A (oo) exists and nmust be zero),
(4.6) k(s) = eTATKO +s"2 A (0) +s"2[; e"at AM (t)dt

0
Conclusion (2) follows froman application of the R emann-

Lebesgue Lemm.
Llemmp 4.2 Let -k (crHT) = $(<3, 1) + i™(J, Ty Then,

2r00

A(t) - A(00) = - Jlo *(0, T) cos Tt dT.

Prooft Fromlenmma (4.1) we observe that ﬁ‘o satisfies
the conditions,

. +00 A 1/
(4.7) sup {J

IA (a+iT)||P dT}'P < oo,

A au -e0 ° .

(4.8) lim A (a+ix) = A.(iT) exists for all T and
(TJO ° °

IINIRITE L, (-00, 00),

A
for any p > 1. It follows (see [7] page 227) that Ao can

be represented as a Cauchy integral of the form

(4.9 M(aiT) = $o.ma

_eD o+it-in
Thus we can express ~(O, T) in terns of $(0,4) by the
. formul a,

1 40 .
(4.10) *(0,T) = -} I i’LE’,’fl)-dn,

ik T
"-CO
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where the Cauchy principal value is neant in (4.10).
A
Now Ao(t) may be recovered from A, by the inversion
formula (again see [7]),
(4.11) Adt) -5 7 <ItT (&0, 7) + iko,T))dr.
-0D
Si nce Aés) isreal for T =0 we nust have $(0,T) = 0(0, -T)
and >£(0, T) = -~(0O -T) and hence (4.11) can be witten as,

(4.12) Ag(t) ==J ($(Q T) COS Tt - >(0,T)sin Tt)dT

2T
-00

W use (4.10) to rewite the second integral as follows:

P+oo A proo p+00 qugfﬂl an .
A0, T)sin Tt dt = - - dT sin Tt n
).GD W 700 7.0D
+a0 +oo
= - -# f &(0, N dy @-;r—_—-} o
-0 -CD

The T integral can be evaluated by contour integration to yield,

ER) | N pQD
(4.13)

w _

~@ A0, T) sin Tt dT = -J"9%(0,77) cos r)t drj.
If we substitute (4.13) into (4.12) and use the fact that
€ is even we obtainthe formula in |lemma 4. 2.

Fromlemma (4.2) we obtain an analog of a part of

Bochner’s theorem in one dinension as expressed by 4. 2.

Lemma 4.3 Let A(t) Dbf symmetric for all t J> 0. Suppose

further that A(oo) JLE positive semdefinite and A (i T

is positive semidefinite for all T. Then &J defines ja

posi tive kernel.

Proof: Let us define A(t) for all t by A(t) = A(t),t >0,

A(t) = A(-t) for t negative. Consider then,
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B(uTD = 3 (M(1)At-Dji(NdNdt = Q(li;T) + (i (1), 3 AT-1)Fi (T)dT) o
O

= QU T) +J J (|'( ), AT-t)]i(T))dt dT.

Since A(T-t) is symretric, we may rewite this as,

.
Oy (u:T) = Qx(WsT) + J J (A(T-t) (1 (1) 3:(T))dt dT = 2<25 (AX T)
A 00

We «st3blish that Q(|i;T) nust be positive. Note

t hat,
»I »T «T

T
QM =, (1), A00) [ Lp (mande + Tuey, Ta (61 p.(ryand:.

0 0
Fromlema (4.2) we obtain then,

— ; . 2 fT L. rT f+aD - . ’ )

(cos Tjt cos TT + sin r)r sin 17T} dT)dt.

We observe that,
T T .o '
| (H(t),Jf (f *(0.THCOS Tijt COS T2TdT))p.(T)dT)dt
(0] (0]
|T no.
=] ] [ x® cos T)t*(0.7))cos wr (i(my) diy dT dt
bo 30%

J1‘0 (jo(la(t)cos Tit, §z$(o,T))Ii(T) cos TJr dT)dt dTj

o -T T
J (3 H(t) cos rjt dt, 0(0,T))[ [i(T) cos 7T dT)drj.
" 00 o

This term is greater than or equal to zero since O0(O,rj) is
positive. The sine terms are handled similarly and this
completes the proof.

From now on we assume that the A(t) are all symmetric.

We give now a condition which will guarantee the positivity
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of ﬁé(iT).

Theorem 4.1 Suppose that A satisfies the conditions*

(A4) (—l)k Ak%t) pogitive definite, k = 0,1, for t > O

_ A ey .. )
(AS) A'(tz) A (tl) positive definite for t2 > t1

Then Re Ao(iT) is positive definite for all TcR.

Proof. Observe that from (A4),

A aD
(6,5 (06 = [ (gam)Hat > o,

o
for all &e¥. Suppose that for some § the integral is zero.
Hence (§,A(t)£)= O and consequently £ = O. On the

other hand, for T > O, we have

(e o)
(€,Re Ao(iﬂﬁ) & f (g,Ao(t)g)cos Tt dt

o

QO
- fo (£,A1(t)£)sin Tt dt

-
o I
~%{kzg I; sin Tt(¢, [AL(t + 2Ky _a) (¢ + {ZRELT) )4 g¢)

By (AS) each term in the sum is positive unless ¢ = O.

The case T < O follows by reflection since Re Ag(iw) is

an even function of T.

*It will be clear from the proof that these conditions

are silghtly stronger than really needed. In particular
in IR+ the pos1t1ve definiteness in (A ) and (A_.) can be
relaxed to semi definiteness together w1th A(t); -constant.
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Theorem (4.1) and Lemma (4.3) yields inmediately.

Corollary 4.1 |f A(oo) is positive semdefinite and A

satisfies (A4 and (A_:) then A JLS <a positive kernel.

W are ready now to discuss strong positivity. As

indicated earlier we try to find a sem-group of the form
-CcTic

e -, ¢ 20 sugp that
(4.14) A - e° is positive,
and, as we showed before, this will be true if we can

£establish the estinate (4.5) We_start with.a lemma.

lemma 4 4 There exists- M such that (4.5) jls valid
A
forall T with | T| ;>M o

Proof. Since (4.5) refers only to A it is noloss in

gener%lgi’ttbyfot,gr)%%sg__rre_ A( o[o()g,i'?'o) g')rhsr(]g\i\%(gr tﬁi]T fromlema (4.1),
T .

where |IRT|| =o(l) as |T| ->o00. It foIIowsfrom(Ah)

that for some. m> 0
(C,«(0,T)E) A f 1UII> for |T| =M.

Thus (4.5) wll be satisfied if we choose €=1 and c¢ such

that —5-72 < Ty*
c“+M '

Fromlema 4.4 and the remarks above we obtain the
fol | owi ng conditional result.

Theorem 4.2 Suppose K satisfies (A,) - (As) and A(t)

is symmetric for each t. Then A JLs strongly positive if
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it satisfies the following condtion:

(4.15) Given any M there exists an a such that

(£,Re A_(in)€) > all&]® for |r| < m.

Proof. Fix M and ¢ as in lemma (4.1l) and choose

_ ac
€ =7

Again we have an immediate corollary.

Corollary 4.2 If H is finite dimensional assumption (4.15)

can be dropped.

Proof. By theorem (4.1) (§,Re Ao(iT)g) is positive definite
for all r in |[7| { M. Hence (§,Re A _(in)§) is a positive,
continuous function on the compact set (-M,M)x Uy where
UH is the unit sphere in ¥#. It follows that (4.15) is
satisfied automatically.

