
STABILITY THEOREMS FOR SOME

FUNCTIONAL DIFFERENTIAL EQUATIONS

by

R. C. MacCamy* and J. S. W. Wong

Report 70-10

March, 1970

(Contract)Acknowledgement

This research was supported by NSF Grant GP-11945

University Llbrarlet
Carnegie M U J ! 2 2 *



1. INTRODUCTION

This paper concerns a class of nonlinear functional

differential equations. A prototype for this class is

the equation,

Pt
(1.1) u(t) = -J a(t-T)g(u(T))dT.

This equation has been the subject of a great deal of work,

primarily that of Levin and Nohel. The main goal is to

obtain conditions on a and g which guarantee that all

solutions tend to zero as t tends to infinity. The first

result in this direction ([9]) asserts that asymptotic

stability holds if, ug(u) is positive when u ^ 0 and a

is completely monotone, that is,

(1.2) a' (t)/*0, (-Dk a ( k ) (t) ^ 0 k = 0,1,2,

This result was improved in ([8]) where it is shown that

(1.2) need hold only for k = 0,1,2,3. More recently

Hannsgen [6] has shown that (1.2) need hold only for

k = 0,1,2. At the same time it has been shown that one

can obtain some stability results for the perturbed equation,

(1.3) u(t) = -f a(t-T)g(u(T))dT + f(t,u(t)).

Jo

All of the results of Hannsgen, Levin and Nchel were

obtained through the use of Lyapunov functions. There was

however one paper, by Halanay [4], which attempted to

treat (1.1) by different methods. Halanay gave a proof of



T t
(1.4) q(T;h) = J h(t) J a(t-T)h(T)dT dt ̂  0,.

asymptotic stability of solutions of (1.1) under assumption

(1.2) k = 0,1,2. Halanay!s proof is incorrect at several

places. However, it seems to us that the proof con-

tains an idea of great interest and importance. It is this

idea which is developed in the present paper and we proceed

to describe it here in a general way.

One can show that if g satisfies certain conditions and

a is a positive kernel; that is for any heC[O,oo ) ,

rT rt
h(t)

o Jo

for all T, then all solutions of (1.1) remain bounded for

all t. It is known that a is a positive kernel if its

Laplace transform a(s) satisfies the condition, *

(1.5) Re a(s) > 0 in Re s > 0.

It can be shown (see section 4) that (1.2) for k = 0,1,2

implies (1.5) and hence stability of solutions of (1.1).

Halanay!s idea was that, in fact, (1.2) for k = 0,1,2

implies something stronger than (1.4) for a and hence

yields asymptotic stability. He attempted to show that if

(1.2) holds for k = 0,1,2 then for some positive € and

a the kernel a(t) = a(t) - ee~a is still positive.

This has the effect of sharpening (1.4) to,

T fc T1 0

(1.6) J h(t) J a(t-T)h(T)dT dt ̂  €C2(T) + ae[ C (t)dt
o o o

where,



It turns out that the rather curious estimate (1.6)

is sufficient to yield asymptotic stability of solutions

of (1.1). Halanayfs proof that e and a can be found

is incorrect. However he had what we believe is the

essential idea namely that what is necessary is roughly

that (1.5) be sharpened to,

(1.7) Re a(s) > 0 on Re s = 0 s / 0.

In this paper we both clarify and extend Halanayfs

idea. When it is properly phrased it becomes clear that

it can be extended to systems of equations and even to

certain partial differential equations. Thus we phrase

the whole theory on a Hilbert space & allowing g to

be an unbounded operator but requiring a to be bounded

and linear. The essential idea is to extend the inequality

(1.6), which we term strong positivity. In the general

setting the role of e~ is taken over by a semi-group

whose infinitesimal generator is negative definite.

We apply the notion of strong positivity only in very

special cases. However the theory seems to us to be of

sufficient interest on its own to warrant a more general

discussion on Hilbert spaces and we present this in

sections two and four. The discussion centers around the

Laplace transform of the kernel a and we show that (1.7)

is indeed the key requirement. We show that (1.2) for

k = 0,1,2 is sufficient for strong positivity on finite

dimensional spaces but not in general. On the other hand



we consider the case 3R in detail and show that (1.2) is

in no sense necessary. In fact we show that there exist

oscillatory kernels, for example e cos t, which are

strongly positive and also that there are strongly positive

kernels which become infinite at t = 0. The main tool

for applications,which we obtain in section 2, is what we

call the weak stability principle. This states that jLf

h(t) _i£ weakly bounded and weakly uniformly continuous

in t ̂ > 0 and q(T;h) JLS. bounded for all T then h

must tend weakly to zero as t tends to infinity.

In section 3 we present a discussion of the generalized

equations (1.1) and (1.3). We distinguish between positive

and strongly positive kernels, showing that, roughly

speaking, positivity yields stability while strong positivity

yields asymptotic stability. Our main result is of a con-

ditional nature and has the following general form. _If a

is strongly positive and u jjs ja solution of (1.3) such

that g(u) JLS weakly bounded and weakly uniformly continuous

then g(u) tends weakly to zero as t tends to infinity.

There are of course a number of technical hypotheses

which are required and we discuss these in detail in section

three. The interesting feature, though, is the Tweak-weak?

character of the result. In finite dimensional spaces this

aspect ceases to be of importance hence does not appear in

Halanay?s work. For partial differential equations, however,

it becomes very important for it is the weak boundedness

and continuity which is most easily verified. Moreover weak



convergence of g(u) in one space, together with standard

embedding theorems, yields strong convergence of u to

zero in a different space. It is thus interesting that it

is the *weak-weak1 results which come out naturally from

the theory. The corresponding fstrong-strong1 results (in

obvious terminology) require stronger hypotheses on a but

at the same time are not of as great interest.

In section five we give extensive and concrete applica-

tions of the theory to the equation (1.3) in IR . We obtain

most of the known results as well as some new ones and, we

feel, clarify the roles of the various special hypotheses

on g and f which occur in earlier papers. Our work on

strongly positive kernels shows that (1.2), k = 0,1,2 are

only one set of hypotheses and that the results may hold

for oscillatory kernels or kernels which are infinite at

zero. We have included in section 5 a heuristic discussion

of the linear version of (1.3) and we then proceed to obtain

generalizations of the results to nonlinear equations. We

call attention in particular to Theorem 5.6 in which we

show that if aeL, and . f(t,u) = f + h(t),h€L, then

solutions of (1.3) need not tend to zero.

For equations in 3R we are able to verify the neces-

sary boundedness and uniform continuity of solutions from

the equations themselves. It will be clear that most of

the results in 3R carry over directly to equations in IRn

although we do not discuss these explicitly. For partial

differential-functional equations the situation is not so



simple. To illustrate this we present a brief

discussion of such equations in section six. We study

primarily the linear equation,

r
o

(1.8) ufc(x,t) = -J a(t-T)Lu(x,T)dT + f(x,t)

where L is a strongly elliptic differential operator and

a is a strongly positive kernel in 3R . We show how the

general theory of this paper connects to (1.8) through

standard results in partial differential equation theory

and thus we obtain asymptotic stability results for (1.8).

These are related to some recent work of Dafermos [1],

in which he extends the ideas of Levin and Nohel to equations

on Hilbert spaces.

It is only in the linear case that we are able to

carry through the theory completely. We present, in section

six, a simple example of a nonlinear equation for which we

can prove the weak boundedness but not the weak uniform con-

tinuity.



2 . WEAK STABILITY PRINCIPLE

Let W be a Hilbert space, and Cw[0,oo) be the

space of all continuous functions on [0,oo) with values

in W. A = (A(t) : te[0,oo)} is a strongly continuous

one parameter family of bounded linear operators on M.

For fixed T > 0, we define the functional Q~ [v;T] on

CM[0,oo) by

T t
(2.1) Q~[v;T] = f (v(t),f A(t-T) v (T)d*r)dt,

A o Jo

where (•>•) denotes the inner product on Ji.

We say that the one parameter family H defines a

positive kernel if

(2. ) Q~ [v;T] > 0, for a l l veC^tO^oo) and T J> 0.

It is easy to see that if A(t) = cl for all te[0,oo)

where c is a nonnegative real constant and I denotes

the identity operator on tt, then

m

(2.3) QCI[v;T] = f \\J v(T)dT | |2 ^ 0, for a l l T > 0,
o

and thus cl defines a positive definite kernel.

We now introduce the notion of strongly positive

kernels. Let S be a symmetric linear operator on tt, such that

(2.4) (S4,4) 1 a |U||2, a > o, £eW.

Consider the uniformly continuous one parameter semi-group

S generated by S, namely, S = {ke~ : te[O,ao)},k > 0.

Consider now the functional Q<g [v;T] associated with S,

that is,

T t

(2.5) Q^[v;T] = f ( v ( t ) , k f e " S ( t " T ) v(T)dr)dt .



8

We set

a [ v ] ( t ) = f e*"S(t"T) v(T)dr,
J o

and observe t h a t ,

(2.6) ^ s [ v ] ( t ) = v ( t ) - S ( s l v ] ( t ) ) .

We form the inner p roduc t of [2 .6] wi th s[v] and ob t a in

(2.7) i - g : | | s [ v ] ( t ) | | 2 = ( v ( t ) , s [ v ] ( t ) ) - ( S s [ v ] ( t ) , s [ v ] ( t > )

For f ixed T > 0, we i n t e g r a t e equa t ion (2.7) from 0 to T

and o b t a i n , by ( 2 . 4 ) ,

T
(2.8) Q^[v;T] > ht\\ s [ v] (T) j | 2 + kcr f | |s[v] ( t ) | | 2 d t .

S ~ z Jo

We use the condition (2.8) to define the concept of a

strongly positive kernel. We say that A defines a strongly

positive kernel if there exists a symmetric S, satisfying (2.4),

and k > 0 such that if S = ke""st, then for all T > 0,

(2.9) Qr[v;T] ^> Q^[v;T] for all veCH[0,oo).

Clearly, any one parameter family A defining a strongly

positive kernel also defines a positive kernel.

