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1. Introduction.

This paper concerns the nonlinear functional differential

equation,

(E) y(t) = - J a(t-T)g(y(T))dT + f (t) .

This equation has been the subject of much study, mainly by Levin

and Nohel (see for example [4]) and Hannsgen [2]. The object has

been to obtain sufficient conditions for asymptotic stability.

The best result in this direction appears in [2] and is contained

in the following theorem.

Theorem I. Suppose the following conditions are satisfied:

(AJ (-l)ka(k) (t) > 0, k = 0,1,2, a(t) f constant,
1 ioo

(Ao) §g(?) > 0 for 5 ̂  0; [ g(?)d5 = oo .

2 • J

(A3) f e 1^(0,00)' and either,

(i) |f (t) I < M for all t

or (ii) a e 1^(0,00) and |f(t)| < M for all t.

Then all solutions of (E) tend to zero as t tends to> infinity.

Here we consider the rates of decay of solutions and in par-

ticular we give conditions for exponential decay. The basic re-

sult is as follows.
Theorem II. Suppose (A-,) - (Ao) hold and in addition that;

JL Z. ————— —~—. — — — — — — — — —

(H-.) a (t) -a (00) < Me" , for some positive constants M and

a, where a (oo ) denotes the limit of a(t) at. infinity,

as



2.

Si"
(H2) |f(t)| < Ne~ , for some positive constants N and p,

(EL) If a(oo) > 0, then If(t)I < B for some positive con-
o —— ———— — ——— —«——. ————

stant B5

and

(H.) g JL£ differentiable in some neighborhood of origin

and g* (0) > 0.

Then there exists <a constant Y < & such that :

(1) Î f P > Y, every solution of (1) satisfies y(t) = 0(e~ Y !t)

as t "* oo, for any Y! < Y;

(ii) Ij: P < Y, every solution of (1) satisfies y(t) = 0(e~ y t t)

as t - oo, for any p» < P.

Note that the hypotheses of Theorem II imply (A 3).

Remarks (1) If 3 = Y one must give more precise information

about the behavior of f for large t and we omit the discussion

of this case.

(2) As we indicate in section (2), the conditions (EL) and (H2)

are essentially necessary in order to have exponential stability.

(3) Both the results and techniques here are similar to those con-

tained in [5]. In [5] more general nonlinearities were admitted

but the results were only local. Applied to the present situation

they would assert that Theorem (II) holds if |y(0)| is suffic-

iently small. We emphasize that Theorem (II) is, in contrast, a

global result.

(4) The ideas of section (2) are related to those of Halanay [2].

The proofs in [2] are incorrect but have been recently clarified

by the authors [6] .
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2. The Linearized Equation.

We use a kind of perturbation technique. We rewrite (E) in

the form,
t

(2.1) y(t) = - Ja(t-T)gf(O)y(T)dT + p(t),
o

where , t

(2.2) F(t) = f(t) - Ja(t-T) (g(y(T)) - gi (0) y (T) ) dT .
o

From Theorem (I) we know that y(t) tends to zero. Thus we can

consider (E) as a perturbation on the linear equation (2.1). The

present section is devoted to a study of (2.1) which is of some

interest in itself. We prove the following result.

Lemma: Suppose (A,) , (H,) and. (H4) hold. Then any solution of

(2.1) can be written in the form;

t

(2.3) y(t) = r(t)y(O) + Jr (t-T) p(T) dT
o

where the function r(t) satisfies,

- Yt
(2.4) |r(t) I < pe T for some constants p and Y, 0 < y < a,

Moreover, if a (oo) ^ 0 then r(t) satisfies,

t
n

(2.5) |Jr(T)dT| < pte-
Y ,

o

where p1 i^ some positive constant.

* The function r is referred to as the resolvent of equation (2.1)
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Proof: We proceed formally by taking the Laplace transform

of (2.1). This yields,

(2.6) sy(s) - y(0) = - a (s) g ' (0) y (s) + F(s),

where y, a and F denote the transforms of y, a and F

respectively.

The estimate (H,) yields,

(2.7) £(s) =

where b is analytic in &e s > -a. Thus we obtain, from (2.6),

(2.8) y(s) = r(s) (y (0) + F(s)),

where

(2.9) r(s) =
s + a(s)g< (0) s + g< (0)

S

One obtains (2.3), formally, from (2.9) and the convolution theorem;

r will be the inverse transform of r. To prove estimates (2.4) and

(2.5),we must study carefully the function r. It is clearly anal-

ytic in ®e s > -<x except at the zeroes of the denominator which

are poles. We claim, in fact, that r is analytic in &e s >_ -Y

for some Y > 0. This is proved in [5] and we review, briefly, the

argument. It can be shown by a direct calculation that (A,) im-

plies the inequality,

(2.10) Re a(s) > 0 on &e s = 0.
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It follows that s + g1 (O)a (s) cannot have zeroes cm the imagin

ary axis. It can be verified, by integration by parts, that

(2.11) £(s) =

This equation shows that s + g!(O)a(s) cannot have zeroes of

arbitrarily large absolute value. Thus the claim is verified.

Once the properties of r are known one can apply the inver-

sion formula for Laplace transforms to obtain r. It is a

straightforward matter to verify that (2.3) is indeed a solution

of (2.1) and a standard argument shows that this solution is unique

The estimate (2.4) follows from the inversion formula and the fact

that r is analytic in &e s >_ -Y.