We want to discuss in some detail the case of :m; where
some of the conditions can be weakened a little. Let us

suppose that a is such that its transform has the form
9_(%01 + 8(s)

where Q(s) exists and is continuous in Re s > O. Then,
subject to certain technical details, the following state-
ments will be true:

(1) If a(oo) > 0 and Re Q(iT) > 0 then a 1is a positive

kernel.

A
(2) If Re a(lT)_z‘—iggi for some ¢ and c, positive, then

cT+T
a 1is strongly positive.

(3) If a(w) >0, Re A(it) > 0 and Re &(im) > & , for
T
|T| sufficiently large, with b some positive constant
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then (2) is satisfied, hence a is strongly positive.
These statenents enable one to verify directly that
certain sinple functions are positive or strongly positive.

lla
cos wt,

For exanple one can show in this way that t
0<2a<1 is positive while t-~* e}—:’t cos wt, 0" a <1,
b >0y is strongly positive. It is interesting that

e"]Dt sinw 1is not even positive, let alone strongly
positive. (See [3]). These exanples showthat Hal anay's
result (equation (4.1)) is too special. W can have a's
whi ch are strongly positive and are both oscillatory and
Si ngul ar at zero. W now state and prove our version of
Hal anay's result.

Theorem (4,3) Let a(t) satisfy the follow ng conditions:

(a;) a(t)eC(0,00) D Li(O 1)s
() a(t) z°* (") £

(a") a'(t) nondecreasing,
(as) a(t) fi constant,

Then a(t) defines a. strongly positive kernel.

Proof. W note that (a‘O inplies that a(oo0) exists
and is greater than or equal to zero, and that a(t) - Ia(oo)
agai n satisfies the assunptions (a_.l - (a4) . It follows
that the transform

T
(4.16) aA (s) =1lim f e"s' (a(t) - a(o00))dt,
° T-0D “0

exists for Re sJ>0, s~ 0. (For s =1iT, the integral is
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conditionally convergent.) We want to establish that
(4.17) Re &_(ir) >0 ,  for all reR.

If a(0) is finite, then this follows as in the proof
of Theorem (4.1). If a(0) = o, the arguments need
certain modifications. We write for T > O,
2T 00
Re &_(im) = ([T + [ ) (a(t) - a(eo)cos 1t at.
° o 2T
' T
The second integral above is nonnegative by the argument

used in Theorem (4.1). For the first integral, we con-

sider for 0 < € < %l s

2T 1
f T (a(t) - a(aw))cos Tt 4t = e?(a(e) - a(om))sin erT
€

-
Tie
LT ar(e)sin Te at
T Jd
r
T
1 L i _
—T 47 (@'(t) - a'(t+))sin T dt.
€

The last integral above is nonnegative by (a3). The first
integral on the right tends to zero as ¢ tends to zero.
We claim that the first term on the right also tends to zero

as ¢ tends to zero. For a(t) is nonincreasing and is

locally in Ll(o’l)’ hence we have 1lim € a(e) = 0. Thus,
€-0
A @
Re &_(ir) = lim [ (a(t) - a(w))cos Tt dt
€-0 €

. 1 (L T .
> 1lim - = |7 (a'(t) - a'(t+=))sin Tt dt.
€=0 T e T

Now since a(0) = oo and (a3),(a4) hold, we see that the

last integral above is positive, proving (4.17).




In order to establish strong positivity of a(t) we
need to show t hat

A .
(4.18) Re ‘Ag(iT) A~ * P > o>
T

for all | T|] > N where N is sone |arge nuriber. W show

in fact under the present hypothesis that we have

(4. 19) Re a(iT) ~-yg , ¢ >0,

for large T. Denote %y(t) =%"t) - % ao) for short. We
Q

first note that in viewof (a;) (az) and (ay)

4. 20 t t dt = > 0.
( ) bcz)acg)cos a,

Without loss of generality, we need only to consider T J> N.

Obsarve that™

A fo 1 /00 Uy
(4.21) Rea (it) =' 2 (1) cos Ttdt =- ' a (N sin £ df
(@] J O T J O T

(@) o

We will have established (4.19), if we can show that the

last integral in(4.21) *+5 nondecreasing as T

Integr}iting by parts, we have

33 (T) cos€dd=-1X a (f] " ¢ 4

iNncreases.

nCO .
= -1 a(t) sin Tt dt,
o

which is uniformly convergent (as an improper integral) for

all T > |y Consder the differentiation under the integral

sign

4D 8 Fro@cd- r."

55 cos § dt,
T

30
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which will be justified if the integral on the right of
(4.22) is uniformy convergent for all T"> 1. This is in
fact true as the follow ng arguments show. First note that

(az), (as) and

T i9%5
f ta"(t)dt = Ta' (T) - a'(I) -l a' (t)dt

I
i mply that ItLLnD ta'(t) exists (and hence must be zero) and

that ta''(t)€Lyl,00) . Next, we note that

-ta' (t) cos Tt dt
o

‘]O OT TA O,,cn
==\ (a(t) +ta''(t))sin Tt dt.
T.]0
Since a' is nonotone and decreases to zero and

ta'l (t) eLJ: [0,0D), we conclude that the last integral inthe
above is uniformy convergent for T 1. By (4.22), (4.21)
and (4.20)s we obtain the desired estimate (4.19).
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5. EQUATIONS IN 3RY.

We consider here nonlinear functional-differential
equations in Sd‘ of the form

t
(5.1) a(t) = -f a(t-Tg(u(<r))dT + f(t,u(t)),
o)
where u(t), a(t) and f(t,u(t)) are continuous scalar

functions. As special cases of (5.1), we have what we

call the unperturbed equation in which f(t,u(t)) does

not depend on wu, that is,

Pt
(5.2) u(t) = g a(t-Tg(u(T))dT + f(t),
0
and nore specially the horpgeneods equation
. t
(5.3) u(t) = -J a(t~T)g(u(T)dT.
Q

It was the study of these equations which first led us

to the work of this paper. W nention four fundanmenta
papers in this area. Levin [8 and Halénay [4] for equation
(5.3), Levin and Nohel [10] for equations (5.1) and (5.2),
and nost recently Hannsgen [6] for equation (5.2). Qur

wor k extends and clarifies the ideas of Hal anay. In
contrast to the results given in the other three papers
[6],f8],[10], we do not have to find Lyapunov functi ons.

W are interested in the boundedness and asynptotic
stability of solutions of equation (5.1). A general principle,
stated by Hal anay, is that if a(t) defines a positive
kernel then we have boundedness. On the other hand, if

a(t) defines a strongly positive kernel, then we have
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asymptotic stability. Halanay's remarks were directed to
the homogeneous equation (5.3). We shall show here that

to a large extent his idea remains valid for the more
general equation (5.1). The other three references assumed
monotonicity conditions on a(t) similar to condition (4.1),
and thus,by Theorem (4.2),automatically insured strong
positivity. It should be noted here that Levin [8] and

Levin and Nohel [10] made the stronger assumption

k _(k)

(5.4)  (-1)F a (t) >0, k=0,1,2,3, tec[0,0),

and a(t) # constant.. Hannsgen [6] assumed a condition
slightly weaker than (4.1) in that a(t) is nonnegative
and convex downward. In fact, his condition is also weaker
than the assumptions (al),(az),(a3) and (a4) in Theorem (4.3).
We shall have occasion to compare with Hannsgen's assumptions
later in this section.

