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SOME EXAMPLES IN TOPOLOGY

by

S. P. Franklin and M. Rajagopalan

Section one is concerned with variations on the theme

of an ordinal compactification of the integers. Several

applications are found, yielding for instance,an example pre-

viously known only modulo the continuum hypothesis, and a

counterexample to a published assertiono

Section two is concerned with zero-one sequences and

section three with spaces built from sequential fans. Of

two old problems of Cech, one is solved and one partly solved.

Since the sections are more or less independent, each will

have its own introduction. Sequential spaces form the connecting

thread, although not all the examples are concerned with them.
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1

§1. Spaces such as 3lN and I provide ready examples of

separable compact Hausdorff spaces which are not sequential

But these are of "large" cardinality, i.e. 2 . The space

o>- + 1 with the order topology is a non-sequential,compact

Hausdorff space of "small" cardinality, i.e. K,, but, unfor-

tunately, it isn!t separable. This leads one naturally to ask

if there is a non-sequential, but separable, compact Hausdorff

space of small cardinality. Such a space can be produced simply

by conjoining known theorems as follows.

Magill ([M] Theorem 2.1) showed that if any Hausdorff

space K is the continuous image of Px\ X, with X locally

compact Hausdorff, then there is a compactification YX of X

with yx\ X homeomorphic to K. Parovicenko ([P] Theorem 1)

proved that every compact Hausdorff space of weight £N, is

the continuous image of £IN\N. From these results one obtains

EXAMPLE 1.1. There is ja compacti fication YIN of IN with

YIN\3N homeomorphic to cu, + 1, and hence there is a non-

sequential, but separable, compact Hausdorff space of cardinal-V
By providing a specific construction of the space YIN, which

is done below, we can assure (modulo the continuum hypothesis (CH))

that no sequence in IN converges to a) e Y3N . Then by modi-

fying the topology of YIN at the point uo^ we get

EXAMPLE 1 • 2 o (CH) There is _a sequentially compact. Hausdorff
(2)

c-spacev ' which isn!t sequential, This corrects a mistake of

the first author, showing that the Proposition in [F.] is false.

This space, however, is not regular. The existence of such an
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example which is regular is still an open question.

Several fairly complicated examples have been given of

separable and normal but non-paracompact spaces (see [R,], [McA])

Having YIN in hand, the simple expedient of omitting the point

w from Y3N yields

EXAMPLE 1.3. YIN \ { u)-} iŝ  a_ first countable, locally compact

space of cardinality N, which is normal and separable, but not
'" • JL — — — — — i 11 — — — — — — — _ — » _ _ — '

metacompact (and hence not paracompact). CH isnTt needed here.

Example 1.3 is similar to that of [R.,] .

In response to a question of E. Michael, Mrs. Rudin ([R2]l)

constructed, modulo CH, a normal^sequentially compact Jbut non-

compact space with a separable, metric, locally compact, dense

subset. Again modulo CH, we can construct such a space with

even nicer properties (i.e. first countability, local compact-

ness) as well as a simpler proof.

EXAMPLE 1.4. (CH) YIN can be constructed so that Y3N \ (<JO, } îs

£L first countable, zero-dimensional9 locally compact, normal3

sequentially compact, but not compact space with â  countable,

discrete9 dense subspace.

W. W. Comfort asked, in a private communication, whether

or not a separable, sequentially compact,but non-compact space

can be constructed without appeal to the continuum hypothesis.

We can now answer this affirmatively.
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EXAMPLE 1.5. There is a. separable, sequentially compact, locally

compact normal, space which isnT t compact. The construction does

not depend on CH. However, first countability is lost. This

raises the new

QUESTION: Can a first countable separable, sequentially compact,

but not compact space be produced without appeal to CH?

For any space X, let sX be its sequential coreflection,

i.e. the same set with the sequentially open sets as topology

(see [F3] proof of 5.2)• This leads us to

EXAMPLE 1.6. sylN ijs. â  separable, sequentially compact Hausdorff

space which isn *t compact.