We call an element v(t) in Cj,[O,oo) weakly stable

if for each welt, the function (v(t),w) is bounded and

uniformly continuous in t. In other words, v(t)eCy[O,oo )

is weakly stable if v(t) is weakly bounded and weakly

uniformly continuous. The following result forms the

basis of our present study. We term it the weak stability

principle,

THEOREM (2.1) Suppose that A _is strongly positive

and v(t) jus ji weakly stable element in CH[0,oo).. JEjf

Q^[v;T] _i£[ bounded for all T, then v(t) converges



weakly to zero,

PROOF. By hypothesis there exists a bounded S,

satisfying (2.4), such that if

(2.10) s[v](t) = f e~S(t~T) v(T)dT,
J o

then we have,

m

(2.11) Q£[v;T] ^ Cj^HstvKT)!!2 + c2 J || s[ v] (t) ||2dt,

where c i ^ c o > 0 # I f w e d i f f e r e n t i a t e ( 2 . 1 0 ) , we have,

from ( 2 . 6 ) ,

(2.12) ^ ( s [ v ] ( t ) , w ) = (v ( t ) ,w) - (Ss[v]

We observe that (2.11) and the assumption that

;T] is bounded for all T > 0 imply that

(2.13) | ( S s [ v ] ( t ) , w ) | i .Hs | | | | s [v ] ( t ) | | j |w | | ,

which is bounded for all t J> 0. Since (v(t),w) is bounded,

by hypothesis, it follows that the function cp(t) = (s[v](t),w)

has a bounded derivative, hence is uniformly continuous.

Furthermore it belongs to I^tO,^) since

o

T T
J | ( s [ v ] ( t ) , w ) | 2 d t £ ||w||2 J | | s [v ] ( t ) | | 2 d t .

It follows that lim cp(t) = 0. The uniform continuity of
t-oo

cp(.t) implies that of (Ss[v](t),w) = (s[v] (t) ,Sw), there-

fore cp* (t) is uniformly continuous on account of (2.12)

and the weak uniform continuity of v(t). It is then

an immediate consequence of the mean value theorem that

cp* (t) tends to zero, (see section 5) . Since



10

(Ss[v](t),w) = (s[v](t),Sw) tends to zero, (2.12) implies

that

JiS, (v(t),w) = 0,
completing the proof.

A natural question to ask, in light of Theorem(2.1) is

whether strong boundedness and uniform continuity of g(u)

imply strong convergence to zero. It turns out that this

is not true without further assumptions. We hope to return

to this at a later time.
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3. FUNCTIONAL-DIFFERENTIAL EQUATIONS,

We consider functional differential equations of

the form

,.t
(3.1) u(t) = - A(t-T)g(u(T))dT + £(t,u(t)), t ̂  0,

Jo

on a Hilbert space W. Here A = {A(t) : t ;> 0} is a

strongly continuous, one parameter family of bounded

linear operators on W, g is a transformation with domain

& c W, and f(t,v) is a mapping from [0,oo) X & into

&. By a solution of (3.1) we mean a map u : [0, oo) -» U

which satisfies the following conditions:

(i) u is strongly continuous on [0,oo);

(ii) u(t)e% for all te(O,oo)J

(iii) u is strongly differentiable on (O,oo)J

(iv) u satisfies (3.1) on (O5oo).

We leave aside questions of existence and uniqueness

of solutions of (3.1) although these are closely related

to our stability results, especially on finite dimensional

spaces. For convenience, we refer to (3.1) as the

perturbed equation and to its special cases

(3.2) u(t) = - J A(t-*r)g(u(T))dT + f(t), t ̂  0,
o

and

rt
(3.3) u(t) = -J A(t-T)g(u(T))dT,

o

as the unperturbed and homogeneous equations respectively.



(3.4) J (u(t),g(u(t)))dt + Qg[g(u);T] = J (f(t,u(t)),g(u(t)))dt.

12

We establish the connection between (3.1) and the

ideas of the preceding section by forming the inner

product of (3.1) and g(u(t)) and integrating from 0

to T. The result is the following:

o ~o

Our goal is to find conditions on f and g such that the

positivity of A will guarantee, by (3.1), the boundedness

of Qg [g(u);T]. Then if we impose strong positivity on

A, we can infer from Theorem (2.1) that if g(u) is weakly

stable it must tend to zero weakly. The verification of

weak stability of solutions of (3.1) is carried out, for

the most part, in the special cases discussed in detail in

sections 5 and 6. However, we do present some general

results applicable to (3.1).

Our basic hypothesis on g and f are as follows:

(G ) There exists a functional G(v) defined on

& which satisfies
g

(i) inf G(v) > -GO ,

(ii) G(v) is Frechet differentiable on fi and

grad G(v) = g(v) for all ve&g, i.e.

G(v+h) = G(v) + (g(v),h) + o(||h||),

as ||h|| - 0.

(P ) There exists a function aeL^tO,©©) such that

(3.5) | (f(t,v),g(v))| £

for all t ^ 0 and for all V€$q. The functional G is
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as postulated in (G ) .

Our basic boundedness and stability result is the

following.

THEOREM (3.1) Suppose that (G ) and (F ) hold,
O ————. Q — — — — .

and that u(t) is a solution to (3.1).

(i) JEf A defines a positive kernel, then |G(U(T))|

and Q~ [g(u) ;T] are bounded for all T J> 0.

(ii) J[f A defines a. strongly positive kernel, and

if g(u) JLS ja weakly stable element in Cy[0,oo), then g(u)

tends weakly to zero.

PROOF. Using the positivity of A, we obtain from

(3.4) the following estimate;

T T

f (u(t),g(u(t)))dt £ f (f(t,u(t)),g(u(t)))dt.

Assumptions (G ),(F ) and an application of the chain rule

together imply*

f
o o

from which it follows that

,.oo
x(t) dt) J

o

Substituting (3.6) into (3.4), we obtain

r< ...
o -̂  o

proving the boundedness of Q^[g(u);T]. The conclusion (ii)

of the theorem then follows from Theorem (2.1).

T T

G(u(T)) - G(u(O)) = / ^ G(u(t))dt £ J a(t)(l+G(u(t)))dt,

,.oo rT
(3.6) |G(u(T))| ^ (|G(u(O))| + I a(t) dt) a(t)dt < oo.

J o Jo

rn (*Ŷ

|G(u(o)) | J a(t)dt+^|G(u(t)) | J a(t)dt,
o ^ o

*The necessary condition on G is that -^ G(u)(t)) = (g(u(t),u)
We are showing here that G implies this. In section 6 we
will not have (G ) but th§ differentiation result will be
verified directly.

WIT UttAKY
CAfWftfE-fEUM KUVCRSffY
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Remark (3.1) The boundedness of G need not of course

imply the boundedness of either g(u) or u. If we

impose on g the additional hypothesis

(G-^ G(v) - oo as ||v|| - oo,

then (3.6) will imply that ||u(t)|| is bounded. If in

addition g is assumed to be a bounded mapping, then it

will follow that g(u) is also bounded (hence, of course,

weakly bounded). Thus, for example, on finite dimensional

spaces, (G,) and the continuity of g will yield the

boundedness of g(u). The boundedness of g(u) together

with additional assumptions on A and f will yield

boundedness results for u(t) and u(t), namely'

Corollary (3.1) Suppose that (G ),(F ), (G,) hold

and that A defines â  positive kernel. If in addition

g xs_ a_ bounded mapping, then for every solution u(t) of_

(3.2), w£ have »

(i) ||A(t)||€L1[O,oo),

for all t _> o;

(ii) ||A(t)||€L1[0,oo), | 2 || 2

PROOF. From Theorem (3.1) and the discussion just

given in Remark (3.1), we know that ||g(u(t))|| is

bounded by all t J> 0, say by B . Returning to equation

(3.1), we have
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*O J | |A(t-T)| |dT
o

r t
3Q J ||A(a)||dcr +

o

proving (i). To prove (ii), we differentiate (3.1) to

obta in

(3.7) u(t) = -A(O)g(u(t)) - A(t-T)g(u(T))dr + f(t),

which gives

li^(t)|| £ Bo||A(0)|| + BQ j ||A(t-T)||dT + ||f(t)||,

and proves (ii).

Remark (3.2) For the homogeneous equation (3.3),

assumption (F ) is automatically satisfied. For the

unperturbed and nonhomogeneous equation (3.2), (F )

will be satisfied if we assume^

and

(G2) ||g(v)|| £ k(l+|G(v) | ) , for all v e % .

Remark (3.3) When g(u) is a linear symmetric

transformation, g(u) = Lu y we can satisfy (ii) of

(GQ) by taking G(u) = -^(u^Lu) . Condition (i) will

then be satisfied if L is positive and (G.) will

be satisfied if the smallest eigenvalue of L is

positive. If L is in addition bounded, then the last con-

dition is also sufficient for (G2) to hold. This will be

the case in finite dimensional spaces. In 3R , we can

satisfy (ii) of (Go) ky taking



16

fu
G(ia) = J g(£)d£ and (i) of (GQ) will be satisfied if

o
for example, geC(-oo,ao) and ug(u) J> 0 for |u| large.

For a general discussion concerning the existence of the

functional G(v), see Vainberg [15].

Theorem (3.1) is capable of an extension which is

important in the applications. We are here concerned

with the condition (F ) which in general rules out a

constant perturbing term. We thus replace (FQ) by the more

general condition

(FQ) f(t,u) = f^ + f1(t,u), where f^e* and f± is

a mapping from [O,oo) X U into & which satisfies

We shall show later (in section 5) that when f ^ 0, one
oo

cannot, in general, expect asymptotic stability even if

it = 3R . On the other hand, if A(t) also contains a

constant term, then we can still obtain asymptotic

stability as we show now.

THEOREM (3.2) Suppose that (G ) and (F ) hold.
Q Q J

and that u(t) is a solution of (3.1). Assume that the

operator limit A(oo) exists and defines a positive

definite symmetric operator and let A = A - A(oo ) .

Then the following hold;

(i) jEf AQ defines <a positive kernel , then | G(u(T) )

and Q^[g(u) ;T] are bounded for all T J> 0.

(ii) If % defines a strongly positive kernel, then
o -—------— — — — -

g(u) weakly stable in C^[O,oo) => g(u(t)) tends weakly

to zero.
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PROOF. The proof involves a process of 'completing the

square' and was used by Levin and Nohel in the one dimensional

case. We rewrite (3.1) in the form

rt rt
(3.8) u(t) = -A(oo) g(u(T))dT - A_(t-T)g(u(T))dT + f(t,u(t))

Jo Jo °

Now form the inne r p roduc t of (3.8) wi th g ( u ( t ) ) and

i n t e g r a t e from 0 t o T. With (£,A(oo)£) ^ a o | |£ | | 2 for
all £e&, one obtains

i2
G(u(T)) - G(u(O)) + Qr[g(u);T] £ -a || g(u(t) )dt||'

o ° Jo
T T

+ (f ,f g(u(t))dt) + [ a(t)(l+G(u(t))dt
0 0 Jo Jo

T
^ 4 i T HfooH2 + J <x(t)(l+G(u(t)))dt.

o o

In view of (F ) 3 conclusion (i) follows. On the other

hand, conclusion (ii) follows from (i) and Theorem (2.1).