We emphasize that under the strong positivity assumption
on a(t), and assumptions (GO) and (FO) on g and
f, Theorem (3.1) provides a conditional result; namely, if
g(u(t)) 1is bounded and uniformly continuous then g(u(t))
tends to zero. Thus all the additional hypothesis on g
and f made in [6],[8] and [10] cited above, and which we
also make, are just designed to achieve these boundedness
and uniformity requirements. In view of Theorem (4.3),
most of our results here are valid for kernels with a

singularity at zero. Moreover, examples at the end of

section 4 suggest that the strong positivity assumption
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can hold for functions which oscillate in every
neighborhood of t = co.
We begin by presenting a heuristic discussion of the linear

version of (5.2), namely,

. t
(5.5) ae) = - a(t-mu(nar + £(v).

o

This discussion will serve to indicate what theorems ought
to be true. In the linear case, we can apply the Laplace
transform method. This gives the transform of the solution,
G(s), in terms of the transforms of a(t) and £(t).

Specifically, we have

(5.6) Bs) = u(0)+£(s)

We will need the following facts about the Laplace trans-
form., Let ¢(t) Dbe a function of t and e(s) its

transform. Consider the following cases:

(1) eo(t)er,(0,00),

(ii) o(t) - ¢()el;(0,0).

In the first case (i) ¢(8) is analytic in Re s > 0 and
continuous in Re s > O. 1In case (ii), $(s) is analytic in

Re s > O and ¢(s) - giggl_ is continuous in Re s > O.

There exist some theorems in the other direction. We do not

go into the technical details here but the following principles

are roughly true. If the transform Q(s) is analytic in Re s > O
and continuous in Re s > O, then ¢(t) tends to zero as t

tends to infinity. Similarly, if $(s) is analytic in

Re s > O and e(s) - QL%&L is continuous in Re s > O

then ¢(t) - ¢(o0) - 0 as t - . We use these two
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sinpl e principles™together with (5.6), to deduce information

abbut u(t) for large t fromthe behavior of G(s) near
' t
s = O. Since s~*'u(s) is the transf ormof 1 u(T) (3T, we

Yo

can aI so deduce information about the integral. W discuss
four cases separately.
. A
Case (1) aeL"feI.—l . Inthis case 'a and ¢ are
00
A A
regular at s = 0. If a(o) = a(t)dt ~ 0, then u(s)
J
0

is regular at 0. Thus, u(t) -« 0 as t -» D+ O the

ot her hand
(5.7 s uls) - u(o)+£(0) _ s(u(0)+£(0))+uf0) (3(0) -§(s)) +8(0) (£(s) Hi0)

s a(0) s a(0) (s + a(0))

which is regular at s = 0, so that,

(5. 8) Fu(mdT ~ <= as t-o00.
0 a(0)

Case (2 a(oo) >0, a - a(oo)eLl, feLl. Her e ? S
regul ar but a(s) ~3‘$"‘- near s = 0. It follows from
(5.6) that ﬁ(s) Is again regular at s = 0. Mbreover
(5.9) o1 (s) - ul0)+f(s) _ _u(0)+B(s)

S(Ei;ﬁ)- + Qo(s)+s) - a(oo)+s§o(s)+sz’

wher e ( ) —a(\s) °—“ Wiich is regular near s = 0. .

Since the function deflned in (5.9 1is also regular near
t

s = 0, we conclude that u(t) and le u(-r)dT tend to

0
zero as t tends to infinity.

Lase (3) a(oo) >0, a - a(oo)€L,f - f(oo)eL,.

Here both Q and have a sinple pole at s = 0.
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In this case, formula (5.6) shows that { is regular at
s = 0 so that u(t) - 0 as t - . On the other hand,

corresponding to (5.9) we have,

_u(o)+f ()R f(w)
- s a(oo)
s(éigll + Qo(s)+s)

(5.10) s “ul(s) as s - O.

Thus we have

t
(5.11) j a(mydr - {e)

o a(oo)

Case (4) aeLl,f - fOo eLl. Here 4 is regular at

A
zero but f ~ flg&l near s = 0. A simple check with

(5.6) yields {(s) ~ f(w)/s 2(0) as s - 0. Hence

(5.12) u(t) = %iggl, as t - .
a(o)

These conclusions for equation (5.5) can all be made
rigorous but we choose to forego these details since we
aim at generalizations for the nonlinear equation (5.1).
Note that the assumptions that aeL1 and a - aOOeL1
are merely used to guarantee the existence of the Laplace
transform é(s) on {s : Re s > 0}. 1In fact, most of
these conclusions remain valid under conditions weaker
than (al),(az),(a3) and (a4) of Theorem (4.3).

We list here the various conclusions concerning

boundedness (B and stability (Sk) of all solutions

x)
of (5.1):

2l
(Bo) |G(u(t))| bounded for t > 0, G(u) = J g(§)ag,
o

(Bl) |g(u(t))| bounded for t > O,




(By) Q‘[g(u) ;T] bounded for T j> 0.

(B3)* |.u®(t)|] bounded for t} 0 k = 0,1,2.

(S9 g(u(t)) - 0 as t - oo,
("9 g(u(t)) - ag” 0 as t - oo,
(sr* u®(t) ~0 as t - oo, k=0,1,2,
(S,) ' g(u(r))dT - 0 as t - oo,

* Yo

(S2) ] g(u(T))dT -4a, ~ 0 as t -» o0.
o)

We shall need a nunber of hypothesis on a,gand f in
addition to the assunptions (a,),(az),(ag),(a.q), (whi ch

guarantee strong positivity of a). The assunptions on a

are:
(a5) aeLl[0,00),
(as) a(oo) > O,
(a_,) a(oo) > O; a - a(oo) eL,[0,co),
(ag) a€L,[0,00),
»,0D
(ag) J a(-r)dT eL-.[0,00).
" :
The hypothesis we will need with regard to g and f are:
(G) Gu = Ir g(4)d™ satisfies,
(@] «J
o

inf G(u) > -oo

36
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(G* Gu) - oo as |ul - oo

(&) g€C(- 00, 00)

(G) geC(-o00,00), ug(u) >0 u" O
(G) lg(u)| £ MI+Gu)) for all u.
(G) g (£) >0, for all &eR.

(P.) There exists a function a(t) cL~cr00) such

that for all t~O and all |v| < oo,

1Tt VgV Ea(t) (I + &v)).
(F1) f(t)€L.(G o0) ,

(F)) |f(t,wUlf (t,u)U fy(t,u)| bounded for al
t ~ 0 and for every conpact interval wth

respect to u.

W wi Il have occasion to use the hypothesis that a solution
and its derivatives wu- -(t) are unifornmy continuous.

For conveni ence, we also introduce the follow ng abbreviations:
k (k) . - - _
(Y u (t) is uniformy continuous on [0,<3D,k = 0,1,2,

To sinplify the statements in this section, we assune
wi t hout further nention that a(t) defines a strongly
positive kernel. Thus, as a consequence of Theorem (4.3)
any kernel a(t) satisfying assunptions (&) - (af) defi nes
a strongly positive kernel.