The continuum hypothesis is not required. However, without

it we cannot be sure the space is regular, i.e. that the point

uo, can be separated from the now closed set w . Hence we feel

that Example 1.6 is not a satisfactory answer to Comfort!s ques-

tion. With CH, the point w can be made isolated in sYIN so

that sy3N is another space with all the properties of Example 1.4,

With a little care, it can be insured that sylN isn't

regular yielding

EXAMPLE 1.7. There is <a compact Hausdorff space whose sequential

coreflection isn!t even regular. This shows that in general one

can expect little preservation of properties under topological

coreflections•

Zenor [Z] has introduced a property between countable para-

compactness and paracompactness, and has shown that together with
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Hausdorffness it implies regularity. He gives an example to show

that a countably paracompact Hausdorff space need not be regular.

Example 1.7 shows that this may also be the case even if the

space is separable and sequentially compact.

CONSTRUCTIONS.

We first define recursively a family (ua-̂ a < UJ °^ non~"

empty clopen subsets of PIN \ IN such that U a ^ Un whenever

a < p. Let U be any proper non-empty clopen set, and having

found suitable U a for each a < y, let Fa = OUS \ m ) \ Ua.

Since any G* formed from non-empty open sets in (3 IN \ IN has

a non-empty interior ([G-J] 65.8 p.99), let A be a non-empty

clopen subset of PI {F Jex < Y} and write A = B U c with each

of B and C non-empty and clopen. Let U = (PIN \ IN) \ B.

Clearly U C U for all a < y and the existence of B in-

sures that the process can continue, i.e. that F ^ 0.

Adopting the same method employed in the usual proof of

Urysohn!s lemma (see, for example, [V] or [K]), we construct a

continuous function from PIN\ IN onto a) + 1. The theorem

of Magill, previously quoted, now assures the existence of the

desired compactification Y3N , with ylN \ IN homeomorphic to

u^ + 1.

Since u>̂  + 1 can be thought of as a closed non-sequential

subspace of YIN (IN being locally compact) , yJS cannot be se-

quential, and so Example 1.1 is complete.
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Let Y = Y3N \{u>,}. Then gY = yW is totally disconnected

and hence zero-dimensional, being compact ([G-J] 16.17, p.247) .

Thus Y is also zero-dimensional ([G-J] 16.11, p.245). We will

use this fact to show that Y is normal.

If A and B are disjoint closed subsets of Y and A,

and B, are their respective intersections with uo, thought of

as a subset of Y, one of them, say A, is compact ([G-J] 5.12 (b),

p.74) . Then there is a clopen subset U of Y containing A,

and missing B. Then U U A is a clopen subset of Y contain-

ing A and missing B. Indeed, points of A \ U are isolated,

whence U U A is open; they can accumulate only in A, c u,

whence U U A is closed. Thus Y is normal.

If C is any compact open subset of u). £ Y, then for some

compact open U ^ Y C = U D u).. . By removing the countably many

points of U fl IN one at a time, we see that C is a G*. But

each point of ca, £ Y is the intersection of countably many

such C. Hence each point of Y is a G*. Since Y is locally

compact (being an open subset of YIN), it is first countable.

Noting that Y has cardinality fcL , and that, having u)..

as a closed subset, it isn!t metacompact completes Example 1.3.

We now turn our attention to sYEJ • Since the cardinality

of yHS is fc^ it is sequentially compact ([F4] Corollary p.598).

But sYIN, having the same convergent sequences, must then also

be sequentially compact. Since YIN is not sequential, SYIN car-

ries a strictly finer topology and is therefore not compact.

Thus Example 1.6 is complete.
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In the original construction of Y3N a transfinite sequence

(U }„ ̂  of clopen subsets of P3N \ IN was employed. By con-

fining our construction to the complement of some given proper

clopen subset U, we can assure that U{Ua|a < a)-) isn!t dense

in PIN \ 3N . Every such U is of the form (clQTvrA)\ IN for
p TN

some subset A of M([G-J] 65.4, p.99). Any sequence in YIN

which is an enumeration of A must converge to cu. . Indeed 00

is its only cluster point by the continuity of the function

{3IN—^ ylN , and hence its limit point since we are in a compact

Hausdorff space.

Now suppose we have separated the point ^ from the set

u).. by disjoint open subsets V and W of sylN . V then must

eventually contain any sequence in IN converging to the point

IN

of the closure of U{U |oc < a), } . This leaves the closure of that

union open, a contradiction ([G-J] 6W.3, p.100) • Thus if some

sequence in IN converges to the point cu.. in y3N, then syiN

isn't regular. This completes Example 1.7.