We close our discussion here by showing that the methods

presented in Theorem (3.2) allow us to treat certain second

order equations. Consider for example the following

second order functional differential equation

ft

o

where C is a bounded linear operator on U and f is

a mapping from [O^oo) into W. Define a new transformation

A(t) by the expression

(3.9) A(t) = -f B(-r)dT - C
Jo

Using (3.9) we can rewrite (3.8) in the following form

(3.8) u(t) = Cg(u(t)) + J B(t-T)g(u(T))dT + f(t),
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(3.10) \i(t) = -A(0)g(u(t)) - J A(t-T)g(u(T))dT + f (t) .
o

An integration of (3.10) will now yield

rt rt
(3.11) u(t) = u(0) - A(t-T)g(u(T))dT + j f(T)dT,

o Jo

which is of the form (3.1) under investigation. In order

to apply Theorem (3.2), we need to assume that

f(T)dT e Ln [0,oo) 3 (G9) holds and A(oo) exists and is

positive as given in Theorem (3.2). This will be the case
poo

if B(t) J> 0 (as a semi-definite operator) and C - B(T)dT
Jo

defines a positive definite operator. This investigation

is carried out in sections five and six where we also

consider cases in which A(oo) = 0.
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4. POSITIVE AND STRONGLY POSITIVE KERNELS,

In this section we give some sufficient conditions

for positivity and strong positivity of kernels. Halanay [4]

stated, but incorrectly proved, that in ]R , a(t) is

strongly positive if^

(4.1) (-l)k a ( k ) (t) ^> 0, k = 0,1,2,

and a(t) f constant. That (4.1) alone is sufficient for

the positivity of a(t) is well known (see Loeve [11]* p. 217)

Without additional assumptions on a(t), one clearly cannot

expect strong positivity. It iŝ  however^ interesting to find

that under the additional assumption that a(t) ^ constant,

a(t) in fact defines a strongly positive kernel. The effort

to verify Halanay!s claim and clarify his proof led us to

a result which is valid in general Hilbert space. In the

special one dimensional case, we can prove a better result,

motivated by the work of Hannsgen [5]• Later we show

by examples that the monotonicity conditions are too special

in that positivity and strong positivity may hold for some

oscillatory kernels.

It is well known in circuit theory (see for example [13])

that a kernel a(t) in 3R will define a positive kernel

if its Laplace transform a(s) satisfies the condition>

(4.2) Re a(s) > 0 in Re s > 0.

If a(s) exists for Re s = 0 and is continuous in Re s j> 0



T
(4.3) &(s) = lim J e~st A(t)dt.

20

then it follows from f4.2) that Re a(s) } 0 on Re s = O.

Our main result is that, apart from some technical details,

strong positivity will hold if Re afs) is strictly positive

on Re s = 0.

The general results concern a family A = [A(t) : t ̂ > 0}

of bounded linear transformations on a Hilbert space &.

For such a family we define the Laplace transform A(s)

by the formula,

*T

o

Here we mean the Bochner integral and the uniform limit;

all subsequent limits will be in the uniform topology.

We give here an outline of the ideas of the section.

It appears that natural analogs of one-dimensional results

hold only when A(t) is symmetric for each t. Under this

assumption, and some more technical ones, we show that if

Re A(iT) is nonnegative semi-definite on M for each TGJR

then A is a positive kernel. This is an analog of (4.2).

Then strong positivity will follow if we can find S and €,

which are positive, such that if Is = €e , then,

(4.4) Re(A(iT) - S(iT)) is positive for all TGR #

We will, in fact, look for S in the form cl, c J> 0. Then

S = (s^c)"" I and (4.4) becomes

A ec 2
( 4 . 5 ) ( £ * R e A ( i T ) £ ) J> —~ 7? ||£j( f o r a l l £eW, f o r

c + T
and

The rather complicated work to follow aims at establishing

the inequality (4.5). There are two difficulties. First
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we have to verify (4.5) for large T and hence we must obtain

estimates for A(iT) as T -> oo. Second we must obtain

the inequality for T!s on bounded subsets. Here a distinction

must be made between finite and infinite dimensional spaces.

If dim M < oo, and A(i-r) is continuous and positive

then (4.5) necessarily holds on bounded T sets. In infinite

dimensional spaces we must essentially postulate that (4.5)

holds for T in bounded subsets of TR.

We impose on A the conditions:

(A-) A(t) is twice strongly differentiable on [0,oo)

(A2) J. ||A(k) (t)||dt < GO k = 1,2.
o

We have then,

U A ^ ) - A ( t 2 ) || = ||J 2 A< ( t ) d t | | <; J 2 ||A< ( t ) ||dt
t1 t±

and hence,

(4.6) lim A(t) = A(<3D ) exists,
t-oo

We set A (t) = A(t) - A(oo ) and require that A satisfy,

(A3) J ||Ao(t)||dt < OO.
o

For the Laplace transform A(s) of A we have

A(s) = s~ A(oo) + A (s) where A is the Laplace transform

of A and we collect here some facts concerning the transforms

Lemma 4.1 (1) A {a+ir) exists and is continuous in

a ^ 0. TA: J_js also holomorphic in a > 0.
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(2) A(s)= s"1 A(0) + s" A1 (o) + o(s~ ) uniformly as |s| - oo

in a ^ O.

Proof t (1) follows easily from (A3) •
 To prove (2)

we integrate by parts twice, using (A^), and obtain, (note

that (A2) implies A! (oo ) exists and must be zero),

(4.6) k(s) = eT^TKO) + s"2 A'(0) + s"2 J e"at AM (t)dtr
o

Conclusion (2) follows from an application of the Riemann-

Lebesgue Lemma.
Lemma 4.2 Let -k (cr+iT) = $(<J,T) + i^((J,T)# Then,
", ' ' • • O — — — — —

2 r°°
A(t) - A(oo) = - *(0, T) COS Tt dT .

w Jo

Prooft From lemma (4.1) we observe that A satisfies

the conditions,

J+oo A 1 /

||A (a+iT)||P d T } i / p < oo,
a>u -oo °

( 4 . 8 ) l i m A (a+ ix ) = A . ( i T ) e x i s t s f o r a l l T and
(TJO ° °

o(iT)ll€ L
p (-00,00),

A
for any p > 1. It follows (see [7] page 227) that A can

be represented as a Cauchy integral of the form,

r»+OO

-CD
(4.9) Ao(a+iT) =i f

Thus we can express ^(O, T) in terms of $(0,4) by the

formula,

*(0,T) = -t „

" -co
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where the Cauchy principal value is meant in (4.10).

Now A (t) may be recovered from A by the inversion

formula (again see [7]),

(4.11) AQ(t) -i J•
+QD

 eitT

-0D

Since A (s) is real for T = 0 we must have $(0,T) = 0(0, -T)
o

and >£(0, T) = -^(O, -T) and hence (4.11) can be written as,

(4.12) AQ(t) = —. J ($(O, T) COS Tt - >^(0,T)sin Tt)dT

-oo

We use (4.10) to rewrite the second integral as follows:

P+oo ^ p+oo p+oo
^(0, T)sin Tt dt = - - dT sin Tt

J-GD W J-OO J-0D

sin Tt , .

J+00 pOO

^(0, T) sin Tt dT = -J $(0,77) cos r)t drj.

The T integral can be evaluated by contour integration to yield,

r*+00

-OD w -oo

If we substitute (4.13) into (4.12) and use the fact that

<E> is even we obtain the formula in lemma 4.2.

From lemma (4.2) we obtain an analog of a part of

Bochnerfs theorem in one dimension as expressed by 4.2.

Lemma 4.3 Let A(t) b£ symmetric for all t J> 0. Suppose

further that A(oo) JL£ positive semidef inite and A (iT)

is positive semidef inite for all T. Then A defines ja

positive kernel.

Proof: Let us define A(t) for all t by A(t) = A(t),t > 0,

A(t) = A(-t) for t negative. Consider then,
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TT) = J (Vi(t),A(t-T)ji(T)dT)dt = Q^(|i;T) + J (ii(t),J A(T-t)fi(T)dT)dt

T T
= Qg(U;T) + J J (|!(t),A(T-t)|i(T))dt dT.

o

Since A(T-t) is symmetric, we may rewrite this as,

J J (A(T-t)(i(t)>|J.(T))dt dT = 2<?~ (\XjT)
O O

We «st3blish that Qg(|i;T) must be positive. Note

that,

rT »T »T «T
Q~(|i;T) = (|i(t),A(oo) p,(T)dT)dt + (H(t), A (t-T) p.(-r)dT)dt.
A J o J o Jo Jo °

From lemma (4.2) we obtain then,

2 fT rT f+aD

( c o s Tjt c o s T]T + s i n r)r s i n 171")dT} dT)dt .

We observe t h a t ,

I ( H ( t ) , f (j *(0,T})COS Tjt COS T?TdT))p.(T)dT)dt
J o J o J o

pT iT no
= J (\x(t) c o s T ) t , * ( 0 , 7 } ) c o s TJT ( - I ( T ) ) dt} dT d t

J o g o J o

= f (f (|a(t)cos Tjt, f $(o,T))li(T) cos TJT dT)dt dTjJ o J o J o
OO T T

= J (J H(t) cos rjt d t , 0(0,T))[ |i(T) cos 77T dT)drj.
00 Jo

This term is greater than or equal to zero since 0(0,rj) is

pos i t ive . The sine terms are handled similarly and th is

completes the proof.

From now on we assume that the A(t) are a l l symmetric.

We give now a condition which w i l l guarantee the pos i t iv i ty
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Of A (iT).

Theorem 4.1 Suppose that A satisfies the conditions*

(A4) (-l)
k ik)(t) positive definite, k = 0,1, for t ̂  0

(A-) A! ( O - AT (tn) positive definite for t9 > t-. .

Then Re AQ(iT) .is positive definite for all TGIR.

Proof. Observe that from (A4),

o

for all £e3i« Suppose that for some £ the integral is zero.

Hence (i,&{t) £)= 0 and consequently £ = 0. On the

other hand, for T > 0, we have

r
o

r»00

,Re ko(ir)i) & J .. (5,AQ(t) 4)cos Tt dt
o

= -? J U,Ao(t)£)sin Tt dt
o

oo ~lr PT
= -±{ J5 sin

T k=o Jo w . w

By (A^) each term in the sum is positive unless 4 = °*

The case T < 0 follows by reflection since Re A (IT) is

an even function of T.