The following lemma will be used in the proofs
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of a nunber of stability results concerning (5.1).
We state these technical assertions explicitly here for easy
reference. We comment that although the |ema extends com
pletely to finite dimensional spaces only (i) and (iii)

wi || have extensions to infinite dinmensional spaces.

LEMMA (5. 1)

(i) (B) and (G) * (B3)".

(i) (Bg and (G) , (&) = (B".
uif) (B3) ** * (U, k = 0,1,

(iv) (Bg)° and (U)*'= (B3)".

(v) (S~° and (U)'* ()" .
(Vi) (Sg and (G) * (Sr°.

PROOF. Only (iv) and (v) need proof. Since their
proofs are simlar, we showonly (iv). Suppose that the
conclusion is false, then there exists a sequence {tn}e[O,oo)
such that |u(t,)| J>2n. By (U)! there exists 6 >0
such that |u(t,)| > n for te[t, - 6At, | * Thenhythe
mean val ue theorem |u(t 1,1 - "(th-°%)| ~n6 contradicting
the assunption (Bjg)°

W are now ready to apply the weak stability principle,
Theorem (3.1), to obtain stability results for sol utions

of (5.1). The first result is that of boundedness which
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follows from Theorem (3.1l) and Corollary (3.1).

THEOREM (5.1) Let a(t) be a positive kernel, ard

assume that (Go)(Gl)(GZ) hold. Then :

(i) for equation (5.1), (F_ ) = (B,), (By), (By) and (B3)o}

(ii) for equation (5.2), (Fy) and (6= (B,),(B;),(B,) and (B,)®;

(iii) for equation (5.3),(Bo,(B1),(B2) and (B3)O hold and

we have in addition,
(@) (ag) = (B,

(b) (ag) = (Bo)2
8 37

Remark (5.1) Conclusion (ii) is contained in Levin and

Nohel [10] under the stronger assumption (8.4) and is
extended by Hannégen [6] to kernels a(t) satisfying (al) - (a4),

and also (a (Hannsgen's condition does not assume. that

g) -
a'(t) exists everywhere but requires that a(t)‘ is not a
function piecewise linear in a certain way. This condition
is weaker than (al)- (a4). Hannsgen shows that if a(t)
is piecewise linear in a certain way then the solution is
asymptotic to either a sine or cosine function at infinity,
hence asymptotic stability does not hold in this case.) It
should perhaps be pointed out that results given in [6] and
[10] concern equation (5.2) with an additional term b(t).
This term is roughly a constant when a(oco) > 0O, otherwise,

b(t)eLl[O,oo). We return to this slightly more general

case at the end of the section.
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Theorem (5.1) provides the necessary boundedness
condition on the solution for the application of Theorem (3.1).
We now prove a lemma which isolates the necessary assunption
for the solution to be uniformy continuous.

LEMVA (5.2) _Let a Jbe nonotone .decreasing .and

satisfy (al). Suppose that wu(t) _is a _solution of (5.1)

satisfying (B, and (B>)° and furthernore

(Ulr) the function f(t,u(t)) JLS uniform y continuous on

[T,00), for some TJ>0,

Then wu(t) satisfies (U)°.

PROOF. In viewof Lemma (5.1) (iv), we need only
prove (U)l. From (5.1), for t2 >t we have
a(t-) - U(t,) = -f L (a(t,-T) - a(t,-T))g(u(T))dT
(5.13)
t2
-] alte De(uM)AT + f(tz,u(t))-F(ta,uly).
1

Let g =sup |g(u(t))j, which is finite by (Bj. The
T, 00) *

second termon the right of (5.13) is clearly uniformy snall
with t, - t.J_ small on [T,00). The third termis uniformy
conti nuous by hypothesis. The first termis domnated, in

absol ute val ue, by,

-
ngl (alteT) - a(teT))dT £ T - JE?(A)dA]
aid each termis again uniformy small vvith-tz_ - t, in

L
t X AI T-
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Theorem (5.1) and Lemma (5.2), together with the weak
stability principle, Theorem (3.1), give asymptotic stability
of equation (5.1) provided that for each solution u(t),
condition (Uf) is satisfied. For equation (5.3), the
homogeneous equation, condition (Uf) is trivially satisfied.
For the unperturbed equation (5.2), condition (Uf) is
satisfied if and only if the function £(t) is uniformly
continuous. For the general equation (5.1), we need the
additional assumption (F2). We summarize this basic
stability result as follows:

THEOREM (5.2) Suppose that (al) - (a4),(Gl) and (G3)

hold. Then'yg have:

. . = o,
(1) for equation (5.1),(ag),(F ), (F,) (85),(87) 75

(ii) for eguation (5.2),(F;),(G,) = (5.),(51)°;

(iii) for eguation (5.3),(5;)® holds.

PROOF. Since (ii) and (iii) are simple consequences
of (i), we need prove only (i). In view of Lemma (5.2),
it suffices to show that conditien (Uf) is satisfied for
every solution u(t).In order to show this we first prove
that wu(t) satisfies (B3)1. Observe that Theorem (5.1)
implies (Bi)' 5)
boundedness of f£), yields |u(t)| < B. Next, we see that

This, together with (a and (F2), (the

for any tl’t2~2 0O,
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| £(ty,ulty)) - £(t,ule)) ] < [£ey,ulty)) - £t ,ult,))]

+ £t ,ulty)) - £(E,ulty))]

< Mlty-ty| + Mlu(ty) - u(t;)

.

Since (B3)l = (U)O, this proves (Uf) and hence completes
the proof.

We note that if (G is replaced by the weaker assumptions

3)

(Go) and (Gz).in the above result, then the

conclusion is that all solutions satisfy (So) instead

of (Sl)o. As a simple example of a function £(t,u)
satisfying (FO) and (F2) with respect to g satisfying
(Gl) and (G3), we take f(t,u) = a(t)H(u) where
a(t)eLl[O,oo), H(u) 1is sublinear in the sense that

|H(w)| < RK(1+|u]), and g(u) = (sgn u)lulk, k > o.

Remark (5.2) Levin [8] proved Theorem (5.2) (iii) for

the homogeneous equation (5.3) under the stronger assumption
(5.4). Hannsgen [6] improved Levin's result,under assumptions
slightly weaker than (al) - (a4), in that no differentiability
requirement on a(t) is made. Hannsgen's proof is based

on showing that u(t) is bounded. He assumed either

(i) a(0) < co and If(t)[ bounded or (ii) (ag) and

|£(t)| bounded. The boundedness of |u(t)| would of course
imply (U)o. Our point here is that uniform continuity of

u(t) itself is enough hence we obtain the slightly stronger
result as summarized in Theorem (5.2) above.

In the case of the unperturbed equation (5.2) the asymptotic
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stability of g(u(t)) together with some additional assunptions
on a and f will yield the stability results (S:)* with
k=1, 2.

THECREM (5.3) Let (a" - (as), (G", (&) (G) _and (F)

——

hold. JE f(t) Js uniformy continuous, then every solution

u(t) satisfies (S*'. If in.addition (as) holds and

f(t) -+ 0 as t ->o00, then u(t) satisfies (S_"Z.

PROOF. W note that fromthe proof of Lemma (5. 2),
every solution satisfies (U L Thus, it follows from
Lemma (5.1) (v) that every solution satisfies (S
Next, we differentiate (5.2) to obtain

(5.14) U(t) =-a(0)g(u(t)) - f ta' (t-*r) g(u( T) )dr +f‘(t) .