The continuum hypothesis can be used to assure that no se-

quence from IN converges to u), . The transfinite recursion used

to construct the {tL}^ ̂  m can be continued so long as Ufu }
vJu u# *̂ » "\ ^**

isn!t dense in PIN \ IN. That Gg
!s in piN \ IN have non-empty

interiors insures that the process won!t terminate for some 5 < u)

This was the crucial fact of the first construction. However, by

cardinality, the process must terminate for some 5 >_ <a, , i.e.

U{UaJa < g is dense in PIN \ IN. Since there are exactly t

o>...Hence (clg V\{CD })\]N is in fact the complement in PlN\
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clopen sets in PIN \ IN (again [G-J] 6S.4, p.99) , and a new one

is created for each a, the cardinality of 6 is less or equal

to t . Assuming CH, the cardinality of 6 is fcL and hence

there is a cofinal subset of 6 of type cu, (otherwise

UftL}^ ^ * couldn!t be dense) . The LL, ! s indexed by this sub-
ex OL *>* 0 U»

set form a strictly ascending chain of clopen sets indexed by

(jo, whose union is dense in PIN \ IN . If YIN is constructed

from this chain, then no sequence in IN will converge to the

point u>, .

In this case, removing oo, leaves YIN \ {w } sequentially

compact (recall that YIN is always sequentially compact, regard-

less of its construction). Since the other properties are inde-

pendent of the choice of the U * s , this completes Example 1.4. A

similar example occurs by taking sYIN in this case, since u)-

then becomes isolated (being sequentially open) and hence sY3N

has the same properties as Y3N \ {co_ } .

Having carefully constructed YIN so that no sequence in

]N converges to the point w.,, let J5 be the trace on IN of

the neighborhood filter of co. in YIN. Let U be any ultra-

filter containing 5. Let X be a space whose underlying set

is Y M , and in which the neighborhoods of points are as in Y3N 9

except that a basic neighborhood of the point w, is of the form

{a) } U U, where U e U. The space X is clearly sequentially

compact due to the careful construction of
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The space X is not sequential since f̂ -,) is sequentially

open but not open. It is a c-space since each point other than

cu, has a countable neighborhood baseband u), has a base of

countable neighborhoods. X is clearly Hausdorff, completing

Example 1.2, but fails to be regular since the point o) doesn!t

have a basis of closed neighborhoods. This leaves the question:

Is a sequentially compact regular c-space always sequential?

An affirmative answer would be enough to restore faith in the

now doubtful Theorem B of [F4] .

For Example 1.5, let 6 be as on page 1.6O Without CH we

can only conclude that o>1 <̂  6 <̂  fc and that 6 has no count-

able cofinal subset. Defining a function gIN\IN~* 6 + 1 as

before we obtain a compactification X! of IN with remainder

X1 \ 3N = 6 + 1 in the order topology. Since X! is totally dis-

connected and therefore zero-dimensional, X = X! \ {6) is also

zero-dimensional. Since 6 has no countable cofinal subset,

of two disjoint closed subsets of 6, one must be compact. These

two facts are all that is required to prove that X is normal

(see page 1.5).

It remains to show that X is sequentially compact. If we

assume that c < 2 this follows as before. However this is

only replacing one independent set theoretic assumption (CH) by

another, albeit weaker, one (c < 2 ) . This can be avoided as

follows. Suppose {xn3 is a nY sequence of distinct points in

X. If (xn) H 6 is infinite, {x } has a convergent subsequence

since 6 is sequentially compact. If not, we may assume that
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{x } £ IN. Then fxn) = clg-^fx^^ {xn) must intersect some

U^ since their union is dense. Now u = A^ for some A^ <z IN

and A PI {x } ^ 0 implies that A fl [x ) is infinite. This

intersection, thought of as a subsequence of {x } has cluster

points, relative to f33N 9 only in U , and hence has oc as its

only cluster point relative to X1. Thus the subsequence con-

verges to oc in X and the proof is complete.