The transform of the integral of r is given by r(s)/s.

When a(oo) ^ 0 (2.9) shows that this function has a removable

singularity at s = 0 and otherwise shares the analyticity proper-

ties of r. Thus (2.5) holds when a(oo) ^ 0, This completes the

proof of the lemma.

Remark: The estimates (EL) and (H~) are in some sense neces-

sary for exponential stability. Suppose we have a solution y of

the linear equation (2.2) such that y(t) = 0 (e ) . Then y(s)

is analytic in ^e s > -3 and hence the right side of (2.8) must

be also. But unless both a and F decay exponentially it can-

not be that r and F are analytic in such a region.
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3. Proof of Theorem II.

Theorem (I) and (H ) imply that given any e > 0, there exists

a T > 0 such that,

(3.1) |g(y(T)) - g'(0)y(T) | < e | y(T) | in T > T.

We write, for T > 0,

(3.2) P(t) = PT(t) + GT(t)

where,

T

FT(t) = Ja(t-T) (g(y(T)) - g'(O)y(T))dT
(3.3)

oo
GT(t) = J a(t-T) (g(y(T)) - g' (0) y (T) )

We observe that (2.3) and (2.4) yield

t

(3.4) |y(t) | < Y(t) + pe" Y t Je Y T [FT (T) + GT(T)]dT,
o

where

(3.5) Y(t) = pe-rt(|y(0)|+ JeYT|f(T)|dT)

From (H2) we have,

Y(t) < Ke~ Y t if P > Y

(3.6)

Y(t) < Ke t if p < Y.
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Now we split the proof into two cases.

Case (1) a(oo) = 0 .

In this case (H^ shows that |P T(
T) |< K'e"aT. Then (3.5)

yields, if P > Y,

t

(3.7) |y(t) | < K"e-Yt + pe" Y t JeYTGT (T) dr.
o

With € > 0 given,choose T so that (3.1) holds. Then for

t > T we obtain,
t r

(3.8) |y(t) | < K"e-Yt+ P6Me"Yt JeY T ( Je" a (T"M) |y(/i) |djU)dT
T

t t

< K"e"Yt+ J
o

Set z(t) = eYt|y(t) | so that (3.8) yields,

(3.9) z(t) < KM + v Jz(JU)djU v = £&

o

Since € is arbitrary we deduce that

z(t) = 0(emt)

for arbitrary m > O and hence
y(t) = 0(e"Ylt) for any Y' < Y,

If P < Y , similar calculations yield

y(t) = 0(e~p1t) for any p« < p,
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Case (2) a (oo ) / 0.

The proof proceeds in almost the same way. The only dif-

-CXT

ference is that we no longer have the estimate |FT(T)| < K
!e

Thus we need a preliminary step. We have, by (H,),T

p(T) = a (oo) J(g(y(M))-g> (0) y (M) ) dM + F(T)

where F (T) is just like the term treated in case (1) . For the

first term we have,

t T t t-T

a (oo ) Jr (t-T) J$ (y (M)) -g' (O)) y (M))dudT = a (oo ) Jr (r) J (g (y (M) ) -g' (O) y (M))djLidT
o o o o

t-T T

= a (oo) f(jr(S)dS)J(g(y(M))-g' (0) y (M)) d/i |
^ o o o

t T

+ J(Jr(5)d?) (g(y(t-T))-g. (0)y (t-T)
o o

t t-T

= a(oo)J(Jr(5)d?) (g(y(T))-gi (0)y(T))dT .
o o

By (2.5) of the lemma we have,

t-T

|J(r(S)dS| < p ' e - Y ^

and now we can proceed as in the preceding case.

Remark. The assumption (HJ was dictated the method of proof.

This linearization process is used in order to obtain a global

result. Without (H-), one can still obtain a local result, see [5].

On the other hand, without exponential decay of the resolvent r(t),

linearization still yields a local result for asymptotic stability,

in fact for more general equations, see [7] .
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4. An Application to control Theory.

Consider the autonomous system of n + 1 ordinary differential

equationsj

(4.1) ( x = Ax - ag(y),

y = Px - Yg (y) ,

where x,oc are n-dimensional column vectors, A is an n X n ma-

trix, £ is an n-dimensional row vector, and y,Y are scalars. We

solve the first n equations of (4.1) by the variation of constants

formula and substitute into the last equation of (4.1). This yields,

t

(4.2) y(t) = -Yg(y(t)) - JpeA(t"T)ag(y(T))dT + Pe
At

x(O) .
o

The problem of absolute stability in the theory of nonlinear con-

trols [3] is to determine conditions on A,a^p^Y and g so that all

solutions y(t) of (4.2) tend to zero as t tends to infinity. In

the special case of direct control, that is when Y = 0, equation

(4.2) is of the form (E) and the present result concerning exponen-

tial stability becomes applicable. It is usually assumed that g

satisfies (A2) and A is a stable matrix. Suppose further that

(3 = oc 9 the transpose of a. Finally assume that g satisfies

(H5) and that A is symmetric. Then one can show that

a(t-T) = aT
e
A^t"T^a satisfies (E^) and(H2). Hence it follows from

our theorem that the control system (4.1) is not only absolutely

stable but exponentially stable.
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