Jo

(Not e t hat a(0) exists and is finite.) By Theorem
(5.2), every solution satisfies (). Thus the first term
on the right tends to zero. The third termtends to zero

by hypothesis. To estimate the second term we proceed as

foll ows ;
t A N
IJJO@((WW)QI(u((ﬂ))))OﬂﬂI £ Ji (((1) *+~UO) a’ (t-T)g(u(T))dT|

T

£ sup lg(u(t)] [ |a'(t-T)[dT + sup lg(u(t))|(a(t)-a(T))

te[O,T] o te[ T,QD)

ot

= sup  |g(u(t))]j |.a’(a)|da + sup lgCu(t)) | (a(t)-a(T)) .

te[O,T] t-T te[ T,00)

Since a'eL, we can meke the integral small for fixed T by
choosing t large. On the other hand, by (So), t he second

termcan be made small by choosing T sufficiently large. Hence
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the desired conclusion foll ows.

Remark (5.3) Concl usi ons concerning (Sj_)k k = 1,2

were obtained by Levin [8] for the honbgeneous equation (5.3)
under the stronger assunption (5.4). Results concerning
(SQ" k = 1,2 and (S;) for equation (5.2) seemto be given
here for the first tine.
Hypot hesi s (Fo),(F,) are anal ogous to the assunption
t hat feL,l for the i near equation (5.5). Thus, Theorem
(5.2) may be considered as a generalization of cases one
and two discussed earlier in this section. W now present
sone results in these cases corresponding to the concl usions
about the integral of the solution. Here, as in the l|inear
case, the distinction between a(oo) >0 or a(oo) =0
becomes inportant. For sinplicity, we treat only (5.2).
THEOREM.(5.4) Let (a™ - (as) , (G"(63), (G) and

(Fl) hold and f (t) be uniformy continuous. Then for

any solution of (5.2), we have

(i) (a2 = (S

(ii) (a9 => (S2), _and in particular,,

t WO +1 f(t)dt
(5. 15) lim J g(u(T)dT = LQ
oo o Jeea(t)d

PROOF (i) Since f(t) is uniformy continuous and
satisfies (F,) , it nust be sothat f(t) -« O as t -» 00.
By Theorem (5.3), u(t) satisfies (S/‘l. Wite (5.1) as
t t
(5.16) a(o00)J g(u(T))dT =-u(t) +f(t) - J (a(t-T)-a(oo) ) g(u(T)) dr,
- O

<
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Theorem 5.2 shows that g(u(t)) - 0. Then the argunent
just used in the proof of Theorem 5.3 shows that the |ast
termin (5.16) tends to zero as t tends to infinity.

By hypothesis, a(oo) > 0, thus we obtain from (5.16) the
ot

desi red concl usi on that "g(u(T))dT ->0 as t -* oo
J
o]

(ii) The proof given here is

essentially the same as that of Levin [8] in the i near

case. W reprodube it here. Let w(t) =" g(u(T))dT.
J
o]
W integrate (5.2) to obtain,
t t
u(t) - u(o) - ¢ F(T)dT = -1 a(T-cr)g(u((r))da
Jo Jo
rt pt'Cr
= -1 g(u(a) |  a()dT
o] *0

23 a(t-T)wT)dT.
Q

We assert first that w(t) nust remain bounded. Suppose
not; then there nust exist a sequence {tn) such t hat

tp- co and |wWMtg | t oo with |[w(t)] £ |w(t,)]| for

o~rt Mt " Since g(u(t)) = w(t) is bounded, (by

Theorem (5.1)), w(t) is uniformy continuous and hence there
exi sts a sequence Tn,Tn-» 00, Tn £ tn, such t hat

| w(t) | "-:];-|w(tn)| in [tr- Th t¢e]. In particular, wt)

and vv(tn) have the sanme sign on these intervals. From
(5.17), it followsthat,

t t t
(5.18) u(ty)-u(O-f " f(t)dt = -\ " "a(t pTw(r)dT- jaapt -pwTdT.

The two integrals on the right of (5.18) may be estinmated as

foll ows:
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t -T
|f n n n00
o a(tn—T)W(T)dT| < ‘w(tn)IJT a(t)dr
n

t T
lftn_Ta(t—T)w(T)dT|_2-%|w(tn)|jon a(T)ar .
n n

Thus, (5.18) gives,

' t T 00
(5.19) |u(t )-u(0)-] ™ £(e)at| > Hwie )| (] Ra(r)ar-2] a(mar) .
o o T
n

The left hand side of (5.19) is bounded, by (Fl)‘ and

Theorem (5.1), but the right hand side tends to infinity,
which is impossible, Hence|w(t)| must be bounded. We

now rewrite (5.18) as,

At t -T
u(t) - u(o) - f N ofie)dt = -f n 'n

(o] o]

a(tn—T)w(T)dT

(5.20)

t tn
a(tn—T)(W(T)—W(tn))dT - w(tn)J a(tn—T)dT.

tTh o Th

implies the first

Since w(t) 1is bounded, we see that (a5)

two terms on the right of (5.20) tend to zero as t - .

Theorem (5.2) is applicable here, hence 1lim u(tn) = 0 and
n-00

(0 0)
u<o)+f £(t)dt
lim w(tn) = 00o
n—® I a(t)dt
o

Since w(t) is uniformly continuous, this proves (5.15),

Remark (5.4) Theorem (5.4) (ii) in the special case

when g 1is linear and f(t) = O is proved by Lévin [8]

under the stronger assumption (5.4).

Theorems (5.2),(5.3) and (5.4) give fairly complete

analogs of the results for cases (1) and (2) of the linear
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equation (5.5). We proceed to give analogs of cases (3)
and (4) in which the perturbing term £(t,u) contains a
constant term. These come from Theorem 3.1, its corollary’
and fheorem 3.2. We restrict ourselves to the discussion
of the unperturbed équation (5.2) in the following form :

t

(5.21) u(t) = -
[e]

a(t-1)g(u(r))dr + £(o0) + fl(t),

where fl(t)eLl[O,co). Similar conclusions for the more
general equation (5.1l) can be obtained under suitable assump-
tions. The result corresponding to case (3) of the linear

equation (5.5) is:

THEOREM(5.5) Suppose that (al) - (34):(36),(38)

(G1),(G4) (G,) hold, and moreover that |f1(t)| is bounded.

Then any solution of (5.21) satisfies (Bo)’(Bl)’(B3)k’

k=0,1,2, (So),(sl)k k = 0,1, and (Eé), In particular, we

have-
t
£ (o0
(5.22) jo g(u(Tr))dr - —a'l(-cg-g- .

Proof: We observe that £(t) = f(oc0) + fl(t),fleLl together

with (G4) imply that (fo) of section 3 holds, as does (Go).

Theorem (3.2) then yields (BO),(B3)°, (Bq) and(BQ for a(t) - a(o).
To get uniform continuity of u(t), we differentiate

(5.21) and obtain

t :
#(t) = a(o)g(ult)) - | a'(t-r)glu(n)ar + £ ().
o
Note that a(0) exists on account of (a8). Therefore,

it follows from (B,), (ag) and the boundedness of £(t),
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that fu(t)| is bounded which inplies (U *. Lemma (5.1) (iv)
gives (U° as well as (B3)l. Now (B;) and Theorem (3.1)
gives (S_)) which inplies (S,)° by (G). Since vl

hol ds, we al so have (Si)l. At this points we wish to

poi nt out that (B;)l hol ds by the nean val ue theorem together
with (B)° and (B>% Rewite (5.21) as

. pt ot
u(t) = -a(oo) ' g(u(T))dT - !