We wish to thank W. W. Comfort for several valuable comments

concerning this section.
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§2. An important subclass of the sequential spaces are the

Frechet spaces, i.e. those in which the closure of any set is

simply the set of all its sequential limits. Clearly every

first countable space (and hence every metric space) is Frechet.

Examples of Frechet spaces which are not first-countable fairly

abound: the reals with the integers identified, the plane with

the X-axis shrunk to a point, any CW complex which isn!t locally

finite, etc. An example of a sequential space which isn!t Fre-

chet can be found in [F2] (Example 2.2) .

In 193 7 E. Cech asked if there was a Frechet space (in the

convergence space, not the topological, sense,(see [N], p.3) in

which no point had a countable basis of neighborhoods. J. Novak

produced such a convergence space ([N] §6, p.16) which wasn't a

topological convergence, and remarked that he didnTt know a topo-

logical example ([N], p.17) .

We now have such an example; it will be presented in Section

3. On hearing of our example, Professor Novak informed us that

he also had such an example (quite different from ours) which he

described in terms of convergence groups of sets, convergence

being order convergence relative to inclusion.

This section is devoted to an account of what we believe to

be an example which is essentially the same as NovakTs, in a

different, and more accessible guise, that of zero-one sequences.

EXAMPLE 2.1. There is a_ zero-dimensional topoloqical group which

is ja Frechet space but is not first countable.
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0)0)

Let 2 be the topological product of two point discrete

spaces {0,1} indexed by the countable ordinals u^. Let X

^1be the subspace of 2 consisting of all functions taking the

value 1 at most countably many times.

^1

X as a subspace of 2 is a topological group under point-

wise addition and hence is homogeneous and completely regular. It

is also zero-dimensional, since 2 is. It fails to be locally
^1compact since it is a non-open dense subset of 2

No point of X is a G*; thus X isn*t first countable.

Indeed, countably many basic open sets can restrict only countably

many coordinates and hence cannot intersect in a point, even in X,

If F £ X and g e cl F, then there is a countable subset

F1 of F with g e cl F1, i.e. X is a c-space. Indeed, let

a = sup g" (1) and choose a countable subset F of F con-

taining a function belonging to each of those basic neighborhoods

of g which restrict only coordinates < a . Let

a, >_ sup {a < a), |f(a) = 1 for some f e F }. Choose a countable

subset F-, of F meeting every basic neighborhood of g re-

stricting only coordinates < a,. Having chosen F similarly

for an, let a n + 1 ^ sup {a < (Djjffa) = 1 for some f e Fn) .

Thus we construct recursively a sequence of ordinals a ,a ...

(without loss of generality we may take them strictly increasing --

we are indebted to F. G. Slaughter, Jr. for this simplification)

and a sequence of countable subsets of F having the property

that each basic neighborhood of g which restricts no coordinate

a strictly between a and a -(i.e. a < a < a -) meets F .
n n+i n — n+l n
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Since each basic neighborhood of g restricts only finitely

many coordinates, it leaves some (a ,a .] unrestricted and

so meets F . Hence g e cl U F , which is countable.

Finally X is a Frechet space. Indeed, if g e cl F choose

a countable subset F! of F with g e cl F1. Let foe.,a , ...}

by some enumeration of the set of coordinates mapped to 1 either

by g or by some f e F f . For each n < u> , let

Fn = {f G F» |f (ai) = g(a±), i < n} . Then for each n, g e cl Fn

(hence F ^ 0) and if we choose f arbitrarily from F , {f }

will converge (pointwise) to f. This completes the proof.

The authors are indebted to M. Venkataraman for suggesting

that Novak!s example might be recast in this simple way, and to

T. Soundararajan for a key idea in the original proof.

It has recently come to our attention that an as yet unpub-

lished result of Noble [N,] considerably generalizes Example 2.1.

A S-subspace of a product space is one consisting of all those

functions agreeing with a given fixed function except at countably

many indexes. Noble proves ([N.,] Theorem 2.1) that any E-subspace

of a product of first countable spaces is Frechet. Example 2.1

is an immediate specialization.
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§3. Since every first-countable space with unique sequential

limits is Hausdorff, and every first-countable space is Frechet,

it is natural to ask whether every Frechet space with unique

sequential limits is Hausdorff. Several examples have been given

to show this isn't the case (see for example [F^]) .