*It will be clear from the proof that these conditions
are slightly stronger than really needed. In particular
in 3R1 the positive definiteness in (A4) and (A-) can be
relaxed to semi definiteness together with A(t)f constant.
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Theorem (4.1) and Lemma (4.3) yields immediately.

Corollary 4.1 If A(oo) is positive semidefinite and A

satisfies (A4) and (A_) then A JLS <a positive kernel.

We are ready now to discuss strong positivity. As

indicated earlier we try to find a semi-group of the form

-cTfc

e -, c > 0 such that

(4.14) A - eC is positive,

and, as we showed before, this will be true if we can

establish the estimate (4.5). We start with a lemma.

Lemma 4.4 There exists M such that (4.5) jls valid

for all T with | T | ;> M.

Proof. Since (4.5) refers only to A it is no loss in

generality to assume A(oo) = 0. Then we obtain from lemma (4.1),

T

where ||R(T)|| = o(l) as |T| -> oo . It follows from (A.)

that for some m > 0

( C , « ( O , T ) € ) ^ f 1UII2 f o r | T | >> M.

Thus (4.5) will be satisfied if we choose €=1 and c such

that —5—7? < Ty •

From lemma 4.4 and the remarks above we obtain the

following conditional result.

Theorem 4.2 Suppose K satisfies (A.,) - (A4) and A(t)

is symmetric for each t. Then A JLs strongly positive if
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it satisfies the following condtion;

(4.15) Given any M there exists an a such that

(4,Re A O(1T)4) ^a|UH
2 lor |T| £M.

Proof. Fix M and c as in lemma (4.1) and choose

€ "" 2 •

Again we have an immediate corollary.

Corollary 4.2 If U is finite dimensional assumption (4.15)

can be dropped.

Proof. By theorem (4.1) (£,Re A (rr)£) is positive definite

for all T in |T| <£ M. Hence (£,Re AQ(iTj)4) is a positive,

continuous function on the compact set (-M,M)x Us, where

Uj, is the unit sphere in M. It follows that (4.15) is

satisfied automatically.

We want to discuss in some detail the case of 3R where

some of the conditions can be weakened a little. Let us

suppose that a is such that its transform has the form

a(B)

where a(s) exists and is continuous in Re s J> 0. Then,

subject to certain technical details, the following state-

ments will be true:

(1) If a(oo) J> 0 and Re a(iT) J> 0 then a is a positive

kernel.

(2) If Re a(iT) J> —5 K f o r s o m e G a n d c> positive, then
c +T

a is strongly positive.

(3) If a(oo) ^ 0, Re a.(i*r) > 0 and Re a(i-r) ̂  ^ , for
T

|T| sufficiently large, with b some positive constant
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then (2) is satisfied, hence a is strongly positive.

These statements enable one to verify directly that

certain simple functions are positive or strongly positive.

For example one can show in this way that t" cos w t,

0 <2 a < 1 is positive while t~a e~ cos w t, 0 ̂  a < 1,

b > 09 is strongly positive. It is interesting that

e" sin wt is not even positive, let alone strongly

positive. (See [3]). These examples show that Halanay!s

result (equation (4.1)) is too special. We can have afs

which are strongly positive and are both oscillatory and

singular at zero. We now state and prove our version of

Halanay!s result.

Theorem (4,3) Let a(t) satisfy the following conditions:

eC1(09OD) D L1(O,1)5

(a2) a(t) Z °* at(fc) £ °*

(a^) af(t) nondecreas ing,

(a4) a(t) fi constant,

Then a(t) defines a. strongly positive kernel.

Proof. We note that (aO implies that a(oo) exists

and is greater than or equal to zero, and that a(t) - a(oo)

again satisfies the assumptions (a..) - (a4) . It follows

that the transform

T
(4.16) a (s) = lim f e"st (a(t) - a(oo))dt,

° T-OD Jo

exists for Re s J> 0, s ^ 0. (For s = iT, the integral is
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conditionally convergent,) We want to establish that

(4.17) Re aQ(iT) > 0 , for all teJR.

If a(0) is finite, then this follows as in the proof

of Theorem (4.1). If a(0) = oo, the arguments need

certain modifications. We write for T > 0,

Re k (iT) = (f"T+ f ) (a(t) - a(oo)cos Tt dt.
° Jo J2TT

T

The second integral above is nonnegative by the argument

used in Theorem (4.1). For the first integral, we con-

sider for 0 < e < -̂ r ,

T (a(t) - a(c©))cos Tt dt = -=• (a(e) - a(oo))sin GT
€

-i fT a! (t)sin Tt dt

JT (a'(t) a'(t+£))ih T dt,

The last integral above is nonnegative by (ao)•

integral on the right tends to zero as e tends to zero.

We claim that the first term on the right also tends to zero

as e tends to zero. For a(t) is nonincreasing and is

locally in L,(0,1), hence we have lim G a(G) = 0. Thus,

G-O

A P®
Re a (iT) = lim (a(t) - a(oo))cos Tt dt

G—*O G

I P — IT
^ lim - - T (a'(t) - a' (t-H1)) s in Tt dt.

- ~ T J _ T

Now since a(0) = oo and (a3),(a4) hold," we see that the

last integral above is positive, proving (4.17).
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In order to establish strong positivity of a(t) we

need to show that

(4.18) Re aQ(iT) ^ ̂  * b > °>
T

for all |T| >> N, where N is some large number. We show

in fact under the present hypothesis that we have

(4.19) Re a(iT) ^ -y~j , c > 0,

for large T. Denote a
Q(t) =

 a("t) - a(ao) for short. We

first note that in view of (a2) (a3) and (a4)

(4.20) a (t) cos t dt = a > 0.Jo ° °

Without loss of generality, we need only to consider T J> N.

Observe that^

A fo 1 roo u
(4.21) Re a ( iT ) = a ( t ) cos Tt dt = - a (-̂ ) s in £ d£

O J O T J O T

o o

We wil l have established (4.19), if we can show that the

last integral in(4.21) ±s nondecreasing as T increases.

Integrating by parts, we have

J a
o

( T ) cos € d4 = - T J a^ (f]
sin

= - I a !(t) sin Tt dt,
o

which is uniformly convergent (as an improper integral) for

all T j> l# Consider the differentiation under the integral

sign

d(4-22) e F r o 4 r ^
O O T
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which will be justified if the integral on the right of

(4.22) is uniformly convergent for all T ^> 1. This is in

fact true as the following arguments show. First note that

(a2),(a3) and

T i%T
f ta"(t)dt = Ta'(T) - a!(l) - I a!(t)dt
Jl Jl

imply that lim ta!(t) exists (and hence must be zero) and

that tafl(t)€L1[l,oo) . Next, we note that

I O T 2 J
O T O

-a't1) -S- c o s ^ d4 = -ta'(t) cos Tt dt
J O T ^ v O

- \ (a'(t) + tafl(t))sin Tt dt.
T Jo

Since af is monotone and decreases to zero and

tatf (t) eL, [0,OD ) , we conclude that the last integral in the

above is uniformly convergent for T ^ 1. By (4.22), (4.21)

and (4.2O)5 we obtain the desired estimate (4.19).
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5. EQUATIONS IN 3R .

We consider here nonlinear functional-differential

equations in 3R of the form

(5.1) u(t) = -f a(t-T)g(u(<r))dT + f(t,u(t)),

Jo

where u(t), a(t) and f(t,u(t)) are continuous scalar

functions. As special cases of (5.1), we have what we

call the unperturbed equation in which f(t,u(t)) does

not depend on u, that is,

rt
(5.2) u(t) = - a(t-T)g(u(T))dT + f(t),

Jo
and more specially the homogeneous equation

(5.3) u(t) = -J a(t~T)g(u(T)dT.

It was the study of these equations which first led us

to the work of this paper. We mention four fundamental

papers in this area. Levin [8] and Halanay [4] for equation

(5.3), Levin and Nohel [10] for equations (5.1) and (5.2),

and most recently Hannsgen [6] for equation (5.2). Our

work extends and clarifies the ideas of Halanay. In

contrast to the results given in the other three papers

[6],f8],[10], we do not have to find Lyapunov functions.

We are interested in the boundedness and asymptotic

stability of solutions of equation (5.1). A general principle,

stated by Halanay, is that if a(t) defines a positive

kernel then we have boundedness. On the other hand, if

a(t) defines a strongly positive kernel, then we have
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asymptotic stability. Halanay's remarks were directed to

the homogeneous equation (5.3)• We shall show here that

to a large extent his idea remains valid for the more

general equation (5.1). The other three references assumed

monotonicity conditions on a(t) similar to condition (4.1),

and thus,by Theorem (4.2),automatically insured strong

positivity. It should be noted here that Levin [8] and

Levin and Nohel [10] made the stronger assumption

(5.4) (-l)k a ( k ) (t) ̂  0, k=.0,1,2,3, teC[0,oo),

and a(t) ^ constant. Hannsgen [6] assumed a condition

slightly weaker than (4.1) in that a(t) is nonnegative

and convex downward. In fact, his condition is also weaker

than the assumptions (a.),(aj),(a-) and (a4) in Theorem (4.3).

We shall have occasion to compare with Hannsgen1s assumptions

later in this section.

We emphasize that under the strong positivity assumption

on a(t), and assumptions (G ) and (F ) on g and

f, Theorem (3.1) provides a conditional result; namely, if

g(u(t)) is bounded and uniformly continuous then g(u(t))

tends to zero. Thus all the additional hypothesis on g

and f made in [6],[8] and [10] cited above, and which we

also make, are just designed to achieve these boundedness

and uniformity requirements. In view of Theorem (4.3),

most of our results here are valid for kernels with a

singularity at zero. Moreover, examples at the end of

section 4 suggest that the strong positivity assumption
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can hold for functions which oscillate in every

neighborhood of t = oo.

We begin by presenting a heuristic discussion of the linear

version of (5.2), namely,

r
o

This discussion will serve to indicate what theorems ought

to be true. In the linear case, we can apply the Laplace

transform method. This gives the transform of the solution,

u(s), in terms of the transforms of a(t) and f(t).

Specifically, we have

(5.6)

We will need the following facts about the Laplace trans-

form. Let cp(t) be a function of t and cp(s) its

transform. Consider the following cases:

(i) cp(t)€L1(0,oo),

(ii) cp(t) - cp(oo)eL1(0,oo ) .