Since | f;(t) J is bounded and f~I"t(Q OO) ,f.l(t) -0, ast - OD.

a - af ocJel, and (So) i mply the second integral above tends

to zero. The desired conclusion (5.22) follows imediately.

Finally we consider Case 4. W find that the present
technique for treating the nonlinear equation does not yield
a full generalization of the linear result (5.12), even under
t he additional assunption (G*). However, a simlar result
can be obtained by inposing the stronger assunption (%q) -
The necessity of (ag) inthe validity of the follow ng

result remains an open question.

THEOREM (5.6) Assune that (a” - (as),(ag) , {Q’)’, (Gj.) , (64)

hol d for equation (5.21), where fifLiLO, 00). Then every

solution of (5.21) satisfies
(5.23) lim g(u(t)) = p = “le2)
t-co _r:Da(s)ds

o

PROOF. Let wu(t) be a solution and set
(5.24) v(t) =u(t) - g"*(i8), h(v) =g(v+g~'(j3)) - p.

In terns of these new variables, equation (5.21) reads

(a(t-T) - a(oo) )g(u(T)) d-r+ (00 ) +f,

(t).
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. Qo
(5.25)  v(t) = £,(t) + B[ a(t-mh(v(mar ,
t

which is an equation of the form (5.2) considered in Theorem
v

(5.2). Introduce the function H(v) = I h(z)dz. We find
o

by (5.24) that,
-1 -1
(5.26) H(v) = G(v+g (B)) - G(g “(B)) - Bv .

Note that H(v) > 0 for v # O (h'(v) > O if and only if g'(u) > O).
Moreover, since H"(v) = h'(v) > 0, H(v) - +® as |v| - oo

on account of (Gl). For v > 1, we have
1l v
H(v) = I h(z)dz + f h(z)dz > h(l)(v-1),
o) 1l

so that v g'ﬁ%TT H(v) + 1. Using this, we find by (G4)

and (5.26) that
Ih(v)| = |g(v+a™1(8))-B| < M(1+G(v+g 1 (B))) + |B]
< |8l + M(1+H(V)+G(g~ 1 (B))+]| B8] V)

< 181 + m1e]8l+c" (g™ gy 1)Ll Y n(v)

< K(1+H(Vv)),
for some appropriate constant K. We apply Theorem (5.2) (ii)
to (5.25) and infer that h(v(t)) - O as t - o which
is (5.23).
We now return to the discussion of a slightly more
general equation than (5.18), namely

t
(5.27)  a(t) = -b(t) - | alt-m)g(u(r))ar + £(t),
o
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where b(t) behaves roughly like a constant. Such an
equat i on was considered in Levin and Nohel [10] , The results
wer e extended by Hannsgen [6]. 1In both [6] and [ 10],

the fol | owing conditions on b(t) were assuned:

(b)) There exists a function c(t)€C'[0,00) such that
(i) b2(t) £ a(t)c(t), (iii) |b'(t)] £ B
(i) (b (1)) £a (t)c'(t).

In case b(t) =To, and a(oo) ™ 0, we may take c(t) *:b2/a(oo)
a constant. Qur purpose here istoshowthat a result simlar
to Theorem (5.2) holds for equation (5.27), thus generali zing
the above nentioned results.

THECREM (5.7) Assune that _(a” - (as) , (ag , (&, (&),
(&), (bgs(Fg, (F*, (F) _hold. _Then_every solution u(t)
of (5.27) satisfies (Sy)°.

.PROOF. Wthout |oss of generality, we may assune that

a(t) >0 and a'(t) <0 for all t >0. As in Theorem (3.2)

we 'conplete the square' and obtain the foll owi ng energy

i nequal ity:.

clu(m) - GUO, **I12. ((T,AN,2 L N8 - X Jigl a

(5.28) +3 AyAL (er(A[)]-)2 dt -\ I TH(DE + Ko
0] 0]
I T T
+ 0 f a'(T)(fJ g(u(s))ds)?dT + foIf()[G(u(t))dt,
0] T-T 0] .
t t t
where <r(t) = f g(u(T))dx , H(t) = f (f g(u(s))ds)? da'(r).
e Jo Yt-T y

and K, is sone appropriate constant.
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An application of condition (bg to the second and third
terms of the right hand side of (5.28) yields (Bg), that is
Gu(t)) is bounded. To apply our weak stability principle
we need to show t hat Q[g(u) T] is bounded. We note that

<5.29) Q[ g(u) ,T] -||S|f'z ai J a (t)“ B ae

+\J Ht)d \J\l t-{ (s))ds)? dr

The boundedness of the last two terns on the right of (5.29)

follows fromthe energy inequality (5.28). From (5.28),

we al so have

(5. 30) \ a(M(7%(T) +b(T)a(T) £ M
T 2
(5.31) - (FHYEAS -+ b* (t)a(t))dt » M, .

Notethat condition (bc) implies that c' (t) <€ 0 or
c(t) ~ c(0), t~ 0. Thus,

(5.32) Ib(t)a(t)] £ c(O)|a(t)cr(t)]

Also,
t t 2 1 t

I, B (Ma(MdT» (I M 1dT) 2 (I 5@ (T)az(T)dT)i
(5.33)

fc
= (c(@-ctN N 2792 (ryan?
(0]

Using (5.32) and (5.33) in (5.30) and (5.31), we obtain,by a

P 2

standard argunent, that a(t)a (t) and - ‘a (T)cr (T)dT; are
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bounded for all t, T~ 0. This together with (5.29) vyields

t he boundedness of Q [g(u);T]. The uniformcontinuity of
a

g(u(t)) follows from (F;) and (bg (iii). This conpletes
t he proof.

Remark (5.4) |If we assune in addition that (a-:’) hol ds,
then we can consider nore general equations w th perturbing
terms f(t,u) under assunption (@)t "" extension of this type
has been considered by Levin and Nohel [10]. W refer the
reader to their work for further details.

W are now in a position to anplify the remarks concerning
second order equations discussed in section 3. W consider

equations of the followng form;

t
(5.34)  u(t) =cg(u(t)) - fb(t--r) g(u( T) )dT + h(t) .
0
1
Setting a(t) =c + . b(T)dT, we can rewite (5.34) as,
. 0
- t
(5.35) u(t)=cg(u(t)) - J a (t-nr) g(u(T) )T + h(t) .
0

Integrating (5.35), we have
(5.36) uU(t) = -1 a(t-Tg(u(T))dT + u(0) + + h(-r)dT.
Jo Jo

Appl yi ng Theorem (5.6) to (5.36), we obtain:

THEOREM (5.8) Supposeé that (-1 bX(t) ~ 0, k = 0,1,
and (G), (GO, (G) hold and that

(5.37) c +J b(T)dT > 0.
Q
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00
Furthermore assume that heLl[O,oo) and f h(T)dTeLl[O,GO). Then
t

(i) _every solution of (5.36) satisfies (SO) and (Sl)o.
t .
(1i) If,in addition, c + | ber, them every solution of
o

(5.36) satisfies

QO
lim g(u(t)) = ulo) + fo h(t)dt

e P'a(t) dt

(o)

t
where a(t) = c + f b(T)dr.
o

Conclusion (i) given in Theorem (5.8) is closely related

to a result in [12] for the linear equation where the connection

with viscoelasticity is pointed out. This result of [12]

is complemented by conclusion (ii) which shows that asymptotic

stability is lost when a(oo) = 0. Condition (5.37) was

also used by Dafermos [1l] in connection with problems of

linear viscoelasticity.
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6. PARTI AL DI FFERENTI AL FUNCTI ONAL EQUATI ONS

In this section, we give sone first steps in the
application of the weak stability principle in infinite
di mensi onal spaces, a situation rather different fromfinite
di mensi onal spaces. The basic problemin the theory is to
obtain the weak uniformcontinuity. W have obtai ned com
plete results only in the linear case. W present two
exanpl es of the linear theory, one in sone detail. This
is followed by a discussion of a sinple nonl i near case
intended to isolate the difficulties.