Again it was E. Cech who asked whether there was a Frechet

space with unique sequential limits in which no pair of points

have disjoint neighborhoods.

In this section, we propose to give a totally different (and

countable) solution to the problem of Section 2, and then to give

a partial answer to the problem of Cech mentioned in the preceding

paragraph.

The method employed in both cases is that of attaching of

spaces, which can be traced from Urysohn [U] to Hewitt [H] to

Shimrat's homogeneous extension [S] to the more recent applica-

tions in [A-F] and [F^]. The construction of S^ in [A-F] pro-

vides a good warm-up for the examples of this section,

EXAMPLE 3.1. There is a countable5zero-dimensional,Hausdorff3

homogeneous ̂ Frechet space which isn't first countable.

Note that this space, being a-compact and regular, has many

nice topological properties, i.e. paracompactness etc. It fails

to be locally compact, as did Example 2.1. It would be interest-

ing to know if a homogeneous Frechet space could also be locally

compact without being first countable.
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EXAMPLE 3.2. There is <a countable homogeneous sequential space

with unique sequential limits in which no pair of distinct points

have disjoint neighborhoods.

Since every Frechet space is sequential, this may be con-
v/

sidered as partial solution to Cecils problem.

CONSTRUCTION OF 3.1

We begin by constructing a sequential fan F. Take denumer-

ably many copies of a convergent sequence together with its limit

point (i.e. copies of { / |n e IN} U {0} as subsets of the

real line) and identify the limit points, calling the new point 0

and the new set F. Provide F with the quotient topology after

having taken a disjoint topological sum of the convergent sequen-

ces with limits. The resulting sequential fan F has each of its

countably many points isolated except for 0, which fails to have

a countable basis of neighborhoods. The space F, however, is cer-

tainly a zero-dimensional,Hausdorff,Frechet space. (Some of these

assertions can be most quickly verified by recognizing F as a

closed subset of the real line with the integers identified).

We now begin the attaching process in earnest. Let F, = F

and construct F2 by attaching to each isolated point x of F1

a copy Fx of F (all these various copies being kept scrupu-

lously disjoint before attaching) identifying x with the zero

0 of F . For a topology, each isolated point of each F

will remain isolated in F2; a basic F2-neighborhood of 0 x

will be simply a basic FX-neighborhood considered as a subset of

F2; for a basic F2-neighborhood of 0(e F,) in F2, choose an
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Fx-neighborhood U of 0 and take U U U{Fx|x e U} with the

appropriate identifications. Clearly F-. is a closed subspace

of Fj, F« is a Frechet space, and most importantly, no point in

F-, has a countable basis of neighborhoods in F~.

We proceed by recursion. Having constructed F .., a copy

of F is attached at each isolated point of F ^ to arrive at

F . If FX is attached at x we will say that y £ x for each

y e FX. This relation is defined at each stage of the construc-

tion; its transitive closure is a partial order on F . Define

the rank of a point p in F as 0 for p = 0 in F,, and as

the least i such that p e F. otherwise. For p e F of rank
x l n

n, let p be isolated. Otherwise, let U be a neighborhood of

p in Fp (take F° = F.,) . Then the sets U * = { y e F |y < x for

some x e U} will form a neighborhood basis for p. Again each

F. for i < n is a closed subspace of F , F is a Frechet

space (this requires a little thought), and no point of rank < n

has a countable basis of neighborhoods in F .

Now let F^ = U F . We may either take the inductive limit

topology (the F !s together with their inclusion maps form an

inductive system; F^ is the limit) or, preferably, we may extend

the partial order to F^ and use the U* as basic neighborhoods

as before. It amounts to the same thing. Each F is a closed
n

/

subspace of F^, F^ is Frechet and no point of F^ has a count-

able basis of neighborhoods.
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It is obvious that F is Hausdorff. Each U* is clopen

(recall that U is a neighborhood of p in some P^); whence

F^ is zero-dimensional. For each p e F^ let I(p) be the

principal ideal generated by p, i.e. I(p) = {y e F^\y £ P3 •

Then each I(p) and each F^ \ I(p) is homeomorphic to F^.

Homogeneity follows easily by finite induction. This completes

Example 3.1.

It would be interesting to know if F^ can support a group

structure as does Example 2.1.