In the first case (i) cp(s) is analytic in Re s > 0 and

continuous in Re s > 0. In case (ii), cp(s) is analytic in

Re s > 0 and cp(s) - ^^QO) is continuous in Re s > 0.
s —

There exist some theorems in the other direction. We do not

go into the technical details here but the following principles

are roughly true. If the transform cp(s) is analytic in Re s > 0

and continuous in Re s > 0, then cp(t) tends to zero as t

tends to infinity. Similarly, if cp(s) is analytic in

Re s > 0 and cp(s) - CP'QO ' is continuous in Re s ) 0
s ~~

then cp(t) - cp(oo) -• 0 as t -> ao . We use these two
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simple principles^ together with (5.6), to deduce information

about u(t) for large t from the behavior of u(s) near

s = 0. Since s~ u(s) is the transform of U(T)(3T, we
Jo

can also deduce information about the integral. We discuss

four cases separately.

Case (1) aeL^fel- . In this case a and t are

A r00 A
regular at s = 0. If a(o) = a(t)dt ^ 0, then u(s)

Jo

is regular at 0. Thus, u(t) -• 0 as t -» OD • On the

other hand

(5.7) s u(s) - - A A
s a(0) s a(0) (s + a(0))

which is regular at s = 0, so thaty

(5.8) f u(T)dT ~ u<°) +^°) as t - o o .
Jo a(0)

Case (2) a(oo) > 0, a - a(oo)eL,, feL,. Here r is

regular but a(s) ~ —* ^- near s = 0. It follows from

(5.6) that u(s) is again regular at s = 0. Moreover

(5.9)

where a
o(

s) = a(s)- —^°° ̂  f Which is regular near s = 0.

Since the function defined in (5.9) is also regular near
pt

s = 0, we conclude that u(t) and u(-r)dT tend to
Jo

zero as t tends to infinity.

Case (3) a(oo) > 0, a - a(oo)€L]L,f - f(oo)eL;..

Here both a and r have a simple pole at s = 0.
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In this case, formula (5.6) shows that u is regular at

s = O so that u(t) - O as t - oo . On the other hand,

corresponding to (5.9) we have,

,c -,*\ -1A, , u(O)+f (B)+f{°°) f(QP)
(5.10) s u(s) = ov j3 ~ s a oo

Thus we have

(5.ii) J%(T)dT - ffaf .

Case (4) aeL^f - f eh-,. Here k is regular at

zero but f ~ —^°° ' near s = 0. A simple check with
s

(5.6) yields u(s) ~ f(oo)/s £(0) as s - 0. Hence

(5.12) u ( t ) _-±A«LL a s t - o > .
a(O)

These conclusions for equation (5.5) can all be made

rigorous but we choose to forego these details since we

aim at generalizations for the nonlinear equation (5.1).

Note that the assumptions that aeL, and a - a GL,

are merely used to guarantee the existence of the Laplace

transform a(s) on {s : Re s J> 0}. In fact, most of

these conclusions remain valid under conditions weaker

than (a.),(a2),(a3) and (a4) of Theorem (4.3).

We list here the various conclusions concerning

boundedness (B, ) and stability (S-. ) of all solutions

of (5.1):

(B ) |G(u(t))| bounded for t > 0, G(u) = I
° o

(Bn) |g(u(t))| bounded for t ̂  0,
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(Bo) Q^[g(u) ;T] bounded for T j> 0.

(B 3)
k |.u(k)(t)| bounded for t } 0 k = 0,1,2.

(SQ) g(u(t)) - 0 as t - oo,

(̂ o) g(u(t)) - aQ ^ 0 as t - oo ,

( S ^ * u(k)(t) ^ 0 as t - oo, k = 0,1,2,

(S,) g(u(r))dT - 0 as t - oo,

* Jo

(S2) g(u(T))dT -4 a1 ̂  0 as t -» oo .

We shall need a number of hypothesis on a,g and f in

addition to the assumptions (a,),(a2),(a3),(a.), (which

guarantee strong positivity of a). The assumptions on a

are:

(a5)

(a6) a(oo) > O,

(a_) a(oo) > 0, a - a(oo) eL1[0,co

(a8) a'€L1[O,oo),

p0D

(ag) J a(-r)dT eL-L[0,oo).

The hypothesis we will need with regard to g and f are:

r
o

inf G(u) > -oo

pu
(G ) G(u) = g(4)d^ sa t i s f ies ,

O «J _
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(G^ G(u) - oo as |u| - oo

(G2) g€C(-oo,oo)

(G3) geC(-oo,oo), ug(u) > O u ^ O.

(G4) |g(u)| £ M(l+G(u)) for all u

(G5) g'(£) > 0, for all

(P.) There exists a function a(t) G L ^ C ^ O O ) such

that for all t ^ O and all |v| < oo,

|f(t,v)g(v)| £ a(t)(l + G(v)).

(F1) f(t)€L1(O,oo) ,

(F2) |f(t,u)U|ft(t,u)U|fu(t,u)| bounded for all

t ^ 0 and for every compact interval with

respect to u.

We will have occasion to use the hypothesis that a solution

and its derivatives u (t) are uniformly continuous.

For convenience, we also introduce the following abbreviations

k (k)(U) uv (t) is uniformly continuous on [0,<3D),k = 0,1

To simplify the statements in this section, we assume

without further mention that a(t) defines a strongly

positive kernel. Thus, as a consequence of Theorem (4.3)

any kernel a(t) satisfying assumptions (a,) - (a^) defines

a strongly positive kernel.

The following lemma will be used in the proofs
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of a number of stability results concerning (5.1).

We state these technical assertions explicitly here for easy

reference. We comment that although the lemma extends com-

pletely to finite dimensional spaces only (i) and (iii)

will have extensions to infinite dimensional spaces.

LEMMA (5.1)

(i) (BQ) and (Gx) * (B3)0.

(ii) (BQ) and (G1) , (G2) =* (B^ .

(iii) ( B 3 )
k + 1 * (U) k , k = 0,1.

(iv) (B3)° and (U)
1 =* (B3) 1 .

(v) ( S ^ 0 and (U) 1 * (Sj)1 .

.(vi) (SQ) and (G3) * ( S ^
0 .

PROOF. Only (iv) and (v) need proof. Since their

proofs are similar, we show only (iv). Suppose that the

conclusion is false, then there exists a sequence {t }e[O,oo)

such that |u(tn)| J> 2n. By (U)1, there exists 6 > 0

such that |u(tn)| > n for te[tn -
 6 ^ t

n l *
 T h e n hY t h e

mean value theorem, |u(t ) - ^(tn -
 s ) | ^ n6 contradicting

the assumption (B3)° .

We are now ready to apply the weak stability principle,

Theorem (3.1), to obtain stability results for solutions

of (5.1). The first result is that of boundedness which
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follows from Theorem (3.1) and Corollary (3.1).

THEOREM (5.1) Let a(t) be a positive kernel, and

assume that (G ) (G-,) (Go) hold. Then ;
r — — — — — Q j_ Z ' •

(i) for equation (5.1), (FQ) => (BQ), (B1), (B2) and (B3)°;

(ii) for equation (5.2), (F ) and (Gj => (B ), (B-), (B~) and (B,)Q:
———— JL ————— LJ. O JL ^ — — ĵ *

(iii) for equation (5.3),(B ,(B,),(BO) and (Bj° hold and
— — — O 1 £ — — j — — — —

we have in addition,

(a) (a5) => (B 3 )
1
>

(b) (a8) * ( B 3 )
2
;

Remark (5.1) Conclusion (ii) is contained in Levin and

Nohel [10] under the stronger assumption (3.4) and is

extended by Hannsgen [6] to kernels a(t) satisfying (a,) - (a 4),

and also (a g). (Hannsgen
1s condition does not assume that

a!(t) exists everywhere but requires that a(t) is not a

function piecewise linear in a certain way. This condition

is weaker than (a..)- (a^) • Hannsgen shows that if a(t)

is piecewise linear in a certain way then the solution is

asymptotic to either a sine or cosine function at infinity,

hence asymptotic stability does not hold in this case.) It

should perhaps be pointed out that results given in [6] and

[10] concern equation (5.2) with an additional term b(t).

This term is roughly a constant when a(oo) > 0, otherwise,

b(t)eL,[0,oo). We return to this slightly more general

case at the end of the section.
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Theorem (5.1) provides the necessary boundedness

condition on the solution for the application of Theorem (3.1)

We now prove a lemma which isolates the necessary assumption

for the solution to be uniformly continuous.

LEMMA (5.2) Let a be monotone decreasing and

satisfy (a.). Suppose that u(t) is a solution of (5.1)

satisfying (Bn) and (B~)° and furthermore

(U/r) the function f(t,u(t)) JLS uniformly continuous on

[T,oo), for some T J> 0,

Then u(t) satisfies (U)°.

PROOF. In view of Lemma (5.1) (iv), we need only

prove (U) . From (5.1), for t2 > t, we have

u(t-) - u(t,) = -f (a(t,-T) - a(t,-T))g(u(T))dT

(5.13)

a(to-T)g(u(T))dT + f(t~,u(to))-f(tn

Let g = sup |g(u(t))j, which is finite by ( B j . The
[T,oo)

second term on the right of (5.13) is clearly uniformly small

with t2 - t. small on [T,oo). The third term is uniformly

continuous by hypothesis. The first term is dominated, in

absolute value, by,

g J (a(tx-T) - a(t2-T))dT £ g[J
 2 1 a(^)d^i - J 2a(^)d^]

O O t-t

arid each term is again uniformly small with t2 - t, in

tx ^ T.
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Theorem (5.1) and Lemma (5.2),together with the weak

stability principle, Theorem (3.1), give asymptotic stability

of equation (5.1) provided that for each solution u(t),

condition (Uf) is satisfied. For equation (5.3), the

homogeneous equation, condition (Uf) is trivially satisfied.

For the unperturbed equation (5.2), condition (Uf) is

satisfied if and only if the function f(t) is uniformly

continuous. For the general equation (5.1), we need the

additional assumption (F2). We summarize this basic

stability result as follows:

THEOREM (5.2) Suppose that (a^ - (a4),(G1) and (G3)

hold. Then we have:

(i) for equation (5.1), (ag), (FQ), (F2) =* (SQ),(S;L)
0;

(ii) for equation (5. 2) , (F^ , (G4) => (SQ),(S1)
0;

(iii) for equation (5.3),(S^)0 holds.