W consider the |linear equation*

t
(6.1) u(x,t) = - J a(t-T)Lu(x,t)dr + fo(x) + f. (X, t), 2

*0
where the basic space M= L,(H), O a bounded region in
3R" L is a symmetric strongly elliptic operator of the

form

(6.2) Lu=¢ (-DI% D*a*’ D" u),
la|<m

where the coefficients a?” = a*® are snooth functions which

depend only on x. The notation here is the standard one:

a= (a,...,ay wWththe a”s non negative integers,
|l x| =cu+ ... +a and
I m

- a
D* u = (éii) o> buaq u-

In order to obtain certain a priori estinmates on the

*The results of section four permt an obvious extension to
systens of equations.
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solution, we require some well known results in partial
differential equations. First, we require that solutions
should be in Hg which is the completion of Cgo((D
under the norm,
(6.3) 2= = ] o"w? ax

la|<m
(Thus, we are imposing 'Dirichlet' boundary conditions). To
avoid technical statements of hypothesis, we assume from

‘the outset that aaB eCoo(?», 3 is c® and fecg)(fb.

Equation (6.1) is of the form (3.1l) for which results
in section 3 are applicable. A(t) is simply a(t) times
the identity, therefore it defines a one parameter
family of bounded linear operators on LZ(SD, and g is
the differential operator L which is accordingly unbounded
with domain dense in L2(§». On the space Hg there is

the bilinear functional B(u,v) defined by’

(6.4) B(u,v) = J;)(Lu)v dx = J;IDQV a%B DBu dx

This definition is made first for uw and v in CgO(S»
and then by completion for u,veHg . It is well known
from results on elliptic partial differential éperators
that:

LEMMA (6.1) For all u,veHg R

(1) [B(u,v)| < K|l (vl 3
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(ii) (G3rding's inequality)

2
B(u,u) > e [lul2 - e w2,

where c_,c, are positive constants and | I, denotes the

L2 norm.

We now make a special assumption on the operator L:

o)
(M) the constant S in Garding's inequality

can be taken as zero.

(This is precisely the condition that the generalized Dirichlet
problem for ©TLu = f should have a solution. For further
comment see remark 6.1 following the proof of the theorem.)

We can now state the main result of this section.

THEOREM (6.1) Let f{a(t) : t > 0} define a strongly

positive kernel. Suppose that a(oo) exists and is

positive and that assumption (a7) is satisfied. Then if

(6.5) €, (-, )], eL;(0,00)
and
(6.6) anJJ.,qu €L, (0,0),

any solution of (6.1) satisfies,

(6.7) lim fu(-,e)|| = o.
t-00

PROOF. We will use the weak stability principle,
Theorem (2.1). Let us assume for the moment that we have
established the necessary conditions to apply Theorem (2.1).

Then the conclusion will be that Lu converges weakly to
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zero in Lp(”). Wewll showthat this inplies the desired
conclusion (6.7).

The weak convergence of Lu inplies first that

(6.8) | Mo £ Ko, Ko constant.

As part of the proof to followwe will also show that ||q|0
I's bounded. Then it follows froma priori inequalities
for strongly elliptic equations (see [2], Theorem 18.1) and

(6.8) that

(6 9) N"m< Klu KI constant _
Here |[["11. g 7 formed in the sane way as ||« ||, in
(6.3). Suppose now that ||u(t)||n does not tend to zero.

Then there exists an e > 0 and a sequence t n~* 00 such
t hat ||u(tn)|| Ne. Nowby (6.9), we knowthat the set
{u(tn)} I's bounded in I-gm (the conpl etion of C‘g’{Q)
under ||#].I2m)- It is a standard theoremin partial
differential equations that the enbedding H? -« H? is conpact
if k >j. Thus the set {u(tn)} IS conpact in HZm—j for
any j, 1 <f£j_<" 2mand accordingly a subsequence u(t )

"k
converges to u e I—ﬁ e But this subsequence nmust converge

to zero since for each we H |,

m
O=1Ilim (Lu(t ),v) =1im B(u(t ),v),
k~o0 "k k- 00 "k

Moreover, by Lemma (6.1) (i), B(u,v) is continuous in

H for a fixed v. Thus B(u,v) =0 for all v e H°,
m — ' m

hence u = 0. This contradicts the assunption ||u(t hllm ~ e > 0.
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W now turn to a proof that the weak stability-

principle is applicable. Following remark (3.3), we define

Gu) by
(6. 10) Gu) = "(u,Lu) =~B(u,u).

It follows inmediately from GSr di ng's inequality, under
assunption (M, that assunption (@) of section 3
is satisfied. Moreover we have & G(u) = (ufcsLu}.

Al so, for any u,vel—fl’_l we have,

2
(6.11) |B(u,v)|? ~2B(U) ||M|m, K constant.
Thus, we have,
| (Lu, f)[ = [B(u,f)| £ KB u|[f[|m
(6.12) ]
=2 KQu)[f|"Mm
Not e that

2Qu) 11+ G(u) ™ (1 + G(u))?

whi ch, together with (6.12), inplies assunption (Fo) in
section 3. Thus, by Theorem (3.2), we deduce that G u)

and QA[Lu:T] are bounded. Fromthe boundedness of

B(u,u) and Gr di ng" s inequality follows both the boundedness
[|u|, used above and the weak boundedness of Lu. It remains
to discuss the requirenent of weak uniformcontinuity.
Differentiating (6.1), we obtain

ot ~
(6.13) ura(x,t) = -J_a(t-TLug(x,<r)dT + f(x, 1),
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where ?(x,t) = -a(t)Lu(x,O +f”_|;1(_x,t). Wth the assunption
(6.6), we can consider equation (6. 13) in the same formas

equation (6.1), where F(x,t) = fio(x) + ?21(x,t),

'f“éx) = -a(oo)Lu(x,0) and f2AXjt) = -(a(t)-a(ao) )Lu(x,O + f (x,t).

T and T, satisfy the same conditions as fo(*) 2nd
o 1 :

fl(x, t). Thus, an application of Theorem (3.2) yields the
weak boundedness of Lu,t, hence the weak uniformcontinuity
of Lu. This conpletes the proof.

Corollary (6.1) Let {a(t) : t J>0} define a" positive

kernel. Suppose that ||a(t)|| and__|[f(-,t)||m [If" (s t) ||£€Li(QoO00) .

Then every solution of_

al
u, (x,t) = - a(t-T)Lu(x,t)dT + f(x,t),
C O i
satisfies (6.7).