One should note that having specified any infinite cardinal

m, an example similar to F^ can be constructed having all the

same properties (except countability) with the character of each

point >̂  m. One simply must put more sequences in the fan.

If one wanted only a sequential space instead of a Frechet

space in Example 3.1, it could be had simply by taking Shimrat's

homogeneous extension of F. The Frechet property is lost through

quotients generally, where sequentialness is not. The space in

this case would apparently be much more complicated as a set

than F^.

CONSTRUCTION OF 3.2

Example 3.2 is significantly more complex than is Example 3.1.

This is so on two counts: first the basic building block is more

complicated; secondly, the attaching is performed at two points

each time instead of at one, and this is done for "almost all"

pairs of points.
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The basic building block D is sort of a "sequential fan

with two pivots11. Precisely, D consists of an infinite sequence

B19B2,... of pairwise disjoint countably infinite sets of iso-

lated points (B is called the n th blade) together with two
n ——— _ _

additional distinct points 0 and 0T whose neighborhoods are

described as follows: to form a basic neighborhood of 0, one

may discard finitely many points (including possibly zero) from

each even numbered blade, as well as finitely many odd numbered

blades in their entirety; the basic neighborhoods of 0T are

formed similarly with odd and even interchanged. The resulting

countable space is D.

It is clear from the definition that 0 and 0! have no

disjoint pair of neighborhoods. If 0 is in the closure of some

subset A of D, then either A fl B is infinite for some
9 n

even n, in which case any enumeration of A H B is a sequence

in A converging to 0, or A has a non-empty intersection with

infinitely many blades of odd index, in which case a point chosen

arbitrarily from each of these intersections gives rise again to

a sequence in A converging to 0. Using the dual (in the sense

of odd and even) we conclude that D is a Frechet space. Any se-

quence in D\ {0} converging to 0 must be either infinitely

many times in some even numbered blade or else only finitely many

times in each of infinitely many odd numbered blades. In any

event, it cannot also converge to 0!. Hence sequential limits

are unique and we have another example such as was mentioned in

the first paragraph of this section, i.e. a non-HausdorffiFrechet

space with unique sequential limits.
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The non-Hausdorffness occurs only at the points 0 and 0».

We will use the attaching process to construct a space D^ in

which every pair of distinct points looks like a complicated ver-

sion of the pair 0,0T.

Let D be the two point discrete space {a,b}. To get D ^

simply attach a copy of D to DQ identifying 0 with a and

0f with b. We will say that the pair of distinct points are

joined if they have been identified with the points 0 and 0f

of some copy of D. Thus a and b are joined in D. . To get

D 2J to each pair of distinct non-joined points of D, attach a

copy of D. In general, having constructed D , for each pair

{x,y} of non-joined points of D choose a copy D^x^y-t of D

and attach it at x and y, thus arriving at D
n + i • Each D is

a proper subset of D ,. Let D^ be the union of all the D .

We topologize D^ a bit at a time. Having given D the

discrete topology and each copy D*-X'y^ of D the topology des-

cribed above for D, each D , can be regarded as a quotient of

the disjoint topological sum of D and countably many copies of

D. Give D the quotient topology. As before, D^ can be re-

garded as the inductive limit of an inductive system composed of

the D and compositions of their inclusion maps into each other.

Give D^ the inductive limit topology.

Clearly D^ is sequential (since we began with sequential

spaces and essentially performed only sums and quotients

(see [F2] 1.2, 1.6, 1.7). It is also clear that no pair of dis-

tinct points of D^ have disjoint neighborhoods. It remains only
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to show that sequential limits are unique. This becomes clear

once one realizes that a sequence can converge to a point x on-

ly if A is eventually in some finite number of D*-X*^ .

Unfortunately D isn't a Frechet space, so that the problem

of Cech remains open. One might be tempted to redefine the topol-

ogy of D^ in a manner more analogous to that of F^ in order to

make D^ Frechet. This can surely be done, but the uniqueness

of sequential limits is lost in the process.



FOOTNOTES

(1) A set is sequentially open if no sequence outside converges

to a point inside. A sequential space is one in which every

sequentially open set is open.

(2) A c-space is one in which the closure of each set is the

union of the closures of its countable subsets.
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