PROOF. Since (ii) and (iii) are simple consequences

of (i), we need prove only ( i) • In view of Lemma (5.2),

it suffices to show that condition (Uf) is satisfied for

every solution u(t).In order to show this we first prove

that U(t) satisfies (B3) . Observe that Theorem (5.1)

implies (B^) . This, together with (a ) and (F 2^ (the

boundedness of f), yields |u(t)| £ B. Next, we see that

for any t
1^

t2 ^ ®>
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|f(t2,u(t2)) - f(t1,u(t1))| £ |f(t2,u(t2)) - f(t1,u(t2))|

- f

M| M|u(t2) - u

Since (B-J =* (U)°, this proves (Uf) and hence completes

the proof.

We note that if (G~) is replaced by the weaker assumptions

(G ) and (Go),in the above result, then the

conclusion is that all solutions satisfy (S ) instead

of (S,)°. As a simple example of a function f(t^u)

satisfying (F ) and (Fo^ with respect to g satisfying

(G^ and (G3), we take f(t,u) = cc(t)H(u) where

cc(t) eL,[O,oo ), H(u) is sublinear in the sense that

|H(u)| £ K ( 1 + | U | ) , and g(u) = (sgnu)|u|k, k > 0.

Remark (5.2) Levin [8] proved Theorem (5.2) (iii) for

the homogeneous equation (5.3) under the stronger assumption

(5.4). Hannsgen [6] improved LevinTs result, under assumptions

slightly weaker than (a.,) - (a4), in that no differentiability

requirement on a(t) is made. Hannsgen1s proof is based

on showing that u(t) is bounded. He assumed either

(i) a(0) < oo and |f(t)| bounded or (ii) (a-) and

|f(t)| bounded. The boundedness of |u(t)| would of course

imply (U)°. Our point here is that uniform continuity of

u(t) itself is enough hence we obtain the slightly stronger

result as summarized in Theorem (5.2) above.

In the case of the unperturbed equation (5.2) the asymptotic
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stability of g(u(t)) together with some additional assumptions

on a and f will yield the stability results (S 1)
k with

k = 1,2.

THEOREM (5.3) Let (a^ - (a4) , (G-^ , (G3) (G4) and (F±)

hold. JEf f (t) JLs uniformly continuous, then every solution

u(t) satisfies (S^ 1. If in addition (a8) holds and
2

f(t) -• 0 â s t -> oo, then u(t) satisfies (S-^ .

PROOF. We note that from the proof of Lemma (5.2),

every solution satisfies (U) . Thus, it follows from

Lemma (5.1) (v) that every solution satisfies (S^) .

Next, we differentiate (5.2) to obtain

(5.14) u(t) = -a(0)g(u(t)) - f a' (t-*r) g(u( T) )dr + f (t) .

Jo

(Note that a(0) exists and is finite.) By Theorem

(5.2), every solution satisfies (S ). Thus the first term

on the right tends to zero. The third term tends to zero

by hypothesis. To estimate the second term, we proceed as

follows ;

t *,T t
[ a'(t-T)g(u(T))dT| £ i (j + J
o o o

*T

t *T t
|J a'(t-T)g(u(T))dT] £ j (j + J ) a'(t-T)g(u(T))dT|

T
£ sup | g ( u ( t ) ) | [ | a ' ( t -T) |dT + sup | g (u ( t ) ) | ( a ( t ) - a (T) )

te[O,T] do te[T,QD)

r t
= sup | g ( u ( t ) ) | | .a ' (a) |da + sup |g(u( t ) ) | (a(t)-a(T)) .

te[O,T] t-T te[T,oo)

Since a'eL, we can make the integral small for fixed T by

choosing t large. On the other hand, by (S ), the second

term can be made small by choosing T sufficiently large. Hence
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the desired conclusion follows.

Remark (5.3) Conclusions concerning (S,) k = 1,2

were obtained by Levin [8] for the homogeneous equation (5.3)

under the stronger assumption (5.4). Results concerning

(S1) k = 1,2 and (S2) for equation (5.2) seem to be given

here for the first time.

Hypothesis (F ),(F,) are analogous to the assumption

that feL, for the linear equation (5.5). Thus,Theorem

(5.2) may be considered as a generalization of cases one

and two discussed earlier in this section. We now present

some results in these cases corresponding to the conclusions

about the integral of the solution. Here, as in the linear

case, the distinction between a(oo) > 0 or a(oo) = 0

becomes important. For simplicity, we treat only (5.2).

THEOREM (5.4) Let (a^ - (a4) , (G.^ (63) , (G4) and

(F-) hold and f (t) be uniformly continuous. Then for

any solution of (5.2), we have

(i) (a?) => (S2)

(ii) (a ) => (S2), and in particular,,

rt u(O) + f f(t)dt
(5.15) lim J g(u(T))dT = LQ

t-°° ° J°°a(t)dt

PROOF (i) Since f(t) is uniformly continuous and

satisfies (F.,) , it must be so that f(t) -• 0 as t -» 00 .

By Theorem (5.3), u(t) satisfies (S.^ . Write (5.1) as

(5.16) a(oo)J g(u(T))dT = -u(t) + f(t) - J (a (t-T) -a(oo ) ) g(u( T) ) d-r,
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Theorem 5.2 shows that g(u(t)) - 0. Then the argument

just used in the proof of Theorem 5.3 shows that the last

term in (5.16) tends to zero as t tends to infinity.

By hypothesis, a(oo) > 0, thus we obtain from (5.16) the

Pt
desired conclusion that g(u(T))dT -> 0 as t -* oo •

Jo

(ii) The proof given here is

essentially the same as that of Levin [8] in the linear

case. We reproduce it here. Let w(t) = g(u(T))dT.
Jo

We integrate (5.2) to obtain,

rt pt
u(t) - u(o) - f(T)dT = - a(T-cr)g(u((r))da

Jo Jo

rt pt-cr
= -I g(u(a)) a(T)dT

"o * o

= -J a(t-T)w(T)dT .

We assert first that w(t) must remain bounded. Suppose

not; then there must exist a sequence {t ) such that

tn - co and |w(tR) | t oo with |w(t)| £ |w(tn)| for

0 ̂  t ̂  t . Since g(u(t)) = w1(t) is bounded, (by

Theorem (5.1)), w(t) is uniformly continuous and hence there

exists a sequence T ,T -» oo, T £ t , such that

|w(t)| ^-j-|w(tn)| in [tR - Tn,tft]. In particular, w(t)

and w(t ) have the same sign on these intervals. From

(5.17), it follows that,

t t —T t
(5.18) u(t)-u(O)-f n f(t)dt = -\ n n a(t -T)w(T)dT-f

 n a(t -T)w(T)dT.n J Q J Q n J^_T̂  n

The two integrals on the right of (5.18) may be estimated as

follows:
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-T
ooo

a(t -T)w(T)dT| £ |w(t )| a(r)dTo n n j _
n

I P n nU
o

t n

|J n a(t-T)w(T)dT| ^7|w(tn)|J
Tn a(T)dT .

Thus, (5.18) gives,

rt -. PT roo
(5.19) |u(t )-u(0)- n f(t)dt| ^ 4 | w ( t )|{ na(T)dT-2 a(T)d<r}

n J o 2 n J o J To Tn

The left hand side of (5.19) is bounded, by (F.J, and

Theorem (5.1), but the right hand side tends to infinity,

which is impossible. Hence |w(t)| must be bounded. We

now rewrite (5.18) as,

t t" —T1

u(tn) - u(0) - J
 n f(t)dt = -J n n a(tn-T)w(T)dT

(5.20)

»t pt
a(t -T)(w(T)-w(t ))d-r - w(t ) a(t-T)dr.

Ji. T
 n n « J . • _ n

n n n n

Since w(t) is bounded, we see that (a5) implies the first

two terms on the right of (5.20) tend to zero as t -• oo .

Theorem (5.2) is applicable here, hence lim u("tn)
 = ° a n d

n-*oo
roo

u(O)+J f(t)dt
lim w(tn) = 2
n-*<2>

o

Since w(t) is uniformly continuous, this proves (5.15).

Remark (5.4) Theorem (5.4) (ii) in the special case

when g is linear and f(t) s o is proved by L^vin [8]

under the stronger assumption (5.4).

Theorems (5.2),(5.3) and (5.4) give fairly complete

analogs of the results for cases (1) and (2) of the linear
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equation (5.5). We proceed to give analogs of cases (3)

and (4) in which the perturbing term f(t,u) contains a

constant term. These come from Theorem 3.1, its corollary>

and Theorem 3.2. We restrict ourselves to the discussion

of the unperturbed equation (5.2) in the following form :

c
where f^(t)eL-[O,oo ). Similar conclusions for the more

general equation (5.1) can be obtained under suitable assump-

tions. The result corresponding to case (3) of the linear

equation (5.5) is:

THEOREM(5.5) Suppose that (a^ - (a 4), (a g), (a8)

(G-.),(G3)(G4) hold, and moreover that j f1(t)| is bounded.

k
Then any solution of (5. 21) satisfies (B Q), (B.^ , (B3) .,

k=0,l,2, (S Q), (S x)
k k = 0,1, and (s"2) . In particular, we

have

pt ffoo^
(5.22) J g(u(T))dT - a .

o v

Proof; We observe that f(t) = f(oo) + f1(t),f1€L]L together

with (G4) imply that (FQ) of section 3 holds, as does (GQ) .

Theorem (3.2) then yields (B ),(B3)°, (B^) and(B2) for a(t) - a(a>)

To get uniform continuity of u(t), we differentiate

(5. 21) and obtain

rt
u(t) = a(0)g(u(t)) - J .a'(t-T)g(u(T))dT + ^(t) .

o

Note that a(0) exists on account of (ag) . Therefore,

it follows from (Bo), (ao) and the boundedness of f(t),
Z O
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that fu(t)| is bounded which implies (U) . Lemma (5.1) (iv)

gives (U)° as well as (B3) . Now (B2) and Theorem (3.1)

gives (S ) which implies (S-,)° by (G~) . Since (U)

holds, we also have (S-.) . At this points we wish to

point out that (B~) holds by the mean value theorem together

with (B,)° and (B3> . Rewrite (5.21) as

pt Pt
u(t) = -a(oo) g(u(T))dT - (a(t-T) - a(oo ) )g(u(T)) d-r+f (oo )+f, (t).

Since | f 1 (t) J is bounded and f^I^tOjOO ) ,f .(t) - 0, as t - OD .

a - afocJeL, and (S ) imply the second integral above tends

to zero. The desired conclusion (5.22) follows immediately.