Remark (6.1) Sonething like hypothesis (M is

necessary if we are to obtain asynptotic stability as the
foll owi ng exanpl e shows. Consider the equation
t

(6.14) u.(x,t) = f ~2'~T (u (X T) + Xu(x,T))dT,
with u(0) =u(l) = 0. Here, the energy function G u)
I's determ ned by

1 2

B(u,u) =J (u* - Au‘)dx,

0

so C=c¢c*=1 1in Ggrdi ng's inequality. It is not hard

to see that if A is large enough there will be solutions
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of (6.14) of the form u(x,t) = T(t) sin mx in which T
Qrch exponentially with t. We remark that (M) is always
satisfied if L 1is homogeneous of degree 2m with constant
coefficients.

We now return to equation (6.1l) and consider the situation
when fo(x) Z O and a(t)eLl(O,oo), a case also considered
in the one dimensional equation. Here, also we show that

in some cases, asymptotic stability cannot be expected.

We observe that the differential operator L has
a bounded inverse if we restrict the range of L—lu to
lie in Hg . This observation is simply the statement
that the generalized Dirichlet boundary value problem, Lu = £,
m
~has a solution in Ho for every ,feLz((».

THEOREM (7.2) Suppose that a(t) satisfies assumptions

(al) - (a4) in section 4 and that a(t)eLl(O,a))

fee)
and I a(q)dr ¢ Ll(O,an). Furthermore, we assume that
. " re

hypothesis (M) holds for L. Let u be a solution of

t
(6.15) u,(x,t) = -J'o a(t-m)Lu(x,Mdr + £_(x) + £, (x,t),

where foeLz(K» and fl satisfies (6.5) and (6.6). Then u

satisfies the following:




61

(6.16) lim [Ju(-,t) - “(-)|lm = O

t—o
where u(x) _is the (unique) solution £Q £lif. generahzed"
Dirichlet problem Lu = ueE% wth A= g a(t)dt.

PROOF. W can rewite (6.15) as

(6.17) ure(x,t) = -3 a(t-T) (Lu(x, T)-Lu(x))dT + (J a( T) dT) fx)+ 1«(x, t)
o t

Let v(x,t) = u(x,t) - u(x). We see from (6.17) that

|
,t ;00

vt.(x,t) = -IJO a(t~7)Lv(x,T)dT + th a(T)dT)fO(x) + fl.(x,t),
which is of the form (6.1). The desired result follows from
Corollary (6.1).
Results given in Theorens (6.1) and (6.2) allowus to
treat sonme second order equations in nmuch of the sanme way

as in the one dinensional case. Consider
t
r
(6.18) u.. (x,t) = -a(OLu(x,,t) - 'a(t-T) Lu(x, T)dT + f(x,t),
whi ch can be transforned into equation (6.1) by a sinple integra-
tion. If we apply Theorem (6.1), we have the follow ng

result:

THEOREM (6.3) Suppose that (a.) - (aa) of section 4
i f.

are satt+sf+ed for a(t). -Suppose further that t+he operator
L -sattsftes hypottests (M =anmdt f satt+sf+es (6.5 -ard

Hfoof(-,w)dTHm €17(0, 00)..
t

Then every solution of (6.18) satisfies (6.7).
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Remark (6.2). Dafermos [l] proves a theorem which is

similar to Theorem (6.3) in the case where I 1is a bounded
interval in ]Rl. His proof is based upon the construction
of certain Lyapunov function, a technique used by Levin [8].

We close our discussion with some remarks concerning
a nonlinear problem. Consider the equation,

t d

(6.19) u(x,t) = foa(t-T)gz o(u)dr, u(0) = u(l) = o,
where the underlying space is H = L2(O,1). We assume
as before that a(t) satisfies conditions (al) - (a4)
in section 4 and herice a(t)I defines a strongly positive
kernel on L2(O,l). To find a suitable energy function
G(u), we cannot use the general idea given in section 3 but
we can use the special form of (6.19). Define the function

G(u) on L2(O,1) n Cl(o,l) by
1 .u

(6.20) G(u) = f (f X 5(&£)dE)dx.
(@] (o]

Then we have,

4 1
(6.21) £ c(u) =f glu) u, dx = (glu),u).
o)

If we impose the further condition,
(6.22) g'(§) >m >0 g(0) = o,
then we have,
1 b2
(6.23) G(u) >3 mj'o u ? dax.

Recall that for functions vanishing at 0 and 1 we alwéys have
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(6. 24) 35 U2 dxAc fvluzdx, c >0

0 0
Hence (6.23) and (6.24) together inply that G as defined
by (6.20),satisfies hypotheses (&) and (G') of section 3.
Theorem (3.1) inplies that GQu) and Q[g(u);T] are
bounded and in particular, HuJ® and ||uj], are al so bounded
for all t ~ 0. To obtain the second part of Theorem (3.1),
we observe that
(6.2  (g(u),v) = J X a(u)vix = I a(ug)vy dx,

0 0

for all veC®[0,1]. Since C*[0,1] is dense in J* ,
weak boundedness of g(u) wll follow if we can show t hat
the last integral in (6.25) is bounded for each fixed v.
We conme now to the first difficulty with nonlinear problens,
| nanely, the estimate (6.23) does not apply to
(6.25) so as to inply weak boundedness of g(u). More
precisely, since ex is not a linear function, we cannot
use Schwarz inequality as in the previous case with |inear
equations. Thus, we have to nmake further assunptions on a.
W assune that

(6.26) lcr(€)] < mé€ + KE", 0<r <2
Using (6.26), we nmay estimate (g(u),v) in (6.25) by
HGl der's inequality as follows:

1 2 1 2 -2;5
F'(g(u),v)| £ K} gQ u, dx + Kz(fJQ u, dx) ,

HTUMALY
CANNNVE-BELLOX ((|\Ei(S)Y.
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where K,,K, are positive constants depending on vecg)[o,ll.
Thus for the type of nonlinearity (6.26), we obtain weak
boundedness of solution of (6.19). Other algebraic rates

of growth condition may be imposed on o instead of (6.26);

for example, let
o(&) = |£]* sgh £, a > O.
Then, the energy functional G 1is given by
1
_ 1 a+l
G(u) = =5 IO qu| dx.

Thus, we can apply Holder's inequality to obtain

1 1
(g, v | < (] Tul®h an’a
o

where Co is a constant depending on v.
To obtain weak stability of solutions of equation (6.19),

we need to verify the weak uniform continuity of g(u),
namely the uniform continuity of

el

J U(ux(x,t))vx(x)dx,

o
for all vech[o,l]. If this condition is satisfied, then

we obtain from Theorem (3.1l) that g% o(ux) converges

weakly to zero. Note that the weak convergence of g% o(ux)

implies the boundedness of
1 1
=) 2 _ 2
fo(ax o(ux)) dx = jo 0'(ux) u . dx;

hence,by (6.22), the boundedness of I uxx2 dx. Since
o)

the embedding of Hi into Hi is compact, we would deduce,
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as in the proof of Theorem (6.1), that

rt 2
J ux (x,t)dx -« 0 as t —CD.
0

Unfortunately, we are unable to prove the weak uniform
continuity of solutions (6.19). The device of differentiating
the equation, as we did for the linear equation (6.1)» of

course fails for the nonlinear case.
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