Finally we consider Case 4. We find that the present

technique for treating the nonlinear equation does not yield

a full generalization of the linear result (5.12), even under

the additional assumption (G^). However, a similar result

can be obtained by imposing the stronger assumption (aq) •

The necessity of (a9) in the validity of the following

result remains an open question.

THEOREM (5.6) Assume that (a^ - (a4),(ag) , {Gj) , (G-j) , (64)

hold for equation (5.21), where fi e Li[0,oo). Then every

solution of (5.21) satisfies

(5.23) lim g(u(t)) = p =
a(s)ds

PROOF. Let u(t) be a solution and set

(5.24) v(t) = u(t) - g"1(i8), h(v) = g(v+g~
1(j3)) - p.

In terms of these new variables, equation (5.21) reads
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(5.25) v(t) = fn(t) + j8 a(t-T)h(v(T))dr ,
1 Jtt

which is an equation of the form (5.2) considered in Theorem

rv

(5.2). Introduce the function H(v) = J h(z)dz. We find
o

by (5.24) that,

(5.26) H(v) = G{v+g-1{0)) - G(g"1(/3)) - 0v .

Note that H(v) > 0 for v ^ 0 (h'(v) > 0 if and only if g1(u) > 0)

Moreover, since H"(v) = h1 (v) > 0, H(v) -» +oo as |v| - oo

on account of (G^ . For v ;> 1, we have

P1 Pv
H(v) = h(z)dz + h(z)

Jo Jl
dz

so that v j£ h(1> H(v) + 1. Using this, we find by (G4)

and (5.26) that

for some appropriate constant K. We apply Theorem (5.2)(ii)

to (5.25) and infer that h(v(t)) - 0 as t - oo which

is (5.23).

We now return to the discussion of a slightly more

general equation than (5.18), namely

(5.27) u(t) = -b(t) - J a(t-T)g(u(T))dx.+ f(t),
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where b(t) behaves roughly like a constant. Such an

equation was considered in Levin and Nohel [10] , The results

were extended by Hannsgen [6]. In both [6] and [10],

the following conditions on b(t) were assumed:

(b ) There exists a function c(t)€C [0,oo) such that

(i) b2(t) £ a(t)c(t), (iii) |b!(t)| £ B.

(ii) (b'(t))2 £ a'(t)c'(t).

2
In case b(t) = To, and a(oo) ^ 0, we may take c(t) = b /a(oo)

a constant. Our purpose here is to show that a result similar

to Theorem (5.2) holds for equation (5.27), thus generalizing

the above mentioned results.

THEOREM (5.7) Assume that (a^ - (a4) , (ag) , (G^ , (G3) ,

(G4), (bQ) 5 (FQ), (F^, (F2) hold. Then every solution u(t)

of (5.27) satisfies (Sn)°.

.PROOF. Without loss of generality, we may assume that

a(t) > 0 and a!(t) < 0 for all t > 0. As in Theorem (3.2)

we 'complete the square1 and obtain the following energy

inequality:.

- G«U(O,, **!?. (.(T,^i,2
 + |!lSl - Ĵ  | i i l at

(5.28) +J ^y^ - (cr(t)^-[|]-)2 dt - \ J H(t)dt + KQ
o o

T T T
+ i f a ' (T ) ( f g(u(s))ds)2dT + f | f ( t ) | G ( u ( t ) ) d t ,

2 o JT-T Jo

w h e r e <r ( t ) = f g ( u ( T ) ) d x , H ( t ) = f ( f g ( u ( s ) ) d s ) 2 d a ' ( r ) .
Jo Jo Jt-T y

and K is some appropriate constant.
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An application of condition (bQ) to the second and third

terms of the right hand side of (5.28) yields (BQ), that is

G(u(t)) is bounded. To apply our weak stability principle

we need to show that Q=[g(u);T] is bounded. We note that
o.

<5.29)Qa[g(u) ,T] = iiSlf-ai -J a

rp rn m\ J Jp

\ J H(t)dt - \ J a'(T)(J g(u(s))ds)2 dT\ J
The boundedness of the last two terms on the right of (5.29)

follows from the energy inequality (5.28). From (5.28),

we also have

(5.30) \ a(T)(72(T) +b(T)a(T) £ M]_ ,

T
(5.31) -f (aT (fc)Q[ (fc) .+ b* ( t ) a ( t ) ) d t ^ M2 .

N o t e t h a t condition (b ) implies tha t c! (t) <£ 0 or

c(t) ^ c (0) , t ^ 0. Thus,

(5.32) | b ( t ) a ( t ) | £ c(O) |a( t)cr( t) |

Also,

o

(5.33)

t t 2 t

J b'(T)a(T)dT ̂  (J ^ l l J d T ) 2 (J -a' (T)a2(T)dT)^

h rfc
 a? T a 2

o

Using (5.32) and (5.33) in (5.30) and (5.31), we obtain,by a

2 pT ?
standard argument, that a(t)a (t) and - a! ( T) cr ( T)dT ; are
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bounded for all t,T ^ 0. This together with (5.29) yields

the boundedness of Q [g(u);T]. The uniform continuity of
a

g(u(t)) follows from (F2) and (bQ) (iii). This completes

the proof.

Remark (5.4) If we assume in addition that (a-) holds,

then we can consider more general equations with perturbing

terms f(t,u) under assumption (Fo)t An extension of this type

has been considered by Levin and Nohel [10]. We refer the

reader to their work for further details.

We are now in a position to amplify the remarks concerning

second order equations discussed in section 3. We consider

equations of the following form ;

(5.34) u(t) = cg(u(t)) - f b( t--r) g(u( T) )dT + h(t) .
Jo

rt
Setting a(t) = c + b(T)dT, we can rewrite (5.34) as,

Jo

(5.35) u(t) = cg(u(t)) - J a' (t-nr) g(u( T) ) dT + h(t) .
o

Integrating (5.35), we have

(5.36) u(t) = - a(t-T)g(u(T))dT + u(0) + h(-r)dT.

Jo Jo

Applying Theorem (5.6) to (5.36), we obtain:

THEOREM (5.8) Suppose that (-1) bK(t) ^ 0, k = 0,1,

and (G,) , (GO , (GA) hold and that

(5.37) c + J b(T)dT > 0.
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Furthermore assume that heL^OjOo) and J h(T)dT€L1[O,oo ) . Then

(i) every solution of (5.36) satisfies (S ) and (S^)0.

(ii) If,JJB additionf c + J b€L1 then every solution of

o

(5.36) satisfies

lim g(u(t)) = U (

J^aftjdt

where a(t) = c + j b(T)dT.
o

Conclusion (i) given in Theorem (5.8) is closely related

to a result in [12] for the linear equation where the connection

with viscoelasticity is pointed out. This result of [12]

is complemented by conclusion (ii) which shows that asymptotic

stability is lost when a(oo) = 0. Condition (5.37) was

also used by Dafermos [1] in connection with problems of

linear viscoelasticity.
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6. PARTIAL DIFFERENTIAL FUNCTIONAL EQUATIONS

In this section, we give some first steps in the

application of the weak stability principle in infinite

dimensional spaces, a situation rather different from finite

dimensional spaces. The basic problem in the theory is to

obtain the weak uniform continuity. We have obtained com-

plete results only in the linear case. We present two

examples of the linear theory, one in some detail. This

is followed by a discussion of a simple nonlinear case

intended to isolate the difficulties.

We consider the linear equation*

(6.1) ut(x,t) = - J a(t-T)Lu(x,t)dT + fQ(x) + f;L(x,t), :

* o

where the basic space M = L2(H), Cl a bounded region in

3Rn L is a symmetric strongly elliptic operator of the

formf

(6.2) Lu = E (-l)lal Da(aa/? D^ u) ,

where the coefficients aa" = a^a are smooth functions which

depend only on x. The notation here is the standard one:

a = (a1,...,am) with the a^s non negative integers,

I ex | = cu + ... + a and
l m

a
Da u = (-s-)al *.. . (JT^-) m u.

In order to obtain certain a priori estimates on the

*The results of section four permit an obvious extension to
systems of equations.
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solution, we require some well known results in partial

differential equations. First, we require that solutions

should be in H1*1 which is the completion of C^°(£2)

Under the norm,

<6-3> l|u|lm=,E,, J <D%> 2dx.

(Thus, we are imposing !Dirichlet! boundary conditions). To

avoid technical statements of hypothesis, we assume from

the outset that aa^ eC°° (0) , sQ is C00 and feC^(ft).

Equation (6.1) is of the form (3.1) for which results

in section 3 are applicable. A(t) is simply a(t) times

the identity, therefore it defines a one parameter

family of bounded linear operators on L2(ft), and g is

the differential operator L which is accordingly unbounded

with domain dense in 1^(0). On the space H11* there is

the bilinear functional B(u,v) defined ^

(6.4) B(u,v) = f (Lu)v dx = £ f Dav aa£ D^u dx

This definition is made f irst for u and v in C

and then by completion for U^GH111 . I t is well known

from results on el l ipt ic partial differential operators

that:

LEMMA (6.1) For a l l u,veHm ,

(i) |B(u,v)| ^ K||u||
m
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(ii) (Garding's inequality)

where c c. are positive constants and II I denotes the
_ _ _ Q Ĵ  _ _ _ _ — _ _ _ _ _ _ _ Q _ _ _ _ _ _ _ _

L^ norm*

We now make a special assumption on the operator L:
o

(M) the constant c jln Garding' s inequality

can be taken as zero.

(This is precisely the condition that the generalized Dirichlet

problem for Lu = f should have a solution. For further

comment see remark 6.1 following the proof of the theorem.)

We can now state the main result of this section.

THEOREM (6.1) Let {a(t) : t ̂ > 0} define a strongly

positive kernel. Suppose that a(oo) exists and is

positive and that assumption (a_) is satisfied. Then if
— — — — •' — — — — . — — . i «—— — — — — _ — - _ — _ . — — — — —«—

(6.5) H fl ( -'

and

(6.6) Hfl,t(-

any solution of (6.1) satisfies,

(6.7) lim ||u(.,t)|| = 0.

t-»oo

PROOF. We will use the weak stability principle,

Theorem (2.1)# Let us assume for the moment that we have

established the necessary conditions to apply Theorem (2.1)

Then the conclusion will be that Lu converges weakly to
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zero in L 2(^). We will show that this implies the desired

conclusion (6.7).

The weak convergence of Lu implies first that

(6.8) IMIO £ KQ, KQ constant.

As part of the proof to follow we will also show that ||u||

is bounded. Then it follows from a priori inequalities

for strongly elliptic equations (see [2], Theorem 18.1) and

(6.8) that

(6.9) N ^ m ~ Kl' Kl c o n s t a n t-

Here ||# II o ^s formed in the same way as || • || in

(6.3). Suppose now that ||u(t)||m does not tend to zero.

Then there exists an e > 0 and a sequence t -• oo such

that ||u(t )|| ^ e. Now by (6.9), we know that the set

{u(t )} is bounded in H2 (the completion of C00 {Q)

under ||#|L )• It is a standard theorem in partial

differential equations that the embedding H? -• H? is compact

if k > j. Thus the set {u(t )} is compact in H? _. for

any j, 1 <£ j <^ 2m and accordingly a subsequence u(t )
nk

converges to u e H • But this subsequence must converge

to zero since for each w e H° ,
m

0 = lim (Lu(t ),v) = lim B(u(t ),v),
nk k-oo nk

Moreover, by Lemma (6.1) (i), B(u,v) is continuous in

H° for a fixed v. Thus B(u,v) = 0 for all v e H°,
m ' m
hence u = 0. This contradicts the assumption ||u(t ) || ^ e > 0.
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We now turn to a proof that the weak stability-

principle is applicable. Following remark (3.3), we define

G(u) by

(6.10) G(u) = ^(u,Lu) =^B(u,u).

It follows immediately from Garding's inequality, under

assumption (M), that assumption (G^) of section 3

is satisfied. Moreover we have -g£ G(u) = (ufc5

Also, for any u,veH° we have,

2

(6.11) |B(u,v)|2 ^ K
2 B ( U ) ||v||m , K constant.

Thus, we have,

| (Lu,f)| = |B(u,f)| £ K B(u,u)||f||m
(6.12)

= 2 K G(u)||f|''m

Note that

2G(u) 1 1 + G2(u) ^ (1 + G(u))2,

which, together with (6.12), implies assumption (F ) in

section 3. Thus, by Theorem (3.2), we deduce that G(u)

and Q [Lu:T] are bounded. From the boundedness of

B(u,u) and Garding's inequality follows both the boundedness

||u||o used above and the weak boundedness of Lu. It remains

to discuss the requirement of weak uniform continuity.

Differentiating (6.1), we obtain

rt
(6.13) ufct(x,t) = -J a(t-T)LuT(x,<r)dT + f(x,t),
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where ?(x,t) = -a(t)Lu(x,O) + f_(x,t). With the assumption

(6.6), we can consider equation (6.13) in the same form as

equation (6.1), where f(x,t) = fQ(x) + ?1(x,t),

f(x) = -a(oo)Lu(x,0) and f^Xjt) = -(a(t)-a(ao ) )Lu(x,O) + f (x,t)

f and f1 satisfy the same conditions as f
o(

x) a n d

f.(x,t). Thus, an application of Theorem (3.2) yields the

weak boundedness of Lu, , hence the weak uniform continuity

of Lu. This completes the proof.

Corollary (6.1) Let {a(t) : t J> 0} define a^ positive

kernel. Suppose that ||a(t)|| and ||f(-,t)||m, ||f' (•, t) ||m€L1(O,oo ) .

Then every solution of

ft
u. (x,t) = - a(t-T)Lu(x,t)dT + f(x,t),
fc Jo

satisfies (6.7).

Remark (6.1) Something like hypothesis (M) is

necessary if we are to obtain asymptotic stability as the

following example shows. Consider the equation

(6.14) u (x,t) = f e~
a ( t~ T ) (u (X,T) + Xu(x,T))dT,

with u(0) = u(l) = 0. Here, the energy function G(u)

is determined by

B(u,u) = J (u^ - Au2)dx,
o

o
so CQ = c^ = 1 in Garding!s inequality. It is not hard

to see that if A is large enough there will be solutions



60

of (6.14) of the form u(x,t) = T(t) sin TTX in which T

'̂ frows exponentially with t. We remark that (M) is always

satisfied if L is homogeneous of degree 2m with constant

coefficients.

We now return to equation (6.1) and consider the situation

when f (x) jfi 0 and a(t)€L-,(O,oo ), a case also considered

in the one dimensional equation. Here, also we show that

in some cases, asymptotic stability cannot be expected.

We observe that the differential operator L has

a bounded inverse if we restrict the range of L~ u to

lie in H m . This observation is simply the statement

that the generalized Dirichlet boundary value problem^ Lu = f̂
m

has a solution in H for every feLo(0).
o u • z

THEOREM (7.2) Suppose that a(t) satisfies assumptions

(a^) - (a4) jln section 4 and that a(t) €L, (O,OD )

roo
and J a(T)dr e L , ( O , O D ) . Furthermore, we assume that

hypothesis (M) holds for L. Let u be a solution of

(6.15) u.(x,t) = -f a(t-T)Lu(x,T)dT + f (x) + f. (x,t),•c J Q o 1

where fQ€L2(n) and f1 satisfies (6.5) and (6.6). Then u

satisfies the following;
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(6.16) lim | |u(- , t ) - u ( - ) | | m = O,

where u(x) _is the (unique) solution £Q £li£. generalized^

r°°
Dirichlet problem Lu = Af , ueET , with A = a(t)dt.£ o o JQ

PROOF. We can rewrite (6.15) as

(6.17) ufc(x,t) = -J a(t-T) (Lu(x,T)-Lu(x))dT + (J a( T) dT) fQ(x)+f1(x,t)

o t

L e t v ( x , t ) = u ( x , t ) - u ( x ) . W e s e e f r o m ( 6 . 1 7 ) t h a t

, t roo
v . ( x , t ) = - I a ( t ~ T ) L v ( x , T ) d T + ( | a ( T ) d T ) f (x) + f . ( x , t ) ,

t J o t J t

which is of the form (6.1). The desired result follows from

Corollary (6.1).

Results given in Theorems (6.1) and (6.2) allow us to

treat some second order equations in much of the same way

as in the one dimensional case. Consider

rt
(6.18) u.. (x,t) = -a(O)Lu(x,,t) - a( t-T) Lu(x, T) dT + f(x,t),

which can be transformed into equation (6.1) by a simple integra-

tion. If we apply Theorem (6.1), we have the following

result:

THEOREM (6.3) Suppose that (a.) - (aA) of section 4
— — — — — j_ fj. ——— — — — — — —

are satisfied for a(t). Suppose further that the operator

L satisfies hypothesis (M) and f satisfies (6.5) and

Hm €1^(0,00).

Then every solution of (6.18) satisfies (6.7).
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Remark (6.2) . Dafermos [1] proves a theorem which is

similar to Theorem (6.3) in the case where O is a bounded

interval in IR . His proof is based upon the construction

of certain Lyapunov function, a technique used by Levin [8].

We close our discussion with some remarks concerning

a nonlinear problem. Consider the equation^

(6.19) ufc(x,t) = J a ( t - T ) ^ cr(ux)dT, u(0) = u(l) = 0,

o

where the underlying space is M = 1^(0,1). We assume

as before that a(t) satisfies conditions (a..) - (a^)

in section 4 and hence a(t)I defines a strongly positive

kernel on L2(0,1)• To find a suitable energy function

G(u), we cannot use the general idea given in section 3 but

we can use the special form of (6.19). Define the function

G(u) on L2(0,l) nc
1(O,l) by

f (f
o Jo

Then we have,

(6.20) G(u) = f (f X cr(4)d£)dx.
Jo Jo

(6.21) ^ G(u) = J g(ux) uxfc dx = (g(ux)'
u

o

If we impose the further condition,

(6.22) a'(£) ^ m > o a(0) = o,

then we have,

(6.23) G(u) ^ \ mf u 2 dx.
z Jo x

Recall that for functions vanishing at 0 and 1 we always have
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(6.24) J u x
2 d x ^ c f u2dx, c > O.

o o

Hence (6.23) and (6.24) together imply that G, as defined

by (6.20),satisfies hypotheses (GQ) and (G^) of section 3.

Theorem (3.1) implies that G(u) and Q^[g(u);T] are

bounded and in particular, HuJ^ and ||uj|o are also bounded

for all t ^ 0. To obtain the second part of Theorem (3.1),

we observe that

(6.25) (g(u),v) = J ~ a(ux)vdx = J a(ux)vx dx,

o o

for all veC°°[0,1]. Since C^[0,1] is dense in J* ,

weak boundedness of g(u) will follow if we can show that

the last integral in (6.25) is bounded for each fixed v.

We come now to the first difficulty with nonlinear problems,

namely, the estimate (6.2 3) does not apply to

(6.25) so as to imply weak boundedness of g(u). More

precisely, since ex is not a linear function, we cannot

use Schwarz inequality as in the previous case with linear

equations. Thus, we have to make further assumptions on a.

We assume that

(6.26) |cr(€)| <: m|€| + K|£|r , 0 < r < 2

Using (6.26), we may estimate (g(u),v) in (6.25) by

Holder!s inequality as follows:

1 1 -£
! ( g ( u ) , v ) | £ K [ u 2 dx + K (f u 2 d x ) 2 ,

J- J Q x 2 JQ x

H T U M A I Y
IIIVEIISIIY.
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where K,,K2 are positive constants depending on V€CQ [0,1]

Thus for the type of nonlinearity (6.26), we obtain weak

boundedness of solution of (6.19). Other algebraic rates

of growth condition may be imposed on a instead of (6.26)j

for example, let

CF(C) = |€|a sgh 5, a > 0.

Then, the energy functional G is given by

Thus, we can apply Holder1s inequality to obtain

where C is a constant depending on v.

To obtain weak stability of solutions of equation (6.19),

we need to verify the weak uniform continuity of g(u),

namely the uniform continuity of

r 1

cr(u (x,t))v (x)dx,
J Q x x

for all veC°°[0,1]. If this condition is satisfied, then

we obtain from Theorem (3.1) that ^— Q(\JL ) converges

weakly to zero. Note that the weak convergence of -g— or(u )

implies the boundedness of

1&X j x

r 2
hence,by (6.22), the boundedness of u dx. Since

Jo x x

2 1
the embedding of H into H is compact, we would deduce,
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as in the proof of Theorem (6.1), that

r1 2
u (x,t)dx -• 0 as t — CD .

o

Unfortunately, we are unable to prove the weak uniform

continuity of solutions (6.19). The device of differentiating

the equation, as we did for the linear equation (6.1) of

course fails for the nonlinear case.
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